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ABSTRACT. The article is concerned with a particular multiresolution analysis (MRA) composed
of Paley–Wiener spaces. Their usual wavelet basis consisting of sinc functions is replaced by
one based on prolate spheroidal wave functions (PSWFs) which have much better time local-
ization than the sinc function. The new wavelets preserve the high energy concentration in both
the time and frequency domain inherited from PSWFs. Since the size of the energy concentration
interval of PSWFs is one of the most important parameters in some applications, we modify the
wavelets at different scales to retain a constant energy concentration interval. This requires a slight
modification of the dilation relations, but leads to locally positive kernels. Convergence and other
related properties, such as Gibbs phenomenon, of the associated approximations are discussed. A
computationally friendly sampling technique is exploited to calculate the expansion coefficients.
Several numerical examples are provided to illustrate the theory.

1. Introduction

The continuous prolate spheroidal wave functions (PSWFs) are those that are most
highly localized simultaneously in both the time and frequency domain (in a sense given
later). This fact was discovered by Slepian and his collaborators and was presented in a
series of articles [9], [10], [17]–[19] about forty years ago. Since then the study of PSWFs
has been an active area of research in both electrical engineering and mathematics.

Although PSWFs had been shown to be the best tools for analyzing some problems
raised in signal processing and telecommunication (Jain [7]), they are still often regarded
as mysterious and are seldom used in practice. Historically, this was due partly to the
limitations of machine computation. However, modern computational facilities and the
recently developed numerical algorithms of Beylkin and Monzon [1] and of Xiao, Rokhlin
and Yarvin [26] promise to provide elegant numerical results with satisfactory complexity.
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Today, PSWFs can be expected to become a versatile and powerful analysis tool and make
more of an impact in engineering practice.

In this article, we discuss multiscale properties of these PSWFs and then construct
systems which inherit the high energy concentration property of PSWFs and possesses a
multiscale structure similar to wavelet families. One of the systems will be composed
of true wavelet scaling functions, while the other will involve a modification to keep the
concentration interval fixed at different scales.

To begin with, we recall the connection between PSWFs and the Shannon sampling
theorem (Shannon [16]) given by the formula

f (t) =
∞∑

n=−∞
f (n)

sin π(t − n)

π(t − n)
. (1.1)

It holds for π - bandlimited signals with finite energy, that is, for continuous functions in
L2(R) whose Fourier transform has support in [−π, π ]. This theorem has become a well-
known part of both the mathematical and engineering literature (see the recent books by
Higgins [5] and Zayed [27] or the article by Vaidyanathan [20]).

The sinc function S(t) = sin πt
πt

which appears in this formula is closely related to the
PSWFs ϕn,σ,τ (t). They constitute an orthonormal basis of the space of σ− bandlimited
functions on the real line. They are concentrated on the interval [−τ, τ ] and, of course,
depend on the two parameters σ and τ . There are several ways of characterizing them:

• as the eigenfunctions of an integral operator:

σ

π

∫ τ

−τ

ϕn,σ,τ (x)S
(σ

π
(t − x)

)
dx = λn,σ,τ ϕn,σ,τ (t) . (1.2)

• as the eigenfunctions of a differential operator:

(
τ 2 − t2

) d2ϕn,σ,τ

dt2
− 2t

dϕn,σ,τ

dt
− σ 2t2ϕn,σ,τ = µn,σ,τ ϕn,σ,τ . (1.3)

or

• as the maximum energy concentration of a σ− bandlimited function on the interval
[−τ, τ ]; that is ϕ0,σ,τ is the function of total energy 1 (= ||ϕ0,σ,τ ||2) such that

∫ τ

−τ

|f (t)|2 dt

is maximized, ϕ1,σ,τ is the function with the maximum energy concentration
among those functions orthogonal to ϕ0,σ,τ , etc.

Still another characterization in terms of multiplication operators is possible and may
be found in Walter [22], while another integral eigenvalue problem also satisfied by the
ϕn,σ,τ is (Papoulis [14])

∫ τ

−τ

ϕn,σ,τ (x)eiσωx/τ dx = γn,σ,τ ϕn,σ,τ (ω) . (1.4)

The parameter τ comes from the interval of concentration and the parameter σ comes
from the support of the Fourier transform . We can remove one of these parameters by
changing the scale, and therefore can restrict our discussion to the π− bandlimited case,
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or alternately, to the concentration interval [−1, 1]. Both standardizations are used; the
former for discrete sampling and the latter for calculations. Figure 1 shows several of the
PSWFs on the concentration interval [−1, 1].

We shall be interested mainly in ϕ0,σ,τ , the PSWF with maximum concentration on
the given interval. It will be used to construct a scaling function and hence to obtain a basis
composed of its translates. A multiresolution analysis and a mother wavelet are then based
on this construction. Since in general, ϕk,σ,τ has exactly k zeros in the interval [−τ, τ ],
in particular ϕ0,σ,τ is strictly greater than zero in this concentration interval (but has an
infinite number of zeros outside of the interval). Outside of the concentration interval, it
can be made arbitrarily small if either τ or σ is made sufficiently large. These remarkable
properties will be used in several occasions later on.
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FIGURE 1 The π - bandlimited PSWFs (normalized by ||ϕn,π,1||L2 = 1), ϕk,π,1(t), k = 0 (dot-dashed), 1
(dotted), 3 (solid), 4 (dashed), on interval [−1, 1].

We conclude this introduction by giving the outline of this article as the follows:
A brief review of some related properties of PSWFs will be given in the next section. By
using these properties, we are able to introduce a new class of scaling functions and wavelets
based on two different approaches in Section 3. This is followed by discussions of some
properties related to convergence when these PSWFs are used for approximations as part of
a multiscale system. Sampling properties (Walter and Shen [23] and [24]) are then exploited
to calculate the expansion series. Finally, in the last section, some numerical examples are
used to illustrate the theoretical results presented. A remark about further study is given at
the close of the article.
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2. Properties of Prolate Spheroidal Wave Functions

To refresh our memory, we recall some properties of PSWFs. These formulae are
quite well known and are often easy to show. They may be found in a number of places
(Landau [11], Landau and Pollak [9, 10], Landau and Widom [8], Papoulis [14], Slepian [18,
19], Slepian and Pollak [17]).

a. The dual orthogonality

In addition to the Equation (1.2), the {ϕn,σ,τ } satisfy an integral equation over (−∞,
∞) as well:

∫ ∞

−∞
ϕn,σ,τ (x)Sσ (t − x) dx = (ϕn,σ,τ ∗ Sσ )(t) = ϕn,σ,τ (t) (2.1)

where Sσ (t) = σ
π
S(σ t

π
).

This leads to a dual orthogonality

∫ τ

−τ

ϕn,σ,τ (x)ϕm,σ,τ (x) dx = λn,σ,τ δnm , (2.2)

∫ ∞

−∞
ϕn,σ,τ (x)ϕm,σ,τ (x) dx = δnm

and the fact that they constitute an orthogonal basis of L2 (−τ, τ ), as well as an orthornormal
basis of the subspace Bσ of L2 (−∞, ∞), the Paley–Wiener space of all σ−bandlimited
functions.

b. The Fourier transforms

As one might expect, PSWFs are closely related to the Fourier transforms. Indeed,
the Fourier transform of ϕn,σ,τ is given by

ϕ̂n,σ,τ (ω) = (−1)n

√
2πτ

σλn,σ,τ

ϕn,σ,τ

(τω

σ

)
χσ (ω) (2.3)

where χσ (ω) is the characteristic function of [−σ, σ ). Therefore the inverse Fourier trans-
form gives us still another formula:

ϕn,σ,τ (t) = (−1)n

√
2πτ

σλn,σ,τ

1

2σ

∫ σ

−σ

ϕn,σ,τ

(τω

σ

)
eiωt dω .

By a change of variable, this becomes (1.4).
A Fourier transform pair of the PSWF ϕn,σ,τ is shown in Figure 2.
The Fourier transform is also used to construct other formulae which will be useful

to us later. For instance, the PSWFs shifted by integers can be used to construct a partition
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FIGURE 2 A Fourier pair of π− bandlimited PSWF ϕ0,π,τ and ϕ̂0,π,τ , τ = 1.

of unity since

∞∑

k=−∞
ϕn,σ,τ

(
t − kπ

σ

)
=

∞∑

k=−∞

∫ ∞

−∞
ϕn,σ,τ (x)Sσ

(
t − x − kπ

σ

)
dx

=
∫ ∞

−∞
ϕn,σ,τ (x)

∞∑

k=−∞
Sσ

(
t − x − kπ

σ

)
dx

= σ

π

∫ ∞

−∞
ϕn,σ,τ (x) dx

= σ

π
ϕ̂n,σ,τ (0)

= (−1)n

√
2στ

πλn,σ,τ

ϕn,σ,τ (0) .

This may be rewritten for n = 0, as

1

ϕ0,σ,τ (0)

√
πλ0,σ,τ

2στ

∞∑

k=−∞
ϕ0,σ,τ

(
t − kπ

σ

)
= 1 (2.4)

i.e., we get a partition of unity.

c. The associated eigenvalues

The eigenvalues λn,σ,τ that appear above have a number of interesting properties.
They are positive and non-increasing, i.e., satisfy λ0,σ,τ ≥ λ1,σ,τ ≥ λ2,σ,τ ≥ . . . > 0, and,
in fact, the first [στ ] are relatively close to 1 while the remaining ones are decreasing very
rapidly to 0 as shown in Figure 3 below (see Slepian [19] for more details).
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FIGURE 3 The “Step function” property of eigenvalues of π− bandlimited PSWFs, τ = 1, 2, 3, and 4.

d. Multiscale structure

It is possible to find the relation between these functions at different scales by using
the above definitions and formulas. By a straightforward change of scale in the integral
Equation (1.2), we find that

ϕn,στ,1(x) = √
τ ϕn,σ,τ (τx) . (2.5)

Then (2.5) leads to the following relation between scales

ϕ0,σ,τ (x) = √
1/a ϕ0,aσ,τ/a(x/a) (2.6)

for any a > 0. In particular for a = 2, we have

√
2 ϕ0,σ,τ (2x) = ϕ0,2σ,τ/2(x) . (2.7)

Remark 1. There are two ways in which the PSWFs are usually standardized. One is
to adjust the frequency so that ϕn,σ,τ becomes π− bandlimited. The other is to adjust the
time so that the concentration interval is (−1, 1). Either one but not both can be attained
by a change of scale as in (2.7). Indeed we have that

ϕ0,σ,τ (x) = √
σ/π ϕ0,π,τσ/π (σx/π) = √

1/τ ϕ0,τσ,1(x/τ) .

3. Prolate Spheroidal Wavelets

In order to construct these PSWF wavelets, we begin with a scaling function φ,
whose integer translates are a Riesz basis of a space V0. This space is usually taken to be
a subspace of L2 (R). In our case we shall take φ(x) = ϕ0,π,τ (x), where τ is any positive
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number. With this choice the space V0 will turn out to be the Paley–Wiener space Bπ of
π− bandlimited functions no matter what the choice of τ .

This space then becomes part of a family of nested subspaces usually referred as a
multiresolution analysis (MRA). The other spaces are obtained by dilations by factors of
two: f (t) ∈ Vm if and only if f (2−mt) ∈ V0. These have the usual properties of an MRA:

(i) · · · ⊆ Vm−1 ⊆ Vm ⊆ · · · ⊆ L2 (R),

(ii) ∪Vm = L2 (R),

(iii) ∩Vm = {0}.
The MRA consisting of the Paley–Wiener spaces (Vm = B2mπ ) has been widely stud-

ied and has as its standard scaling function the sinc function S(t) = sin πt/πt mentioned
in the introduction. This function has very good frequency localization, but not very good
time localization (in fact is not even in L1 (R)). This has limited its use as a wavelet basis
in comparison to the Daubechies wavelets which have compact support in the time domain.
Because of the properties of entire functions, no bandlimited function has compact support
in the time domain. However the PSWF’s are as close to it as one can get, and in fact, for
τ sufficiently large, can be made arbitrarily small outside of the interval of concentration.
Hence they should be similar to the Daubechies wavelets for practical computations and
superior to the sinc functions.

We borrow a number of techniques from wavelet theory to obtain a new basis for V0
(see Daubechies [3, p. 140] and Walter and Shen [25, p. 40, 189]). This will differ from the
standard wavelet basis for V0 consisting of translates of the sinc function.

Proposition 1.
A bounded function θ(t) in L1 (R) with unit norm in L2 (R)

(i) is a Riesz basis of its closed linear span in L2 (R) if and only if

0 < A ≤
∞∑

k=−∞

∣∣θ̂ (ω − 2πk)
∣∣2 ≤ B < ∞ , (3.1)

(ii) is orthogonal to its integer translates if and only if

∞∑

k=−∞

∣∣θ̂ (ω − 2πk)
∣∣2 = 1 , (3.2)

(iii) is a sampling function if it is a Riesz basis and

∞∑

k=−∞
θ̂ (ω − 2πk) = 1 . (3.3)

Since both ϕ0,π,τ (x) and ϕ̂0,π,τ (ω) are PSWF’s locally at least, we may use either
one to obtain a basis of a space V0. However we are interested mainly in finding a new
basis of the Paley Wiener spaces and therefore shall consider only the former.

3.1 PS Wavelets in Paley–Wiener Space

In order to obtain a Riesz basis based on PSWFs in the space Bπ we must show that
translates of ϕ̂0,π,τ satisfy (3.1). The calculations are not too difficult and give us:
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Proposition 2.
Let ϕ0,π,τ (t) be a π−bandlimited PSWF with concentration interval [−τ, τ ]; then
(i) {ϕ0,π,τ (t − n)} is a Riesz basis of Bπ and
(ii) ζ0,π,τ (t) given by

ζ̂0,π,τ (ω) := ϕ̂0,π,τ (ω)/ϕ̂∗
0,π,τ (ω) ,

where
∑∞

k=−∞ ϕ̂0,π,τ (ω − 2πk) = ϕ̂∗
0,π,τ (ω), is a sampling function. That is, for each

f ∈ Bπ ,

f (t) =
∞∑

n=−∞
f (n)ζ0,π,τ (t − n) .

For the proof, we first observe that ϕ0,π,τ (t) has no zeros in the interval [−τ, τ ] (see
Slepian [19]). Now we take the periodic extension of |ϕ̂0,π,τ (ω)|2 with the convention that
χπ(t) be the characteristic function of [−π, π). This gives us:

∞∑

k=−∞

∣∣ϕ̂0,π,τ (ω − 2πk)
∣∣2 (3.4)

= 2τ

λ0,π,τ

∞∑

k=−∞
|ϕ0,π,τ ((ω − 2πk)τ/π)|2χπ(ω − 2πk)

≥ inf|ω|≤π

2τ

λ0,π,τ

|ϕ0,π,τ (ωτ/π)|2 > 0

by (2.3). Similarly we see that

∞∑

k=−∞

∣∣ϕ̂0,π,τ (ω − 2πk)
∣∣2 ≤ sup

|ω|≤π

2τ

λ0,π,τ

|ϕ0,π,τ (ωτ/π)|2 < ∞ . (3.5)

Thus we may conclude that {ϕ0,π,τ (t − n)} is a Riesz basis of its closed linear span by
Proposition 1 (i)

This closed linear span is, in fact, Bπ , the Paley–Wiener space. This follows from
the fact that any element of this space is a function f in L2(R) whose Fourier transform
has support in [−π, π]. Thus f̂ /ϕ̂0,π,τ may be expanded in a Fourier series on [−π, π ]
convergent in the sense of L2 on this interval since ϕ̂0,π,τ has no zeros in [−π, π ] and is
continuous there. Hence f̂ has an L2 convergent series of the form

∞∑

n=−∞
anϕ̂0,π,τ (ω)e−iωn .

Then by taking the inverse Fourier transform we get a series in
∑∞

n=−∞ anϕ0,π,τ (t − n)

convergent to the inverse Fourier transform of f which is an element of Bπ .
We now need only to show that ζ0,π,τ (t) is a sampling function which we do by

using (3.3) for its construction. It is again a π− bandlimited function since ϕ̂∗
0,π,τ (ω)

is the periodic extension of a function which is positive on [−π, π). The last conclusion
follows from the fact that {ζ0,π,τ (t − n)} is also a Riesz basis by the same argument as
before. (In fact, the astute observer will notice that this is exactly the Shannon sampling
theorem.)
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Thus ϕ0,π,τ is a candidate for a scaling function with V0 = Bπ . There are several
ways of constructing bases of the other subspaces Vm = B2mπ from those of V0. One uses
the standard wavelet approach in which dilations of ϕ0,π,τ , i.e., ϕ0,π,τ (2mt) are used to get
the basis {ϕ0,π,τ (2mt − n)} of Vm. In this case we get

φ
(
2mt

) = ϕ0,π,τ

(
2mt

) = 2m/2ϕ0,2mπ,2−mτ (t) ,

i.e., the concentration interval becomes progressively smaller as m increases. The size of
the concentration interval and band limited level, are in fact, the most important properties
that distinguish the PSWF system. In order to avoid losing these properties, we have to find
a way to make sure the concentration interval remains constant. We may do this by taking
{ϕ0,2mπ,τ (t − n2−m)} instead as a possible Riesz basis of Vm. That it is follows from the
same calculations as in Proposition 2.

It is also possible to find a dual Riesz basis for {ϕ0,π,τ (t − n)}. We can get it by a
slight extension of the results in Proposition 1, namely by defining the Fourier transform of
the dual function ϕ̃0,π,τ (t) as

̂̃ϕ0,π,τ (ω) := ϕ̂0,π,τ (ω)
∑

k

∣∣ϕ̂0,π,τ (ω − 2πk)
∣∣2

. (3.6)

From this it follows that
∑

k

̂̃ϕ0,π,τ (ω − 2πk)ϕ̂0,π,τ (ω − 2πk) = 1

and by the extension just mentioned, that {ϕ̃0,π,τ (t − n)} is biorthogonal to {ϕ0,π,τ (t − n)}.
Again, because ̂̃ϕ0,π,τ (ω) is positive on [−π, π ], it follows that {ϕ̃0,π,τ (t − n)} is a Riesz
basis of Bπ .

3.2 Dilation Equations

The dilation equations give the relation between the bases of Vm and Vm+1.
For m = 0, the dilation equation is given in the form

φ0(t) =
∑

k

c0
kφ1(t − k/2) (3.7)

where φ0(t) = ϕ0,π,τ (t) and either φ1(t) = ϕ0,2π,τ (t) (our modified scaling function in V1)
or φ1(t) = √

2ϕ0,π,τ (2t) (the standard scaling function in V1). Of course the coefficients
would also be different in the two cases.

The standard wavelet approach leads us to the same dilation equation at each scale;
however, it also winds up with shrinking concentrations in the time domain as we have
noted. The alternate approach, which is the one we concentrate on mostly hereafter, has the
advantage of keeping the size of concentration interval constant with the only difference
being that the dilation equations are slightly different at different scales.

The Fourier transformed version of (3.7) is

ϕ̂0,π,τ (ω) =
∑

k

1√
2
c0
ke

−ikω/2ϕ̂0,π,τ (ω/2) (3.8)

= 1√
2
m(ω/2)ϕ̂0,π,τ (ω/2) ,
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for the standard wavelet, and

ϕ̂0,π,τ (ω) =
∑

k

c0
ke

−ikω/2ϕ̂0,2π,τ (ω) (3.9)

= m0(ω/2)ϕ̂0,2π,τ (ω)

for the alternate case. Since ϕ̂0,π,τ (ω) has support on [−π, π ], and ϕ̂0,π,τ (ω/2) =√
2ϕ̂0,2π,τ/2(ω) is positive and continuous on this interval, we may express m as

m(ω/2) = ϕ̂0,π,τ (ω)

ϕ̂0,2π,τ/2(ω)
(3.10)

= ϕ0,π,τ (τω/π)

ϕ0,2π,τ/2(τω/π)
, |ω| < π ,

and extended periodically for all ω, and similarly for m0. Thus the coefficients ck are the
Fourier coefficients of the last expression,

ck = 1

4π

∫ π

−π

ϕ0,π,τ (τω/π)

ϕ0,2π,τ/2(τω/π)
eikω/2 dω . (3.11)

for the scale m = 0, which holds for other scales as well. In the case of the alternate
approach, the dilation equation changes at each scale and in general we get

ϕ̂0,2mπ,τ (ω) =
∑

k

cm
k e−ikω/2ϕ̂0,2m+1π,τ (ω) , (3.12)

cm
k = 1

2m+2π

∫ 2mπ

−2mπ

ϕ0,2mπ,τ (τω/π)

ϕ0,2m+1π,τ (τω/2π)
eikω/2 dω . (3.13)

Notice that the coefficients are in l2 but the Fourier series do not converge uniformly
since the Fourier transform of the PSWF is not continuous.

3.3 Mother Wavelet

Many choices are possible for the mother wavelet. It should be orthogonal to V0,
should belong to V1, and its integer translates together with those of the scaling function
should be a basis of V1. These requirements can be achieved in various ways. In the Fourier
transform domain our potential mother wavelet ψ , in order to belong to V1, must have the
form for either of the two approaches

ψ̂(ω) = m1(ω/2)φ̂1(ω) (3.14)

where m1 is a 2π periodic function and φ1 is either of the two PSWFs in (3.7). If it is to be
orthogonal to V0 it must have the property that ψ̂(ω) must be orthogonal to ϕ̂0,π,τ (ω)eiωn

for all integers n. But then it must be zero on (−π, π). The final property is that its integer
translates be a basis of the orthogonal complement of V0 in V1.

The easiest way of attaining these requirements would be to use the standard wavelet
approach in which

m1(ω/2) = e−iω/2m0(ω/2 + π) .
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But this is by no means the only possibility. We could even choose ψ̂ to generate an
orthornormal sequence by requiring it to have support in [−2π, −π] ∪ [π, 2π ] and satisfy

∫
einω

∣∣ψ̂ (ω)
∣∣2

dω = 0, n 
= 0 .

Rather than either of these definitions we shall use one related to the maximization
problem associated with the PSWFs. Both the standard and the alternate approach lead to
similar mother wavelets, but in the latter case it depends on the scale chosen. We shall denote
the functions resulting from the alternate approach semi − wavelets in order to distinguish
them from the usual wavelets with a fixed dilation equation at all scales.

Definition 1. The PS mother semi-wavelet at the scale m is given by

ψm(t) := cos
(

3π2m−1t
)

ϕ0,2m−1π,τ (t) , (3.15)

where the PS father semi-wavelet at scale m is denoted by

φm(t) := ϕ0,2mπ,τ (t) , (3.16)

for m = 0, ±1, ±2, · · ·. The PS mother wavelet is given by

ψ(t) := cos(3π/2t)ϕ0,π/2,τ/2(t) , (3.17)

where the PS father wavelet is denoted by

φ(t) := ϕ0,π,τ (t) .

The function which maximizes the integral
∫ τ

−τ
|f (t)|2 dt/||f ||2 given that its Fourier

transform has support in [π, 2π ] is the inverse Fourier transform of the transformed PSWF
ϕ̂0,π/2,τ (ω − 3π/2). Similarly the one with support in [−2π, −π ] is ϕ̂0,π/2,τ (ω + 3π/2).
Our mother semi-wavelet has been taken to be the average of these two functions. In the
time domain this becomes

ψ0(t) := cos

(
3π

2
t

)
ϕ0,π/2,τ (t) .

Similar calculations are possible at the other scales as well to obtain the formula in the
definition. A father semi-wavelet and its associated mother semi-wavelet pair is shown in
Figure 4 and Figure 5 below.

Then the dilation equation for the mother semi-wavelet, at scale m = 0, has the form
similar to (3.7) given by

ψ0(t) =
∑

k

d0
k φ1(t − k/2) (3.18)

in the time domain and

ψ̂0(ω) =
∑

k

d0
k e−ikω/2φ̂1(ω)

in the frequency domain. Again the coefficients are given by a formula analogous to (3.12)
and similar calculations are possible at the other scales.
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FIGURE 4 A pair of father semi-wavelet φ0(t) = ϕ0,π,1(t) and its associated mother semi-wavelet ψ0(t) as
defined in (3.15) in the time domain.
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FIGURE 5 The semi-wavelets of Figure 4 φ̂0(ω) and ψ̂0(ω) in the frequency domain.
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As a summary, we state the following theorem:

Theorem 1.
Let {φm} and {ψm} be given by (3.16) and (3.15), respectively, let Vm = B2mπ and

let Wm be the orthogonal complement of Vm in Vm+1; then {φm(t − 2−mn)}n∈Z is a Riesz
basis of Vm and {ψm(t − 2−mn)}n∈Z is a Riesz basis of Wm.

The proof of both of these assertions is based on (3.1) and uses the fact that the Fourier
transform doesn’t vanish on the support of {φ̂m} and {ψ̂m}.

For the usual wavelets, we have used the analogous formula for the mother wavelet
rather than the standard expression. It is

ψ(t) := cos

(
3π

2
t

)
ϕ0,π/2,τ/2(t) ,

but can be reduced to the usual dilation equation by observing that this function belongs to
V1 and hence can be expressed as an infinite linear combination of {φ(2t − k)}.

4. Approximation by PS Semi-Wavelet Series

The approximation of a function in L2(R) by function in Vm is given by a series of
the form

∑

k

bm
k φm

(
t − 2−mk

)
, (4.1)

where the coefficients may be obtained either from the dual Riesz basis or by sampling. In
the former case, the result is the projection fm of a function f onto Vm, while in the latter
the result is locally a positive approximation.

The dual Riesz basis is given in terms of its Fourier transform as

̂̃φm(ω) := φ̂m(ω)

2m+1π
∑

k

∣∣φ̂m

(
ω − 2m+1πk

)∣∣2
(4.2)

= χ2mπ (ω)

2m+1πφ̂m(ω)

since φ̂m has support on [−2mπ, 2mπ ] and is positive there. Hence the coefficients for the
projection are

bm
k =

∫ ∞

−∞
f (t)φ̃m

(
t − 2−mk

)
dt . (4.3)

The kernel of this projection is given

qm (x, t) =
∑

k

φm

(
x − 2−mk

)
φ̃m

(
t − 2−mk

)
, (4.4)

i.e.,

fm(x) =
∫ ∞

−∞
f (t)qm(x, t) dt .
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By taking Fourier transforms of qm (x, t) in both x and t in the sense of distributions,
we obtain

q̂m(ω, ξ) = 2π ̂̃φm(ξ)φ̂m(ω)δ
(
2m(ω − ξ)

)
(4.5)

= 2πχ2mπ (ω)δ(ω − ξ) ,

where upon by taking the inverse Fourier transform again we obtain the familiar sinc func-
tion,

qm (x, t) = sin 2mπ(x − t)

π(x − t)
. (4.6)

Theorem 2.
Let f ∈ Hp, the Sobolev space, for p > 0, let the approximation fm to f be given

by a series of the form (4.1) where the coefficients are given by (4.4); then the rate of
convergence is

||fm − f || = O
(
2−mp

)
.

The proof is based on using the square of the L2 norm in the transformed domain,

||fm − f ||2 = 1

2π

∥∥f̂m − f̂
∥∥2

(4.7)

= 1

2π

∫ ∞

−∞

∣∣∣∣
1

2π

∫ ∞

−∞
q̂m(ω, ξ)f̂ (ξ) dξ − f̂ (ω)

∣∣∣∣
2

dω

= 1

2π

∫ ∞

−∞
∣∣(χ2mπ (ω) − 1) f̂ (ω)

∣∣2
dω

= 1

2π

{∫ ∞

2mπ

+
∫ −2mπ

−∞

}
∣∣f̂ (ω)

∣∣2
dω

= 1

2π

{∫ ∞

2mπ

+
∫ −2mπ

−∞

}
∣∣f̂ (ω)

∣∣2
(
ω2 + 1

)p

(
ω2 + 1

)p dω

≤ 2

2π

∫ ∞

−∞
∣∣f̂ (ω)

∣∣2
(
ω2 + 1

)p

(
(2mπ)2 + 1

)p dω

= O
(

2−2mp
)

,

which gives our conclusion.
If the coefficients are given by the sampled values of the function, then the convergence

may not be so rapid, but has other nice properties. The approximation in Vm is now given
by the hybrid series

f s
m(t) =

∑

k

f
(
2−mk

) φm

(
t − 2−mk

)

2mφ̂m(0)
. (4.8)

This may again be expressed in terms of a kernel as

f s
m(x) =

∫
f (t)Km(x, t) dt
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where

Km (x, t) =
∑

k

φm

(
x − 2−mk

)

2mφ̂m(0)
δ
(
t − 2−mk

)
. (4.9)

Theorem 3.
Let f ∈ Hp, the Sobolev space, for p > 2, let the approximation f s

m to f be given
by a series of the form (4.8); then the rate of convergence is

||fm − f || = O
(

2−m(p−2)
)

.

The proof involves first obtaining some properties of the kernel Km(x, t), which we
obtain by comparing it to the previous kernel qm(x, t). The difference between the two
lies in the replacement of the dual function φ̃m by δ/φ̂m(0). The difference of their Fourier
transforms is

̂̃φm(ω) − δ̂(ω)/φ̂m(0)

= χ2mπ (ω)

2mφ̂m(ω)
− 1

2mφ̂m(0)

=
√

λ0,π,τ

2m+1τ

[
χ2mπ (ω)

φm (τω/2mπ)
− 1

φm(0)

]

by (2.3). We now take the first two terms of the power series expansion about 0 of the first
term in brackets. Since the derivative is zero at 0, we get

1

φm (τω/2mπ)
= 1

φm(0)
− φ′′

m(0)

φ2
m(0)

(τω/2mπ)2

2
(4.10)

+ O
(
τω/2m

)3

for |ω| < 2mπ . Now we use the fact that φm satisfies the differential Equation (1.3) to
obtain an expression for the derivative

τ 2φ′′
m(0) = µ0φm(0)

where µ0,σ,τ is the eigenvalue of the differential operator. This eigenvalue has been exten-
sively studied and has been shown Bouwkamp [2] to satisfy

µ0,σ,τ = −1

3

(
2mπτ

)2 − 2

135

(
2mπτ

)4 + · · · .

If we use only the first term in this expression, as well as in (4.10), then we have approxi-
mately

1

φm (τω/2mπ)
− 1

φm(0)
(4.11)

≈ − 1
3 (2mπ)2

φm(0)

(τω/2mπ)2

2
= − (τω)2

6φm(0)
.

We now substitute this into the difference between the two kernels Km and qm,

K̂m(ω, ξ) − q̂m(ω, ξ) (4.12)

=
{

1

φ̂m(0)
− 1

φ̂m(ω)

}
φ̂m(ω)2πχ2mπ (ω)δ(ω − ξ)

≈ (τω)2

6φm(0)
φm

(
τω/2mπ

)
2πχ2mπ (ω)δ(ω − ξ) .
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Hence the difference between our two approximations is

∥∥f̂m − f̂ s
m

∥∥2

=
∫ ∞

−∞

∣∣∣∣
1

2π

∫ ∞

−∞
[
q̂m(ω, ξ) − K̂m(ω, ξ)

]
f̂ (ξ) dξ

∣∣∣∣
2

dω

≈
∫ ∞

−∞

∣∣∣∣
1

2π

∫ ∞

−∞

[
(τω)2

6φm(0)
φm

(
τω/2mπ

)
2πχ2mπ (ω)δ(ω − ξ)

]
f̂ (ξ) dξ

∣∣∣∣
2

dω

=
∫ 2mπ

−2mπ

∣∣∣∣
(τω)2

6φm(0)
φm

(
τω/2mπ

)
f̂ (ω)

∣∣∣∣
2

dω

≤
∫ 2mπ

−2mπ

∣∣∣∣
(τω)2

6
f̂ (ω)

∣∣∣∣
2 (

ω2 + 1
)p

(
ω2 + 1

)p dω

≤ 2
((

2mπ
)2 + 1

)2−p
∫ ∞

−∞

∣∣∣∣
τ 2

6
f̂ (ω)

∣∣∣∣
2 (

ω2 + 1
)p

dω .

Since f ∈ Hp for p > 2, this last integral is finite and our conclusion follows since a better
rate of convergence holds for fm.

Although the rate of convergence for the hybrid series is slower than for the projection
series, the former has other nice properties that may make it more desirable. One is clear:
integration is avoided in the calculations of the coefficients. The other is useful, particularly
in image approximations: there is no Gibbs phenomenon (overshoots at jump discontinuity).
This happens because the kernel is locally positive.

Lemma 1.
Let Km(x, t) be the kernel given by (4.9), let B < τ , then Km(x, t) ≥ 0 for |t | <

B, |x| < τ − B.

Since δ(t − n2−m) = 0 for |n2−m| > B, whenever |t | < B, it follows that the
expression for Km is given by a finite sum

Km (x, t) =
2mB∑

k=−2mB

φm

(
x − 2−mk

)

2mφ̂m(0)
δ
(
t − 2−mk

)
, |t | < B .

But we know that φm is positive on the interval [−τ, τ ], and since x − 2−mk lies
in this interval when |x| < τ − B, this sum is composed of a finite number of positive
distributions and hence is positive (in the sense of distributions).

Corollary 1.
Let f be a piecewise continuous function with a jump discontinuity at 0 and with sup-

port in the interval [−B, B]; then f s
m does not exhibit Gibbs phenomenon in a neighborhood

of 0.

It should be observed that neither the standard wavelet basis of this MRA based on the
sinc function nor our new PS wavelet basis leads to a positive kernel of the type shown to
exist for our PS semi-wavelet basis. Hence we should expect to observe Gibbs phenomenon
for these two other cases.
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5. Numerical Examples

In this section we use a standardization that is common in the literature. Rather than
use a general concentration interval [−τ, τ ], we assume our PSWFs to be concentrated on
the unit interval [−1, 1]. This is really no restriction since we could have changed variables
to get this interval by taking our functions to be 2mπτ -bandlimited, and then using the
formula in (2.6). Rather, since m is allowed to range over all integers, we shall continue to
use Vm to denote the space of 2mπ -bandlimited functions.

We now present several examples in this section. We should like to point out that
the examples here are purely illustrative. The function in the first example belongs to all
Sobolev spaces Hp for all p > 0, but is not bandlimited; the function in the second example
belongs to the Sobolev space H 3 and has compact support in time domain; the third example
discusses a function which has a jump discontinuity at zero and also has compact support.
In all cases, we shall compare the approximation for the three different MRA consisting
of

(1) the standard Shannon wavelet series defined as:

f 1
m(t) :=

∞∑

n=−∞
f

(
n2−m

)
S

(
2mt − n

)

≈
N∑

n=−N

f
(
n2−m

)
S

(
2mt − n

) := f 1
m,N(t) (5.1)

where S is the sinc function S(t) = sin πt/πt .

(2) the PS wavelet series, defined as

f 2
m(t) :=

∞∑

n=−∞
am
n φ

(
2mt − n

)

=
∞∑

n=−∞
am
n ϕ0,2mπ,2−mτ

(
t − n2−m

)
,

≈
N∑

n=−N

f
(
n2−m

)
ϕ0,2mπ,2−mτ

(
t − n2−m

)
(5.2)

= C

N∑

n=−N

f
(
n2−m

)
ϕ0,π,τ

(
2mt − n

) := f 2
m,N(t) ,

where C = 1
φ0,π,τ (0)

√
2−1λ0,π,τ , and

(3) the PS semi-wavelet series, defined as
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f 3
m(t) :=

∞∑

n=−∞
bm
n φm

(
t − n2−m

)
(5.3)

=
∞∑

n=−∞
f

(
n2−m

) ϕ0,2mπ,τ

(
t − n2−m

)

2mφ̂m(0)

≈
N∑

n=−N

Cmf
(
n2−m

)
ϕ0,2mπ,τ

(
t − n2−m

) := f 3
m,N(t) ,

where Cm = 1
φm,2mπ,τ (0)

√
2m−1λ0,2mπ,τ .

Example 1. The Gaussian kernel defined as

G(t) = 1√
2π

e− t2
2 , t ∈ R (5.4)

is analytic and both the function and its Fourier transform decay exponentially. Thus it
belongs to every Sobolev space, but is not bandlimited and thus cannot be represented
exactly by any of our wavelet series at a fixed scale m. However they should converge
to it rather rapidly as m → ∞. Figure 6 shows the Shannon series [G1

m,N , using (5.1)],
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FIGURE 6 The Gaussian kernel G(t), its approximation using Shannon scaling expansion, G1
m,N

(t) at different
scales, m = 2, 3, 4, 5, 6, series truncated to 2N + 1 terms, N = 2m.

Figure 7 shows PS wavelet series (G2
m,N , using (5.2) and Figure 8 shows PS semi-wavelet

approximation [G3
m,N , using (5.3)] at different resolution level m. Notice that each series has

to be truncated to finite terms, here we have used 2N+1, N = 2m terms. This is equivalent to
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FIGURE 7 G(t) and its PS wavelet approximation G2
m,N

(t) at different scales, m = 0, 1, 2, 3, 4, series truncated
to 2N + 1 terms, N = 2m.
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FIGURE 8 G(t) and its PS semi-wavelet approximation G3
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(t) at different scales, m = 2, 3, 4, 5, 6, series
truncated to 2N + 1 terms, N = 2m.
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truncating the function at |t | > 1. This truncation results in an overshoot in neighborhoods
of t = ±1 (Gibbs Phenomenon) for both G1

m,N , and G2
m,N which doesn’t disappear when

higher values of m are used in the approximation. However the approximation given by
G3

m,N does not show Gibbs phenomenon and has a smoother approximation near these
points.

Example 2. The function F given by the formula

F(t) =
{ (

1 − t2
)3

, |t | < 1

0, |t | ≥ 1

}
(5.5)

belongs to the Sobolev space H 3 and has support on the interval [-1,1]. Its Fourier transform
converges fairly slowly and we would not expect any of our three series to converge to it
very rapidly. In fact, by Theorem 3, the convergence rate in this case is O(2−m). F 1

m,N ,

F 2
m,N , and F 3

m,N are shown in Figure 9, Figure 10 and Figure 11, respectively. Notice
that, in this example and the example follows, the given functions are compactly supported.
Therefore, on a finite interval, the series (5.1), (5.2), and (5.3) consists of finite number of
terms with exact partial sums whenever N ≥ 2m. Since the Shannon series (5.1) converges
more rapidly than the other two as m → ∞, and since there is no discontinuity due to
truncation, we expect it to represent the function better as indeed it appears to in these three
figures.

Example 3. The function used to study Gibbs phenomenon in the case of Fourier series
is the saw-tooth wave

H(t) = sgn(t) − t, 0 < |t | < 1, 0, otherwise. (5.6)

This function can also be used to study Gibbs phenomenon for approximations by
wavelets [25]. It is continuous except for a jump of 2 at t = 0 and again has support on the
interval [−1, 1].

SinceS(t)has very poor time localization, we expect bothH 2
m,N andH 3

m,N to represent

a function concentrated on [−τ, τ ] better than H 1
m,N . We have seen that the convergence

kernel in the third case is locally positive, while in the first two cases this is not true. Thus
we would expect both to exhibit Gibbs phenomenon but H 3

m,N to avoid it. Graphs of the
saw-tooth wave function and its approximation by the Shannon series, PS wavelet series
and PS semi-wavelets are shown in Figure 12, Figure 13, and Figure 14, respectively. We
observe that the graph of the sampling series of the saw-tooth wave function does show
“ripples” around origin arising from Gibbs phenomenon as expected in Figures 12 and 13.
This should be contrasted with Figure 14 where no such ripples appear.

Finally, we observe that when m increase, the number of the sampling points should
be increased accordingly. Otherwise, the truncation error might cause unexpected results
especially when the given functions do not decay rapidly. This has been done in all three
examples in which a fixed ratio between N and m has been used, that is, N = 2m, since we
are mainly interested in aliasing error rather than truncation error. In the case of Examples 2
and 3, this has eliminated the truncation error.

6. Concluding Remarks

Two multiscale systems based on translates of the PSWFs have been constructed.
One is a wavelet system which however has decreasing intervals of concentration as the
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FIGURE 9 F(t) and its Shannon wavelet approximation F 1
m,N

(t) at different scales, m = 0, 1, 2, 3, 4.
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FIGURE 10 F(t) and its PS wavelet approximation F 2
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FIGURE 11 F(t) and its PS semi-wavelet approximation F 3
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(t) at different scales, m = 2, 3, 4, 5, 6.
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FIGURE 12 H(t) and its Shannon wavelet approximation H 1
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(t) at different scales, m = 2, 3, 4, 5, 6, on
both sides of discontinuity.
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FIGURE 13 H(t) and its PS wavelet approximation H 2
m,N

(t) at different scales, m = 0, 1, 2, 3, 4.
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FIGURE 15 The scaling function (left) and mother wavelet (right) of the PS semi-wavelet (solid line) and the
Shannon wavelet (dotted line) at scale m = 0.

scale increases. The second system, with a structure similar to that of wavelets, preserves
the optimized energy concentration intervals inherited from PSWFs, at different scales.
Approximation properties are proved theoretically and demonstrated by using numerical
examples.

We should like to remark here, except when the given function is compactly supported
in the time domain, all of above series (5.1) to (5.3) have to be truncated. The truncation
error depends on the decay rate of the given function and the bases. While the asymptotic
decay rate of the Shannon basis is exactly the same as that of the wavelets based on PSWFs
as t → ∞, the total energy outside of a finite interval is much smaller for the latter. This is
demonstrated in Figure 15, where plots of both the scaling functions and mother wavelets
in the two cases are shown.

We also point out that the approximations considered here are based only on series
in the father wavelet (scaling function) and not on series in the mother wavelet. These
latter are needed for thresholding methods which we have not considered in this article.
These methods as well as potential applications in some areas such as digital filter design
as well as a multiscale algorithm for the numerical implementation are under our further
investigation.
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