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Abstract. In this paper we analyze a zeroth-order proximal stochastic gradient method suitable
for the minimization of weakly convex stochastic optimization problems. We consider nonsmooth and
nonlinear stochastic composite problems, for which (sub)gradient information might be unavailable.
The proposed algorithm utilizes the well-known Gaussian smoothing technique, which yields unbiased
zeroth-order gradient estimators of a related partially smooth surrogate problem (in which one of the
two nonsmooth terms in the original problem's objective is replaced by a smooth approximation).
This allows us to employ a standard proximal stochastic gradient scheme for the approximate solution
of the surrogate problem, which is determined by a single smoothing parameter, and without the
utilization of first-order information. We provide state-of-the-art convergence rates for the proposed
zeroth-order method using minimal assumptions. The proposed scheme is numerically compared
against alternative zeroth-order methods as well as a stochastic subgradient scheme on a standard
phase retrieval problem. Further, we showcase the usefulness and effectiveness of our method in the
unique setting of automated hyperparameter tuning. In particular, we focus on automatically tuning
the parameters of optimization algorithms by minimizing a novel heuristic model. The proposed
approach is tested on a proximal alternating direction method of multipliers for the solution of
\scrL 1/\scrL 2-regularized PDE-constrained optimal control problems, with evident empirical success.
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1. Introduction. We are interested in the solution of stochastic weakly convex
optimization problems that are not necessarily smooth. Let (\Omega ,F , P ) be any complete
base probability space, and consider a random vector \xi : \Omega \rightarrow \BbbR d. We consider
stochastic optimization problems of the form

min
x\in \BbbR n

\phi (x) := f(x) + r(x), f(x) :=\BbbE \xi [F (x, \xi )] ,(P)

where F : \BbbR n \times \Xi \rightarrow \BbbR is Borel in \xi , and f is weakly convex, while r : \BbbR n \rightarrow \BbbR \equiv 
\BbbR \cup \{ +\infty \} is a proper convex lower semicontinuous function (and hence closed),
which is assumed to be proximable (that is, its proximity operator can be computed
analytically).

Problem (P) is very general and appears in a variety of applications arising in
signal processing (e.g., [18]), optimization (e.g., [33]), engineering (e.g., [31]), machine
learning (e.g., [32]), and finance (e.g., [43]), to name a few. The reader is referred
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A2680 SPYRIDON POUGKAKIOTIS AND DIONYSIOS KALOGERIAS

to [13, section 2.1] and [15, section 3.1] for a plethora of examples. Since neither f
nor r is assumed to be smooth, standard stochastic gradient-based schemes are not
applicable. In light of this, the authors in [13] analyzed various model-based stochastic
subgradient methods (using a standard generalization of the convex subdifferential)
for the efficient solution of (P) and were able to show that convergence is achieved
in the sense of near-stationarity of the Moreau envelope of \phi [36], which serves as
a surrogate function with stationary points coinciding with those of (P). Given an
approximate solution to (P), the Moreau envelope offers a way to approximately
measure its distance from stationarity in the absence of differentiability. Indeed, a
near-stationary point for the Moreau envelope is close to a near-stationary point for
the problem under consideration (see [13, section 2.2] or section 3.2).

However, there is a variety of applications in which even subgradient information
of f (or that of F (\cdot , \xi )) might not be available due to the lack of sufficient knowledge
about the function (e.g., [2, 8, 24]), or such a computation might be prohibitively
expensive or noisy (see, e.g., [1, 29, 35]). Thus, several zeroth-order schemes have
been developed for the solution of stochastic optimization problems similar to (P),
requiring only function evaluations of F (\cdot , \xi ). Such methods utilize zeroth-order gra-
dient estimates of an appropriate (closely related) surrogate function F\mu (\cdot , \xi ) which
depends on a smoothing parameter \mu > 0.

Zeroth-order methods have a long history within the field of optimization (e.g.,
see the seminal paper on the well-known simultaneous perturbation stochastic approx-
imation (SPSA) [49], the well-known Matyas method [3, 34, 46], or the more recent
discussion in [12, Chapter 1]). However, the relatively recent works on the Gaussian
and uniform smoothing techniques for convex [16, 38] and differentiable nonconvex
programming [23] have sparked a lot of interest in the literature. Following these de-
velopments, the authors in [27] developed and analyzed a zeroth-order scheme based
on the Gaussian smoothing (see [38]) for the solution of stochastic compositional
problems with applications to risk-averse learning, in which r is chosen as an indi-
cator function to a compact convex set. The authors in [4], based on the earlier
work in [23], considered (Gaussian smoothing-based) zeroth-order schemes for non-
convex Lipschitz smooth stochastic optimization problems, again assuming that r is
an indicator function, and focused on high-dimensionality issues as well as on avoid-
ing saddle-points. We note that the class of nonconvex Lipschitz smooth functions
is encompassed within the class of weakly convex ones, and hence the class of func-
tions appearing in (P) is strictly wider (see Proposition 2.3). In general, there is a
plethora of zeroth-order optimization algorithms, and the interested reader is referred
to [5, 12, 17, 28, 38, 49] and the references therein.

To the best of our knowledge, the only developments on zeroth-order methods
for the solution of (P) can be found in the recent articles [30, 37]. The authors in
[30] utilize a double Gaussian smoothing scheme, which was originally proposed for
convex functions in [16]. We argue herein that the use of double smoothing is essen-
tially unnecessary, at least in conjunction with the discussion in [30]. In particular, the
analysis of the proposed algorithm in [30] is substantially more complicated compared
to the analysis provided herein (cf. section 3 and [30, section 3]), while at the same
time offering no advantage in terms of the rate bounds achieved (both here and in
[30], an \scrO (

\surd 
n\epsilon  - 4) rate is shown; cf. Theorem 3.4 and [30, Theorem 1]). Additionally,

in [30] it is assumed that the iterates produced by the algorithm remain bounded, an
assumption that is not required in our analysis. Further, as we show in section 4.1,
the double smoothing approach not only requires the tuning of two smoothing pa-
rameters, but also does not exhibit better convergence behavior compared to the
method proposed herein. On the other hand, the authors in [37] present an adaptive
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A ZEROTH-ORDER PROXIMAL STOCHASTIC GRADIENT METHOD A2681

zeroth-order method for (P) using a uniform smoothing scheme. However, the analy-
sis in the aforementioned paper yields a worse dependence on the problem dimensions
n than that obtained herein, while at the same it time requires certain additional
restrictive assumptions (in particular, an \scrO (n2\epsilon  - 4) convergence rate is shown---cf.
Theorem 3.4 and [37, Corollary 19]---and the authors assume that the iterates lie in
a compact set and that the function F (\cdot , \xi ) is Lipschitz continuous with a constant
independent of \xi ; neither of these is assumed in our analysis).

Instead, in this paper we develop and analyze a zeroth-order proximal stochastic
gradient method for the solution of (P), utilizing standard (single) Gaussian smooth-
ing (see [38]). Following the developments in [13], we analyze the algorithm and show
that it obtains an \epsilon -stationary solution to the Moreau envelope of an appropriate sur-
rogate problem in at most \scrO (

\surd 
n\epsilon  - 4) iterations, a state-of-the-art bound of the same

order as the bound achieved by subgradient schemes (see [13]), up to a constant term
depending on the square root of the dimension of x (i.e.,

\surd 
n). This rate matches the

one shown in [30] for the double Gaussian smoothing scheme; however, the proposed
analysis is significantly easier and does not assume boundedness of the iterates, which
is required for the analysis in [30]. Additionally, given any near-stationary solution to
the surrogate problem for which the convergence analysis is performed, we show that
it is a near-stationary solution for the Moreau envelope of the original problem. While
such a connection is easy to establish when r is an indicator function, this is not so
obvious for general closed convex functions r that are studied here. Indeed, this was
not considered in [30]. A rate directly related to the Moreau envelope of the origi-
nal problem is given in the analysis in [37]; however, this analysis utilizes additional
restrictive assumptions to achieve this (as previously mentioned, boundedness of the
problem's domain and Lipschitz continuity of F (\cdot , \xi ) with a uniform Lipschitz con-
stant for all \xi ), while an \scrO (n2\epsilon  - 4) rate is shown (i.e., a significantly worse dependence
on the problem dimensions n).

In order to empirically stress the viability and usefulness of the proposed ap-
proach, we consider two problems. Initially, we test our method on several phase-
retrieval instances taken from [13] and compare its numerical behavior against a
subgradient model-based scheme developed in [13], as well zeroth-order stochastic
gradient schemes based on the double Gaussian smoothing, the uniform smoothing,
and the SPSA. The observed numerical behavior confirms the theory, in that the pro-
posed zeroth-order method converges consistently at a rate that is slower only by a
constant factor than that exhibited by the subgradient scheme, while it is competitive
against all other zeroth-order schemes. Subsequently, we showcase that the practical
performance of the proposed algorithm is essentially identical to that achieved by the
double smoothing zeroth-order scheme analyzed in [30], even if the two smoothing
parameters of the latter are tuned.

Next, we consider a very important application of zeroth-order (or in general
derivative-free) optimization; that is hyperparameter tuning. This is a very old prob-
lem (traditionally appearing in the industry---see, e.g., [8]---and often solved by hand
via exhausting or heuristic random search schemes) that has seen a surge in im-
portance in light of recent developments in artificial intelligence and machine learn-
ing. There is a wide literature on this subject that can only be briefly mentioned
here. The most common approaches are based on Bayesian optimization techniques
(see, e.g., [6, 7, 22]), although derivative-free schemes have also been considered (see,
e.g., [2]). In certain special cases, application-specific automated tuning strategies
have also been investigated (see, e.g., [10, 21, 42]). Given the importance of hyper-
parameter tuning, there have been developed several heuristic software packages for
this purpose, such as the Nevergrad toolkit (see [25]). In this paper, we consider the
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A2682 SPYRIDON POUGKAKIOTIS AND DIONYSIOS KALOGERIAS

problem of tuning the parameters of optimization algorithms. To that end, we derive
a novel heuristic model, the minimization of which yields the hyperparameters that
minimize the residual reduction of an optimization algorithm that depends on them,
after a fixed given number of iterations, for an arbitrary class of optimization problems
(assumed to follow an unknown distribution from which we can sample). Focusing on
a proximal alternating direction method of multipliers (pADMM), we tune its penalty
parameter for two problem classes, the optimal control of the Poisson equation and
the optimal control of the convection-diffusion equation. In both cases we numerically
verify the efficient performance of the pADMM with the ``learned"" hyperparameter
when considering out-of-sample instances. The MATLAB implementation is provided.

Notation. We denote by \langle \cdot , \cdot \rangle the inner product in \BbbR n, and given a vector x \in 
\BbbR n, \| x\| 2 denotes the induced Euclidean norm. Given a complete probability space
(\Omega ,F , P ), where F is a sigma algebra and P is a probability measure, we denote
by \scrL p(\Omega ,F , P ;\BbbR ), for some p \in [1,+\infty ), the space of all F -measurable functions

\varphi : \Omega \rightarrow \BbbR such that
\bigl( \int 

\Omega 
| \varphi (\omega )| p dP (\omega )

\bigr) 1/p
<+\infty . Given a random vector Z : \Omega \rightarrow \BbbR d

and a random function \varphi : \BbbR d \rightarrow \BbbR , we denote the expected value as EZ [\varphi (Z)] =\int 
\Omega 
\varphi (Z(\omega ))dP (\omega ), where the subscript is employed to stress that the expectation is

taken with respect to the random variable Z. Finally, given a function \varphi : \BbbR n \rightarrow \BbbR m,
we say that \varphi is Lipschitz continuous on a set X \subset \BbbR n if there is a constant c\geq 0 such
that \| \varphi (x1) - \varphi (x2)\| 2 \leq c\| x1 - x2\| 2 for all x1, x2 \in X. If \varphi is Lipschitz continuous on
a neighborhood of every point of X (potentially with different Lipschitz constants),
then it is said that \varphi is locally Lipschitz continuous on X.

Structure of the article. The rest of this paper is organized as follows. In section 2
we introduce some notation as well as preliminary notions of significant importance
for the developments in this paper. In section 3 we derive and analyze the proposed
zeroth-order proximal stochastic gradient method for the solution of (P). In section 4
we present some numerical results, and in section 5 we derive our conclusions.

2. Preliminaries. In this section, we introduce some preliminary notions that
will be used throughout this paper. In particular, we first discuss certain core proper-
ties of stochastic weakly convex functions of the form of f . Subsequently, we introduce
the Gaussian smoothing (see, e.g., [38]), which provides a smooth surrogate for f in
(P). In turn, this can be used to obtain zeroth-order optimization schemes; such
methods are only allowed to access a zeroth-order oracle (i.e., only sample-function
evaluations are available). We note that the Gaussian smoothing guides us in the
choice of minimal assumptions on the stochastic part of the objective function in (P).
Finally, we introduce the proximity operator as well as certain core properties of it.

2.1. Stochastic weakly convex functions. We briefly discuss some core prop-
erties of the well-studied class of weakly convex functions. For a detailed study on the
properties of these functions (and of related sets), the reader is referred to [52] and
the references therein. Below we define this class of functions for completeness.

Definition 2.1. A function f : \BbbR n \mapsto \rightarrow \BbbR \cup \{ +\infty \} is said to be \rho -weakly convex,
for some \rho > 0, if for any x1, x2 \in \BbbR n, and any \lambda \in [0,1], it satisfies

f (\lambda x1 + (1 - \lambda )x2)\leq \lambda f(x1) + (1 - \lambda )f(x2) +
\lambda (1 - \lambda )\rho 

2
\| x1  - x2\| 22 .

In what follows, we make use of a standard generalization of the well-known con-
vex subdifferential (which consists of all global affine underestimators of a convex
function at a given point). We consider the subdifferential that consists of all global
concave quadratic underestimators (see [13, section 2.2]). In particular, given a lo-
cally Lipschitz continuous function f : \BbbR n \mapsto \rightarrow \BbbR , and some x \in dom(f), we define the
generalized subdifferential \partial f(x) as the set of all vectors v \in \BbbR n satisfying
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A ZEROTH-ORDER PROXIMAL STOCHASTIC GRADIENT METHOD A2683

f(y)\geq f(x) + \langle v, y - x\rangle + o (\| y - x\| 2) as y\rightarrow x,

and set \partial f(x) = \emptyset for any x /\in dom(f). A more general definition, based on the Clarke
generalized directional derivative (see [11]), can be found in [52, section 1]. We note
that the mapping x \mapsto \rightarrow \partial f(x) of a weakly convex function f inherits many properties of
the subgradient mapping of a convex function (see [52, section 4]) and reduces to the
standard convex subdifferential if f is a convex function. In the following proposition
we state some important properties that hold for weakly convex functions.

Proposition 2.2. Any \rho -weakly convex function f : \BbbR n \mapsto \rightarrow \BbbR \cup \{ +\infty \} is locally
Lipschitz continuous and regular in the sense of Clarke and thus is directionally dif-
ferentiable. Furthermore, it is bounded below, and there exists z \in \BbbR n such that

f(x2)\geq f(x1) + \langle z,x2  - x1\rangle  - 
\rho 

2
\| x2  - x1\| 22 .

Moreover, the latter holds for any z \in \partial f(x1). Finally, the map x \mapsto \rightarrow f(x) + \rho 
2\| x\| 

2
2 is

convex, and

\langle z1  - z2, x1  - x2\rangle \geq  - \rho \| x1  - x2\| 22
for all x1, x2 \in \BbbR n, z1 \in \partial f(x1), and z2 \in \partial f(x2).

Proof. The proof can be found in [52, Propositions 4.4, 4.5, and 4.8].

Proposition 2.3. Any continuously differentiable function f : \BbbR n \rightarrow \BbbR , with glob-
ally \rho -Lipschitz gradient, where \rho > 0, is \rho -weakly convex.

Proof. The proof follows trivially from Proposition 2.2; see [52, Proposition
4.12].

2.2. Gaussian smoothing. Next, we introduce the notion of Gaussian smooth-
ing. We let f : \BbbR n \rightarrow \BbbR be a Borel function, and U \sim \scrN (0n, In) a normal random
vector, where In is the identity matrix of size n. Given a nonnegative smoothing
parameter \mu \geq 0, the Gaussian smoothing of f is defined as

f\mu (\cdot ) :=\BbbE U [f ((\cdot ) + \mu U)] ,

assuming that the expectation is well-defined and finite for all x \in \BbbR n. The precise
conditions on F (x, \xi ) (in (P)) for this to hold will be given later in this section. Let
\scrN : \BbbR n \rightarrow \BbbR , with a slight abuse of notation, be the standard Gaussian density in \BbbR n,
that is, the mapping x \mapsto \rightarrow 1

(2\pi )n/2 e
 - 1

2x
\top x. Then, we can observe that

f\mu (x) =

\int 
f(x+ \mu u)\scrN (u)du= \mu  - n

\int 
f(v)\scrN 

\biggl( 
v - x

\mu 

\biggr) 
dv,

where the second equality holds via introducing an integration variable v = x+ \mu u.
The second characterization yields the following expressions for the gradient of f\mu 
(assuming it exists):

\nabla f\mu (x) = \mu  - (n+2)

\int 
f(v)\scrN 

\biggl( 
v - x

\mu 

\biggr) 
(v - x)dv

= \mu  - 1

\int 
f(x+ \mu u)\scrN (u)udu

= \BbbE U

\biggl[ 
f (x+ \mu U) - f(x)

\mu 
U

\biggr] 
= \BbbE U

\biggl[ 
f (x+ \mu U) - f (x - \mu U)

2\mu 
U

\biggr] 
,
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A2684 SPYRIDON POUGKAKIOTIS AND DIONYSIOS KALOGERIAS

where U \sim \scrN (0n, In). The second equality follows from a change of variables, the
third from the properties of the standard Gaussian, and the last one can be trivially
shown by direct computation (see, e.g., [38]).

In what follows, we impose certain assumptions on the function F given (im-
plicitly) in (P) in order to guarantee that its Gaussian smoothing is well-defined and
satisfies several properties of interest.

Assumption 2.4. Let F : \BbbR n \times \Xi \rightarrow \BbbR satisfy the following properties:
(C1) F (x, \cdot )\in \scrL 2 (\Omega ,F , P ;\BbbR ) and is Borel for any x\in \BbbR n.
(C2) The function f(x) =\BbbE \xi [F (x, \xi )] is \rho -weakly convex for some \rho \geq 0.
(C3) There exists a positive random variable C(\xi ) such that

\sqrt{} 
\BbbE \xi [C(\xi )2]<\infty ,

and for all x1, x2 \in \BbbR n, and a.e. \xi \in \Xi , the following holds:

| F (x1, \xi ) - F (x2, \xi )| \leq C(\xi )\| x1  - x2\| 2.

Remark 2.5. In view of (C1) in Assumption 2.4, we can infer that f is well-
defined and finite for any x. In fact, this can be shown with a weaker condition
in place of (C1), that is, if we were to assume that F (x, \cdot ) \in \scrL 1 (\Omega ,F , P ;\BbbR ) for
any x \in \BbbR n. The stronger assumption will be utilized in Lemma 2.6. Furthermore,
from [45, Theorem 7.44], under (C1) and (C3), it follows that there exists a constant
Lf,0 > 0, such that f is Lf,0-Lipschitz continuous on \BbbR n. Again, this holds even if we
weaken assumption (C3) and only require that \BbbE \xi [C(\xi )]<\infty ; however, the stronger
form of this assumption is utilized in Lemma 2.6.

Under Assumption 2.4, we will provide certain properties of the surrogate function
f\mu , as presented in [38].

Lemma 2.6. Let Assumption 2.4 hold. Then, f\mu is \rho -weakly convex, and there
exists a constant Lf\mu ,0 \leq Lf,0 such that f\mu is Lf\mu ,0-Lipschitz continuous on \BbbR n. Ad-
ditionally, for any \mu \geq 0, we obtain

| f\mu (x) - f(x)| \leq \mu Lf,0n
1
2 for any x\in \BbbR n,(2.1)

while for any \mu > 0, f\mu is Lipschitz continuously differentiable with

\nabla f\mu (x) =\BbbE U

\biggl[ 
f (x+ \mu U) - f(x)

\mu 
U

\biggr] 
=\BbbE U,\xi 

\biggl[ 
F (x+ \mu U, \xi ) - F (x, \xi )

\mu 
U

\biggr] 
,(2.2)

where U, \xi are statistically independent. Additionally, we have that

\BbbE U,\xi 

\Biggl[ \bigm\| \bigm\| \bigm\| \bigm\| F (x+ \mu U, \xi ) - F (x, \xi )

\mu 
U

\bigm\| \bigm\| \bigm\| \bigm\| 2
2

\Biggr] 
\leq (n2 + 2n)L2

f,0.(2.3)

Proof. Weak convexity of the surrogate can be obtained by [27, Lemma 5.2]. For
a proof of (2.1), as well as the first equality of (2.2), the reader is referred to [38,
Appendix, Proof of Theorem 1]. The second equality in (2.2), in light of (C3) of As-
sumption 2.4, follows by Fubini's theorem (we should note that with a slight abuse of
notation, the second expectation in (2.2) is taken with respect to the product measure
of the two corresponding random vectors U and \xi ). Following the developments in
[27, Lemma 5.4], we show (2.3). In particular, we have
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A ZEROTH-ORDER PROXIMAL STOCHASTIC GRADIENT METHOD A2685

\BbbE U,\xi 

\Biggl[ \bigm\| \bigm\| \bigm\| \bigm\| F (x+ \mu U, \xi ) - F (x, \xi )

\mu 
U

\bigm\| \bigm\| \bigm\| \bigm\| 2
2

\Biggr] 
=

1

\mu 2
\BbbE U,\xi 

\Bigl[ 
| F (x+ \mu U, \xi ) - F (x, \xi )| 2 \| U\| 22

\Bigr] 
=

1

\mu 2
\BbbE U

\Bigl[ 
\BbbE \xi 

\Bigl[ 
| F (x+ \mu U, \xi ) - F (x, \xi )| 2 \| U\| 22

\bigm| \bigm| \bigm| U\Bigr] \Bigr] 
=

1

\mu 2
\BbbE U

\Bigl[ 
\BbbE \xi 

\Bigl[ 
| F (x+ \mu U, \xi ) - F (x, \xi )| 2

\bigm| \bigm| \bigm| U\Bigr] 
\| U\| 22

\Bigr] 
\leq L2

f,0\BbbE U

\bigl[ 
\| U\| 42

\bigr] 
= (n2 + 2n)L2

f,0,

where in the second equality we used the tower property, while in the last line we
employed (C3) and evaluated the fourth moment of the \chi -distribution.

2.3. Proximal point and the Moreau envelope. At this point, we briefly
discuss certain well-known notions for completeness. More specifically, given a closed
function p : \BbbR n \rightarrow \BbbR , and a positive penalty \lambda > 0, we define the proximal point

prox\lambda p(u) := argmin
x

\biggl\{ 
p(x) +

1

2\lambda 
\| u - x\| 22

\biggr\} 
,

as well as the corresponding Moreau envelope

p\lambda (u) :=min
x

\biggl\{ 
p(x) +

1

2\lambda 
\| x - u\| 22

\biggr\} 
= p

\bigl( 
prox\lambda p(u)

\bigr) 
+

1

2\lambda 

\bigm\| \bigm\| prox\lambda p(u) - u
\bigm\| \bigm\| 2
2
.

We can show (see, e.g., [13, 36]) that if p is \rho -weakly convex, for some \rho > 0, then p\lambda 
is continuously differentiable for any \lambda \in 

\bigl( 
0, \rho  - 1

\bigr) 
, with

\nabla p\lambda (u) = \lambda  - 1
\bigl( 
u - prox\lambda p(u)

\bigr) 
.

The Moreau envelope has been used as a smooth penalty function for line-search
in Newton-like methods (see, e.g., [39]). More recently, it was noted in [13, section
2.2] that the norm of its gradient (that is, \| \nabla p\lambda (u)\| 2) can serve as a near-stationarity
measure for nonsmooth optimization. The latter approach is adopted in this paper,
and, later we will derive a convergence analysis of the proposed algorithm based on
the magnitude of the gradient of an appropriate Moreau envelope.

3. A zeroth-order proximal stochastic gradient method. In this section
we derive a zeroth-order proximal stochastic gradient method suitable for the solution
of problems of the form of (P).

3.1. Algorithmic scheme. Let us employ the following assumption.

Assumption 3.1. Let F (x, \xi ) be defined as in (P) satisfying Assumption 2.4.
Additionally, we assume that r is a proper (i.e., dom(r) \not = \emptyset ) closed and proximable
(that is, its proximity operator can be evaluated analytically) convex function. Finally,
we can generate two statistically independent random sequences \{ Ui\} \infty i=0, \{ \xi i\} \infty i=0,
such that each Ui \sim \scrN (0n, In) and \xi i is independent and identically distributed (i.i.d.),
respectively.

In light of Assumption 3.1, and by utilizing Lemma 2.6, we can quantify the qual-
ity of the approximation of \phi (x) by \phi \mu (x) := f\mu (x)+r(x) for any x\in \BbbR n. Additionally,
we know that f\mu is smooth, even if f is not. Thus, we can derive an optimization
algorithm for the minimization of \phi \mu (which can utilize stochastic gradient approx-
imations for the smooth function f\mu ), and then retrieve an approximate solution to
the original problem, where the approximation accuracy can be directly controlled by
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A2686 SPYRIDON POUGKAKIOTIS AND DIONYSIOS KALOGERIAS

the smoothing parameter \mu . Thus, we analyze a zeroth-order stochastic optimization
method for the solution of the surrogate problem

min
x

\phi \mu (x) := f\mu (x) + r(x),(P\mu )

where f\mu (x) = \BbbE U [f (x+ \mu U)], \mu > 0, and f , r are as in (P). The method is summa-
rized in Algorithm Z-ProxSG.

Algorithm Z-ProxSG Zeroth-order proximal stochastic gradient.

Input: x0 \in dom(r), a sequence \{ \alpha t\} t\geq 0 \subset \BbbR +, \mu > 0, and T > 0.
for (t= 0,1,2, . . . , T ) do

Sample \xi t, Ut \sim \scrN (0n, In), and set

xt+1 = prox\alpha tr (xt  - \alpha tG (xt,Ut, \xi t)) ,

where G (xt,Ut, \xi t) := \mu  - 1 (F (xt + \mu Ut, \xi t) - F (xt, \xi t))Ut.
end for
Sample t\ast \in \{ 0, . . . , T\} according to \BbbP (t\ast = t) = \alpha t\sum T

i=0 \alpha i
.

return xt\ast .

3.2. Convergence analysis. In what follows, we derive the convergence analy-
sis for Algorithm Z-ProxSG. We obtain the rate of the proposed algorithm for finding
a near-stationary solution to the surrogate problem (P\mu ) (see Theorem 3.4), and then
by utilizing Lemma 2.6, we argue that a near-stationary solution of the surrogate
problem is near-stationary for the Moreau envelope of problem (P) (see Theorem 3.6).
The analysis follows closely the developments in [13, section 3.2].

We first introduce some notation. We set \=\rho \in (\rho ,2\rho ], where \rho is the weak-convexity
constant of f(\cdot ). We define \^xt := prox\=\rho  - 1\phi \mu 

(xt), and \delta t := 1  - \alpha t\=\rho . The auxiliary
point \^xt is the ``optimal"" proximal step at iteration t. In Lemma 3.3, we bound the
distance of a new iterate of Algorithm Z-ProxSG (in expectation) from this ``optimal""
proximal step. In turn, this bound is then utilized in Theorem 3.4 to show convergence
in terms of reduction of the gradient norm of the surrogate Moreau envelope. The
following lemma introduces a useful property of this auxiliary point.

Lemma 3.2. For any t\geq 0, and any iterate xt of Algorithm Z-ProxSG, we obtain

\^xt = prox\alpha tr (\alpha t\=\rho xt  - \alpha t\nabla f\mu (xt) + \delta t\^xt) .

Proof. See Appendix A.1.

Following [13], we derive a descent property for the iterates.

Lemma 3.3. Let Assumption 3.1 hold, set \=\rho \in (\rho ,2\rho ], and choose \alpha t \in (0,1/\=\rho ] for
any t\geq 0. Then, the following inequality holds:

\BbbE t
U,\xi 

\bigl[ 
\| xt+1  - \^xt\| 22

\bigr] 
\leq \| xt  - \^xt\| 22 + 4(n2 + 2n)\alpha 2

tL
2
f,0  - 2\alpha t(\=\rho  - \rho )\| xt  - \^xt\| 22,

where \BbbE t
U,\xi [\cdot ]\equiv \BbbE U,\xi [\cdot | Ut - 1, \xi t - 1, . . . ,U0, \xi 0] .
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A ZEROTH-ORDER PROXIMAL STOCHASTIC GRADIENT METHOD A2687

Proof. We have

\BbbE t
U,\xi 

\bigl[ 
\| xt+1  - \^xt\| 22

\bigr] 
=\BbbE t

U,\xi 

\Bigl[ \bigm\| \bigm\| prox\alpha tr (xt  - \alpha tG (xt,Ut, \xi t)) - prox\alpha tr (\alpha t\=\rho xt  - \alpha t\nabla f\mu (\^xt) + \delta t\^xt)
\bigm\| \bigm\| 2
2

\Bigr] 
\leq \BbbE t

U,\xi 

\Bigl[ 
\| (xt  - \alpha tG (xt,Ut, \xi t)) - (\alpha t\=\rho xt  - \alpha t\nabla f\mu (\^xt) + \delta t\^xt)\| 22

\Bigr] 
= \delta 2t \| xt  - \^xt\| 22  - 2\delta t\alpha t\BbbE t

U,\xi [\langle xt  - \^xt,G (xt,Ut, \xi t) - \nabla f\mu (\^xt)\rangle ]
+ \alpha 2

t\BbbE t
U,\xi 

\bigl[ 
\| G (xt,Ut, \xi t) - \nabla f\mu (\^xt)\| 22

\bigr] 
\leq \delta 2t \| xt  - \^xt\| 22  - 2\delta t\alpha t \langle xt  - \^xt,\nabla f\mu (xt) - \nabla f\mu (\^xt)\rangle + 4(n2 + 2n)\alpha 2

tL
2
f,0

\leq \delta 2t \| xt  - \^xt\| 22 + 2\delta t\alpha t\rho \| xt  - \^xt\| 22 + 4(n2 + 2n)\alpha 2
tL

2
f,0

=
\bigl( 
1 - 

\bigl( 
2\alpha t(\=\rho  - \rho ) + \alpha 2

t \=\rho (2\rho  - \=\rho )
\bigr) \bigr) 

\| xt  - \^xt\| 22 + 4(n2 + 2n)\alpha 2
tL

2
f,0,

where the first equality follows from Lemma 3.2, the first inequality follows from
nonexpansiveness of the proximal operator (see, e.g., [44, Theorem 12.12]), the second
inequality follows from the triangle inequality and (2.3), and the third inequality
follows from weak convexity of f\mu (see Proposition 2.2). Since \=\rho \leq 2\rho , the result
follows.

We can now establish the convergence rate of Algorithm Z-ProxSG, in terms of
the magnitude of the gradient of the Moreau envelope of the surrogate problem's
objective function.

Theorem 3.4. Let Assumption 3.1 hold. Let also \{ xt\} Tt=0 be the sequence of
iterates produced by Algorithm Z-ProxSG, with xt\ast being the point that the algorithm
returns. For any t\geq 0, \mu > 0, and for any \=\rho \in (\rho ,2\rho ], it holds that

\BbbE U,\xi 

\Bigl[ 
\phi 1/\=\rho 
\mu (xt+1)

\Bigr] 
\leq \BbbE U,\xi 

\Bigl[ 
\phi 1/\=\rho 
\mu (xt)

\Bigr] 
 - \alpha t(\=\rho  - \rho )

\=\rho 
\BbbE U,\xi 

\biggl[ \bigm\| \bigm\| \bigm\| \nabla \phi 1/\=\rho 
\mu (xt)

\bigm\| \bigm\| \bigm\| 2
2

\biggr] 
+ 2(n2 + 2n)\=\rho \alpha 2

tL
2
f,0,

(3.1)

and xt\ast satisfies

\BbbE U,\xi 

\biggl[ \bigm\| \bigm\| \bigm\| \nabla \phi 1/\=\rho 
\mu (xt\ast )

\bigm\| \bigm\| \bigm\| 2
2

\biggr] 
\leq \=\rho 

\=\rho  - \rho 

\Bigl( 
\phi 
1/\=\rho 
\mu (x0) - min

x
\phi \mu (x)

\Bigr) 
+ 2(n2 + 2n)\=\rho L2

f,0

\sum T
t=0\alpha 

2
t\sum T

t=0\alpha t

.

(3.2)

In particular, letting \=\rho = 2\rho , \Delta \geq \phi 
1/\=\rho 
\mu (x0) - min

x
\phi \mu (x), and setting

\alpha t =
1

2
min

\Biggl\{ 
1

\rho 
,

\sqrt{} 
\Delta 

(n2 + 2n)\rho L2
f,0(T + 1)

\Biggr\} 
,(3.3)

in Algorithm Z-ProxSG yields

\BbbE U,\xi 

\biggl[ \bigm\| \bigm\| \bigm\| \nabla \phi 1/(2\rho )
\mu (xt\ast )

\bigm\| \bigm\| \bigm\| 2
2

\biggr] 
\leq 8max

\Biggl\{ 
\Delta \rho 

T + 1
,Lf,0

\sqrt{} 
\Delta \rho n(n+ 2)

T + 1

\Biggr\} 
.(3.4)

Proof. Using the definition of the Moreau envelope, we have

\BbbE t
U,\xi 

\Bigl[ 
\phi 1/\=\rho 
\mu (xt+1)

\Bigr] 
\leq \BbbE t

U,\xi 

\Bigl[ 
\phi \mu (\^xt) +

\=\rho 

2
\| \^xt  - xt+1\| 22

\Bigr] 
\leq \phi \mu (\^xt)+

\=\rho 

2

\bigl[ 
\| xt - \^xt\| 22+4(n2+2n)\alpha 2

tL
2
f,0 - 2\alpha t(\=\rho  - \rho )\| xt - \^xt\| 22

\bigr] 
= \phi 1/\=\rho 

\mu (xt) + \=\rho 
\bigl[ 
2(n2 + 2n)\alpha 2

tL
2
f,0  - \alpha t(\=\rho  - \rho )\| xt  - \^xt\| 22

\bigr] 
,
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A2688 SPYRIDON POUGKAKIOTIS AND DIONYSIOS KALOGERIAS

where the second inequality follows from Lemma 3.3, and the equality follows from
the definition of \^xt. Then, (3.1) is derived by taking the expectation with respect to
the filtration (all the data observed so far, i.e., Ut - 1, \xi t - 1, . . . ,U0, \xi 0). Inequality (3.2)
can be obtained as in [13, section 3] by rearranging and utilizing the closed form of
the gradient of the associated Moreau envelope.

Finally, setting \alpha t as in (3.3), separating cases, and plugging the respective ex-
pressions into (3.2) yields (3.4) and completes the proof.

The previous theorem provides an \scrO 
\bigl( \surd 

n\epsilon  - 4
\bigr) 
convergence rate of Algorithm Z-

ProxSG for finding an \epsilon -stationary point of the Moreau envelope corresponding to
(P\mu ), i.e., \phi 

1/(2\rho )
\mu . Let us note that in the case where f is a convex function we can

specialize Theorem 3.4 and obtain an \~\scrO (
\surd 
n\epsilon  - 2) convergence rate (noting that any

convex function is also \rho -weakly convex for any \rho > 0). This can be done by following
the developments in [13, section 4.1] but is omitted for brevity of exposition.

In what follows, we would like to assess the quality of such a solution for the
original problem (P). To that end, we will utilize Lemma 2.6. Before we proceed, let
us provide certain well-known properties of the Moreau envelope, which indicate that
it serves as a measure of closeness to optimality. We can observe (see [13, section 2.2])
that for any x\in \BbbR n, and \^x := prox\lambda \phi \mu 

(x), the following hold:

\| \^x - x\| 2 = \lambda 
\bigm\| \bigm\| \nabla \phi \lambda 

\mu (x)
\bigm\| \bigm\| 
2
, \phi \mu (\^x)\leq \phi \mu (x), dist (0;\partial \phi \mu (\^x))\leq 

\bigm\| \bigm\| \nabla \phi \lambda 
\mu (x)

\bigm\| \bigm\| 
2
,

where, given any closed set \scrA \subset \BbbR n, dist (z;\scrA ) := inf
z
\prime \in \scrA \| z  - z\prime \| 2. In other words, a

near-stationary point of \phi 
1/(2\rho )
\mu is close to a near-stationary point of \phi \mu . We expect

that if \BbbE U,\xi [\| \nabla \phi 
1/\=\rho 
\mu (xt\ast )\| 2] \leq \epsilon , for some small \epsilon > 0, then there will exist a small

\delta (\epsilon ) > 0 such that \BbbE U,\xi [dist (0, \partial \phi \mu (xt\ast ))] \leq \delta (\epsilon ). Indeed, this is a standard assump-
tion used in the literature (see, e.g., [13, 30, 28]). The direct relation between \delta and
\epsilon is not known in general, but in some cases this can be measured. For example, if
\partial \phi \mu is a sub-Lipschitz continuous mapping (see [44, Definition 9.27]), or if r is an
indicator function to a compact convex set (see [27]), then we obtain that \delta =\scrO (\epsilon ).

Assuming that \BbbE U,\xi [dist (0, \partial \phi \mu (xt\ast ))] \leq \delta , for some small \delta > 0, we show that

\BbbE U,\xi [
\bigm\| \bigm\| \nabla \phi 1/\=\rho (xt\ast )

\bigm\| \bigm\| 2
2
] \leq \scrO (\delta 2 +

\surd 
n\mu ). To that end, in the following lemma we relate

the Moreau envelope of the original problem's objective function \phi \lambda to the surrogate
\phi \mu in (P\mu ).

Lemma 3.5. Let Assumption 3.1 hold. Given any x \in \BbbR n, any \=\rho \in (\rho ,2\rho ], and
any \mu > 0, we have that

\langle x - \~x, v\mu \rangle \geq 
\=\rho  - \rho 

\=\rho 2

\bigm\| \bigm\| \bigm\| \nabla \phi 1/\=\rho (x)
\bigm\| \bigm\| \bigm\| 2
2
 - 2\mu Lf,0n

1
2 ,

where \~x := prox\=\rho  - 1\phi (x), \phi 
1/\=\rho is the Moreau envelope of \phi in (P), and v\mu \in \partial \phi \mu (x).

Proof. See Appendix A.2.

Theorem 3.6. Let Assumption 3.1 hold. Let x\delta be any \delta -stationary point of
problem (P\mu ); that is, there exists v\mu \in \partial \phi \mu (x\delta ), such that \| v\mu \| 2 \leq \delta (equiva-
lently, dist (0, \partial \phi \mu (x\delta )) \leq \delta ). Given any \=\rho \in (\rho ,2\rho ], and any \mu > 0, we have that
| \phi (x\delta ) - \phi \mu (x\delta )| \leq \mu Lf,0n

1
2 . Moreover,\bigm\| \bigm\| \bigm\| \nabla \phi 1/\=\rho (x\delta )

\bigm\| \bigm\| \bigm\| 2
2
\leq \=\rho 2

\=\rho  - \rho 

\biggl( 
\delta 2

\=\rho  - \rho 
+ 4\mu Lf,0n

1
2

\biggr) 
.
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A ZEROTH-ORDER PROXIMAL STOCHASTIC GRADIENT METHOD A2689

In particular, assuming that \BbbE U,\xi [dist (0, \partial \phi \mu (xt\ast ))] \leq \delta , where xt\ast is returned by
Algorithm Z-ProxSG, we obtain that

\BbbE U,\xi 

\biggl[ \bigm\| \bigm\| \bigm\| \nabla \phi 1/\=\rho (xt\ast )
\bigm\| \bigm\| \bigm\| 2
2

\biggr] 
\leq \=\rho 2

\=\rho  - \rho 

\biggl( 
\delta 2

\=\rho  - \rho 
+ 4\mu Lf,0n

1
2

\biggr) 
.

Proof. The first part of the lemma follows immediately from the definition of \phi \mu 

and Lemma 2.6.
From Lemma 3.5, we have that

\langle x\delta  - \~x\delta , v\mu \rangle \geq 
\=\rho  - \rho 

\=\rho 2

\bigm\| \bigm\| \bigm\| \nabla \phi 1/\=\rho (x\delta )
\bigm\| \bigm\| \bigm\| 2
2
 - 2\mu Lf,0n

1
2 ,(3.5)

where \~x\delta := prox\=\rho  - 1\phi (x\delta ). From the triangle inequality, we obtain\bigm\| \bigm\| \bigm\| \nabla \phi 1/\=\rho (x\delta )
\bigm\| \bigm\| \bigm\| 2
2
 - \delta \=\rho 

\=\rho  - \rho 

\bigm\| \bigm\| \bigm\| \nabla \phi 1/\=\rho (x\delta )
\bigm\| \bigm\| \bigm\| 
2
 - 2\=\rho 2\mu Lf,0n

1
2

\=\rho  - \rho 
\leq 0,

where we used the definition of \~x\delta , the expression of the gradient of \phi 1/\=\rho (x\delta ), and
the assumption that \| v\mu \| 2 \leq \delta . For ease of presentation, we introduce some notation.

Let u := \| \nabla \phi 1/\=\rho (x\delta )\| 2, \beta := - \delta \=\rho 
\=\rho  - \rho , and \gamma := - 2\=\rho 2\mu Lf,0n

1
2

\=\rho  - \rho . We proceed by finding an
upper bound for u, so that the previous inequality is satisfied. This is trivial, since we
can equate this inequality to zero and find the most-positive solution of the quadratic
equation in u. Indeed, it is easy to see that

u\leq 1

2

\Bigl( 
 - \beta +

\sqrt{} 
\beta 2  - 4\gamma 

\Bigr) 
.

Thus we easily obtain u2 \leq 
\bigl( 
\beta 2  - 2\gamma 

\bigr) 
. The first bound then follows immediately by

plugging the values of \beta and \gamma .
Finally, by assuming that \BbbE U,\xi [dist (0, \partial \phi \mu (xt\ast ))] \leq \delta , substituting xt\ast in (3.5),

taking total expectations, and repeating the previous analysis yields the second bound
and completes the proof.

Remark 3.7. Let us note that the convergence rate in Theorem 3.4 is given in terms
of the expected squared gradient norm of the surrogate Moreau envelope evaluated
at the output of Algorithm Z-ProxSG, that is, \BbbE U,\xi [\| \nabla \phi 

1/\=\rho 
\mu (xt\ast )\| 22]. This is in line

with the results presented in [30], however, the authors of the aforementioned paper
did not investigate the error introduced by considering the surrogate problem. In this
paper, we attempted to do this in Theorem 3.6. Ideally, we would like to provide
a rate on \BbbE U,\xi [\| \nabla \phi 1/\=\rho (xt\ast )\| 22]. In the special cases where r is an indicator function
to a compact convex set or \partial \phi is a sub-Lipschitz mapping, this can be done easily
(see, e.g., [27, section 6.4.2]). In the general case, and without additional restrictive
assumptions (as in [37]), we are able to show that any near-stationary point for the
surrogate problem is near-stationary for the Moreau envelope of the original objective
function, with the approximation improving for smaller values of \mu . Thus, assuming
that xt\ast is near-stationary in expectation for the surrogate problem (P\mu ), we were
able to show that it will be near-stationary in expectation for the Moreau envelope
corresponding to (P).

4. Numerical results. In this section we provide numerical evidence for the
effectiveness of the proposed approach. First, we run the method on certain phase
retrieval instances taken from [13] and compare the proposed zeroth-order approach,
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A2690 SPYRIDON POUGKAKIOTIS AND DIONYSIOS KALOGERIAS

outlined in Algorithm Z-ProxSG, against the double smoothing zeroth-order proximal
stochastic gradient method analyzed in [30], a uniform smoothing zeroth-order method
(see, e.g., [37]), the simultaneous perturbation stochastic approximation method (orig-
inally proposed in [49]), and the stochastic subgradient method proposed and an-
alyzed in [13], noting that the latter is significantly more difficult to employ (and
implement) in the general case, since it assumes knowledge of subgradient informa-
tion. In order to obtain a meaningful comparison, all zeroth-order schemes are using
a constant step-size and constant smoothing parameter. For completeness, the four
algorithms used in our comparison are outlined in Algorithms DSZ-ProxSG, UniZ-
ProxSG, SPSA, and ProxSSG, respectively. Next, we verify that the proposed ap-
proach performs almost identically to the method outlined in [30] while being easier
to tune and analyze (and, additionally, requiring n fewer flops per iteration).

Subsequently, we employ the proposed algorithm for the important task of tuning
the parameters of optimization methods in order to obtain good and consistent be-
havior for a wide range of optimization problems. We note that this problem can only
be tackled by zeroth-order schemes, since there is no availability of first-order infor-
mation. We employ a proximal alternating direction method of multipliers (pADMM)
for the solution of PDE-constrained optimization instances. It is well known that the
behavior of ADMM is heavily affected by the choice of its penalty parameter, and
thus, we utilize Algorithm Z-ProxSG in order to find a nearly optimal value (in a
sense to be described) for this parameter that allows the method to behave well for
similar (out-of-sample) PDE-constrained optimization instances. To the best of our
knowledge, the heuristic model proposed for achieving this task is novel and highly
effective.

The code is written in MATLAB and can be found on GitHub.1 The experiments
were run on MATLAB 2019a, on a PC with a 2.2GHz Intel Core i7 processor (hexa-
core), 16GM RAM, using the Windows 10 operating system.

Algorithm DSZ-ProxSG Double smoothing Z-ProxSG.

Input: x0 \in dom(r), a sequence \{ \alpha t\} t\geq 0 \subset \BbbR +, \mu 1 \geq 2\mu 2 > 0, and T > 0.
for (t= 0,1,2, . . . , T ) do

Sample \xi t, Ut,1, Ut,2 \sim \scrN (0n, In), and set

xt+1 = prox\alpha tr (xt  - \alpha tG (xt,Ut,1,Ut,2, \xi t)) ,

where

G (xt,Ut,1,Ut,2, \xi t) = \mu  - 1
2 (F (xt + \mu 1Ut,1 + \mu 2Ut,2, \xi t) - F (xt + \mu 1Ut,1, \xi t))Ut,2.

end for

4.1. Phase retrieval. Let us first focus on the solution of phase retrieval prob-
lems. Following [13], we generate standard Gaussian measurements ai \sim \scrN (0d, Id) for
i= 1, . . . ,m, a target signal \=x, as well as a starting point x0 on the unit sphere.

Then, by setting bi = \langle ai, \=x\rangle 2, for i= 1, . . . ,m, we want to solve

min
x\in \BbbR d

f(x) =
1

m

m\sum 
i=1

\bigm| \bigm| \langle ai, x\rangle 2  - bi
\bigm| \bigm| .

As discussed in [13], this is a weakly convex optimization problem. We at-
tempt to solve it using Algorithms Z-ProxSG, DSZ-ProxSG, UniZ-ProxSG, SPSA,

1https://github.com/spougkakiotis/Z-ProxSG.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

10
/1

7/
24

 to
 1

28
.1

20
.2

37
.1

5 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://github.com/spougkakiotis/Z-ProxSG
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Algorithm UniZ-ProxSG Uniform Z-ProxSG.

Input: x0 \in dom(r)\subset \BbbR d, a sequence \{ \alpha t\} t\geq 0 \subset \BbbR +, \mu > 0, and T > 0.
for (t= 0,1,2, . . . , T ) do

Sample \xi t, and Ut uniformly from the d-dimensional ball, and set

xt+1 = prox\alpha tr (xt  - \alpha tG (xt,Ut, \xi t)) ,

where

G (xt,Ut, \xi t) =
d

\mu 
(F (xt, \xi t) - F (xt + \mu Ut, \xi t))Ut.

end for

Algorithm SPSA Simultaneous perturbation stochastic approximation.

Input: x0 \in dom(r), a sequence \{ \alpha t\} t\geq 0 \subset \BbbR +, \mu 1 \geq 2\mu 2 > 0, and T > 0.
for (t= 0,1,2, . . . , T ) do

Sample \xi t, and Ut from a d-dimensional Bernoulli distribution, and set

xt+1 = prox\alpha tr (xt  - \alpha tG (xt,Ut, \xi t)) ,

with

G (xt,Ut, \xi t) =
F (xt + \mu Ut, \xi t) - F (xt  - \mu Ut, \xi t)

2\mu Ut
,

where the division is componentwise.
end for

Algorithm ProxSSG Proximal stochastic subgradient.

Input: x0 \in dom(r), a sequence \{ \alpha t\} t\geq 0 \subset \BbbR +, and T > 0.
for (t= 0,1,2, . . . , T ) do
Sample \xi t, and set

xt+1 = prox\alpha tr (xt  - \alpha tG (xt, \xi t)) ,

where G (xt, \xi t)\in \partial F (xt, \xi t).
end for

and ProxSSG. For this specific instance, we can explicitly compute the subgradi-
ent appearing in Algorithm ProxSSG. Specifically, as shown in [13, section 5.1], the
subdifferential of the function fi(x) := | \langle ai, x\rangle 2  - bi| reads

\partial fi(x) = 2\langle ai, x\rangle \cdot 

\Biggl\{ 
sign

\bigl( 
\langle ai, x\rangle 2  - bi

\bigr) 
if \langle ai, x\rangle \not = 0,

[ - 1,1] otherwise.

At each iteration of Algorithm ProxSSG we choose the subgradient that yields the
highest objective value reduction.

Before proceeding with the experiments, let us discuss some implementation de-
tails. Each of the tested algorithms is heavily affected by the choice of the step-
size \alpha t. We choose this parameter to be constant. For Algorithms Z-ProxSG, DSZ-
ProxSG, UniZ-ProxSG, and SPSA, by loosely following the theory in section 3, we
set it to \alpha t =

1
2d

\surd 
T

for all t \geq 0. Similarly, for Algorithm ProxSSG, following [13,

section 3], we set \alpha t =
1

2
\surd 
T
. Finally, Algorithms Z-ProxSG, UniZ-ProxSG, and SPSA
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A2692 SPYRIDON POUGKAKIOTIS AND DIONYSIOS KALOGERIAS

are quite robust with respect to the choice of the smoothing parameter \mu (or \mu 1, \mu 2 for
Algorithm DSZ-ProxSG). For Algorithms Z-ProxSG, UniZ-ProxSG, and SPSA this
was set to \mu = 5 \cdot 10 - 10. From Theorem 3.6 we observe that the smaller the value
of \mu , the better the quality of the obtained solution (in terms of closeness to a sta-
tionary point of the Moreau envelope of the objective function). Indeed, there is no
``optimal"" value for \mu , and hence we set it to an as-small-as-possible value, consid-
ering numerical accuracy issues that can arise due to finite machine precision. For
Algorithm DSZ-ProxSG, by loosely following the theory in [16, section 2.2], we set
\mu 1 = 5 \cdot 10 - 7, \mu 2 = 5 \cdot 10 - 10. Notice that we enforce \mu = \mu 2 in order to observe a
comparable numerical behavior between all zeroth-order schemes.

We set up six optimization problems, with varying sizes (d,m). In each case, the
maximum number of iterations is set as T = 2 \cdot 103 \cdot m. The random seed of MATLAB
was set to shuffle, which is initiated based on the current time. For each pair of
sizes we produce 15 instances and run each of the five methods for T iterations. In
Figure 1, we present the average convergence profiles with 95\% confidence intervals for
each method.

We can draw several useful observations from Figure 1. First, while the con-
vergence of the zeroth-order schemes is slower compared to the convergence of the
subgradient scheme (as we expected from the theory), the obtained solutions are
comparable for all algorithms. On the other hand, all zeroth-order schemes have a
very similar behavior, which was expected as we used similar values for the smooth-
ing parameters. Let us note that the theory in section 3.2 can easily be altered to
apply to Algorithm UniZ-ProxSG, since the Gaussian and the uniform smoothing
techniques are very similar (see, for example, the analysis in [16]). Algorithm SPSA
seems to behave equally well, compared to the other zeroth-order schemes; however,
no convergence analysis is available in the literature for problems of the form of
(P). Standard convergence analyses for SPSA are available for (stochastic) convex
programming instances, allowing adaptive choices for the step-size \alpha t as well as the
smoothing parameter \mu . However, the adaptive choices proposed in [48] did not
deliver convergence of SPSA for the phase retrieval instances solved herein, and
thus it was tuned identically to the other zeroth-order schemes. In order to ver-
ify that Algorithms Z-ProxSG and DSZ-ProxSG behave essentially identically even
if we tune the ratio \mu 1/\mu 2, we set (d,m) = (40,60) and run the two zeroth-order
methods using various values of (\mu 1, \mu 2), always ensuring that \mu = \mu 2. The re-
sults, which are averaged over 15 randomly generated instances, are reported in
Figure 2.

We note that the authors of [16] show that, for convex programming instances,
a proper tuning of the ratio \mu 1/\mu 2 can lead to a better convergence rate for the
double smoothing compared to the single smoothing, in terms of its dependence on
the dimension of the problem (noting that this has not been shown for weakly convex
problems of the form of (P)). As we observe in Figure 2, varying this ratio does
not seem to have any actual effect in this case, since we observe that for a wide
range of values for \mu 1/\mu 2 the double-Gaussian smoothing method behaves seemingly
identically. Finally, we note that we could obtain better results by extensively tuning
\alpha t and T for each instance; however, we provided general values that seem to exhibit
a very consistent behavior for all of the presented schemes.

4.2. Hyperparameter tuning for optimization methods. Next, we con-
sider the problem of tuning hyperparameters of optimization algorithms, so as to
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D
ow

nl
oa

de
d 

10
/1

7/
24

 to
 1

28
.1

20
.2

37
.1

5 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



A ZEROTH-ORDER PROXIMAL STOCHASTIC GRADIENT METHOD A2693

Fig. 1. Convergence profiles for Z-ProxSG, DSZ-ProxSG, Uni-ZproxSG, SPSA, and ProxSSG:
average objective function value (lines) and 95\% confidence intervals (shaded regions) vs. number of
iterations. The upper row corresponds, from left to right, to (d,m) = (10,30), (20,45). The middle
row corresponds, from left to right, to (d,m) = (40,60), (35,90). The lower row corresponds, from
left to right, to (d,m) = (30,120), (80,150).

improve their robustness and efficiency over a chosen set of optimization instances.
The discussion in this section will be restricted to the case of an alternating direction
method of multipliers (see [9] for an introductory review of ADMMs), although we
conjecture that the same technique can be employed for tuning a much wider range
of optimization methods.

4.2.1. Proximal ADMM for PDE-constrained optimization. In this sec-
tion, we are interested in the solution of optimization problems with partial differential
equation (PDE) constraints via a proximal alternating direction method of multipli-
ers (pADMM). We note that various other applications would be suitable for the
presented method; however, we restrict the problem pool for ease of presentation.
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A2694 SPYRIDON POUGKAKIOTIS AND DIONYSIOS KALOGERIAS

Fig. 2. Convergence profiles for Z-ProxSG and DSZ-ProxSG: average objective function value
(lines) and 95\% confidence intervals (shaded regions) vs. number of iterations for (d,m) = (40,60).
The upper row corresponds, from left to right, to (\mu 1, \mu 2) = (10 - x,10 - y), x = 4,5,6, y = 7. The
lower row corresponds, from left to right, to (\mu 1, \mu 2) = (10 - x,10 - y), x= 6,7,8, y= 9. In each case
we set \mu = \mu 2.

We consider optimal control problems of the form

min
y,u

J (y(\bfitx ),u(\bfitx ))

s.t. Dy(\bfitx ) - u(\bfitx ) = g(\bfitx ),

ua(\bfitx )\leq u(\bfitx )\leq ub(\bfitx ),

(4.1)

where (y,u)\in \scrH 1(K)\times \scrL 2(K), J (y(\bfitx ),u(\bfitx )) is a convex functional defined as

J (y(\bfitx ),u(\bfitx )) :=
1

2
\| y - \=y\| 2\scrL 2(K) +

\beta 1

2
\| u\| 2\scrL 1(K) +

\beta 2

2
\| u\| 2\scrL 2(K),(4.2)

D denotes a linear differential operator, \bfitx is a 2-dimensional spatial variable, and
\beta 1, \beta 2 \geq 0 denote the regularization parameters of the control variable.

The problem is considered on a given compact spatial domain K \subset \BbbR 2 with
boundary \partial K and is equipped with Dirichlet boundary conditions. The algebraic
inequality constraints are assumed to hold a.e. on K. We further note that ua and ub
are chosen as constants, although a more general formulation would be possible. In
what follows, we consider two classes of state equations (i.e., the equality constraints in
(4.1)): the Poisson's equation and the convection-diffusion equation. For the Poisson
optimal control, by following [40], we set the desired state as \=y = sin(\pi x1) sin(\pi x2).
For the convection-diffusion, which reads as  - \epsilon \Delta y + w \cdot \nabla y = u, where w is the
wind vector given by w = [2x2(1 - x1)

2, - 2x1(1 - x22)]
\top , we set the desired state as

\=y = exp( - 64((x1  - 0.5)2 + (x2  - 0.5)2)) with zero boundary conditions (see, e.g., [40,
section 5.2]). The diffusion coefficient \epsilon is set as \epsilon = 0.05. In both cases, we set
K = (0,1)2, ua = - 2, and ub = 1.5 (see [40]).

We solve problem (4.1) via a discretize-then-optimize strategy. We employ the Q1
finite element discretization implemented in IFISS2 (see [19, 20]), yielding a sequence
of \ell 1-regularized convex quadratic programming problems of the form

2https://personalpages.manchester.ac.uk/staff/david.silvester/ifiss/default.htm.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

10
/1

7/
24

 to
 1

28
.1

20
.2

37
.1

5 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://personalpages.manchester.ac.uk/staff/david.silvester/ifiss/default.htm


A ZEROTH-ORDER PROXIMAL STOCHASTIC GRADIENT METHOD A2695

min
x\in \BbbR n

c\top x+
1

2
x\top Qx+ \| Dx\| 1 + \delta \scrK (x) s.t. Ax= b,(4.3)

where A \in \BbbR m\times n models the linear constraints, D \in \BbbR n\times n is a diagonal matrix,
and \scrK models the restrictions on the discretized control variables. We note that the
discretization of the smooth part of the objective of problem (4.1) follows a stan-
dard Galerkin approach (see, e.g., [51]), while the \scrL 1 term is discretized by the nodal
quadrature rule as in [47, 53] (which achieves a first-order convergence; see [53]).

We reformulate problem (4.3) by introducing an auxiliary variable w \in \BbbR n as

min
x\in \BbbR n,w\in \BbbR n

c\top x+
1

2
x\top Qx+ \| Dw\| 1 + \delta \scrK (w) s.t. Ax= b, w - x= 0.(4.4)

Given a penalty \sigma > 0, we associate the following augmented Lagrangian to (4.4):

L\sigma (x,w, y1, y2) := c\top x+
1

2
x\top Qx+ g(w) + \delta \scrK (w) - y\top 1 (Ax - b) - y\top 2 (w - x)

+
\sigma 

2
\| Ax - b\| 2 + \sigma 

2
\| w - x\| 2.

Let an arbitrary positive definite matrix Rx be given, and assume the notation
\| x\| 2Rx

= x\top Rxx. Also, given a convex set \scrK , let \Pi \scrK (\cdot ) denote the Euclidean pro-
jection onto \scrK . We now provide (in Algorithm pADMM) a proximal ADMM for the
approximate solution of (4.4).

Algorithm pADMM Proximal alternating direction method of multipliers.

Input: \sigma > 0, Rx \succ 0, \gamma \in 
\Bigl( 
0, 1+

\surd 
5

2

\Bigr) 
, (x0,w0, y1,0, y2,0)\in \BbbR 3n+m.

for (t= 0,1,2, . . .) do
wt+1 = argmin

w
\{ L\sigma (xt,w, y1,t, y2,t)\} \equiv \Pi \scrK 

\bigl( 
prox\sigma  - 1g

\bigl( 
xt + \sigma  - 1y2,t

\bigr) \bigr) 
.

xt+1 = argmin
x

\bigl\{ 
L\sigma (x,wt+1, y1,t, y2,t) +

1
2\| x - xt\| 2Rx

\bigr\} 
.

y1,t+1 = y1,t  - \gamma \sigma (Axt+1  - b).
y2,t+1 = y2,t  - \gamma \sigma (wt+1  - xt+1).

end for

We note that under feasibility and convexity assumptions on (4.4), Algorithm
pADMM is able to achieve global convergence potentially at a linear rate, assuming
strong convexity (see [14]), even in cases where Rx is not positive definite [26]. Here
we assume that Rx is positive definite, and we employ it as a means of reducing the
memory requirements of Algorithm pADMM. More specifically, given some constant
\^\sigma > 0, such that \^\sigma In  - Off(Q)\succ 0, we define

Rx = \^\sigma In  - Off(Q),

where Off(B) denotes the matrix with zero diagonal and off-diagonal elements equal
to the off-diagonal elements of B. We note that this method was employed in [41] as
a means of obtaining a starting point for a semismooth Newton-proximal method of
multipliers, suitable for the solution of (4.3).

In the experiments to follow, Algorithm pADMM uses the zero vector as a starting
point, while the step-size is set to the value \gamma = 1.618. The penalty parameter \sigma is
given to the algorithm by the user, and this is later utilized to tune the method over
an appropriate set of problem instances. We expect that different values for \sigma should
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A2696 SPYRIDON POUGKAKIOTIS AND DIONYSIOS KALOGERIAS

be chosen when considering Poisson and convection-diffusion problems. Thus, in the
following subsection we tune Algorithm pADMM for each of the two problem classes
separately.

4.2.2. Automated tuning: Problem formulation and numerical results.
Given a positive number k, we consider a general stochastic optimization problem of
the form

min
\sigma \in \BbbR 

f(\sigma ;k) :=\BbbE [F (\sigma , \xi ;k)] + \delta [\sigma \mathrm{m}\mathrm{i}\mathrm{n},\sigma \mathrm{m}\mathrm{a}\mathrm{x}] (\sigma ) , \xi \sim P,(4.5)

where f(\sigma ;k) =``expected residual reduction of Algorithm pADMM after k iterations,
given the penalty parameter \sigma , for discretized problems of the form of (4.3) originating
from a distribution P."" We assume that \xi \in \Xi \subset \BbbR d, where a sample \xi is a specific
problem instance of the form of (4.3). In particular, we consider two different tuning
problems and thus two different distributions P1, P2. Sampling either of the two
distributions P1, P2 yields a problem of the form of (4.3) with arbitrary (but sensible)
values for the regularization parameters \beta 1, \beta 2 > 0, as well as a randomly chosen (grid-
based) problem size. For P1, the linear constraints model the Poisson equation, while
for P2 they model the convection-diffusion equation. The values for the remaining
problem parameters (i.e., control bounds, desired states, wind vector, and diffusion
coefficient) are given in the previous subsection.

Remark 4.1. Notice that the choice of f(\cdot ;k) in (4.5) has multiple motivations.
First, by choosing a small value for k (e.g., 10 or 15), we can ensure that each run of
Algorithm pADMM will not take excessive time (since one run of the algorithm cor-
responds to a sample-function evaluation within Algorithm Z-ProxSG). Additionally,
the scale of f(\cdot ;k) is expected to be comparable for very different classes of problems.
Indeed, assuming that Algorithm pADMM does not diverge (which could only happen
if an infeasible instance was tackled), we expect that in most cases 0 \leq f(\cdot ;k) \leq C,
where C = \scrO (1) is a small positive value, irrespective of the problem under consid-
eration, since we measure the residual reduction. However, it should be noted that
this is a heuristic. Indeed, finding the parameter value that yields the fastest residual
reduction in the first k iterations does not necessarily yield an optimal convergence
behavior in the long run. Nonetheless, we can always increase the value of k at the
expense of a more expensive meta-tuning. In both cases considered here, this was not
required.

Finally, we note that the constraints in (4.5) arise from prior information that we
might have about the class of problems that we consider. It is well known that very
small or very large values for the penalty parameter of the ADMM tend to perform
poorly (see, e.g., the discussions in [9, section 3.4.1] or [50]). Thus, some limited
preliminary experimentation can determine suitable values for \sigma min and \sigma max for each
problem class that is considered. In the experiments to follow we set \sigma min = 10 - 2 and
\sigma max = 102.

In order to find an approximate solution to (4.5), we need to define a representa-
tive discrete training set from the space of optimization problems produced by P1 (or
P2, respectively). To that end, we will use a discrete training set \^\Xi = \{ \xi 1, . . . , \xi m\} \subset \Xi ,
which yields the following problem:

min
\sigma \in \BbbR 

f(\sigma ;k) :=
1

m

m\sum 
j=1

F (\sigma , \xi j ;k) + \delta [\sigma \mathrm{m}\mathrm{i}\mathrm{n},\sigma \mathrm{m}\mathrm{a}\mathrm{x}] (\sigma ) .(4.6)
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A ZEROTH-ORDER PROXIMAL STOCHASTIC GRADIENT METHOD A2697

Once an approximate solution to (4.6) is found, we can test its quality on out-of-
sample PDE-constrained optimization instances. For both problem classes (i.e., Pois-
son and convection-diffusion optimal control), we construct 80 optimization instances.
In particular, we define the sets

\scrB 1 := \{ 0,10 - 2,10 - 4,10 - 6\} , \scrB 2 := \{ 0,10 - 2,10 - 4,10 - 6\} ,
\scrM := \{ (23 + 1)2, (24 + 1)2, (25 + 1)2, (26 + 1)2, (27 + 1)2\} ,

where \scrB 1 (\scrB 2, respectively) contains potential values for \beta 1 (\beta 2, respectively), while
\scrM contains potential problem sizes. At each iteration t of Algorithm Z-ProxSG, we
sample uniformly \beta t,1 \in \scrB 1, \beta t,2 \in \scrB 2, and nt \in \scrM and use the triple \xi = (\beta t,1, \beta t,2, nt)
to generate an optimization instance. Then, F (\cdot , \xi ;k) can be evaluated by running
Algorithm pADMM on this instance for k iterations and subsequently computing the
residual reduction. In the following runs of Algorithm Z-ProxSG, we set \mu = 5 \cdot 10 - 10

and T = 200 \cdot m, where m= | \scrB 1| \cdot | \scrB 2| \cdot | \scrM | = 80.
Poisson optimal control. Let us first consider Poisson optimal control problems.

We apply Algorithm Z-ProxSG to find an approximate solution of (4.6), with k= 15.
We choose \sigma \ast as the last iteration of Algorithm Z-ProxSG, which in this case turned
out to be \sigma \ast = 0.2778. Then, in order to evaluate the quality of this penalty, we run
Algorithm pADMM on 40 randomly chosen out-of-sample Poisson optimal control
problems for different penalty values \sigma \in [\sigma min, \sigma max], including \sigma \ast . In particular, in
order to create out-of-sample instances, we define the sets

\^\scrB 1 := \{ 10 - 3,5 \cdot 10 - 3,10 - 5,5 \cdot 10 - 5\} , \^\scrB 2 := \{ 10 - 3,5 \cdot 10 - 3,10 - 5,5 \cdot 10 - 5\} ,
\^\scrM := \{ (23 + 1)2, (24 + 1)2, (25 + 1)2, (26 + 1)2, (27 + 1)2, (28 + 1)2\} .

These correspond to 96 optimization instances that were not used during the zeroth-
order meta-tuning. The averaged convergence profiles (measuring the scaled residual
versus the ADMM iteration) are summarized in Figure 3.

In Figure 3 we observe that out of the six different values for \sigma , Algorithm
pADMM exhibits the most consistent behavior when using the value that Algo-
rithm Z-ProxSG suggested as ``optimal."" The next two best-performing values were

Fig. 3. Convergence profiles for pADMM with varying penalty parameter \sigma : average residual
reduction (lines) and 95\% confidence intervals (shaded regions) vs. number of pADMM iterations.
The algorithm is run over 40 randomly selected (out-of-sample) Poisson optimal control problems.
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\sigma = 0.8 and \sigma = 0.05, and one can observe that these are the ones closest to
\sigma \ast = 0.2778. Let us note that the y-axis in Figure 3 only shows values less than
0.1. This was enforced for readability purposes.

Optimal control of the convection-diffusion equation. We now consider the opti-
mal control of the convection-diffusion equation. As before, we apply Algorithm Z-
ProxSG to find an approximate solution of (4.6), with k= 15. We choose \sigma \ast as the last
iteration of Algorithm Z-ProxSG, which in this case turned out to be \sigma \ast = 5.7004. We
evaluate the quality of this penalty by running Algorithm pADMM on 40 randomly
chosen out-of-sample convection-diffusion optimal control problems for different pen-
alty values \sigma \in [\sigma min, \sigma max], including \sigma \ast . As before, these instances are created by
sampling the previously defined sets \^\scrB 1, \^\scrB 2, and \^\scrM . The averaged convergence pro-
files (measuring the scaled residual versus the ADMM iteration) are summarized in
Figure 4.

Based on the results shown in Figure 4 we can observe that Algorithm Z-ProxSG
is indeed able to find a value for \sigma that approximately minimizes the residual re-
duction of the ADMM during the first k iterations. However, as already noted, this
is not necessarily the optimal choice when running Algorithm pADMM for a much
larger number of iterations. We expect that in many cases (e.g., as in the optimal
control of the Poisson equation) the first few iterations of the ADMM are sufficient
to predict the behavior of the algorithm in later iterations. On the other hand, from
the convection-diffusion instances, we observe that a very steep residual reduction
during the first ADMM iterations (e.g., observed when \sigma = 50 or \sigma = 20) does not
necessarily result in the minimum achievable residual reduction after a large number
of ADMM iterations. Of course, this could be taken into account by increasing the
value of k (e.g., the user might set it equal to the number of iterations that they are
willing to let ADMM run for the specific application at hand), but it should be noted
that this would result in more expensive sample-function evaluations of problem (4.5).
Other heuristics could also improve the generalization performance of the model in
(4.5) (such as employing different starting point strategies for the ADMM runs during
the ``training""). However, the focus of this paper prevents us from investigating this

Fig. 4. Convergence profiles for pADMM with varying penalty parameter \sigma : average residual
reduction (lines) and 95\% confidence intervals (shaded regions) vs. number of pADMM iterations.
The algorithm is run over 40 randomly selected (out-of-sample) convection-diffusion optimal control
problems.
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matter any further. Most important, in both problem classes we were able to showcase
that Algorithm Z-ProxSG succeeds in finding approximate solutions to (4.5), yielding
efficient versions of Algorithm pADMM.

5. Conclusions. In this paper we have derived and analyzed a zeroth-order
proximal stochastic gradient method suitable for the solution of weakly convex sto-
chastic optimization problems. We demonstrated that, under minimal assumptions,
the algorithm is guaranteed to converge to a near-stationary solution of the problem
at a rate comparable to that achieved by similar subgradient schemes. The theoretical
results were consistently verified numerically on certain phase-retrieval instances, sup-
porting the viability of the proposed approach. Finally, we developed a novel heuristic
model for the calculation of ``optimal"" hyperparameters of optimization algorithms
applied to some arbitrarily given class of problems. Using the latter, we were able to
numerically demonstrate that the proposed zeroth-order algorithm can be efficiently
employed for hyperparameter tuning problems, yielding very promising results.

Appendix.

A.1. Proof of Lemma 3.2.

Proof. From the definition of \^xt we have

\alpha t\=\rho (xt  - \^xt)\in \alpha t\partial r (\^xt) + \alpha t\nabla f\mu (\^xt)\leftrightarrow \alpha t\=\rho xt  - \alpha t\nabla f\mu (\^xt) + \delta t\^xt \in \^xt + \alpha t\partial r (\^xt)

\leftrightarrow \^xt = prox\alpha tr (\alpha t\=\rho xt  - \alpha t\nabla f\mu (xt) + \delta t\^xt).

This completes the proof.

A.2. Proof of Lemma 3.5.
Proof. Following [27, Lemma 5.2], we begin by noting that for any x1, x2 \in \BbbR n,

the following holds:

\phi (x1) - \phi (x2) = \phi \mu (x1) + \phi (x1) - \phi \mu (x1) - \phi \mu (x2) - \phi (x2) + \phi \mu (x2)

\leq \phi \mu (x1) - \phi \mu (x2) + 2 sup
x\in \BbbR n

| \phi \mu (x) - \phi (x)| 

\leq \phi \mu (x1) - \phi \mu (x2) + 2\mu Lf,0n
1
2 ,

where the second inequality follows from (2.1). On the other hand, given v\mu \in \partial \phi \mu (xt),
from \rho -weak convexity of \phi \mu (\cdot ), and by utilizing Proposition 2.2, we obtain

\langle x1  - x2, v\mu \rangle \geq \phi \mu (x1) - \phi \mu (x2) - 
\rho 

2
\| x1  - x2\| 22

\geq \phi (x1) - \phi (x2) - 
\rho 

2
\| x1  - x2\| 22  - 2\mu Lf,0n

1
2

for any x1, x2 \in \BbbR n. By letting x1 = x and x2 = \~x := prox\=\rho  - 1\phi (x), and by noting
that \=\rho > \rho , we obtain

\langle x - \~x, v\mu \rangle \geq \phi (x) - \phi (\~x) - \rho 

2
\| x - \~x\| 22  - 2\mu Lf,0n

1
2

\equiv \phi (x) +
\=\rho 

2
\| x - x\| 22  - 

\Bigl( 
\phi (\~x) +

\=\rho 

2
\| \~x - x\| 22

\Bigr) 
+

\=\rho  - \rho 

2
\| \~x - x\| 22  - 2\mu Lf,0n

1
2 .

However, we know that the map y \mapsto \rightarrow 
\bigl( 
\phi (y) + \=\rho 

2\| y - x\| 22
\bigr) 
is strongly convex with

parameter \=\rho  - \rho and is minimized at \~x, and thus

\phi (x) +
\=\rho 

2
\| x - x\| 22  - 

\Bigl( 
\phi (\~x) +

\=\rho 

2
\| \~x - x\| 22

\Bigr) 
\geq \=\rho  - \rho 

2
\| x - \~x\| 22.
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Hence, we obtain

\langle x - \~x, v\mu \rangle \geq (\=\rho  - \rho )\| \~x - x\| 22  - 2\mu Lf,0n
1
2

\equiv \=\rho  - \rho 

\=\rho 2
\| \nabla \phi 1/\=\rho (x)\| 22  - 2\mu Lf,0n

1
2 ,

where the last equivalence follows from the characterization of the gradient of the
Moreau envelope, as well as the definition of \~xt, and completes the proof.

Reproducibility of computational results. This paper has been awarded
the ``SIAM Reproducibility Badge: code and data available"", as a recognition that
the authors have followed reproducibility principles valued by SISC and the scientific
computing community. Code and data that allow readers to reproduce the results in
this paper are available at https://github.com/spougkakiotis/Z-ProxSG.
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