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Abstract
Proximal gradient method has a major role in solving nonsmooth composite optimization 
problems. However, in some machine learning problems related to black-box optimization 
models, the proximal gradient method could not be leveraged as the derivation of explicit 
gradients are difficult or entirely infeasible. Several variants of zeroth-order (ZO) stochas-
tic variance reduced such as ZO-SVRG and ZO-SPIDER algorithms have recently been 
studied for nonconvex optimization problems. However, almost all the existing ZO-type 
algorithms suffer from a slowdown and increase in function query complexities up to a 
small-degree polynomial of the problem size. In order to fill this void, we propose a new 
analysis for the stochastic gradient algorithm for optimizing nonconvex, nonsmooth finite-
sum problems, called ZO-PSVRG+ and ZO-PSPIDER+. The main goal of this work is to 
present an analysis that brings the convergence analysis for ZO-PSVRG+ and ZO-PSPI-
DER+ into uniformity, recovering several existing convergence results for arbitrary mini-
batch sizes while improving the complexity of their ZO oracle and proximal oracle calls. 
We prove that the studied ZO algorithms under Polyak-Łojasiewicz condition in contrast 
to the existent ZO-type methods obtain a global linear convergence for a wide range of 
minibatch sizes when the iterate enters into a local PL region without restart and algorith-
mic modification. The current analysis in the literature is mainly limited to large minibatch 
sizes, rendering the existing methods unpractical for real-world problems due to limited 
computational capacity. In the empirical experiments for black-box models, we show that 
the new analysis provides superior performance and faster convergence to a solution of 
nonconvex nonsmooth problems compared to the existing ZO-type methods as they suf-
fer from small-level stepsizes. As a byproduct, the proposed analysis is generic and can be 
exploited to the other variants of gradient-free variance reduction methods aiming to make 
them more efficient.
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1  Introduction

In this paper, we consider nonsmooth nonconvex optimization problems of the generic 
form

where each fi(x) is possibly nonconvex and smooth function, and h(x) is a nonsmooth con-
vex function such as L1-norm regularizer. The optimization problem (1) governs numerous 
machine learning frameworks, ranging from neural networks to generalized linear models 
and from convex problems like SVM and Lasso to highly nonconvex optimization prob-
lems such as loss functions tailored to deep neural models. In this work, we shall explore 
a set of variance-reduced stochastic zeroth-order (SZO) optimization algorithms for (1) 
to improve their oracle calls. Stochastic variance-reduced gradient (SVRG) is a powerful 
approach to decrease the variance inherited from stochastic sampling (Johnson and Zhang, 
2013; Reddi et al., 2016a; Nitanda, 2016; Allen-Zhu and Yuan, 2016). These papers dem-
onstrate that SVRG enhances the rate of convergence for stochastic gradient descent (SGD) 
by a factor of O(1∕�) due to the decrease in the variance of the gradient. Furthermore, 
various variants of variance-reduced algorithms SAGA (Defazio et  al. 2014) and SVRG 
(Johnson and Zhang, 2013; Reddi et al., 2016a) are proposed. Recently, in Li and Li (2018) 
a new convergence analysis of ProxSVRG (Reddi et al., 2016b) is proposed which is nota-
bly different than ProxSVRG and is valid for a large range of minibatch sizes. In Ji et al. 
(2020) the analysis in Li and Li (2018) is improved to show the dependence of the decrease 
in function to the accumulated sum of the variance-reduced gradients in each epoch. In 
Horváth and Richtárik (2019) importance sampling variants of SVRG algorithms for mini-
mizing non-convex loss functions were explored. The other variation of variance reduction 
optimization schemes was introduced in Fang et al. (2018) called SPIDER. Being different 
from SVRG-type algorithms, SPIDER (Fang et al., 2018) and the earlier version SARAH 
(Nguyen et al., 2017a, b) are first-order stochastic variance-reduced schemes where in each 
inner-loop iteration gradient is estimated recursively by applying the variance-reduced gra-
dient estimation in the previous iteration.

The underlying idea to develop zeroth-order variance reduction methods is to leverage 
similar ideas from the first-order methods to reduce the variance of stochastic optimization 
methods in order to improve the convergence rate. The major adversity of first-order meth-
ods is their dependency on first-order information from the problem, while there are settings 
where the first-order gradients are computationally infeasible or costly whereas zeroth-order 
information (function information) is accessible. For instance, in online auctions and adver-
tisement selections, only zeroth-order information in the form of responses to the queries 
is accessible (Wibisono et al., 2012). This illustrates the importance of the development of 
zeroth-order optimization methods for solving many machine-learning problems. Currently, 
there are only a few zeroth-order stochastic methods for solving problem (1), e.g., Ghad-
imi et al. (2016) and Huang et al. (2019). Ghadimi et al. (2016) introduced a gradient-free 
proximal projection (RSPGF) algorithm using a two-point Gaussian random gradient esti-
mator for smooth composite optimization problem (1), which achieves a convergence rate 
of O(

√
d∕

√
T) with T is the number of iterations) and stochastic zeroth-order query com-

plexity of O( d2
�2
) , to reach a stationary point x∗ such that ‖F(x∗)‖ ≤ � . There are other vari-

ants of zeroth-order for nonsmooth problems, e.g., Huang et al. (2019) and also momentum 

(1)min
x∈ℝd

F(x) = f (x) + h(x), f (x) ∶=
1

n

n∑

i=1

fi(x)
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accelerated zeroth-order methods (Chen et  al., 2019) to achieve a higher rate of conver-
gence. In addition, several zeroth-order projection-free methods were developed in Sahu 
et al. (2019); Huang et al. (2020) as well as ADAM-based methods in Gao et al. (2018).

A zeroth-order variant of SPIDER was proposed in Fang et al. (2018), named SPIDER-
SZO. This set of ZO variance-reduced methods replaces first-order gradients in the SPI-
DER algorithm with zeroth-order gradient estimators. In Fang et al. (2018) it shows that 
SPIDER-SZO gains an improved zeroth-order query complexity compared to SVRG-based 
zeroth-order algorithms. Nevertheless, the original SPIDER-SZO algorithm requires gen-
erating a large number of Gaussian random samples of order O(n1∕2d2) at each epoch and 
the convergence guarantee is obtained with a stepsize of O(�) . In practice, these require-
ments significantly limit the performance of SPIDER-SZO.

Recently, Ji et al. (2019) refined the ZO estimations to derive an improved SZO com-
plexity with improved convergence rates. However, the analysis in their work is only for 
smooth functions based on a complicated parameter selection analysis which is only valid 
for particular and mainly large minibatch sizes. Towards improving the convergence anal-
ysis in the existing works, in this paper we address this open question: Is this possible 
to extend the existing convergence analysis for ZO-SVRG and ZO-SPIDER to arbitrary 
minibatch sizes with improved ZO query complexity and under more general nonsmooth, 
nonconvex setting? Aiming to answer this question, we employ variance reduction meth-
ods to design an accelerated ZO proximal method for nonsmooth composite optimization 
problem (1). This demonstrates an improvement to ZO iteration complexity up to a factor 
of d compared with Huang et al. (2019) and extends the existing analysis for ZO variance-
reduced framework to versatile studies which are valid for more general parameter settings.

In Tables 1 and 2, we compared the results from our analysis and other state-of-the-art 
ZO optimization methods for three different items. We also listed the minibatch sizes that 
our methods can achieve the optimal SZO calls known in the literature. Table  1 shows 
that the convergence of ZO-PSVRG+ provides a better dependency on problem dimension 
d than RSPGF and ZO-ProxSVRG/SAGA for nonconvex nonsmooth optimization. It also 
shows that RGF has the largest query complexity yet has the worst convergence rate. ZO-
SVRG-Coord and ZO-ProxSVRG/SAGA provide an improved rate of convergence O(d∕�) 
owning to applying variance reduction techniques. Further observation of Table 1 reveals 
that the existing SVRG type zeroth-order algorithms are highly affected by function query 
complexities compared to RSPGF, while ZO-PSVRG+ (our algorithm) could achieve bet-
ter trade-offs between the convergence rate and the querying complexity.

2 � Main contributions

In this work, we present a novel uniform analysis for ZO-PSVRG+ (Algorithm 1) and ZO-
PSPIDER+ (Algorithm 2) which are different from the comparable convergence studies. 
Although recently several accelerated variance reduction techniques for nonconvex prob-
lems have been proposed Wang et al. (2019), in this work we mainly focus to improve the 
analysis of the basic aforesaid methods and the extension to the novel accelerated frame-
works shall be addressed in our future studies. The main contributions of this paper are 
summarized in the following:

1) Our analysis for ZO-PSVRG+ yields iteration complexity O( 1
�
) compared to O( d

�2
) 

of RSPGF (Ghadimi and Lan 2016) and O( d
�
) of ZO-ProxSVRG/SAGA (Huang et al., 
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2019) (the existing variance-reduce SZO proximal algorithm for solving nonconvex 
nonsmooth problems). It shows that our results have improved the complexity of the 
terms dependent on d in contrast to the existing proximal variance-reduced SZO meth-
ods. ZO-PSVRG+ also matches the best result achieved by ZO-SVRG-Coord-Rand 
with minibatch size b = dn2∕3 and epoch size m = n1∕3 in Ji et  al. (2019), while our 
analysis is valid for any minibatch sizes as detailed in the following sections. In addi-
tion, our analysis ZO-PSPIDER+ for is superior compared to SPIDER-SZO Fang et al. 
(2018) by entirely removing the requirement for i.i.d. Gaussian samples and permitting 
a larger stepsize O(1) to enable a speedier convergence. These convergence advantages 
are due to a new analysis that we present throughout this work. As seen from Fig. 1, 
our analyses for both algorithms are valid for the entire range of minibatch sizes i.e., 
b ∈ [1, n]

2) The convergence analysis for ZO-PSVRG+ in contrast to ZO-SVRG-Coord (Liu 
et  al., 2018b; Ji et  al., 2019) is straightforward and yields simpler proofs. Our analysis 
achieves new iteration complexity bounds and improves the effectiveness of all the existing 
ZO-SVRG-based algorithms along with RSPGF for nonconvex nonsmooth composite opti-
mization. Note that the convergence studies for RSPGF and ZO-ProxSVRG/SAGA rely on 
bounded gradient assumption, which is not our working assumption in this paper.

3) For the nonconvex functions under the Polyak-Łojasiewicz (PL) condition (Polyak, 
1963), we show that ZO-PSVRG+ and ZO-PSPIDER+ obtain a global linear convergence 
rate equivalent to the first-order ProxSVRG. Thus, these algorithms can certainly achieve 
linear convergence in some zones without restarting. To the best of our knowledge, this is 
the first paper that leverages the PL condition for improving the convergence of the zeroth-
order proximal variance-reduced method for problem (1) with arbitrary minibatch sizes. 
This analysis generalizes the results (Duchi et al., 2015) while showing linear convergence 
in contrast to the sublinear convergence rate in their paper. In Ji et al. (2019), the authors 
show that ZO-SPIDER-Coord achieves linear convergence under PL condition but the anal-
ysis is limited to the minibatch of size b = O(n1∕2) . Note that due to both computational 

Fig. 1   SZO complexity versus minibatch size for s
n
= n and s

n
=

1

�
 where s

n
= min{n,

1

�
}
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and statistical efficiency, convergence analysis for minibatch of moderate sizes is essential 
(also see the remarks after Theorem 7 for more details).

Finally, to demonstrate the efficiency and adaptability of our approach in achieving a 
balance between the convergence rate and the number of SZO queries, we perform some 
experimental evaluations for two distinct applications: black-box binary classification and 
universal adversarial attacks on black-box deep neural network models. The empirical 
results and theoretical investigations verify the effectiveness of our algorithms. To present 
the results coherently, we postpone our proofs for convergence analysis to the supplemen-
tary materials.

2.1 � Implications of the proposed analysis

In application, the number of training data is at least in the order of n ∼ 107 − 109 and 
so n2∕3 ∼ 105 − 106 , which is quite large, given the capacity of modern computational 
infrastructures. On the other hand, if b is too small, the benefits from the parallel-
ism of the algorithm would be forfeited. Thus, the question is if a convergence rate 
of almost optimal order could be achieved by applying moderate sizes b, which do 
not depend on n and d. Our results, in this case, match the best result achieved in 
Huang et al. (2019) for b = n2∕3 , despite the fact we did not apply the bounded gradi-
ent assumption similar to their work. Further, differently from Huang et  al. (2019), 
our analysis is more flexible as we avoided using all the samples to compute the full 
gradient and the gradients are computed on a subset of size B . Note that avoiding 
calculating the full gradient besides computational efficiency can improve the gen-
eralization performance of the model. As seen from Fig. 1, we show lower SZO calls 
for B =

1

𝜖
< n which advocates moderate minibatch sizes 1

�2∕3
 and 1

�1∕2
 versus n2∕3 and 

n1∕2 , respectively for ZO-PSVRG+ and ZO-PSPIDER+. Our studies provide explicit 
and straightforward expressions for the algorithm parameters based on a notably new 
analysis, whereas the parameters for the analysis presented in Ji et al. (2019) depend 
on implicit, unpractical, and complicated equations for only smooth functions. Fur-
thermore, the analysis in Ji et  al. (2019) for the single batch case requires adopting 
a very large number of iterations in the inner loop, m ∼ O(nd) to improve the SZO 
complexity (see Corollary 2 in Ji et  al. (2019)). This will significantly increase the 
variance between the full gradient and the gradient over a minibatch, as the algorithm 
applies an outdated full gradient for many inner loop iterations.

3 � Preliminaries

In the following, we illustrate preliminary details of zeroth-order gradient approxima-
tions. Considering the loss function fi , a two-point random stochastic gradient estimator 
(RandSGE) ∇̂rfi(x) is defined as Nesterov and Spokoiny (2017); Gao et al. (2018)

(2)∇̂rfi(x, ui) =
d(fi(x + 𝜇ui) − fi(x))

𝜇
ui, i ∈ [n]
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where d is the number of optimization variables, {ui} are i.i.d. random directions drawn 
from a uniform distribution over a unit sphere and 𝜇 > 0 is the smoothing parameter (Flax-
man et al., 2005; Shamir, 2017; Gao et al., 2018). RandSGE is a biased approximation to 
the true gradient ∇fi(x) , and its bias decreases as � approach zero. Nevertheless, in practice, 
if � is too small, the function variation could be magnified by the noise in the function 
evaluations when the rate of noise to signal is high (Lian et al., 2016). To obtain a more 
accurate approximation for ZO gradient, we could apply coordinate gradient estimation 
(CoordSGE) (Gu et al., 2018b, a; Liu et al., 2018b) to approximate the gradients as:

In this expression, ej is a standard basis vector with 1 at its j-th coordinate and 0 otherwise, 
and � is the smoothing parameter. In contrast to RandSGE, CoordSGE is deterministic 
and needs d times more ZO function calls. We will later show that ZO variance-reduced 
method using CoordSGE results in a larger stepsize and a speedier convergence, although 
the coordinate-wise gradient estimator requires more ZO calls compared to the two-point 
random gradient approximation.

Finally, we formulate the zeroth-order proximal gradient descent method using ZO gra-
dient estimation (3):

where s is epoch number, ∇̂f = 1

n

∑n

i=1
∇̂fi(x) and

In the rest of the paper, we assume that the nonsmooth convex function h(x) in (1) is well-
defined, i.e., the proximal operator (5) can be computed effectively.

In general, for the convex problems the convergence is measured using the optimality 
gap F(x) − F(x∗) , where we let x∗ denote the optimal solution of Problem (1). However, 
for general nonconvex problems, the gradient norm is commonly used as the conver-
gence metric. For example, for smooth nonconvex optimization (i.e., h(x) = 0 ), in Ghad-
imi and Lan (2013); Reddi et al. (2016a); Lei et al. (2017); Liu et al. (2018b) the norm 
of the function gradient ‖∇F(x)‖2 is applied as the convergence criterion. Aiming to 
investigate the convergence behavior for nonsmooth nonconvex problems, we define the 
gradient mapping metric as g�(x) =

1

�
(x − Prox�,h(x − �∇f (x))) . If h(x) is a constant func-

tion, the gradient mapping reduces to the ordinary gradient: g�(x) = ∇F(x) = ∇f (x) . In 
this work, we use the gradient mapping g�(x) as the convergence metric similar to Ghad-
imi and Lan (2016); Reddi et al. (2016b); Parikh and Boyd (2014). For problems with 
nonconvex structure, the point x is called a stationary point if g�(x) = 0 , Parikh and 
Boyd (2014). Therefore, we end up with the following definition for the convergence 
metric.

Definition 1  We call point x ∈ ℝ
d as an �-accurate point, if �‖‖‖g�(x)

‖‖‖
2

≤ � , for some 𝜂 > 0.

(3)∇̂fi(x) =

d∑

j=1

fi(x + 𝜇ej) − fi(x − 𝜇ej)

2𝜇
ej, i ∈ [n]

(4)xs
t
= Prox𝜂h(x

s
t−1

− 𝜂∇̂f (xs
t−1

)), t = 1, 2,…

(5)Prox�h(x) ∶= arg min
y∈ℝd

�
h(y) +

1

2�
‖y − x‖2

�
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4 � ZO proximal stochastic method (ZO‑PSVRG+)

The core idea in variance-reduced methods is to generate an additional sequence x̃s−1 at which 
the full gradient is computed to obtain a more accurate stochastic gradient estimate

where vs
t−1

 denotes the gradient estimate at xs
t−1

 and gs = 1

B

∑
i∈IB

∇fi(x̃
s−1) . We let IB denote 

a randomly chosen batch of size B without replacement and Ib denote a randomly chosen 
minibatch of size b with replacement. We study a proximal stochastic gradient algorithm 
based on the variance-reduced approach of ProxSVRG in Xiao and Zhang (2014); Reddi 
et  al. (2016b); Li and Li (2018). The description of ZO-PSVRG+ is presented in Algo-
rithm 1. Our method has two types of random sampling. In the outer iteration, we calculate 
the gradient consisting of B samples. In the inner iteration, we randomly choose a mini-
batch of samples of size b to approximate the gradient over the minibatch. We call B and 
b, batch, and minibatch size, respectively. In our ZO framework, the mix gradient (6) is 
estimated by applying only function evaluations, given by

or

where ĝs = 1

B

∑
i∈IB

∇̂fi(x̃
s−1) , ∇̂fi is a ZO gradient approximation using CoordSGE and 

∇̂rfi is a ZO gradient estimate using RandSGE. We let ZO-PSVRG+ and ZO-PSVRG+ 
(RandSGE) denote Algorithm  1 with gradient estimation (7) and (8), respectively. Note 

(6)vs
t−1

=
1

b

∑

i∈Ib

(
∇fi(x

s
t−1

) − ∇fi(x̃
s−1)

)
+ gs

(7)v̂s
t−1

=
1

b

∑

i∈Ib

(
∇̂fi(x

s
t−1

) − ∇̂fi(x̃
s−1)

)
+ ĝs

(8)v̂s
t−1

=
1

b

∑

i∈Ib

(
∇̂rfi(x

s
t−1

, ui) − ∇̂rfi(x̃
s−1, ui)

)
+ ĝs
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that, �Ib
[v̂s

t−1
] = ∇̂f (xs

t−1
) ≠ ∇f (xs

t−1
) , i.e., this stochastic gradient is a biased approximation 

of the true gradient. In other words, the unbiased assumption on gradient approximates uti-
lized in ProxSVRG Reddi et al. (2016b); Li and Li (2018) is no longer valid. Note that the 
biased ZO gradient estimation yields a fundamental challenge in analyzing ZO-PSVRG+. 
It means that adjusting the similar concepts from ProxSVRG to zeroth-order algorithm 1 
is not effortless and requires an elaborated analysis of ZO-PSVRG+. To tackle this issue, 
we derive an upper bound for the variance of the gradient approximation v̂s

t
 by selecting an 

appropriate stepsize � and smoothing parameter � to control the variance of gradient esti-
mation which will be discussed later.

The other major difference between ZO-PSVRG+ and ZO-ProxSVRG is that we avoid 
the evaluation of the total gradient for each epoch, i.e., the number of samples B is not 
necessarily equal to n (see Line 5 of Algorithm 1). If B = n , ZO-PSVRG+ is equivalent 
to ZO-ProxSVRG, which indicates that our convergence studies yield a novel analysis for 
ZO-ProxSVRG-Coord (i.e, B = n ). In the next section, we will carefully study the con-
vergence of ZO-PSVRG+ under different settings. The proofs of the main theorems are 
deferred to the extended paper.

4.1 � Convergence analysis for ZO‑PSVRG+

Here we provide some minimal assumptions for problem (1):

Assumption 1  For ∀i ∈ [n] , gradient of the function fi is Lipschitz continuous with a Lip-
schitz constant L > 0 , such that

Assumption 2  For ∀x ∈ ℝ
d,

where 𝜎 > 0 is a constant and ∇̂fi(x) is a CoordSGE gradient approximation of ∇fi(x).

Assumptions 1 and 2 are standard assumptions applied in SZO optimization. The 
first assumption is for the convergence studies of the zeroth-order algorithms (Ghadimi 
and Lan, 2016; Nesterov and Spokoiny, 2017; Liu et al., 2018b). The second assumption 
specifies bounded variance for zeroth-order gradient approximations (Lian et al., 2016; Liu 
et al., 2018a, b). Assumption 2 is essential in order to obtain a convergence result inde-
pendent of n. Due to the error estimation for CoordSGE, this assumption is equivalent to 
the bounded variance of true gradients.

Assumption 2 is weaker than the assumption of bounded gradients in Liu et al. (2017); 
Hajinezhad et al. (2019), while, we are able to analyze the more complicated problem (1) 
involving a nonsmooth part and obtain faster convergence rates. Note that according to the 
error estimation for CoordSGE, this assumption is equivalent to the bounded variance of 
true gradients.

Theorem 1  Suppose Assumptions 1 and 2 hold, and the ZO gradient estimator (7) for mix 
gradient v̂k is used. The output x̂ of Algorithm 1 satisfies

��∇fi(x) − ∇fi(y)
�� ≤ L‖x − y‖, ∀x, y ∈ ℝ

d

�

[
‖‖‖∇̂fi(x) − ∇̂f (x)

‖‖‖
2
]
≤ 𝜎2
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where � = min{
1

8L
,

√
b

12mL
} denotes the stepsize.

In contrast to the convergence rate of SVRG in Reddi et al. (2016b), Theorem 1 presents 
two extra error terms I(B<n)𝜎

2

B
 and O(L2d2�2) , related to the batch gradient estimation B < n 

and the use of SZO gradient approximations, respectively. The error related to B < n is 
removed only when B = n . Note that the stepsize � depends on the epoch length m, and 
the minibatch size b. The proof for Theorem  1 is significantly different from the proofs 
in the existing literature. For instance, the convergence analysis for ZO-SVRG-Coord and 
ZO-ProxSVRG/SAGA uses the notion of the Lyapunov function to show that the accu-
mulated gradient mapping decreases with epoch s. However, in our analysis, we explicitly 
prove that F(xs) is descending. On the other hand, our convergence result is valid for a wide 
range of minibatch sizes and any epoch size m, whereas the analysis for ZO-SVRG-Coord 
is valid only for specific values of m with a complicated setting for parameter selection.

The next corollary demonstrates the convergence rate of ZO-PSVRG+ in terms of error 
of the solution x̂ , providing explicit descriptions for the parameters in Theorem 1.

Corollary 2  Let the batch size B = min{12�2∕�, n} and � ≤

√
�

5dL
 denote the smoothing 

parameter. Suppose x̂ in Algorithm 1 is an �-accurate solution for problem (1). Recalling 
that CoordSGE requires O(d) function queries, the number of SZO calls is at most

and the number of PO calls is equal to T = Sm =
6(F(x0)−F(x∗))

��
= O

(
1

��

)
 . In particular, by 

setting m =
√
b and � =

1

12L
 , the number of SZO calls is at most

where sn = min{n, 1
�
} and the number of PO calls equals to T = Sm = S

√

b = 72L(F(x0)−F(x∗))
�

= O
(

1
�

)

.

Corollary 2 indicates that if the smoothing parameter � is sufficiently small and the batch 
size B is large enough, then the errors induced from zeroth-order estimation and batch gra-
dient approximation will decrease, leading to a non-dominant term in the convergence rate 
of ZO-PSVRG+. Indeed, the error term induced by batch size is eliminated only when 
B = n (i.e., I(B < n) = 0 ). In this case, Step 5 of Algorithm 1 converts to ĝs = ∇̂f (x̃s−1) and 

�[
‖‖‖g𝜂(x̂)

‖‖‖
2

] ≤
6
(
F(x0) − F(x∗)

)

𝜂Sm

+
I(B < n)12𝜎2

B
+ 21L2d2𝜇2

(9)
d(SB + Smb) = 6d

(
F(x0) − F(x∗)

)
(
B

��m
+

b

��
)

= O

(
Bd

��m
+

bd

��

)

(10)

72dL(F(x0) − F(x∗))

�
B

�
√
b
+

b

�

�

= O

�
sn

d

�
√
b
+

bd

�

�
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consequently ZO-PSVRG+ changes to ZO-ProxSVRG. In fact equation (10) indicates that 
a large batch B for B ≠ n reduces the error inherited by the variance of batch gradient and 
improves the convergence of ZO-PSVRG+. In summary, with the smoothing parameter 
and batch size chosen properly, we derive the error term O(1∕�) , which is better than the 
convergence rate of the state-of-the-art SZO algorithms by the factor 1

d
 . Moreover, ZO-

PSVRG+ uses much fewer SZO oracle calls compared to the methods listed in Table 1. 
Further, it is worth mentioning that the stepsize � in Theorem 1 has a lower dimension-
dependency than the existing SZO algorithms in Table 1.

4.2 � Analysis for ZO‑PSVRG+ (RandSGE)

In this section, we will study the convergence of ZO-PSVRG+ (RandSGE) under different 
settings. In particular, in the following theorem, we prove that ZO-PSVRG+ (RandSGE) 
improves the convergence rate and the function query complexity of the existing SZO 
methods.

Theorem 3  Suppose Assumptions 1 and 2 hold, and the coordinate gradient estimator (8) 
is used to compute the mix gradient v̂k . The output x̂ of Algorithm 1 satisfies

where � = min{
1

8L
,

√
b

12mL
√
d
} denotes the stepsize.

Corollary 4  We Let the batch size B = min{12�2∕�, n} and � ≤

√
�

5dL
 denote the smoothing 

parameter. Suppose x̂ returned by Algorithm 1 is an �-accurate solution for problem (1). 
Recalling that CoordSGE and RandSGE require O(d) and O(1) function queries respec-
tively, the number of SZO calls is at most

and the number of PO calls is equal to T = Sm =
6(F(x0)−F(x∗))

��
= O

(
1

��

)
 . In particular, by 

setting m =
√
b and � =

1

12L
√
d
 , the number of SZO calls is at most

(11)
�[
‖‖‖g𝜂(x̂)

‖‖‖
2

] ≤
6
(
F(x0) − F(x∗)

)

𝜂Sm

+
I(B < n)12𝜎2

B
+ 21L2d2𝜇2

(12)
(dSB + Smb) = 6

(
F(x0) − F(x∗)

)
(
Bd

��m
+

b

��
)

= O

(
Bd

��m
+

b

��

)

(13)

72L(F(x0) − F(x∗))

�
Bd

√
d

�
√
b

+
b
√
d

�

�

= O

�
sn
d
√
d

�
√
b
+

b
√
d

�

�
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where sn = min{n, 1
�
} and the number of PO calls equals to T = Sm = S

√

b = 72L
√

d(F(x0 )−F(x∗))
�

= O
(

√

d
�

).

4.3 � Convergence under PL condition

In this section, we show the linear convergence of ZO-PSVRG+ under Polyak-Łojasiewicz 
(PL) assumption Polyak (1963). The classic structure of PL condition is, for all x ∈ ℝ

d,

where 𝜆 > 0 and f ∗ denotes the optimal function value. This condition specifies the rate of 
increase of the loss function in the vicinity of optimal solutions. It is important to note that 
if f is �-strongly convex then f fulfills the PL condition. We will show that under our analy-
sis the complexity of ZO-PSVRG+ (Algorithm 1) under PL condition is improved. Due to 
the presence of the nonsmooth term h(x) in problem (1), we utilize the gradient projection 
to characterize a more generic form of PL condition as follows,

for some 𝜆 > 0 and for all x ∈ ℝ
d . In particular, if h(x) is a constant function, the gradient 

projection changes to g�(x) = ∇f (x) . The PL condition has been thoroughly investigated 
in Karimi et al. (2016) where the authors proved that PL condition is a milder condition 
than a large family of conditions for functions such as convexity. The revised PL condition 
(15) is feasibly natural and has been studied in several papers for problems with nonconvex 
nonsmooth settings, e.g., Li and Li (2018). Similarly, a zeroth-order algorithm under PL 
condition for smooth functions has been analyzed in Ji et al. (2019).

4.4 � ZO‑PSVRG+ under PL condition

In this section, we demonstrate the convergence analysis of ZO-PSVRG+ (Algorithm 1) 
under PL-condition. More specifically, we provide a generic analysis for enhancing the 
convergence rate of the existing SZO algorithms for functions satisfying the PL condi-
tion using variance-reduced techniques. It is worth noting that for functions satisfying PL 
condition (i.e. (15) holds), ZO-PSVRG+ can immediately use the final iteration x̃S as the 
output point rather than using a randomly chosen x̂ . The following theorem provides the 
convergence guarantee for ZO-PSVRG+ under the PL condition.

Theorem  5  Given the Assumptions 1 and 2, suppose that in Algorithm  1 the ZO gradi-
ent estimator (7) is applied for mix gradient v̂k with stepsize � ≤ min{

1

8L
,

√
�b

12mL
} where 

𝛾 = 1 −
2𝜆𝜂

3
m −

𝜆𝜂

3
> 0 . Then

(14)‖∇f (x)‖2 ≥ 2�(f (x) − f ∗)

(15)‖‖‖g�(x)
‖‖‖
2

≥ 2�(F(x) − F∗)

(16)
�[F(x̃S) − F∗] ≤

(
1 −

𝜆𝜂

3

)Sm

�[F(x̃0) − F∗]

+
6I(B < n)𝜎2

𝜆B
+

21L2d2𝜇2

2𝜆
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Theorem 5 shows that if the batch size and smoothing parameter are appropriately chosen, 
ZO-PSVRG+ has a dominant linear convergence rate without restart. Further, compared to 
Theorem 1, it is evident from (16) that the error term 6I(<n)�2


+ 7L2d2�2

2
 is amplified by the factor 

1∕� . Thus, the error induced by these terms will be improved if 𝜆 >> 1.
We next explore the number of ZO queries in ZO-PSVRG+ under PL condition to obtain 

an �-accurate solution, as formalized in Corollary 6.

Corollary 6  Suppose the final iteration point x̃S in Algorithm 1 satisfies �[F(x̃S) − F∗] ≤ 𝜖 
under PL condition. Under Assumptions 1 and 2, we let batch size  = min{ 6�2

��
, n} and 

� ≤
√

��
4Ld

 denote the smoothing parameter. Then, the number of SZO calls is bounded by

where sn = min{n,
1

��
} . The number of PO calls equals the total number of iterations T 

which is bounded by T = Sm = O( 1
��

log 1
�
) . In particular, under the setting m =

√
b and 

� =
√
�

12L
 , the number of SZO calls simplifies to d(SB + Smb) = O(

Bd

�
√
�m

log
1

�
+

bd

�
√
�
log

1

�
).

Here we provide an intuition regarding Corollary 6: this result actually indicates that lev-
eraging the PL condition improves the dominant convergence rate when the error of order 
O(1∕�) in Corollary 2 is improved to O(log(1∕�)) , resulting in a significant speedup. Com-
pared to the sub-linear convergence rate for ZO algorithms in Duchi et al. (2015); Nesterov 
and Spokoiny (2017); Liu et al. (2018b), the convergence performance of ZO-PSVRG+ under 
PL condition has a global linear convergence rate and therefore requires a lower number of 
ZO oracle calls. This also indicates that if ZO-PSVRG+ is initialized in a generic nonconvex 
domain, the rate of convergence can be automatically accelerated due to entering the PL area. 
It is an improved result compared with Reddi et al. (2016a) where therein PL-SVRG/SAGA 
is used to restart ProxSVRG/SAGA to obtain a linear convergence rate under PL condition. 
On the other hand, note that the convergence analysis under PL condition in Ji et al. (2019) 
has complex coupling structures which makes it difficult for practitioners to apply, while our 
proof is simple and the parameters are properly specified to be suitable for hyperparameter 
selections.

Remark 1  Compared to Theorem 1, the convergence rate of ZO-PSVRG+ in Theorem 5 
admits additional parameter � for parameter selection due to the PL condition. By assum-
ing the condition number �∕L ≤ 1

n1∕3
 and through choosing m = n1∕3 and � =

�

L
 with � ≤

1

2
 , 

the definition of � yields

According to Theorem  5, equation (17) implies � ≤ min{
1

8L
,

√
b

12
√
2mL

} . Hence, choosing 

b = m2 implies the constant stepsize � ≤
1

12
√
2L

 . Note that the assumption �∕L ≤
1

n1∕3
 on 

condition number is milder than the assumption �∕L < 1
√

n
 in Reddi et al. (2016b).

d(SB + Smb) = O(
snd

��m
log

1

�
+

bd

��
log

1

�
)

(17)� = 1 −
2��

3
m −

��

3
≥ 1 − � ≥

1

2
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4.5 � ZO‑PSVRG+ (RandSGE) under PL condition

In the following theorem, we explore if ZO-PSVRG+ (RandSGE) achieves a linear con-
vergence rate when it enters a local landscape where the loss function satisfies the PL 
condition.

Theorem 7  Let Assumptions 1 and 2 hold, and ZO gradient estimator (8) for mix gradient 
v̂k is used in Algorithm  1 with stepsize � ≤ min{ 1

8L
,

√

�b

12mL
√

d
} where 𝛾 = 1 −

2𝜆𝜂

3
m −

𝜆𝜂

3
> 0 . 

Then

Corollary 8  Suppose the final iteration point x̃S in Algorithm 1 satisfies �[F(x̃S) − F∗] ≤ 𝜖 
under PL condition. Under Assumptions 1 and 2, we let batch size  = min{ 6�2

��
, n} and the 

smoothing parameter � ≤
√

��
4Ld

 . The number of SZO calls is bounded by

where sn = min{n,
1

��
} . The number of PO calls equals the total number of iterations T 

which is bounded by

In particular, given the setting m =
√
b and � =

√
�

12L
√
d
 , the number of SZO calls simplifies 

to (dS + Smb) = O( d
√

d
�
√

�m
log 1

�
+ b

√

d
�
√

�
log 1

�
).

Remark 2  It should be noted that by selecting b = O(d) in Theorem  7, the stepsize � 
reduces to O(1) with O(snd log

1

�
) SZO queries. Note that the analysis for ZO-SPIDER-

Coord in Ji et al. (2019) has no single-sample version for functions satisfying PL condition 
and the authors only provided a rate of convergence for large minibatch sizes with involved 
parameter information.

5 � ZO proximal stochastic method (ZO‑PSPIDER+)

Recently, a new variant of the variance reduction approaches is introduced by Nguyen 
et al., (2017a, b) and Fang et al. (2018). In this approach, the first-order stochastic gradi-
ent is estimated as

(18)
�[F(x̃S) − F∗] ≤

(
1 −

𝜆𝜂

3

)Sm

�[F(x̃0) − F∗]

+
6I(B < n)𝜎2

𝜆B
+

21L2d2𝜇2

2𝜆

(dSB + Smb) = O(
snd

��m
log

1

�
+

b

��
log

1

�
)

T = Sm = O(
1

��
log

1

�
)

(19)vs
t
=

1

b

∑

i∈Ib

(
∇fi(x

s
t
) − ∇fi(x̃

s−1)
)
+ vs

t−1
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In this section, we investigate the potency of the variance-reduced estimator (19) in zeroth-
order optimization of (1). Inspired by our novel convergence analysis for ZO-SVRG+, we 
propose a new analysis for zeroth-order recursive-based algorithm ZO-PSPIDER+, pre-
sented in Algorithm  2. In our ZO-PSPIDER+ framework, the mix first-order stochastic 
gradient (19) is estimated recursively by applying only function evaluations, given by

or

where v̂s
0
=

1

B

∑
i∈IB

∇̂fi(x
s
0
) , ∇̂fi is a ZO gradient approximation using CoordSGE and ∇̂rfi 

is a ZO gradient estimate using RandSGE. We let ZO-PSPIDER+ and ZO-PSPIDER+ 
(RandSGE) denote Algorithm 2 with gradient estimation (20) and (21), respectively. Dif-
ferently from the zeroth-order algorithm (SPIDER-SZO) introduced in Fang et al. (2018) 
that requires a stepsize of O(�) and generation of O( d

2
√
n

�
) Gaussian samples at each inner-

loop iteration, our ZO-PSPIDER+ similar to ZO-SPIDER-Coord Ji et al. (2019) removes 
the requirement for generating random Gaussian samples as we utilize highly accurate 
coordinate-wise estimation of zeroth-order gradient without any compensation in the num-
ber of the SZO queries. Our analysis allows a constant stepsize of O(1) for minibatches and 
O(

1

m
) for a single-sample minibatch, i.e., b = 1 in Algorithm 2. We further extend our new 

analysis under PL assumption to show the linear convergence of ZO-PSPIDER+ without 
restart. In this way, we bring the convergence analysis for ZO-PSVRG+ and ZO-PSPI-
DER+ into uniformity. We relegate the analysis of ZO-PSPIDER+ (RandSGE) in (21) to 
the appendix.

(20)v̂s
t
=

1

b

∑

i∈Ib

(
∇̂fi(x

s
t
) − ∇̂fi(x

s
t−1

)
)
+ v̂s

t−1

(21)v̂s
t
=

1

b

∑

i∈Ib

(
∇̂rfi(x

s
t
, ui) − ∇̂rfi(x

s
t−1

, ui)
)
+ v̂s

t−1
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5.1 � Convergence analysis for ZO‑PSPIDER+

Theorem 9  Suppose Assumptions 1 and 2 hold, and the ZO gradient estimator (20) for mix 
gradient v̂k is used. The output x̂ of Algorithm 2 satisfies

where � = min{
1

8L
,

√
b

12
√
mL

} denotes the stepsize.

Corollary 10  Let the batch size B = min{12�2∕�, n} and � ≤

√
�

5
√
mdL

 denote the smoothing 
parameter. Suppose x̂ in Algorithm 2 is an �-accurate solution for problem (1). Recalling 
that CoordSGE requires O(d) function queries, the number of SZO calls is at most

and the number of PO calls is equal to T = Sm =
6(F(x0)−F(x∗))

��
= O

(
1

��

)
 . In particular, by 

setting m = b and � =
1

12L
 , the number of SZO calls is at most

where sn = min{n,
1

�
} and the number of PO calls equals to T = Sm = Sb = 72L(F(x0)−F(x∗))

�
= O

(

1
�

)

.

5.2 � ZO‑PSPIDER+ under PL condition

Theorem 11  Given the Assumptions 1 and 2, suppose that in Algorithm 2 the ZO gradi-
ent estimator (20) is applied for mix gradient v̂k with stepsize � ≤ min{

1

8L
,

�b

32L2
} with 

1 −
𝜆𝜂

3
> 0 . Then

�[
‖‖‖g𝜂(x̂)

‖‖‖
2

] ≤
6
(
F(x

0
) − F(x∗)

)

𝜂Sm

+
I(B < n)12𝜎2

B
+ 21mL2d2𝜇2

(22)
d(SB + Smb) = 6d

(
F(x0) − F(x∗)

)
(
B

��m
+

b

��
)

= O

(
Bd

��m
+

bd

��

)

(23)
72dL(F(x0) − F(x∗))

(
B

�b
+

b

�

)

= O
(
sn

d

�b
+

bd

�

)

(24)
�[F(x̃S) − F∗] ≤

(
1 −

𝜆𝜂

3

)Sm

�[F(x̃0) − F∗]

+
6I(B < n)𝜎2

𝜆B
+

21mL2d2𝜇2

2𝜆



114	 Machine Learning (2024) 113:97–120

1 3

Corollary 12  Suppose the final iteration point x̃S in Algorithm 2 satisfies �[F(x̃S) − F∗] ≤ 𝜖 
under PL condition. Under Assumptions 1 and 2, we let batch size  = min{ 6�2

��
, n} and the 

smoothing parameter � ≤

√
��

4
√
mLd

 . The number of SZO calls is bounded by

where sn = min{n,
1

��
} . The number of PO calls equals to the total number of iterations T 

which is bounded by

In particular, given the setting � =
�

32L2
 , the number of SZO calls simplifies to 

d(S + Smb) = O( d
�2m

log 1
�
+ bd

�2
log 1

�
).

6 � Experimental results

In this section, we provide our experimental results. We compare the performance of our 
ZO-PSVRG+ and ZO-PSPIDER+ with 1) ZO-ProxSVRG (based on our improved analy-
sis), 2) ZO-ProxSAGA-Coord Gu et al. (2018a) and 3) ZO-ProxSGD (Ghadimi and Lan, 
2016) over two empirical experiments: black-box binary classification and adversarial 
attacks for black-box deep neural networks (DNNs). We let ZO-ProxSGD denote RSPGF 
using CoordSGE (3) for gradient estimation. We also let ZO-ProxSVRG and ZO-ProxS-
VRG (RandSGE) denote ZO-PSVRG+ and ZO-PSVRG+ (RandSGE) with B = n , respec-
tively. The learning rates are tuned in the experiments for competitive algorithms according 
to their convergence guarantees in Tables 1 and 2, and the results shown in this section 
are based on the best learning rate we obtained for each algorithm. More specifically, 
Tables 1 and 2 show if the stepsize has to be dependent on the dimension d for the conver-
gence guarantee. We set stepsize � and smoothing parameter � for ZO-PSVRG+ and ZO-
PSVRG+ (RandSGE) according to the convergence results that we obtained in the studied 
lemmas and theorems.

6.1 � Binary classification

In the first set of our experiments, we investigate the logistic regression loss function with 
L1 and L2 regularization for training the black-box binary classification problem. The prob-
lem can be described as the optimization problem (1) with fi(x) = 1

1+eyi z
T
i x

 , h(x) = �1‖x‖1 +
�2
2
‖x‖2 , 

where zi ∈ ℝ
d and yi is the corresponding label for each i. The L1 and L2 regularization 

weights �1 and �2 in all the experiments are set respectively to 10−4 and 10−6 . We also set 
B = ⌊ n

5
⌋ for ZO-PSVRG+. We run our experiments on datasets from LIBSVM website1, as 

listed in Table 3. The epoch size is chosen m = 30 over all the experiments and the mini-
batch size b is set to 50.

d(SB + Smb) = O(
snd

��m
log

1

�
+

bd

��
log

1

�
)

T = Sm = O(
1

��
log

1

�
)

1  https://​www.​csie.​ntu.​edu.​tw/​cjlin/​libsv​mtools/​datas​ets/​binary.​html.

https://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets/binary.html
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In Fig.  2 (top), we show the training loss versus the number of epochs (i.e., itera-
tions divided by the epoch length m = 30 ). Note that ZO-PSVRG+ is evaluated using 
mix gradient CoordSGE (3) and mix gradient RandSGE (2). Results in Fig. 2 (bottom) 
compare the performance of ZO-PSVRG+ with the variants of ZO variance reduced 
stochastic gradient descent described earlier in Table 1 against the number of function 
queries. In these figures, ZO-PSVRG+ shows a faster convergence rate compared to ZO-
PSVRG+ (RandSGE). Note that ZO-ProxSVRG based on our improved analysis com-
pared to Huang et al. (2019) presents a better convergence than both ZO-ProxSAGA and 
ZO-ProxSGD. On the other hand, the application of B = ⌊ n

5
⌋ in ZO-PSVRG+ signifi-

cantly improves ZO-ProxSVRG with respect to the number of ZO-queries (see Table 1), 
leading to a non-dominant factor O(I{B<n}∕B) in the convergence rate of ZO-PSVRG+. 
In particular, ZO-PSVRG+ exhibits better performance in terms of the number of func-
tion queries than ZO-ProxSAGA using CoordSGE. The degradation in the convergence 
of ZO-ProxSAGA is due to the requirement for small stepsizes O( 1

d
) . Furthermore, the 

large number of function queries to construct coordinate-wise gradient estimates sig-
nificantly increases the number of SZO queries for ZO-ProxSVRG. On the other hand, 
ZO-ProxSGD consumes an extremely large number of iterations while exhibiting mar-
ginal convergence compared with variance-reduced algorithms. Thus, ZO-PSVRG+ and 
ZO-PSPIDER+ obtain the best trade-offs between the iteration and the function query 
complexity. The figure shows the convergence from ZO-PSPIDER+ marginally outper-
forms the one from ZO-PSVRG+.
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Fig. 2   Comparison of different zeroth-order algorithms for logistic regression loss residual f (x) − f (x∗) ver-
sus the number of epochs (top) and ZO queries (bottom). The label Queries/1000 shows the number of SZO 
queries divided by 1000

Table 3   Summary of training 
datasets

Datasets Data Features

ijcnn 49990 22
a9a 32561 123
w8a 64,700 300
mnist 60000 784
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6.2 � Adversarial attacks on black‑box DNNs

Adversarial examples in image classification are related to designing unperceptive per-
turbations such that they lead to misclassifying the target model when added to benign 
images. In the framework of zeroth-order attacks (Chen et  al., 2017; Liu et  al., 2018b), 
the model parameters are hidden, and gradient estimation is not feasible, while the model 
output could be obtained. We formulate the task of generating a universal adversarial per-
turbation for n natural images as a ZO optimization problem (1). More precisely, we apply 
the zeroth-order algorithms to obtain a global adversarial perturbation x ∈ ℝ

d that could 
mislead the classifier on samples {ai ∈ ℝ

d, yi ∈ ℕ}n
i=1

 . This problem can be specified as the 
following elastic-net attacks to black-box DNNs problem:

where aadv
i

= 0.5 tanh(tanh−1(2ai) + x) and �1 and �2 are nonnegative parameters 
to obtain consonance between attack success rate, distortion, and sparsity. Here 
F(a) =

[
F1(a),… ,FK(a)

]
∈ [0, 1]K describes a trained deep neural network (DNN) 

for K-class classification task, where Fi(a) returns the prediction score of i-th class. 
The parameter c in (25) compensate the rate of adversarial success and the distortion of 
adversarial examples. In our experiment, we set the regularization parameter c = 0.2 and 
�1 = �2 = 10−5 for MNIST dataset and �1 = �2 = 0.1 for CIFAR-10 dataset.

Our experiment setting is to generate universal black-box adversarial perturbation on 
n = 10 samples images from the same class over MNIST and CIFAR-10 datasets. We set 
the minibatch size to b = 5 . We select the batch size B = ⌊ n

2
⌋ for ZO-PSVRG+ and ZO-

PSPIDER+. Figures 3 and 4 show the performance of different ZO algorithms in this paper 
over MNIST and CIFAR-10 datasets, respectively. Figure 3 shows that our two algorithms 
ZO-PSVRG+ (RandSGE) and ZO-ProxSVRG (under our improved analysis) provide bet-
ter performance both in convergence rate (iteration complexity) and function query com-
plexity than ZO-ProxSGD and ZO-ProxSAGA. The performance of ZO-PSVRG+ 
(CoordSGE) algorithm degrades due to a large number of function queries for CoordSGE 
and the variance inherited by B ≠ n . ZO-PSVRG+ (RandSGE) shows faster convergence 

(25)
min
x∈ℝd

1

n

n�

i=1

max{Fyi
(aadv

i
) −max

j≠yi

Fj(a
adv
i

), 0}

+ c
���a

adv
i

− ai
���
2

+ �1‖x‖1 + �2‖x‖2

Fig. 3   Comparison of different zeroth-order algorithms for generating black-box adversarial examples from 
a black-box DNN over MNIST dataset. The label Queries/1000 shows the number of SZO queries divided 
by 1000
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in the initial optimization stage, and more importantly, has much lower function query 
complexity, which is largely due to efficient ZO queries for computing mix gradient (8) and 
the O( 1√

d
)-level stepsize required by ZO-PSVRG+ (RandSGE). ZO-ProxSAGA and ZO-

PSVRG+ (CoordSGE) exhibit relatively similar convergence behaviors. Furthermore, the 
convergence performance of ZO-ProxSGD is poor compared to the other algorithms due to 
not using variance-reduced acceleration techniques. Similar observations are found in Fig-
ure 4 for CIFAR-10 dataset where the results for ZO-PSVRG+ and ZO-PSPIDER+ outper-
form the competitors in terms of convergence rate and function queries.

We visualize the pattern of generated universal perturbations and eventually, the adversarial 
examples after a fixed number of SZO queries for class label “1” in Fig. 5 and in Figure S1 in 
the supplementary materials. Figure 5 shows that the ZO algorithms with CoordSGE produce 
structured perturbations whereas the adversarial distortion produced with RandSGE scheme is 
unstructured and presents irregular patterns. We also observe that the patterns of the crafted 
universal perturbation form ZO-PSVRG+ and ZO-PSPIDER+ identify the most distinctive 
image segments corresponding to the ground-truth label “1”. In addition, while each proximal 
ZO algorithm produces universal adversarial perturbation leading to mostly successful black-
box attacks (misclassified samples), our attacks yield the best trade-offs between the attack suc-
cess rate and the amount of the produced universal distortion in L2-norm.

7 � Conclusion

In this paper, we developed a novel analysis for two zeroth-order variance-reduced 
proximal algorithms, ZO-PSVRG+ and ZO-PSPIDER+ with CoordSGE and RangSGE 
zeroth-order gradient estimation and bring the convergence analyses from all the studied 
algorithms into uniformity. Our convergence studies generalize and improve the analy-
sis of several well-known convergence results, e.g., ZO-ProxSVRG and SPIDER-SZO. 
Compared with ZO-SVRG-Coord-Rand Ji et  al. (2019), our analyses provide conver-
gence guarantee and SZO calls complexity for all the minibatch sizes with large step-
sizes. Moreover, for nonconvex functions under Polyak-Łojasiewicz condition, we prove 
that ZO-PSVRG+ and ZO-PSPIDER+ obtain a global linear convergence rate for a 

Fig. 4   Comparison of different zeroth-order algorithms for generating black-box adversarial examples 
from a black-box DNN over CIFAR-10 dataset. The label Queries/1000 shows the number of SZO queries 
divided by 1000
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wide range of minibatch sizes without restart. The empirical results demonstrate the 
effectiveness of our novel approaches.
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