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a b s t r a c t

The optimization performance of differential evolution(DE) algorithm significantly depends on control
parameters and mutation strategy. However, it is difficult to set suitable control parameters and select
reasonable mutation strategy for DE in solving an actual engineering optimization problem. To solve
these problems, a new optimal mutation strategy based on the complementary advantages of five
mutation strategies is designed to develop a novel improved DE algorithm with the wavelet basis
function, named WMSDE, which can improve the search quality, accelerate convergence and avoid
fall into local optimum and stagnation. In the proposed WMSDE, the initial population is divided
into several subpopulations to exchange search information between the different subpopulations
and improve the population diversity to a certain extent. The wavelet basis function and normal
distribution function are used to control the scaling factor and the crossover rate respectively in order
to ensure the diversity of solutions and accelerate convergence. The new optimal mutation strategy
is used to improve the local search ability and ensure the global search ability. Finally, the proposed
WMSDE is compared with five state-of-the-art DE variants by 11 benchmark functions. The experiment
results indicate that the proposed WMSDE can avoid premature convergence, balance local search
ability and global search ability, accelerate convergence, improve the population diversity and the
search quality. Additionally, a real-world airport gate assignment problem is employed to further prove
the effectiveness of the proposed WMSDE. The results show that it can effectively solve the complex
airport gate assignment problem, and obtain airport gate assignment rate of 97.6%.
© 2020 Elsevier B.V. All rights reserved.
∗ Corresponding author at: College of Electronic Information and Automation,
ivil Aviation University of China, Tianjin 300300, China.

E-mail address: hm_zhao1977@126.com (H. Zhao).
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1. Introduction

A lot of problems in engineering application and scientific
research can be translated directly into the optimization prob-

lems [1–3]. These optimization problems belong to NP-Hard
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roblems, which are difficult to be solved by traditional meth-
ds [4–6]. In the past decades, a lot of researchers have proposed
ome intelligent optimization methods to solve the NP-Hard
roblems, such as genetic algorithm (GA), simulated annealing
SA), particle swarm optimization (PSO), ant colony optimiza-
ion (ACO), fish swarm optimization (FSO), island artificial bee
olony (IABC), Island flower pollination (IFP), Island bat algorithm
IBA), grey wolf optimizer (GWO), bacterial foraging optimization
BFO), and so on [7–15]. Although these intelligent optimization
ethods can better solve the NP-Hard problems and obtain
etter solution than traditional methods, e.g. linear programming
ethod, numerical probability algorithm and so on, they still
xist lower accuracy and more computation time. At the same
ime, with the increasing complexity of optimization problems,
he studies of the optimization methods have become popular
opics [16–18].

Differential Evolution (DE) algorithm is a random evolution
lgorithm based on population evolution proposed by Storn and
rice [19]. Because the principle of DE is simple, and easy to
nderstand and implement, it has stronger robustness and search
bility, and fewer control parameters. But it is prone to prema-
ure, localized optimality and low convergence in the late stage of
earch. To solve these problems, many scholars have done a lot of
orks to improve the optimization performance of the DE in re-
ent years. Su and Lee [20] proposed an improved mixed-integer
ybrid DE method. Das et al. [21] proposed an improved DE for
arge unlabeled data. Lai and Cao [22] proposed an improved DE
o solve the vehicle routing problem. Dorronsoro and Bouvry [23]
roposed several DE variants using different panmictic and de-
entralized population schemes. Elsayed et al. [24] proposed an
mproved DE that uses a mix of different mutation operators. Jia
t al. [25] proposed an improved version of (mu+lambda)-CDE.
ong and Cai [26] proposed an improved multi-strategy adap-
ive DE algorithm. Tang et al. [27] proposed an improved DE to
olve practical dynamic scheduling. Zhang et al. [28] proposed an
mproved constrained DE algorithm. Mohamed [29] proposed an
mproved DE to solve global numerical optimization problems. Yi
t al. [30] proposed a novel DE algorithm by implementing pbest
oulette wheel selection and retention mechanism. Guo et al. [31]
roposed an improved constraint-activated DE algorithm. Tian
t al. [32] proposed a novel DE algorithm based on improved
ndividual-based parameter setting and diversity-based selection
trategy. Cai et al. [33] proposed a cooperative coevolution DE
lgorithm. Awad et al. [34] proposed an improved version of
ulti-objective DE algorithm. Ho-Huu et al. [35] proposed a novel
E to solve the shape and size optimization problems. Maucec
t al. [36] proposed a new variation of DE for large-scale black-
ox optimization. Wang et al. [37] proposed a self-adaptive DE
lgorithm with improved mutation strategy. Ajithapriyadarsini
t al. [38] proposed an adaptive fuzzy logic-based DE algorithm.
azdani and Hadavandi [39] proposed a linearized monarch but-
erfly optimization algorithm improved with DE. Vafashoar and
eybodi [40] proposed a multi-population DE algorithm using
ellular learning automata and evolutionary context information.
ang et al. [41] proposed a self-adaptive ensemble-based DE.
en [42] proposed an accelerated DE algorithm with new oper-
tors. Deng et al. [43] proposed an improved quantum-inspired
ifferential evolution algorithm.
Through the survey and analysis of these literatures, we know

hat the new mutation operators, the strategies of adaptive con-
rol parameters, multi-strategy and multi-population and so on
re proposed to improve the optimization performance of the DE
or solving optimization problems in the last few decades. Al-
hough these improved DE algorithms have been achieved better
ptimization effects in solving optimization problem, it is still

asy to fall into local optimum, has poor optimization ability
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and low convergence. Therefore, in order to solve these defects,
a new optimal mutation strategy based on the complementary
advantages of the five mutation strategies is designed, then a
novel improved DE algorithm based on the wavelet basis function
and new optimal mutation strategy, named WMSDE is proposed
to improve the optimization performance of the DE, avoid to fall
into local optimum and increase convergence. In the proposed
WMSDE, the initial population is divided into several subpopu-
lations according to the solving complex optimization problem
in order to exchange search information between the different
subpopulations and improve the population diversity to a certain
extent. The wavelet basis function and normal distribution func-
tion are introduced to control the scaling factor and the crossover
rate respectively in order to ensure the diversity of solutions,
accelerate convergence and improve optimization performance.
A new optimal mutation strategy based on the complementary
advantages of five mutation strategies in the first generation
is designed to improve the local search ability and ensure the
global search ability. 11 benchmark functions and a real-world
airport gate assignment problem are employed to validate the
effectiveness of the proposed WMSDE algorithm. The experiment
results show that the proposed WMSDE algorithm can effectively
avoid premature convergence, balance local search ability and
global search ability, and also obtain ideal airport gate assignment
results. The gate assignment rate reaches at 97.6%.

The research presented in this paper is organized as follows:
Section 2 introduced the DE algorithm. In Section 3, the pro-
posed WMSDE algorithm is described and the contribution is
highlighted. In Section 4, the numerical experiments and analysis
to solve benchmark functions are provided. In Section 5, airport
gate assignment method is proposed and described in detail.
The experiments and results to assign airport gates are provided
to validate the effectiveness of the proposed WMSDE algorithm
in Section 6. The Section 7 is given to conclude the WMSDE
algorithm and suggest some works in the future.

2. Differential evolution algorithm

The DE algorithm uses the difference between individuals to
guide this algorithm to search in the solution space [19]. It mainly
includes initialization population, mutation operation, crossover
operation, selection operation, and so on. The main idea of the
DE is to differentiate and scale between two different individ-
ual vectors in the same population, and add a third individual
vector in this population to obtain a mutation individual vector,
which is crossed with the parent individual vector with a certain
probability to generate an attempted individual vector. Finally,
the attempted individual vector and the parent individual vector
are executed greedy selection, and the better individual vector is
saved to the next generation. The basic evolution processes of the
DE are described as follows.

2.1. Initialization

The DE algorithm uses D-dimensional vectors(M) as the ini-
tial solution. Set population number(N), each individual can be
expressed as xi (G) = (xi1 (G) , xi2 (G) , . . . , xiD (G)). The initial
population is generated in [xmin, xmax]. In here, M is the number of
D-dimensional vectors, N is the number of populations, and xi (G)
is the ith individual.

xiD = xmin + rand (0, 1) ∗ (xmax + xmin) (1)

where G represents the Gth generation, xmax represents the max-
imum value of the search space, xmin represents the minimum
value of the search space, rand(0, 1) represents a random number

that meets a normal distribution within (0,1).
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.2. Mutation operation

The DE algorithm uses the mutation operation to generate
mutation vector Vi,G for each individual xi,G in the current
opulation (target vector). For each generated target vector, a
orresponding mutation vector can be generated by a certain mu-
ation strategy. According to the different generation methods of
utation individuals, several different mutation strategies for the
E are formed. The five most commonly used mutation strategies
re described as follows.
(1) DE/rand/1

i,G = xr1,G + F · (xr2,G − xr3,G) (2)

(2) DE/best/1

i,G = xbest,G + F · (Xr1,G − xr2,G) (3)

(3) DE/rand-to-best/1

i,G = xi,G + F ·
(
xbest,G − xi,G

)
+ F · (xr1,G − xr2,G) (4)

(4) DE/best/2

i,G = xi,G + F ·
(
xbest,G − xi,G

)
+ F · (xr1,G − xr2,G) (5)

(5) DE/rand/2

i,G = xr1,G + F ·
(
xr2,G − xr3,G

)
+ F · (xr4,G − xr5,G) (6)

here, r1, r2, r3, r4 and r5 are randomly generated exclusive inte-
gers within [1, M]. The scaling factor F is a positive control pa-
rameter to scale the difference vector. xbest,G is the best individual
vector with the best fitness value in the Gth generation.

2.3. Crossover operation

Each pair of target vectors xi,G and their corresponding mu-
tation vectors Vi,G are crossed to generate a test vector Ui,G =

(u1,G, u2,G, . . . , ui,G). In the DE algorithm, a binomial crossover is
defined as follow.

ui,G

=

{
vi,G if

(
randj (0, 1) ≤ CR

)
or (j = jrand, j = 1, 2, 3, . . . ,D)

xi,G otherwise
(7)

where, the crossover rate CR is a specified constant on [0,1],
which is used to control the duplicated proportion from mutation
vector. jrand is a randomly selected integer on [1, D].

2.4. Selection operation

If the values of parameters exceed the corresponding upper or
lower bounds, they can be reinitialized randomly and uniformly
within the given range. Then the objective function values of all
test vectors are evaluated, and the selection operation is per-
formed. The objective function value f (Ui,G) of each test vector is
compared with the objective function value of the corresponding
target vector in the current population. If the objective function
value of the test vector is less than or equal to that of the corre-
sponding target vector, then the target vector is replaced by the
test vector for the next generation. Otherwise, the target vector
is remained for the next generation. The selection operation can
be expressed as follow.

Xi,G+1 =

{
Ui,G if (f (Ui,G) ≤ f (Xi,G))

Xi,G otherwise
(8)
3

3. An improved differential evolution (WMSDE) algorithm

The optimization performance of the DE is highly dependent
on the evolution strategies and the associated parameter values.
The DE mainly includes the scaling factor F and the crossover
rate CR, which have a great influence on the optimization per-
formance. The scaling factor F is closely related to the search
step size. When the population is far from the global best value,
the larger search step size can help to quickly converge to a
better subspace. When the population is closer to the global best
value, the smaller search step size can help to accurately search
better solutions. The crossover rate CR reflects the probability that
the offspring directly inherit information from their parents. It
has a great influence on the search ability and convergence, and
can effectively improve the optimization performance of the DE
algorithm. However, the control parameters need to be set by
experiment or experience, which result in lower efficiency and
reliability. When the mutation strategy is selected, the greedy
strategy is fast, but it is easy to fall into local optimum value. The
population diversity strategy has strong search ability, but the
efficiency is often low. The inappropriate strategy and parameters
for the DE may lead to premature convergence or stagnation.
Therefore, in order to solve these problems, on the basis of the
characteristics of the five mutation strategies of the DE algorithm,
a new optimal mutation strategy based on complementary ad-
vantages of the five mutation strategies in the first generation
is designed, which is used as the mutation strategy for DE in
the subsequent iterations in order to improve the local search
ability and ensure the global search characteristics. Then the
wavelet basis function is introduced into the DE with new optimal
mutation strategy to propose an improved differential evolution
algorithm, named WMSDE in this paper. In the proposed WMSDE
algorithm, the initial population is divided into several subpopu-
lations according to the solved complex optimization problem in
order to exchange search information between the different sub-
populations and improve the population diversity. The wavelet
basis function and the normal distribution are introduced into the
DE to effectively control the scaling factor F and the crossover
rate CR respectively in order to ensure the solution diversity,
accelerate the convergence speed and improve the optimization
performance.

3.1. Multi-population strategy

Multi-population strategy is to divide the population into sev-
eral subpopulations to realize the information exchange among
the various subpopulations. In each iteration, the parallel evolu-
tion mechanism is used to dynamically balance the global ability
and local search ability, improve the convergence speed. Be-
cause each subpopulation is a subspace in the solution space,
the search strategy is used to update each subpopulation. The
individual with the best fitness value is migrated among the
different subpopulations to complete the exchange information
among these individuals and effectively improve the searching
efficiency. Finally, a new population is generated from these sub-
populations. Therefore, the multi-population strategy can avoid
the premature convergence in the evolution process, and takes on
stronger global and local search ability, accelerates the population
search speed and improves the convergence accuracy in solving
complex optimization problems.

3.2. Improved scaling factor

The scaling factor F in the DE is closely related to the search
step size, and the DE has different search step sizes in different
search stages. The scaling factor F is a constant value in the
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Fig. 1. The value of the scaling factor F.

basic DE, the value of the scaling factor F is generally selected
within [0,2], usually 0.5. The value of the scaling factor F seriously
affect the optimization performance of the DE algorithm. Wavelet
basis function is a series of functions obtained from the expansion
and translation. Therefore, the wavelet basis function is intro-
duced into the DE in order to make full use of the characteristics
of the wavelet basis function to achieve the improvement of
the scaling factor F. Because the Mexican Hat (mexh) wavelet
function is the second derivative of the Gauss function, it has
good localization in the time domain and the frequency domain.
Therefore, the Mexican Hat (mexh) wavelet is used to improve
the scaling factor F. The value of Mexican Hat (mexh) wavelet
is random value between 0 and 1, which can avoid premature
convergence and fall into local optimum, and also improve the
solution diversity. The improved scaling factor F is described as
follow.

F =
2

√
3

· π−
1
4 · (1 − x2) · e−

x2
2 (9)

According to the characteristics of wavelet basis function, the
variable in each generation is x, which is a random number within
(0,1). Therefore, the value of scaling factor F is a random value
according to the variable x. Therefore, the value of scaling factor
F is within [0, 2

√
3

· π−
1
4 ]. The wavelet basis function can better

describe the characteristics of the scaling factor F.
The value of the scaling factor F is shown in Fig. 1.

.3. A new optimal mutation strategy

The mutation strategy can be simplified as a weighted expres-
ion between the basic vector and difference vector. The basic
ector is used to guide and adjust the evolution direction of the
opulation, and the difference vector plays the roles of random
isturbance and fine search. The mutation strategy can maintain
he balance between the diversity and convergence to some ex-
ent. The five commonly used mutation strategies have their own
haracteristics. DE/rand/1 strategy can better deal with single-
eak and multi-peak optimization problem, but the convergence
s poor. DE/rand/2 strategy has better global search ability, but
he convergence speed is slow. DE/best/1 and DE/best/2 strate-
ies have a fast convergence rate, but their global exploration
bilities are relatively weak and they are easy to fall into local
onvergence. DE/rand-to-best/1 strategy has relatively balanced
lobal exploration and local optimization, but the robustness
s relatively poor. For different complex optimization problems,
ach mutation strategy has different optimization ability, and the
4

obtained results are also different. Therefore, in order to make full
use of ability of different mutation strategy for solving complex
optimization problems, a new optimal mutation strategy based
on complementary advantages of the five mutation strategies
is designed in this paper. Firstly, the DE algorithm with five
different mutation strategies makes a test for solving the complex
optimization problem in in the first iteration, respectively. Then
the best one based on this test is chosen as the optimal mutation
strategy for DE algorithm in the subsequent iterations until the
convergence is achieved or the maximum number of iterations
is reached. We define the mutation strategy as a new optimal
mutation strategy for DE algorithm, which can improve the local
search ability and ensure the global search ability.

3.4. Improved crossover rate CR

The crossover rate CR reflects the probability that the offspring
directly inherit information from their parents, it has a great
influence on the search ability and convergence speed. The larger
value of the CR can make the offspring to depend on the mutation
process and inherit less information from the parent generation.
In this strategy, a wide range of global search can be realized and
the possibility can be improved to jump out from local optimum.
On the contrary, if the offspring locally searches around the
parent generation, the smaller value of the CR is set to accelerate
the convergence and improve the solution accuracy. Therefore,
a uniform distribution strategy is used to improve the crossover
rate CR. The expression is described as follow.

CR = Norm (0, 1) (10)

The crossover rate CR is set as a random number to increase
the diversity. When the DE algorithm is not faced with the prob-
lem of a prior knowledge, it can still automatically generate an
appropriate value of parameters in the current search, which can
improve the optimization performance.

3.5. Model and steps of the WMSDE algorithm

The flow of the WMSDE algorithm based on wavelet basis
function and new optimal mutation strategy is shown in Fig. 2.

The detailed steps of the WMSDE algorithm are described as
follows.

Step 1. The initial population Xi = (x1, x2, . . . , xi) is randomly
generated within (xmax, xmin). Initialize all parameters, including
population size (NP), the maximum number of iterations (G), the
number of initial iteration (G = 1).

Step 2. If the DE algorithm is used to solve the complex
optimization problems in the first generation, then Step 3 is
executed. Otherwise, Step 5 is executed.

Step 3. Five different mutation vectors are respectively gen-
erated by using five different mutation strategies, and the fitness
values are calculated and obtained by using DE with five different
mutation strategies in the first generation.

Step 4. The obtained fitness values are compared in order to
select the best one based on this test, which is called a new
optimal mutation strategy.

Step 5. The DE algorithm with the new optimal mutation
strategy is used to solve the complex optimization problems in
the subsequent iterations.

Step 6. Execute the crossover operation, and generate a ran-
dom number within (0,1), then compare with the crossover rate
CR.

Step 7. If the generated value of the crossover operation is
smaller than the value of the CR, the generated mutation vector
is selected as the test vector. Otherwise, the contemporary target
vector is selected as the test vector.
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Fig. 2. The flow of the WMSDE algorithm.
Step 8. Execute the selection operation, calculate the fitness
value of the target vector and the test vector, and compare and
select the individuals with the optimal fitness value for the next
generation.

Step 9. If the maximum number of iterations is reached or the
error requirement is met, the WMSDE algorithm is end. And the
optimal value in solving complex optimization problem is output.
Otherwise skip to Step 5.

4. Numerical experiments and analysis

4.1. Test functions

In order to evaluate the optimization performance of the pro-
osed WMSDE algorithm, 11 benchmark functions are selected
n here. The expressions, value ranges and minimum values of 11
enchmark functions are shown in Table 1. D is the number of di-
ensions. For the 11 benchmark functions, the benchmark func-

ions f ∼f , f and f are single peak functions, which are mainly
1 4 6 7

5

used to evaluate the accuracy and convergence speed. f8∼f11
are multimodal functions, which are mainly used to evaluate
the global search stability. The initial parameters of the WMSDE
algorithm is selected after thorough testing. In the simulation
experiments, the alternative values were tested and modified for
some functions to obtain the most reasonable initial values of
these parameters. These selected values of the parameters take
on the optimal solution and the most reasonable running time
of these algorithms to efficiently complete the problem solving.
Therefore, according to the simulation experiment results and
related references, the selected values of these parameters and
five mutation strategies of the WMSDE algorithm are shown in
Table 2.

4.2. Experimental results and analysis

4.2.1. Experimental results
The obtained experiment results of 11 benchmark functions

are shown in Table 3. In here, the Best represents the obtained
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Table 1
Benchmark functions.
Functions Range Optimal value

f1 (x) =
∑D

i=1 xi
2 [−100,100] 0

f2 (x) =
∑D

i=1 |xi| +
∏D

i=1 |xi| [−10,10] 0

f3 (x) =
∑D

i=1(
∑i

j=1 xj)
2 [−100,100] 0

f4 (x) = maxi{|xi|} [−100,100] 0

f5 (x) =
∑D−1

i=1 [100
(
xi+1 − x2i

)2
+ (xi − 1)2] [−30,30] 0

f6 (x) =
∑D

i=1 ⌊xi + 0.5⌋2 [−100,100] 0

f7 (x) =
∑D

i=1 ixi
4
+ rand [0, 1) [−1.28,1.28] 0

f8 (x) =
∑D

i=1 −xi sin
√
xi [−500,500] −12569.5

f9 (x) =
∑D

i=1

[
x2i − 10 cos (2πxi) + 10

]
[−5.12,5.12] 0

f10 (x) = −20 exp
(

−0.2
√

1
D

∑D
i=1 x

2
i

)
− exp

(
1
D

∑D
i=1 cos (2πxi)

)
+ 20 + e [−32,32] 0

f11 (x) =
1

4000

∑D
i=1 x

2
i −

∏D
i=1 cos

(
xi√
i

)
+ 1 [−600,600] 0
r
v
W
o
v
a
s
g
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Table 2
The five mutation strategies and initial parameters of the WMSDE algorithm.
Algorithms Strategies Population

size
Dimensions Iterations Running

times

DE

DE/rand/1 100 30/50 2000 30
DE/best/1 100 30/50 2000 30
DE/rand-to/best/1 100 30/50 2000 30
DE/best/2 100 30/50 2000 30
DE/rand/2 100 30/50 2000 30

WMSDE New optimal
mutation strategy

100 30/50 2000 30

optimal value in the results of 30 times, Mean represents the av-
erage value of 30 times, and Std represents the standard deviation
of 30 times.

As can be seen from Table 3, for the function f1 ∼ f3, the
MSDE algorithm can obtain the optimal value, mean and stan-
ard deviation in both 30 and 50 dimensions, and it can obtain
he best optimal value(zero) for the functions f1 and f2. For the
unctions f4 and f6, the DE algorithm with five different mutation
trategies and WMSDE algorithm can obtain the best optimal
alue(zero). For the function f5, the optimization performance of
ll algorithms is not good, because this function is a single peak
unction in the independent variable 2∼3 dimensions. But the
btained results of the WMSDE algorithm is best than the DE
lgorithm with five different mutation strategies. For the function
7, the WMSDE algorithm shows better optimization ability in
he optimal value and average value than other several DE algo-
ithms. For the function f8, compared with the DE algorithm with
ive different mutation strategies, the WMSDE algorithm per-
orms well in the mean and optimal values, and obtains the best
ptimal value. This experiment result shows that the WMSDE
lgorithm is very stable. For the functions f9 and f11, the DE algo-
ithms with mutation strategies DE/rand/1 and DE/rand/2 cannot
btain better optimization values, but the WMSDE algorithm can
btain best optimal value(zero). For the function f10, although
he DE algorithm with five different mutation strategies can ob-
ain relatively optimal value, these algorithms do not obtain the
ptimal value(zero). But the WMSDE algorithm can obtain the
elative optimal value and standard deviation(zero), which shows
he optimization ability, stability, convergence and diversity of
he WMSDE algorithm.

The optimization process curves of 11 benchmark functions
re shown in Fig. 3.
As can be seen from Fig. 3, for the single-peak functions,

he convergence curves of the WMSDE algorithm show a mono-

onic downward trend, and the WMSDE algorithm can quickly

6

each the optimal value or continuously converge to the optimal
alue. For the multi-peak functions, the convergence curves of the
MSDE algorithm have many inflection points, constantly jumps
ut the local optimal value and approaches the global optimal
alue. Therefore, the experiment results show that the WMSDE
lgorithm has good adaptability, convergence and diversity in
olving different complex function, and can effectively enhance
lobal search ability.

.2.2. Result comparison and analysis
In order to further verify the optimization performance of the
MSDE algorithm, the existed DE2/F, MEDE, pADE and RMDE

lgorithms are selected in here [44–49]. The comparison results
or the functions f1, f2, f3, f5, f9, f10 and f11 are shown in Table 4.

As can be seen from Table 4, for the functions f1 and f2,
he five algorithms can obtain better optimal value, mean and
tandard deviation in both 30 and 50 dimensions, but the WMSDE
lgorithm can obtain the best optimal value(zero) in all evaluating
ndicators. For the function f3, although the WMSDE algorithm
annot obtain the optimal value, but the obtained optimal value,
ean and standard deviation are better than those of the four
ther comparison algorithms, and the standard deviation is zero
n the 30 dimensions. For the function f5, because this function
s a unimodal function when the independent variable is 2∼3
imensions, the obtained results of all algorithms are not good.
hen the dimension of the independent variable increases, the
umber of optimal values also increases. At the same time, its
lobal optimal value is lied in a parabolic valley, which is easy to
e obtained. However, it is difficult to obtain the global optimal
alue because of the small change of the function value in the
alley. For the functions f9, f10 and f11, the WMSDE algorithm
nd pADE algorithm can obtain the best optimal value(zero) in
ll evaluating indicators. The two algorithms have a better opti-
ization performance of the mean, optimal value and standard
eviation than DE2/F, MEDE and RMDE algorithms in both 30
nd 50 dimensions. Therefore, from the experiment results of
he multi-peak functions, the WMSDE algorithm takes on better
ptimization performance, and can also avoid to fall into local op-
imum and obtain the better optimal solution for these functions.
he WMSDE algorithm shows better optimization performance,
tability, convergence and diversity in solving these benchmark
unctions.
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T
T

able 3
he experimental results of 11 benchmark functions.
Functions Algorithms 30 Dimensions 50 Dimensions

Best Mean Std Best Mean Std

f1

DE/rand/1
DE/best/1
DE/rand-to-best/1
DE/best/2
DE/rand2
WMSDE

6.35E−032
0.00E−000
2.05E−275
3.66E−143
4.12E−005
0.00E−000

1.32E−030
0.00E−000
2.78E−274
3.94E−142
1.08E−004
0.00E−000

2.39E−030
0.00E−000
0.00E−000
3.61E−142
6.18E−05
0.00E−000

2.72E−018
0.00E−000
4.85E−265
6.80E−126
8.07E−002
0.00E−000

4.06E−017
0.00E−000
6.13E−264
7.98E−125
1.41E−001
0.00E−000

4.59E−017
0.00E−000
0.00E−000
9.53E−125
4.46E−002
0.00E−000

f2

DE/rand/1
DE/best/1
DE/rand-to-best/1
DE/rand/2
DE/best/2
WMSDE

3.23E−012
1.59E−272
0.00E−000
1.09E−070
3.80E−002
0.00E−000

4.34E−001
2.36E−271
0.00E−000
3.68E−070
8.30E−002
0.00E−000

4.39E−011
0.00E−000
0.00E−000
2.59E−070
4.20E−002
0.00E−000

2.38E−010
1.86E−268
0.00E−000
1.55E−062
2.14E−000
0.00E−000

8.75E−010
8.14E−268
0.00E−000
8.84E−062
2.84E−000
0.00E−000

4.86E−010
0.00E−000
0.00E−000
1.16E−061
5.85E−001
0.00E−000

f3

DE/rand/1
DE/best/1
DE/rand-to-best/1
DE/rand/2
DE/best/2
WMSDE

5.55E+002
0.00E−000
1.84E−031
4.55E−016
1.59E+004
8.25E−173

1.10E+003
1.83E−083
2.55E−029
7.71E−015
2.43E+004
5.76E−142

4.89E+002
3.42E−083
3.89E−029
1.18E−014
6.03E+003
0.00E−000

3.18E+004
1.54E−053
1.98E−009
6.70E−002
393 011.5
8.68E−134

5.24E+004
7.38E−040
3.53E−008
9.90E−002
518 464.4
1.20E−094

1.75E+004
1.98E−039
4.80E−008
3.82E−002
4.82E−001
5.09E−094

f4

DE/rand/1
DE/best/1
DE/rand-to-best/1
DE/rand/2
DE/best/2
WMSDE

0.00E−000
0.00E−000
0.00E−000
0.00E−000
0.00E−000
0.00E−000

0.00E−000
0.00E−000
0.00E−000
0.00E−000
0.00E−000
0.00E−000

0.00E−000
0.00E−000
0.00E−000
0.00E−000
0.00E−000
0.00E−000

0.00E−000
0.00E−000
0.00E−000
0.00E−000
0.00E−000
0.00E−000

0.00E−000
0.00E−000
0.00E−000
0.00E−000
0.00E−000
0.00E−000

0.00E−000
0.00E−000
0.00E−000
0.00E−000
0.00E−000
0.00E−000

f5

DE/rand/1
DE/best/1
DE/rand-to-best/1
DE/rand/2
DE/best/2
WMSDE

6.80E−001
2.89E+001
2.88E+001
2.87E+001
2.48E+001
2.86E+001

4.74E+001
2.89E+001
2.89E+001
2.88E+001
2.57E+001
2.88E+001

6.66E+001
1.98E−002
3.65E−002
7.05E−002
8.37E−001
1.00E−001

4.33E+001
4.89E+001
4.88E+001
4.88E+001
1.30E+002
4.97E+001

5.66E+001
4.89E+001
4.89E+001
4.89E+001
1.63E+002
4.88E+001

2.00E+001
0.00E−000
3.27E−002
3.39E−002
3.60E+001
6.00E−002

f6

DE/rand/1
DE/best/1
DE/rand-to-best/1
DE/rand/2
DE/best/2
WMSDE

0.00E−000
0.00E−000
0.00E−000
0.00E−000
0.00E−000
0.00E−000

0.00E−000
0.00E−000
0.00E−000
0.00E−000
0.00E−000
0.00E−000

0.00E−000
0.00E−000
0.00E−000
0.00E−000
0.00E−000
0.00E−000

0.00E−000
0.00E−000
0.00E−000
0.00E−000
0.00E−000
0.00E−000

0.00E−000
0.00E−000
0.00E−000
0.00E−000
0.00E−000
0.00E−000

0.00E−000
0.00E−000
0.00E−000
0.00E−000
0.00E−000
0.00E−000

f7

DE/rand/1
DE/best/1
DE/rand-to-best/1
DE/rand/2
DE/best/2
WMSDE

3.35E−002
6.62E−007
5.47E−007
2.66E−006
5.90E−002
3.27E−007

4.00E−002
9.67E−006
1.45E−005
1.45E−005
8.80E−002
7.73E−006

5.30E−003
8.24E−006
1.90E−005
8.37E−006
2.84E−002
7.03E−006

5.20E−002
8.69E−007
4.51E−007
8.88E−007
7.50E−001
3.45E−007

7.00E−002
7.85E−006
9.69E−006
1.06E−005
1.07E−000
5.56E−006

8.40E−003
4.74E−006
1.08E−005
1.29E−005
4.82E−001
1.29E−006

f8

DE/rand/1
DE/best/1
DE/rand-to-best/1
DE/rand/2
DE/best/2
WMSDE

−1.10E+004
−3.30E+003
−6.39E+003
−4.93E+003
−5.18E+003
−1.26E+004

−7.64E+003
−2.92E+003
−4.36E+003
−4.34E+003
−4.89E+003
−9.70E+003

1.55E+003
3.16E+002
8.30E+002
3.56E+002
2.19E+002
1.40E+002

−1.20E+004
−4.05E+03
−5.90E+003
−5.67E+003
−6.87E+003
−1.26E+004

−9.08E+003
−3.51E+003
−5.22E+003
−5.34E+003
−6.38E+003
−8.77E+003

1.64E+003
3.34E+003
4.43E+002
2.55E+002
3.53E+002
2.02E+002

f9

DE/rand/1
DE/best/1
DE/rand-to-best/1
DE/rand/2
DE/best/2
WMSDE

2.53E+001
0.00E−000
0.00E−000
0.00E−000
2.14E+002
0.00E−000

7.29E+001
0.00E−000
0.00E−000
0.00E−000
2.28E+002
0.00E−000

3.10E+001
0.00E−000
0.00E−000
0.00E−000
9.24E−000
0.00E−000

2.71E+001
0.00E−000
0.00E−000
0.00E−000
5.41E+002
0.00E−000

1.75E+002
0.00E−000
0.00E−000
0.00E−000
5.55E+002
0.00E−000

9.12E+001
0.00E−000
0.00E−000
0.00E−000
2.46E+001
0.00E−000

f10

DE/rand/1
DE/best/1
DE/rand-to-best/1
DE/rand/2
DE/best/2
WMSDE

7.99E−015
8.88E−016
4.44E−015
4.44E−015
8.20E−003
8.88E−016

7.99E−015
3.32E−015
4.44E−015
4.44E−015
1.18E−002
8.88E−016

0.00E−000
1.64E−015
0.00E−000
0.00E−000
2.20E−003
0.00E−000

1.10E−009
8.88E−016
4.44E−015
4.44E−015
4.90E−001
8.88E−016

3.36E−009
3.47E−015
4.44E−015
4.44E−015
7.60E−001
8.88E−016

2.27E−009
1.51E−015
0.00E−000
0.00E−000
2.06E−001
0.00E−000

f11

DE/rand/1
DE/best/1
DE/rand-to-best/1
DE/rand/2
DE/best/2
WMSDE

1.28E−010
0.00E−000
0.00E−000
0.00E−000
3.73E−006
0.00E−000

5.31E−003
0.00E−000
0.00E−000
0.00E−000
2.81E−005
0.00E−000

4.07E−003
0.00E−000
0.00E−000
0.00E−000
3.46E−005
0.00E−000

0.00E−000
0.00E−000
0.00E−000
0.00E−000
2.15E−003
0.00E−000

4.44E−017
0.00E−000
0.00E−000
0.00E−000
1.32E−002
0.00E−000

7.36E−017
0.00E−000
0.00E−000
0.00E−000
3.79E−003
0.00E−000
7
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Fig. 3. Optimization process curves of 11 functions.
. Airport gate assignment method

.1. Construct mathematical modeling of gate assignment

As an important resource of the airport, the gate is the key
actor to realize the fast and safe flight parking. Airport gate as-
ignment refers to assign a specific gate for each flight according
o the attributes of flight and aircraft type. It should not only
rovide better service for passengers and save costs for airlines
8

from the perspective of passengers and airlines, but also reason-
ably, evenly and efficiently assign limited gate resources from
the perspective of airport operation control department, so as
to prevent adverse effect of emergencies on airport operation. In
the airport gate assignment, due to comprehensively considering
the interests of many companies, the airport gate assignment
is a multi-objective optimization problem. The satisfaction de-
gree of passengers to airport service is very important for the
airport operation, and the walking distance is directly related
to the evaluation of the airport by passengers. Therefore, the
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Fig. 3. (continued).
shortest total walking distance for passengers is selected as the
optimization objective function. When the flight encounters some
small-scale short-term delays, it is hoped that a little adjustment
can ensure the normal operation of the flight and the balanced
utilization of all gates. Therefore, the most balanced idle time
for each gate is selected as the optimization objective function.
Large gates can be assigned to all aircrafts, while small gates
can only be assigned to small aircrafts. In actual operation, if
9

large gates are occupied too early by small and medium-sized
aircrafts, then the distribution options of later large aircrafts will
be less, and even the large aircrafts are forced to be assigned
to the apron. At the same time, large flights often take more
passengers, once they are assigned to the apron, it will cause
more inconvenience to passengers and satisfaction. Therefore,
the best use of large gates is selected as the optimization ob-
jective function. From the perspective of airport management,
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able 4
he comparison results among different algorithms.
Functions Algorithm 30 dimensions 50 dimensions

Best Mean Std Best Mean Std

f1

DE2/F
MEDE
pADE
RMDE
WMSDE

2.19E−039
1.14E−065
4.15E−245
5.32E−159
0.00E−000

1.50E−038
3.21E−064
2.41E−253
3.16E−144
0.00E−000

1.32E−039
2.93E−064
0.00E−000
2.40E−143
0.00E−000

2.45E−028
2.18E−041
3.55E−249
2.57E−076
0.00E−000

7.17E−028
1.43E−040
1.21E−246
1.12E−063
0.00E−000

6.68E−015
5.19E−020
0.00E−000
1.88E−011
0.00E−000

f2

DE2/F
MEDE
pADE
RMDE
WMSDE

3.28E−024
9.37E−034
3.21E−115
2.44E−054
0.00E−000

2.01E−023
3.08E−033
1.56E−113
5.01E−044
0.00E−000

4.36E−024
1.93E−033
3.03E−113
1.42E−043
0.00E−000

8.75E−018
1.59E−022
1.70E−109
3.38E−022
0.00E−000

1.32E−017
4.41E−022
2.85E−108
8.31E−018
0.00E−000

3.60E−018
1.84E−022
2.98E−108
3.16E−017
0.00E−000

f3

DE2/F
MEDE
pADE
RMDE
WMSDE

3.02E−001
1.02E−000
5.72E−048
2.84E−034
8.25E−173

4.22E−001
4.44E−000
5.02E−042
1.58E−029
5.76E−142

7.98E−002
2.64E−000
1.80E−041
4.51E−029
0.00E−000

1.88E+002
1.08E+002
8.85E−044
4.56E−014
8.68E−134

2.82E+002
1.92E+002
8.85E−044
4.56E−014
1.20E−094

4.28E+001
4.32E+001
5.10E−036
5.34E−008
5.09E−094

f5

DE2/F
MEDE
pADE
RMDE
WMSDE

2.45E+001
2.09E−001
2.83E+001
6.21E−013
2.86E+001

5.39E+001
2.18E+001
2.85E+001
4.72E−005
2.88E+001

2.30E+001
1.84E+001
8.91E−002
2.06E−004
1.00E−001

3.49E+001
1.78E+001
4.82E+001
6.60E−007
4.97E+001

7.92E+001
4.56E+001
4.84E+001
9.33E−002
4.88E+001

2.72E+001
1.97E+001
9.50E+001
3.02E−001
6.00E−002

f9

DE2/F
MEDE
pADE
RMDE
WMSDE

2.71E−027
1.11E−038
0.00E−000
1.78E−015
0.00E−000

7.70E−025
9.16E−017
0.00E−000
4.88E−013
0.00E−000

1.82E−024
2.99E−016
0.00E−000
1.93E−012
0.00E−000

0.00E−000
1.56E+002
0.00E−000
2.49E−014
0.00E−000

8.97E−001
9.19E+000
0.00E−000
4.83E−012
0.00E−000

8.48E−001
9.19E+000
0.00E−000
4.83E−012
0.00E−000

f10

DE2/F
MEDE
pADE
RMDE
WMSDE

8.01E−015
4.44E−015
8.88E−016
2.22E−014
8.88E−016

8.12E−015
7.46E−015
8.88E−016
1.09E−010
8.88E−016

0.00E−000
1.30E−015
0.00E−000
4.05E−010
0.00E−000

2.23E−014
7.99E−015
8.88E−016
9.33E−014
8.88E−016

2.31E−014
1.17E−014
8.88E−016
1.23E−011
8.88E−016

2.26E−015
2.93E−015
0.00E−000
3.09E−011
0.00E−000

f11

DE2/F
MEDE
pADE
RMDE
WMSDE

0.00E−000
0.00E−000
0.00E−000
1.11E−016
0.00E−000

1.03E−007
1.11E−003
0.00E−000
1.54E−015
0.00E−000

3.32E−007
2.71E−003
0.00E−000
1.50E−015
0.00E−000

0.00E−000
0.00E−000
0.00E−000
1.67E−015
0.00E−000

6.79E−007
8.63E−004
0.00E−000
1.48E−003
0.00E−000

2.06E−006
2.68E−003
0.00E−000
4.62E−003
0.00E−000
w
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to meet the safety of flight operation, the same types of flights
are assigned to the corresponding gates to greatly improve the
utilization efficiency of gates and save the operating cost of the
gate. It can also help the airport to assign more flights and expand
the number of flights for airport. Therefore, the highest occupancy
efficiency based on gates is selected as the optimization objective
function. In the process of gate assignment, the gates should be
assigned to the corresponding gates as far as possible. Therefore,
the minimum matching difference between flights and gates is
selected as the optimization objective function. All in all, the
gate assignment problem need to comprehensively consider the
interests of passengers, airport, airlines and government. There-
fore, it is a complex multi-objective optimization problem. Each
optimization objective function is constructed as follows.

5.1.1. The objective function of the most balanced idle time for gates
The objective function of the most balanced idle time of gates

s described as follow.

1 = min
n∑

i=1

m∑
j=1

S2ij +

m∑
j=1

SS2j (11)

here n denotes the total number of flights, m denotes the
number of gates. Sij denotes the idle time of gate when the flight

i arrives at the gate j. SSj denotes the idle time of the gate.

10
5.1.2. The objective function of the shortest total walking distance
for passengers

The objective function of the shortest walking distance for
passengers is described as follow.

F2 = min
n∑

i=1

m∑
j=1

qij fj yij (12)

here qij is the number of passengers of flight i at gate j. fj is the
alking distance of passengers from security checkpoint to gate

. yij is a variable of 0–1.

.1.3. The objective function of the best use of large gates
The objective function of the best use of large gates is de-

cribed as follow.

3 =

n∑
i=1

m∑
j=1

Gij (13)

here Gij are the parked small and medium-sized aircraft in large
ate and the parked small aircrafts in medium gate.

.1.4. The objective function of the highest occupancy efficiency
ased on gates
The objective function of the highest occupancy efficiency

ased on gates is described as follow.

4 = −

n∑
i=1

m∑
j=1

(taij − tbij ) × yij
T

(14)
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.1.5. The objective function of the minimum matching difference
etween flights and gates
The objective function of the minimum matching difference

etween flights and gates is described as follow.

5 =

n∑
i=1

m∑
j=1

ρijyij (15)

.1.6. Constraints
The constraints are to limit the calculation process, so that the

alculation result can meet the requirements. In the same airport,
he constraints of different gates and flights may be different. The
onstraints include gate constraints, flight constraints and so on
n this paper.

(1) Each flight must only be assigned to one gate.

N∑
j

xij = 1, ∀i ∈ F , j ∈ G (16)

If the flight i is assigned to gate j, then xij = 1. Otherwise there
s xij = 0.

(2) The gate constraints to aircraft type
When the flight i is assigned to gate j, it must comply with

i ≤ ρj + (1 − yij)Ω . Where εi is aircraft type of flight i, ρj is
he gate j for allowing the largest aircraft type, Ω is arbitrarily
ositive number.
(3) |Ai − Di| ≥ T
The interval time between the two adjacent flights at the same

ate must be greater than the safety interval time. T is a safety
nterval time at same gate.

(4) 0–1 variable constraints xij, pij, Gij, yij ∈ {0, 1}.
(5) Positive integer constraints: Sij, tij, SSj, fj ≥ 0.

.1.7. Non-quantization processing of objective function
Because the objective functions [F1 (x) , F2 (x) , . . . , Fn(x)] have

heir own targets, units and dimensions, it is necessary to deal
ith these objective functions quantitatively. In dealing with
he multi-objective optimization problems, the commonly used
ethods are linear weighting method, square sum weighting
ethod and constraint method and so on. Since the linear weight-

ng method has the characteristics of convenient operation and
ood effect, the linear weighting method is selected to deal with
he multi-objective optimization model. The weight factor is set
s Wi ≥ 0(i = 1, 2, . . . , n).
Set F 0

i = max[|Fi|] and F 0
i ̸= 0. The objective function of

on-quantization is described as follow.

=

n∑
i=1

WiFi
F 0
i

(17)

Therefore, the mathematical modeling of gate assignment
roblem is described as follow.

=
W1

F 0
1

⎡⎣ n∑
i=1

m∑
j=1

S2ij +

m∑
j=1

SS2j

⎤⎦ +
W2

F 0
2

n∑
i=1

m∑
j=1

qij fj yij

−
W3

F 0
3

n∑
i=1

m∑
j=1

Gij −
W4

F 0
4

n∑
i=1

m∑
j=1

(taij − tabij ) × yij
T

+
W5

F 0
5

n∑
i=1

m∑
j=1

ρij yij (18)

T
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5.2. Airport gate assignment method using WMSDE algorithm

5.2.1. Airport gate assignment method
Gate assignment problem is a NP-hard problem with complex

constraints and large scale. It is difficult to find the accurate
optimal solution by using traditional methods. The general intel-
ligent optimization algorithm is also difficult to find the accurate
optimal solution. The proposedWMSDE algorithm has the charac-
teristics of less undetermined parameters, fast convergence speed
and good robustness. Therefore, the proposed WMSDE algorithm
is applied to solve the multi-objective optimization model of
airport gate assignment. A fast assignment method of airport gate
assignment based on WMSDE algorithm is proposed, which can
effectively realize the assignment of airport gate assignment and
obtain the optimal airport gate assignment scheme.

5.2.2. Airport gate assignment model
The flow of airport gate assignment method by using the

proposed WMSDE algorithm is shown Fig. 4.

5.2.3. Steps of airport gate assignment
The detailed steps of airport gate assignment method by using

the proposed WMSDE are described as follows.
Step 1. Initialize the parameters of the WMSDE algorithm, in-

luding population size, scaling factor, mutation strategy,
rossover probability, maximum number of iterations and other
arameters.
Step 2. The initial population is divided into several subpopu-

ations according to the solving complex optimization problem.
Step 3. The subpopulations are evaluated to construct binary

atrix. The binary string of each row is converted into a decimal
umber, which is selected as the current gates to obtain the initial
ate matrix.
Step 4. Read the information of gates and flights, the con-

licting flights are eliminated and the gate matrix is adjusted
ccording to the constraints.
Step 5. The objective function of airport gate assignment prob-

em is solved to obtain the minimum value of the objective
unction by using the WMSDE algorithm.

Step 6. Record and save the optimal value and the assigned
ate matrix.
Step 7. The conflicting flights are eliminated to obtain a new

ate assignment scheme.
Step 8. Determine whether the maximum number of iterations

s reached. When the end condition is met, the optimal gate
ssignment result is output. Otherwise, go to Step 4.

. Application case and analysis

.1. Experimental data and environment

In order to validate the effectiveness of the proposed gate
ssignment method in solving actual gate assignment engineering
roblem, an airport gate assignment case with 250 flights and 30
ates from Guangzhou Baiyun Airport on July 26, 2015 is used to
est and simulate systematically. The detailed information of 30
ates are described in Table 5, and the detailed information of 250
lights are described in Table 6. The safe interval time between
wo adjacent flights is 5 min for the same gate. The gates and
lights can be divided into large, medium and small gates and
lights. The large gates can spark all flights, the medium gates can
park the medium flights and small flights, and the small gates
nly spark the small flights. When the flights are not assigned to
he gates, they will be assigned to the apron.

The parameters of the WMSDE algorithm are set as follows.
he population size is 250, individual dimension is 5, and the
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Fig. 4. The flow of airport gate assignment using WMSDE.
Table 5
The detailed information of gates.
Gate Walking

distance (m)
Gate type Gate Walking

distance (m)
Gate type

1 190 M 16 115 L
2 975 M 17 215 M
3 400 L 18 535 S
4 333 M 19 1050 M
5 260 L 20 170 M
6 135 S 21 585 L
7 1100 M 22 1250 M
8 150 M 23 500 L
9 384 L 24 920 L
10 960 M 25 270 L
11 1000 S 26 230 M
12 235 L 27 265 L
13 1200 S 28 450 L
14 580 L 29 1300 M
15 440 L 30 426 L

maximum number of iterations is 200. The experiment is exe-
cuted 20 times. The experimental environments are Intel (R) core
(TM) i5-7400 CPU 3.00 GHz, 8G RAM, Windows 10, and MATLAB
R2018a.

6.2. Assigned results of gates

The proposed WMSDE algorithm is used to solve the multi-
bjective optimization model of airport gate assignment. The
lgorithm has been independently implemented 20 times to ob-
ain 20 experiment results. Then best one of 20 experiment
esults is selected to analyze. The obtained gate assignment result
s shown in Table 7., and the corresponding Gantt chart is shown
n Fig. 5.
12
Table 6
The detailed information of flights.
Flights Arrived time Left time Passengers Flight type

1 2015-7-26 0:05:00 2015-7-26 5:15:00 482 L
2 2015-7-26 0:05:00 2015-7-26 5:45:00 273 M
3 2015-7-26 0:10:00 2015-7-26 5:30:00 261 M
4 2015-7-26 0:15:00 2015-7-26 5:30:00 116 M
5 2015-7-26 0:15:00 2015-7-26 5:15:00 244 M
6 2015-7-26 0:20:00 2015-7-26 5:30:00 312 L
7 2015-7-26 0:25:00 2015-7-26 5:20:00 340 L
8 2015-7-26 0:30:00 2015-7-26 6:00:00 198 M
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

249 2015-7-26 23:50:00 2015-07-27 01:50:00 252 S
250 2015-7-26 23:55:00 2015-7-27 9:10:00 378 M

In order to intuitively observe the occupancies of flights in
each gate, the number of assigned flights for each gate is shown
in Fig. 6.

The process curve of optimal value in solving multi-objective
optimization model of airport assignment using WMSDE algo-
rithm is shown Fig. 7.

As can be seen from Table 7 and Figs. 5–7, 244 flights are
assigned to 30 gates, 6 flights are assigned to the apron. The
airport gate assignment rate reaches at 97.6%. From the number
of assigned flights for each gate, the number of assigned flights
for each gate is more balanced, and the idle time of each gate
is more balanced, which enables staff to have sufficient time to
schedule, and avoids the idle waste of gate and does not overuse,
and makes the airline resources to obtain a more reasonable as-
signment and utilization. At the same time, the proposed WMSDE
algorithm obtains the optimal objective value (0.6256) at the

83th iteration. Therefore, the proposed WMSDE algorithm is used
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Fig. 5. The corresponding Gantt chart.
Fig. 6. The number of assigned flights for each gate.
to solve the multi-objective optimization model of airport gate
assignment, which can obtain better gate assignment results. It
takes on better optimization performance, convergence behavior
and diversity. Therefore, the proposed WMSDE algorithm can
effectively solve real-world practical engineering problems, and
obtain better optimization solution.

6.3. Comparison and analysis

In order to further demonstrate the optimization performance
of the proposed WMSDE algorithm, the DE, DE2/F, MEDE, pADE
and RMDE algorithms are selected to solve the multi-objective
optimization model of airport gate assignment. The comparison
13
results of ten times by using six algorithms are shown in Table 8,
Figs. 8 and 9.

As can be seen from Table 8, Figs. 8 and 9, the proposed
WMSDE algorithm is used to solve the constructed multi
-objective optimization model of gate assignment, the mini-
mum optimal value, average optimal value, maximum assign-
ment rate and average assignment rate are 0.6256, 0.6302, 97.6%
and 96.54%, respectively. For the DE, DE2/F, MEDE, pADE, RMDE
and WMSDE, the minimum optimal objective value, average opti-
mal objective value, maximum gate assignment rate and average
gate assignment rate of the WMSDE algorithm is better than
those of the DE, DE2/F, MEDE, pADE and RMDE. That is to say,
the WMSDE algorithm obtains the best quality of the solution.
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T
T

T
T

able 7
he obtained gate assignment results.
Gate Assigned flights Total

1 3 37 75 103 120 154 247 7
2 6 34 60 92 121 150 193 218 240 9
3 7 38 62 93 122 153 182 206 236 9
4 9 39 76 106 129 155 194 219 241 9
5 5 35 58 74 125 141 151 184 203 212 10
6 10 41 67 94 123 156 187 220 8
7 14 43 77 107 133 169 195 223 249 9
8 13 42 66 95 124 157 188 222 242 9
9 11 40 63 96 126 158 189 221 8
10 12 44 64 98 128 159 181 207 237 9
11 15 45 65 99 130 160 196 226 8
12 16 46 68 100 131 208 225 7
13 1 36 86 115 166 185 216 245 8
14 20 47 69 101 134 162 180 210 243 9
15 17 48 70 102 135 5
16 18 49 72 105 137 178 197 227 8
17 8 50 61 84 127 148 183 214 238 9
18 23 71 89 108 140 173 202 228 8
19 4 33 83 97 104 136 161 191 217 9
20 19 51 73 109 138 163 198 229 8
21 21 52 78 110 152 186 213 239 250 9
22 24 53 80 111 139 165 199 230 8
23 25 54 81 113 142 167 200 233 8
24 22 55 79 114 143 164 201 231 8
25 26 56 82 116 144 168 248 7
26 28 31 87 117 145 192 215 246 8
27 2 85 112 132 146 177 209 235 8
28 27 32 88 118 147 170 204 232 8
29 29 57 90 119 149 171 205 234 8
30 30 59 91 190 211 224 6

Total 244

Fig. 7. The process curve of optimal value.

able 8
he calculation and comparison results.
Algorithm Minimum

value
Average
value

Average run
time (s)

Maximum
assign-
ment rate
(%)

Average
assign-
ment rate
(%)

DE 0.7453 0.7857 14.427 89.6 88.66
DE2/F 0.7181 0.7362 14.943 92.4 91.88
MEDE 0.6535 0.6816 17.481 95.6 95.24
pADE 0.6429 0.6579 15.673 94.4 93.88
RMDE 0.6392 0.6483 16.730 96.8 96.04
WMSDE 0.6256 0.6302 16.124 97.6 96.54

But from the experiment results, we can also see that average
run time of the WMSDE is worse than those of the DE, DE2/F
and pADE algorithms. In general, although the WMSDE needs
more time to solve the constructed multi-objective optimization
14
Fig. 8. The comparison results of the minimum optimal values and average
optimal values by using six algorithms.

Fig. 9. The comparison results of the maximum assignment rate and average
assignment rate by using six algorithms.

model of gate assignment, the solution quality of the WMSDE
has been improved by comparing the solution quality of the
other algorithms. The WMSDE can reduce the costs of the air-
port and airline, and improve the comprehensive service level.
Therefore, the constructed multi-objective optimization model
of gate assignment and the proposed WMSDE can significantly
reduce the walking distances for passengers, balance the idle time
for gates, make use of large gates, improve occupancy efficiency
based on gates and best match between flights and gates. At the
same time, the service level of airport and satisfaction degree of
passengers are improved. The proposed gate assignment method
can effectively improve the flexibility for gate assignment and
avoid to occur a large number of flight delays. It effectively
provides a valuable reference for assigning the gates.

7. Conclusion and future work

For the existing problems of solution accuracy and poor con-
vergence of the DE algorithm, a new optimal mutation strat-
egy based on the complementary advantages of five mutation
strategies in the first generation is designed. Then a novel im-
proved differential evolution (WMSDE) algorithm based on the
wavelet basis function and new optimal mutation strategy is
proposed to improve the search quality, accelerate convergence
and avoid fall into local optimum and stagnation. 11 benchmark
functions and an actual airport gate assignment problem are used
to validate the effectiveness of the proposed WMSDE algorithm.
From the experiment results, the proposed WMSDE algorithm
has a monotonous decreasing trend of convergence curve for the
single-peak functions, and can quickly obtain the optimal value
or converge to the optimal value. For the multimodal functions,
the proposed WMSDE algorithm has multiple inflection points
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n the convergence curve, and can continuously jump out from
he local optimal value, and approach to the global optimization
olution. For airport gate assignment engineering problem, the
ate assignment rate reaches at 97.6%, it significantly reduces the
alking distance for passengers, balances the idle time for gates,
akes use of large gates, improves occupancy efficiency based on
ates and best matches between flights and gates. Therefore, the
MSDE algorithm can effectively avoid premature convergence,
alance local search ability and global search ability, and also
ffectively solve the airport gate assignment problem and obtain
deal airport gate assignment results. This study provides a good
hoice for solving large-scale complex optimization problems.
Because the proposed WMSDE algorithm in solving bench-

ark functions and an actual airport gate assignment problem
eeds more running time to obtain the optimization results, it is
mportant to how to reduce the time complexity of the proposed
MSDE algorithm in the future works.
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