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Abstract. The search for efficient image denoising methods is still a valid challenge at the crossing
of functional analysis and statistics. In spite of the sophistication of the recently proposed
methods, most algorithms have not yet attained a desirable level of applicability. All
show an outstanding performance when the image model corresponds to the algorithm
assumptions but fail in general and create artifacts or remove fine structures in images.
The main focus of this paper is, first, to define a general mathematical and experimental
methodology to compare and classify classical image denoising algorithms and, second, to
propose a nonlocal means (NL-means) algorithm addressing the preservation of structure
in a digital image. The mathematical analysis is based on the analysis of the “method
noise,” defined as the difference between a digital image and its denoised version. The
NL-means algorithm is proven to be asymptotically optimal under a generic statistical
image model. The denoising performance of all considered methods is compared in four
ways; mathematical: asymptotic order of magnitude of the method noise under regularity
assumptions; perceptual-mathematical: the algorithms artifacts and their explanation as
a violation of the image model; quantitative experimental: by tables of L2 distances of the
denoised version to the original image. The fourth and perhaps most powerful evaluation
method is, however, the visualization of the method noise on natural images. The more
this method noise looks like a real white noise, the better the method.
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1. Introduction.

1.1. Digital Images and Noise. The need for efficient image restoration methods
has grown with the massive production of digital images and movies of all kinds, often
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114 A. BUADES, B. COLL, AND J. M. MOREL

taken in poor conditions. No matter how good cameras are, an image improvement
is always desirable to extend their range of action.

A digital image is generally encoded as a matrix of grayscale or color values. In
the case of a movie, this matrix has three dimensions, the third one corresponding to
time. Each pair (i, u(i)), where u(i) is the value at i, is called a pixel, short for “picture
element.” In the case of grayscale images, i is a point on a two-dimensional (2D) grid
and u(i) is a real value. In the case of classical color images, u(i) is a triplet of values
for the red, green, and blue components. All of what we shall say applies identically
to movies, three-dimensional (3D) images, and color or multispectral images.

The two main limitations in image accuracy are categorized as blur and noise.
Blur is intrinsic to image acquisition systems, as digital images have a finite number of
samples and must satisfy the Shannon–Nyquist sampling conditions [81]. The second
main image perturbation is noise.

Each one of the pixel values u(i) is the result of a light intensity measurement,
usually made by a charge coupled device (CCD) matrix coupled with a light focusing
system. Each captor of the CCD is roughly a square in which the number of incoming
photons is being counted for a fixed period corresponding to the obturation time.
When the light source is constant, the number of photons received by each pixel
fluctuates around its average in accordance with the central limit theorem. In other
words, one can expect fluctuations of order

√
n for n incoming photons. In addition,

each captor, if not adequately cooled, receives heat photons. This perturbation is
usually called “obscurity noise.” In a first rough approximation one can write

v(i) = u(i) + n(i),

where i ∈ I, v(i) is the observed value, u(i) would be the “true” value at pixel i,
namely, the one which would be observed by averaging the photon counting on a long
period of time, and n(i) is the noise perturbation. As indicated, the amount of noise
is signal-dependent; that is, n(i) is larger when u(i) is larger. In noise models, the
normalized values of n(i) and n(j) at different pixels are assumed to be independent
random variables, and one talks about “white noise.”

1.2. Signal and Noise Ratios. A good quality photograph (for visual inspection)
has about 256 grayscale values, where 0 represents black and 255 represents white.
Measuring the amount of noise by its standard deviation, σ(n), one can define the
signal-to-noise ratio (SNR) as SNR = σ(u)

σ(n) , where σ(u) denotes the empirical stan-

dard deviation of u, σ(u) =
(

1
|I|

∑
i∈I(u(i)− u)2

) 1
2 , and u = 1

|I|
∑

i∈I u(i) is the av-
erage grayscale value. The standard deviation of the noise can also be obtained as an
empirical measurement or formally computed when the noise model and parameters
are known. A good quality image has a standard deviation of about 60.

The best way to test the effect of noise on a standard digital image is to add a
Gaussian white noise, in which case n(i) are independently and identically distributed
(i.i.d.) Gaussian real variables. When σ(n) = 3, no visible alteration is usually ob-
served. Thus, a 60

3 � 20 SNR is nearly invisible. Surprisingly enough, one can add
white noise up to a 2

1 ratio and still see everything in a picture! This fact is illus-
trated in Figure 1 and constitutes a major enigma of human vision. It justifies the
many attempts to define convincing denoising algorithms. As we shall see, the re-
sults have been rather disappointing. Denoising algorithms see no difference between
small details and noise, and therefore they remove them. In many cases, they cre-
ate new distortions, and researchers are so used to them that they have created a
taxonomy of denoising artifacts: “ringing,” “blur,” “staircase effect,” “checkerboard



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

IMAGE DENOISING METHODS 115

Fig. 1 A digital image with standard deviation 55, the same with noise added (standard deviation 3),
the SNR therefore being equal to 18, and the same with SNR slightly larger than 2. In
the second image, no alteration is visible. In the third, a conspicuous noise with standard
deviation 25 has been added, but, surprisingly enough, all details of the original image still
are visible.

effect,” “wavelet outliers,” etc. This fact is not quite a surprise. Indeed, to the best
of our knowledge, all denoising algorithms are based on

• a noise model;
• a generic image smoothness model, local or global.

In experimental settings, the noise model is perfectly precise. So the weak point of
the algorithms is the inadequacy of the image model. All of the methods assume that
the noise is oscillatory and that the image is smooth or piecewise smooth. So they try
to separate the smooth or patchy part (the image) from the oscillatory one. Actually,
many fine structures in images are as oscillatory as noise is; conversely, white noise
has low frequencies and therefore smooth components. Thus a separation method
based on smoothness arguments only is hazardous.

1.3. The “Method Noise.”. All denoising methods depend on a filtering param-
eter h. For most methods, the parameter h depends on an estimation of the noise
variance σ2. One can define the result of a denoising method Dh as a decomposition
of any image v as v = Dhv + n(Dh, v), where

1. Dhv is more smooth than v;
2. n(Dh, v) is the noise guessed by the method.

It is not enough to smooth v to ensure that n(Dh, v) will look like a noise. The more
recent methods are actually not content with a smoothing but try to recover lost
information in n(Dh, v) [59, 71]. So the focus is on n(Dh, v).

Definition 1.1 (method noise). Let u be a (not necessarily noisy) image and
Dh a denoising operator depending on h. Then we define the method noise of u as
the image difference

(1.1) n(Dh, u) = u−Dh(u).

This method noise should be as similar to a white noise as possible. In addition,
since we would like the original image u not to be altered by denoising methods, the
method noise should be as small as possible for the functions with the right regularity.

According to the preceding discussion, five criteria can and will be taken into
account in the comparison of denoising methods:

• A display of typical artifacts in denoised images.
• A formal computation of the method noise on smooth images, evaluating how

small it is in accordance with image local smoothness.
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116 A. BUADES, B. COLL, AND J. M. MOREL

• A comparative display of the method noise of each method on real images
with σ = 2.5. We mentioned that a noise standard deviation smaller than 3 is
subliminal, and it is expected that most digitization methods allow themselves
this amount of noise.

• A classical comparison receipt based on noise simulation: it consists of taking
a good quality image, adding Gaussian white noise with known σ, and then
computing the best image recovered from the noisy one by each method. A
table of L2 distances from the restored to the original can be established. The
L2 distance does not provide a good quality assessment. However, it reflects
well the relative performances of algorithms.

• A comparison following the “noise to noise” criterion, which requires the
residual noise to be as white as possible, and therefore artifact free.

On top of this, in two cases, a proof of asymptotic recovery of the image can be
obtained by statistical arguments.

1.4. Which Methods to Compare. We had to make a selection of the denoising
methods we wished to compare. Here a difficulty arises, as most original methods
have caused an abundant literature proposing many improvements. So we tried to
get the best available version, while keeping the simple and genuine character of the
original method: no hybrid method. We shall analyze the following:

1. Gaussian smoothing (Gabor quoted in Lindenbaum, Fischer, and Bruck-
stein [54]);

2. anisotropic filtering (Perona and Malik [72], Alvarez, Lions, and Morel [3]);
3. the Rudin–Osher–Fatemi total variation [79];
4. the Yaroslavsky neighborhood filters [95, 97];
5. the Wiener local empirical filter as implemented by Yaroslavsky [97];
6. the translation invariant wavelet thresholding [24], a simple and performing

variant of the wavelet thresholding [33];
7. the nonlocal means (NL-means) algorithm, which we introduce here.

This last algorithm is given by a simple closed formula. Let u be defined in a bounded
domain Ω ⊂ R

2; then

NL(u)(x) =
1

C(x)

∫
e−

(Ga∗|u(x+.)−u(y+.)|2)(0)
h2 u(y) dy,

where x ∈ Ω, Ga is a Gaussian kernel of standard deviation a, h acts as a filtering

parameter, and C(x) =
∫
e−

(Ga∗|u(x+.)−u(z+.)|2)(0)
h2 dz is the normalizing factor. In order

to make clear the previous definition, we recall that

(Ga ∗ |u(x + .) − u(y + .)|2)(0) =
∫

R2
Ga(t)|u(x + t) − u(y + t)|2dt.

This amounts to saying that NL(u)(x), the denoised value at x, is a mean of the
values of all pixels whose Gaussian neighborhood looks like the neighborhood of x.

1.5. Plan of the Paper. Section 2 computes formally the method noise for the
best elementary local smoothing methods, namely, Gaussian smoothing, anisotropic
smoothing (mean curvature motion), total variation minimization, and the neighbor-
hood filters. For all of them we prove or recall the asymptotic expansion of the filter
at smooth points of the image and therefore obtain a formal expression of the method
noise. This expression permits us to characterize places where the filter performs well
and where it fails. In section 3, we treat the Wiener-like methods, which proceed by
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a soft or hard threshold on frequency or space-frequency coefficients. We examine in
turn the Wiener–Fourier filter, the Yaroslavsky local adaptive discrete cosine trans-
form (DCT)-based filters, and the wavelet threshold method. Of course, the Gaussian
smoothing belongs to both classes of filters. In section 4, we introduce the NL-means
filter. This method is not easily classified in the preceding terminology, since it can
work adaptively in a local or nonlocal way. We first give a proof that this algorithm
is asymptotically consistent (it gives back the conditional expectation of each pixel
value given an observed neighborhood) under the assumption that the image is a fairly
general stationary random process. The works of Efros and Leung [38] and Levina [52]
have shown that this assumption is sound for images having enough samples in each
texture patch. In section 5, we compare all algorithms from several points of view, do a
performance classification, and explain why the NL-means algorithm shares the consis-
tency properties of most of the aforementioned algorithms. Section 6 is new. It reviews
the numerous improvements and generalizations of NL-means discovered since 2005.

1.6. Note to the Reader. The present paper is an updated version of “A Review
of Image Denoising Algorithms, with a New One” [20]. The text and structure of the
original paper have been preserved. However, several spurious comparisons, technical
proofs, and appendices have been adapted or removed. On the recommendation of the
editorial board, the controversial benchmark image Lena has been replaced. The new
section 6 reviews the abundant literature on “nonlocal image processing” stemming
from the original paper. The denoising algorithm NL-means can be tested online:
http://mw.cmla.ens-cachan.fr/megawave/demo/.

2. Local Smoothing Filters. The original image u is defined in a bounded do-
main Ω ⊂ R

2 and denoted by u(x) for x = (x, y) ∈ R
2. This continuous image is

usually interpreted as the Shannon interpolation of a discrete grid of samples [81] and
is therefore analytic. The distance between two consecutive samples is denoted by ε.
The noise itself is a discrete phenomenon on the sampling grid. According to the usual
screen and printing visualization practice, we do not interpolate the noise samples ni
as a band-limited function but rather as a piecewise constant function, constant on
each pixel i and equal to ni. We write |x| = (x2 + y2)

1
2 and x1.x2 = x1x2 + y1y2 as

the norm and scalar product and denote the derivatives of u by ux = ∂u
∂x , uy = ∂u

∂y ,
and uxy = ∂2u

∂x∂y . The gradient of u is written as Du = (ux, uy) and the Laplacian of
u as ∆u = uxx + uyy.

2.1. Gaussian Smoothing. By Riesz’s theorem, image isotropic linear filtering
boils down to a convolution of the image by a linear radial kernel. The smoothing
requirement is usually expressed by the positivity of the kernel. The paradigm of such

kernels is, of course, the Gaussian x → Gh(x) = 1
(4πh2)e

− |x|2
4h2 . In that case, Gh has

standard deviation h, and the following theorem is easily seen.
Theorem 2.1 (Gabor [42]). The image method noise of the convolution with a

Gaussian kernel Gh is

u−Gh ∗ u = −h2∆u + o(h2).

A similar result is actually valid for any positive radial kernel with bounded
variance, so one can keep the Gaussian example without loss of generality. The
preceding estimate is valid if h is small enough. On the other hand, the noise reduction
properties depend upon the fact that the neighborhood involved in the smoothing is
large enough, so that the noise gets reduced by averaging. So in the following we
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assume that h = kε, where k stands for the number of samples of the function u and
noise n in an interval of length h. The spatial ratio k must be much larger than 1
to ensure a noise reduction. The effect of a Gaussian smoothing on the noise can be
evaluated at a reference pixel i = 0. At this pixel,

Gh ∗ n(0) =
∑
i∈I

∫
Pi

Gh(x)n(x)dx =
∑
i∈I

ε2Gh(i)ni,

where we recall that n(x) is being interpolated as a piecewise constant function, the
Pi square pixels centered in i have size ε2, and Gh(i) denotes the mean value of the
function Gh on the pixel i. Denoting by Var (X) the variance of a random variable
X , the additivity of variances of independent centered random variables yields

Var (Gh ∗ n(0)) =
∑
i

ε4Gh(i)2σ2 � σ2ε2

∫
Gh(x)2dx =

ε2σ2

8πh2
.

So we have proved the following theorem.
Theorem 2.2. Let n(x) be a piecewise constant white noise, with n(x) = ni on

each square pixel i. Assume that the ni are i.i.d. with zero mean and variance σ2.
Then the “noise residue” after a Gaussian convolution of n by Gh satisfies

Var (Gh ∗ n(0)) � ε2σ2

8πh2
.

In other terms, the standard deviation of the noise, which can be interpreted as the
noise amplitude, is multiplied by ε

h
√

8π
.

Theorems 2.1 and 2.2 traduce the delicate equilibrium between noise reduction
and image destruction by any linear smoothing. Denoising does not alter the image
at points where it is smooth at a scale h much larger than the sampling scale ε.
The first theorem tells us that the method noise of the Gaussian denoising method is
zero in harmonic parts of the image. A Gaussian convolution is optimal on harmonic
functions and instead performs poorly on singular parts of u, namely, edges or texture,
where the Laplacian of the image is large. See Figure 2.

2.2. Anisotropic Filters and Curvature Motion. The anisotropic filter (AF)
attempts to avoid the blurring effect of the Gaussian by convolving the image u at x
only in the direction orthogonal to Du(x). The idea of such a filter goes back to
Perona and Malik [72] and actually again to Gabor (quoted in Lindenbaum, Fischer,
and Bruckstein [54]). Set

AFhu(x) =
∫

Gh(t)u
(
x + t

Du(x)⊥

|Du(x)|
)

dt

for x such that Du(x) 
= 0 and where (x, y)⊥ = (−y, x) and Gh(t) = 1√
2πh

e−
t2

2h2 is the
one-dimensional (1D) Gauss function with variance h2. At points where Du(x) = 0
an isotropic Gaussian mean is usually applied, and the result of Theorem 2.1 holds
at those points. If one assumes that the original image u is twice continuously dif-
ferentiable (C2) at x, the following theorem is easily shown by a second-order Taylor
expansion.

Theorem 2.3. The image method noise of an anisotropic filter AFh is

u(x) −AFhu(x) � −1
2
h2D2u

(
Du⊥

|Du| ,
Du⊥

|Du|
)

= −1
2
h2|Du|curv(u)(x),

where the relation holds when Du(x) 
= 0.
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IMAGE DENOISING METHODS 119

Fig. 2 Denoising experience on a natural image. From left to right and from top to bottom: noisy
image (standard deviation σ = 20), Gaussian convolution (h = 1.8), anisotropic filter
(h = 2.4), total variation (λ = 0.04), and the Yaroslavsky neighborhood filter (ρ = 7, h = 28).
Parameters have been set for each algorithm so that the removed energy is equal to the energy
of the added noise.

By curv(u)(x), we denote the curvature, i.e., the signed inverse of the radius of
curvature of the level line passing by x. When Du(x) 
= 0, this means that

curv(u) =
uxxu

2
y − 2uxyuxuy + uyyu

2
x

(u2
x + u2

y)
3
2

.

This method noise is zero wherever u behaves locally like a one-variable function,
u(x, y) = f(ax + by + c). In such a case, the level line of u is locally the straight
line with equation ax + by + c = 0, and the gradient of f may instead be very large.
In other terms, with anisotropic filtering, an edge can be maintained. On the other
hand, we have to evaluate the Gaussian noise reduction. This is easily done by a
1D adaptation of Theorem 2.2. Notice that the noise on a grid is not isotropic; so
the Gaussian average when Du is parallel to one coordinate axis is made roughly on√

2 more samples than the Gaussian average in the diagonal direction.
Theorem 2.4. By anisotropic Gaussian smoothing, when ε is small enough with

respect to h, the noise residue satisfies

Var (AFh(n)) ≤ ε√
2πh

σ2.

In other terms, the standard deviation of the noise n is multiplied by a factor at most
equal to ( ε√

2πh
)1/2, this maximal value being attained in the diagonals.

Proof. Let L be the line x + tDu
⊥(x)

|Du(x)| passing by x, parameterized by t ∈ R,
and denote by Pi, i ∈ I, the pixels which meet L, n(i) the noise value, constant on
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pixel Pi, and εi the length of the intersection of L ∩ Pi. Denote by g(i) the average
of Gh(x + tDu

⊥(x)
|Du(x)| ) on L ∩ Pi. Then one has AFhn(x) � ∑

i εin(i)g(i). The n(i) are
i.i.d. with standard variation σ, and therefore

Var (AFh(n)) =
∑
i

ε2
iσ

2g(i)2 ≤ σ2 max(εi)
∑
i

εig(i)2, yielding

Var (AFh(n)) ≤ √
2εσ2

∫
Gh(t)2dt =

ε√
2πh

σ2.

There are many versions of AFh, all yielding an asymptotic estimate equivalent
to the one in Theorem 2.3: the famous median filter [46], an inf-sup filter on segments
centered at x [21], and the clever numerical implementation of the mean curvature
equation in [64]. So all of those filters have in common the good preservation of edges,
but they perform poorly on flat regions and are worse there than a Gaussian blur.
This fact derives from the comparison of the noise reduction estimates of Theorems
2.1 and 2.4 and is experimentally patent in Figure 2.

2.3. Total Variation. The total variation minimization was introduced by Rudin
and Osher [78]. The original image u is supposed to have a simple geometric descrip-
tion, namely, a set of connected sets, the objects, along with their smooth contours, or
edges. The image is smooth inside the objects but with jumps across the boundaries.
The functional space modeling these properties is BV (Ω), the space of integrable
functions with finite total variation TVΩ(u) =

∫ |Du|, where Du is assumed to be a
Radon measure. Given a noisy image v(x), the above-mentioned authors proposed
to recover the original image u(x) as the solution of the constrained minimization
problem

(2.1) argmin
u

TVΩ(u),

subject to the noise constraints∫
Ω

(u(x)− v(x))dx = 0 and
∫

Ω

|u(x) − v(x)|2dx = σ2.

The solution u must be as regular as possible in the sense of the total variation,
while the difference v(x)− u(x) is treated as an error, with a prescribed energy. The
constraints prescribe the right mean and variance to u − v but do not ensure that
it is similar to a noise (see a thorough discussion in [65]). The preceding problem is
naturally linked to the unconstrained problem

(2.2) argmin
u

TVΩ(u) + λ

∫
Ω

|v(x) − u(x)|2dx

for a given Lagrange multiplier λ. The above functional is strictly convex and lower
semicontinuous with respect to the weak-star topology of BV . Therefore the minimum
exists, is unique, and is computable (see, e.g., [22]). The parameter λ controls the
tradeoff between the regularity and fidelity terms. As λ gets smaller the weight of
the regularity term increases. Therefore λ is related to the degree of filtering of the
solution of the minimization problem. Let us denote by TV Fλ(v) the solution of
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problem (2.2) for a given value of λ. The Euler–Lagrange equation associated with
the minimization problem is given by

(u(x) − v(x)) − 1
2λ

curv(u)(x) = 0

(see [78]). Thus, we have the following theorem.
Theorem 2.5. The method noise of the total variation minimization (2.2) is

u(x)− TVFλ(u)(x) = − 1
2λ

curv(TVFλ(u))(x).

As in the anisotropic case, straight edges are maintained because of their small
curvature. However, details and texture can be oversmoothed if λ is too small, as is
shown in Figure 2.

2.4. Neighborhood Filters. The previous filters are based on a notion of spatial
neighborhood or proximity. Neighborhood filters instead take into account grayscale
values to define neighboring pixels. In the simplest and more extreme case, the de-
noised value at pixel i is an average of values at pixels which have a grayscale value
close to u(i). The grayscale neighborhood is therefore

B(i, h) = {j ∈ I | u(i)− h < u(j) < u(i) + h}.
This is a fully nonlocal algorithm, since pixels belonging to the whole image are used
for the estimation at pixel i. This algorithm can be written in a more continuous
form,

NFhu(x) =
1

C(x)

∫
Ω

u(y)e−
|u(y)−u(x)|2

h2 dy,

where Ω ⊂ R
2 is an open and bounded set, and C(x) =

∫
Ω
e−

|u(y)−u(x)|2
h2 dy is the

normalization factor.
The Yaroslavsky neighborhood filters [97, 95] consider mixed neighborhoodsB(i, h)

∩Bρ(i), where Bρ(i) is a ball of center i and radius ρ. So the method takes an average
of the values of pixels which are both close in grayscale and spatial distance. This
filter can be easily written in a continuous form as

YNFh,ρ(x) =
1

C(x)

∫
Bρ(x)

u(y)e−
|u(y)−u(x)|2

h2 dy,

where C(x) =
∫
Bρ(x) e

− |u(y)−u(x)|2
h2 dy is the normalization factor. More recent versions,

namely, the SUSAN filter [83] and the bilateral filter [86], weigh the distance to the
reference pixel x instead of considering a fixed spatial neighborhood,

In the next theorem we compute the asymptotic expansion of the Yaroslavky
neighborhood filter when ρ, h → 0.

Theorem 2.6. Suppose u ∈ C2(Ω), and let ρ, h, α > 0 such that ρ, h → 0 and

h = O(ρα). Let us consider the continuous function g̃ defined by g̃(t) = 1
3
te−t2

E(t) , for

t 
= 0, g̃(0) = 1
6 , where E(t) = 2

∫ t
0 e−s

2
ds. Let f̃ be the continuous function defined

by f̃(t) = 3g̃(t) + 3g̃(t)
t2 − 1

2t2 , f̃(0) = 1
6 . Then, for x ∈ Ω,

1. if α < 1, YNFh,ρu(x) − u(x) � 
u(x)
6 ρ2;



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

122 A. BUADES, B. COLL, AND J. M. MOREL

2 4 6 8

-0.1

-0.05

0.05

0.1

0.15

0.2

Fig. 3 Magnitude of the tangent diffusion (continuous line) and normal diffusion (dashed line) of
Theorem 2.6 in the case that ρ = h.

2. if α = 1,
(2.3)
YNFh,ρu(x)− u(x) �

[
g̃

(ρ

h
|Du(x)|

)
uξξ(x) + f̃

(ρ

h
|Du(x)|

)
uηη(x)

]
ρ2;

3. if 1 < α < 3
2 ,

YNFh,ρu(x)− u(x) � g̃
(
ρ1−α|Du(x)|) [ uξξ(x) + 3uηη(x)] ρ2.

According to Theorem 2.6 the Yaroslavsky neighborhood filter acts as an evolution
PDE with two terms. The first term is proportional to the second derivative of u in
the direction ξ, which is tangent to the level line passing through x. The second term
is proportional to the second derivative of u in the direction η which is orthogonal to
the level line passing through x. The evolution equations ut = c1uξξ and ut = c2uηη
act as filtering or enhancing models depending on the signs of c1 and c2. Following
the previous theorem, we can distinguish three cases, depending on the values of h
and ρ.

First, if h is much larger than ρ, both second derivatives are weighted by the
same positive constant. In that case, the addition of both terms is equivalent to the
Laplacian of u, ∆u, and we get back to Gaussian filtering.

Second, if h and ρ have the same order of magnitude, the neighborhood filter
behaves as a filtering/enhancing algorithm. The weighting coefficient of the tangent
diffusion, uξξ, is given by g̃( ρh |Du|). The function g̃ is positive and decreasing. Thus,
there is always diffusion in that direction. The weight of the normal diffusion, uηη,
is given by f̃( ρh |Du|). As the function f̃ takes positive and negative values (see
Figure 3), the filter behaves as a filtering/enhancing algorithm in the normal direction
and depending on |Du|. If B̃ denotes the zero of f̃ , then a filtering model is applied
wherever |Du| < B̃ h

ρ and an enhancing strategy wherever |Du| > B̃ h
ρ . The intensity

of the filtering in the tangent diffusion and the enhancing in the normal diffusion tend
to zero when the gradient tends to infinity. Thus, points with a very large gradient
are not altered. In this case the neighborhood filter asymptotically behaves as the
Perona–Malik equation [72] (see [16] for more details on this comparison). Finally, if
ρ is much larger than h, the value ρ

h tends to infinity, and if the gradient of the image
is bounded, then the filtering magnitude g̃( ρh |Du|) tends to zero. Thus, the original
image is hardly altered.

3. Frequency Domain Filters. Let u be the original image defined on the grid I.
The image is supposed to be modified by the addition of a signal-independent white
noise N . N is a random process where N(i) are i.i.d. with zero mean and have constant
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variance σ2. The resulting noisy process depends on the random noise component,
and therefore it is modeled as a random field V ,

(3.1) V (i) = u(i) + N(i).

Given a noise observation n(i), v(i) denotes the observed noisy image,

(3.2) v(i) = u(i) + n(i).

Let B = {gα}α∈A be an orthonormal basis of R
|I|. The noisy process is transformed

as

(3.3) VB(α) = uB(α) + NB(α),

where VB(α) = 〈V, gα〉, uB(α) = 〈u, gα〉, NB(α) = 〈N, gα〉 are the scalar products of
V , u, and N with gα ∈ B. The noise coefficients NB(α) remain uncorrelated and with
zero mean, but the variances are multiplied by ‖gα‖2:

E[NB(α)NB(β)] =
∑
m,n∈I

gα(m)gβ(n)E[N(m)N(n)]

= 〈gα, gβ〉σ2 = σ2‖gα‖2δ[α− β].

Frequency domain filters are applied independently to every transform coefficient
VB(α), and then the solution is estimated by the inverse transform of the new co-
efficients. Noisy coefficients VB(α) are modified to a(α)VB(α). This is a nonlinear
algorithm because a(α) depends on the value VB(α). The inverse transform yields the
estimate

(3.4) Û = DV =
∑
α∈A

a(α) VB(α) gα.

D is also called a diagonal operator. Let us look for the frequency domain filter D
which minimizes a certain estimation error. This error is based on the squared Eu-
clidean distance, and it is averaged over the noise distribution.

Definition 3.1. Let u be the original image, N be a white noise, and V = u+N .
Let D be a frequency domain filter. Define the risk of D as

(3.5) r(D,u) = E{‖u−DV ‖2},
where the expectation is taken over the noise distribution.

The following easy theorem gives the diagonal operator Dinf that minimizes the
risk,

Dinf = argmin
D

r(D,u).

Theorem 3.2. The operator Dinf which minimizes the risk is given by the family
{a(α)}α, where

(3.6) a(α) =
|uB(α)|2

|uB(α)|2 + ‖gα‖2σ2
,

and the corresponding risk is

(3.7) rinf (u) =
∑
s∈S

‖gα‖4 |uB(α)|2σ2

|uB(α)|2 + ‖gα‖2σ2
.
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The previous optimal operator attenuates all noisy coefficients in order to minimize
the risk. If one restricts a(α) to be 0 or 1, one gets a projection operator. In that case,
a subset of coefficients is kept, and the rest gets canceled. The projection operator
that minimizes the risk r(D,u) is obtained by the family {a(α)}α, where

a(α) =

{
1 |uB(α)|2 ≥ ‖gα‖2σ2,

0 otherwise,

and the corresponding risk is

rp(u) =
∑

‖gα‖2 min(|uB(α)|2, ‖gα‖2σ2).

Note that both filters are ideal operators because they depend on the coefficients
uB(α) of the original image, which are not known. We call, as classical, Fourier–
Wiener filter the optimal operator (3.6) where B is a Fourier basis. This is an ideal
filter, since it uses the (unknown) Fourier transform of the original image. By the use
of the Fourier basis, global image characteristics may prevail over local ones and create
spurious periodic patterns. To avoid this effect, the basis must take into account more
local features, as the wavelet and local DCT transforms do. The search for the ideal
basis associated with each image is still open. One way to adapt the basis to the image
is to use a dictionary of bases, and to adapt the basis to the image by minimizing a
variational criterion [59].

3.1. Local Adaptive Filters in Transform Domain. The local adaptive filters
have been introduced by Yaroslavsky and Eden [95] and Yaroslavsky [94]. In this
case, the noisy image is analyzed in a moving window, and in each position of the
window its spectrum is computed and modified. Finally, an inverse transform is used
to estimate only the signal value in the central pixel of the window.

Let i ∈ I be a pixel and W = W (i) a window centered in i. Then the DCT trans-
form of W is computed and modified. The original image coefficients of W , uB,W (α),
are estimated, and the optimal attenuation of Theorem 3.2 is applied. Finally, only
the center pixel of the restored window is used. This method is called the empirical
Wiener filter. In order to approximate uB,W (α), one can take averages on the additive
noise model, that is,

E|VB,W (α)|2 = |uB,W (α)|2 + σ2‖gα‖2.

Denoting by µ = σ‖gα‖, the unknown original coefficients can be written as

|uB,W (α)|2 = E|VB,W (α)|2 − µ2.

The observed coefficients |vB,W (α)|2 are used to approximate E|VB,W (α)|2, and the
estimated original coefficients are replaced in the optimal attenuation, leading to the
family {a(α)}α, where

a(α) = max
{
0,

|vB,W (α)|2 − µ2

|vB,W (α)|2
}

.

Denote by EWFµ(i) the filter given by the previous family of coefficients. The method
noise of the EWFµ(i) is easily computed, as proved in the following theorem.
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Fig. 4 Denoising experiment on a natural image. From left to right and from top to bottom: noisy
image (standard deviation σ = 20), the wavelet hard thresholding (HWT, µ = 3σ), transla-
tion invariant hard wavelet thresholding (TIHWT, µ = 3σ), and the DCT empirical Wiener
filter (W = 15 × 15 pixels, µ = σ/2). Parameters have been set for each algorithm in such
a way the removed energy is similar to the added noise energy, σ2, getting the best result in
terms of Euclidean distance to the original image.

Theorem 3.3. Let u be an image defined in a grid I, and let i ∈ I be a pixel.
Let W = W (i) be a window centered in the pixel i. Then the method noise of the
EWFµ(i) is given by

u(i)− EWFµ(i) =
∑
α∈Λ

vB,W(α) gα(i) +
∑
α/∈Λ

µ2

|vB,W(α)|2 vB,W (α) gα(i),

where Λ = {α | |vB,W(α)| < µ}.
The presence of an edge in the window W will produce a large number of large

coefficients, and, as a consequence, the cancelation of these coefficients will produce
oscillations. Then spurious cosines will also appear in the image under the form of
checkerboard patterns; see Figure 4.

3.2. Wavelet Thresholding. Let B = {gα}α∈A be an orthonormal basis of wave-
lets [60]. Let us discuss two procedures modifying the noisy coefficients, called wavelet
thresholding methods (Donoho and Johnstone [33]). The first procedure is a projection
operator which approximates the ideal projection (3.6). It is called a hard thresholding
and cancels coefficients smaller than a certain threshold µ,

a(α) =

{
1 |vB(α)| > µ,

0 otherwise.

Let us denote this operator by HWTµ(v). This procedure is based on the idea that the
image is represented with large wavelet coefficients, which are kept, whereas the noise
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is distributed across small coefficients, which are canceled. The performance of the
method depends on the capacity of approximating u by a small set of large coefficients.
Wavelets are, for example, an adapted representation for smooth functions.

Theorem 3.4. Let u be an image defined in a grid I. The method noise of a
hard thresholding HWTµ(u) is

u−HWTµ(u) =
∑

{α||uB(α)|<µ}
uB(α)gα.

Unfortunately, edges cause many small wavelet coefficients, which are lower than
the threshold. The cancelation of these wavelet coefficients causes small oscillations
near the edges, i.e., a Gibbs-like phenomenon. Spurious wavelets can also be seen
in the restored image due to the cancelation of small coefficients; see Figure 4. This
artifact will be called wavelet outliers, as was introduced in [34]. Donoho [32] showed
that these effects can be partially avoided with the use of a soft thresholding,

a(α) =

{
vB(α)−sgn(vB(α))µ

vB(α) , |vB(α)| ≥ µ,

0 otherwise,

which will be denoted by SWTµ(v). The continuity of the soft thresholding operator
better preserves the structure of the wavelet coefficients, reducing the oscillations near
discontinuities. Note that a soft thresholding attenuates all coefficients in order to
reduce the noise, as an ideal operator does. As we shall see at the end of this paper,
the L2 norm of the method noise is lessened when replacing the hard threshold by a
soft threshold. See Figure 11 for a comparison of both method noises.

Theorem 3.5. Let u be an image defined in a grid I. The method noise of a soft
thresholding SWTµ(u) is

u− SWTµ(u) =
∑

{α||uB(α)|<µ}
uB(α)gα + µ

∑
{α||uB(α)|>µ}

sgn(uB(α)) gα.

A simple example can show how to fix the threshold µ. Suppose the original
image u is zero; then vB(α) = nB(α), and therefore the threshold µ must be taken
over the maximum of noise coefficients to ensure their suppression and the recovery
of the original image. It can be shown that the maximum amplitude of a white noise
has a high probability of being smaller than σ

√
2 log |I|. It can be proved that the

risk of a wavelet thresholding with the threshold µ = σ
√

2 log |I| is near the risk rp
of the optimal projection; see [33, 60].

Theorem 3.6. The risk rt(u) of a hard or soft thresholding with the threshold
µ = σ

√
2 log |I| is such that for all |I| ≥ 4

(3.8) rt(u) ≤ (2 log |I| + 1)(σ2 + rp(u)).

The factor 2 log |I| is optimal among all the diagonal operators in B, that is,

(3.9) lim
|I|−>∞

inf
D∈DB

sup
u∈R|I|

E{‖u−DV ‖2}
σ2 + rp(u)

1
2 log |I| = 1.

In practice the optimal threshold µ is very high and cancels too many coefficients
not produced by the noise. A threshold lower than the optimal is used in the exper-
iments and produces much better results; see Figure 4. For a hard thresholding the
threshold is fixed to 3 ∗ σ. For a soft thresholding this threshold still is too high; it is
better fixed at 3

2σ.
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3.3. Translation Invariant Wavelet Thresholding. Coifman and Donoho [24]
improved the wavelet thresholding methods by averaging the estimation of all trans-
lations of the degraded signal. Calling vp(i) the translated signal v(i−p), the wavelet
coefficients of the original and translated signals can be very different, and they are
not related by a simple translation or permutation,

vpB(α) = 〈v(n− p), gα(n)〉 = 〈v(n), gα(n + p)〉.

The vectors gα(n + p) are not in general in the basis B = {gα}α∈A, and therefore the
estimation of the translated signal is not related to the estimation of v. This new
algorithm yields an estimate ûp for every translated vp of the original image,

(3.10) ûp = Dvp =
∑
α∈A

a(α)vpB(α)gα.

The translation invariant thresholding is obtained by averaging all these estimators
after a translation in the inverse sense,

(3.11)
1
|I|

∑
p∈I

ûp(i + p),

and will be denoted by TIHWT and TISWT , respectively, for the hard and soft
thresholding. The Gibbs effect is considerably reduced by the translation invariant
wavelet thresholding (see Figure 4), because the average of different estimations of
the image reduces the oscillations. This is therefore the version we shall use in the
comparison section.

4. NL-Means Algorithm. The local smoothing methods and the frequency do-
main filters aim at a noise reduction and at a reconstruction of the main geometrical
configurations but not at the preservation of the fine structure, details, and texture.
Due to the regularity assumptions on the original image of previous methods, details
and fine structures are smoothed out because they behave in all functional aspects
as noise. The NL-means algorithm we shall now discuss tries to take advantage of
the high degree of redundancy of any natural image. By this, we simply mean that
every small window in a natural image has many similar windows in the same image.
This fact is patent for windows close by, at one pixel distance, and in that case we
go back to a local regularity assumption. Now in a very general sense inspired by the
neighborhood filters, one can define as “neighborhood of a pixel i” any set of pixels j
in the image such that a window around j looks like a window around i. All pixels
in that neighborhood can be used for predicting the value at i, as was first shown
in [38] for 2D images. This first work has inspired many variants for the restoration
of various digital objects, in particular 3D surfaces [82]. The fact that such a self-
similarity exists is a regularity assumption, actually more general and more accurate
than all regularity assumptions we have considered in section 2. It also generalizes a
periodicity assumption of the image.

Let v be the noisy image observation defined on a bounded domain Ω ⊂ R
2, and

let x ∈ Ω. The NL-means algorithm estimates the value of x as an average of the
values of all the pixels whose Gaussian neighborhood looks like the neighborhood of x,

NL(v)(x) =
1

C(x)

∫
Ω

e−
(Ga∗|v(x+.)−v(y+.)|2)(0)

h2 v(y) dy,
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where Ga is a Gaussian kernel with standard deviation a, h acts as a filtering pa-

rameter, and C(x) =
∫
Ω e−

(Ga∗|v(x+.)−v(z+.)|2)(0)
h2 dz is the normalizing factor. We recall

that

(Ga ∗ |v(x + .)− v(y + .)|2)(0) =
∫

R2
Ga(t)|v(x + t)− v(y + t)|2dt.

Since we are considering images defined on a discrete grid I, we shall give a discrete
description of the NL-means algorithm and some consistency results. This simple and
generic algorithm and its application to the improvement of the performance of digital
cameras are the object of a European patent application [13].

4.1. Description. Given a discrete noisy image v = {v(i) | i ∈ I}, the estimated
value NL(v)(i) is computed as a weighted average of all the pixels in the image,

NL(v)(i) =
∑
j∈I

w(i, j)v(j),

where the weights {w(i, j)}j depend on the similarity between the pixels i and j and
satisfy the usual conditions 0 ≤ w(i, j) ≤ 1 and

∑
j w(i, j) = 1.

In order to compute the similarity between the image pixels, we define a neigh-
borhood system on I.

Definition 4.1 (neighborhoods). A neighborhood system on I is a family N =
{Ni}i∈I of subsets of I such that for all i ∈ I,

(i) i ∈ Ni,
(ii) j ∈ Ni ⇒ i ∈ Nj.

The subset Ni is called the neighborhood or the similarity window of i. We set Ñi =
Ni \ {i}.

The similarity windows can have different sizes and shapes to better adapt to the
image. For simplicity we will use square windows of fixed size. The restriction of v to
a neighborhood Ni will be denoted by v(Ni):

v(Ni) = (v(j), j ∈ Ni).

The similarity between two pixels i and j will depend on the similarity of the
intensity grayscale vectors v(Ni) and v(Nj). The pixels with a similar grayscale
neighborhood to v(Ni) will have larger weights on average; see Figure 5.

In order to compute the similarity of the intensity grayscale vectors v(Ni) and
v(Nj), one can compute a Gaussian weighted Euclidean distance, ‖v(Ni)−v(Nj)‖2

2,a.
Efros and Leung [38] showed that the L2 distance is a reliable measure for the com-
parison of image windows in a texture patch. This measure is quite adapted to an
additive white noise, which alters uniformly the distance between windows. Indeed,

E‖v(Ni) − v(Nj)‖2
2,a = ‖u(Ni) − u(Nj)‖2

2,a + 2σ2,

where u and v are, respectively, the original and noisy images and σ2 is the noise
variance. This equality shows that, in expectation, the Euclidean distance preserves
the order of similarity between pixels. So the most similar pixels to i in v also are
expected to be the most similar pixels to i in u. The weights associated with the
quadratic distances are defined by

w(i, j) =
1

Z(i)
e−

‖v(Ni)−v(Nj )‖2
2,a

h2 ,
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Fig. 5 q1 and q2 have a large weight because their similarity windows are similar to that of p. On
the other hand the weight w(p, q3) is much smaller because the intensity gray values in the
similarity windows are very different.

where Z(i) is the normalizing factor Z(i) =
∑

j e
− ‖v(Ni)−v(Nj )‖2

2,a

h2 and the parameter h
controls the decay of the exponential function, and therefore the decay of the weights,
as a function of the Euclidean distances.

4.2. Closely Related Attempts. Two methods have independently attempted
to take advantage of an image model learned from the image itself. The work by
Weissman et al. [89] has led to the proposition of a “universal denoiser” for digital
images. The authors prove that this denoiser is universal in the sense “of asymptoti-
cally achieving, without access to any information on the statistics of the clean signal,
the same performance as the best denoiser that does have access to this information.”
In [70] the authors present an implementation valid for binary images with an impulse
noise, with excellent results.

Awate and Whitaker [6] have also proposed a method whose principles stand
close to the NL-means algorithm, since, the method involves comparison between
subwindows to estimate a restored value. The objective of the algorithm is to denoise
the image by decreasing the randomness of the image.

4.3. A Consistency Theorem for NL-Means. The NL-means algorithm is intu-
itively consistent under stationarity conditions, saying that one can find many samples
of every image detail. In fact, we shall be assuming that the image is a fairly general
stationary random process. Under these assumptions, for every pixel i, the NL-means
algorithm converges to the conditional expectation of i knowing its neighborhood. In
the case of an additive or multiplicative white noise model, this expectation is in fact
the solution to a minimization problem.

Let X and Y denote two random vectors with values on R
p and R, respectively.

Let fX , fY denote the probability distribution functions of X , Y , and let fXY denote



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

130 A. BUADES, B. COLL, AND J. M. MOREL

the joint probability distribution function of X and Y . Let us recall briefly the
definition of the conditional expectation.

Definition 4.2.

(i) Define the probability distribution function of Y conditioned to X as

f(y | x) =

{
fXY (x,y)
fX (x) if fX(x) > 0,

0 otherwise

for all x ∈ R
p and y ∈ R.

(ii) Define the conditional expectation of Y given {X = x} as the expectation
with respect to the conditional distribution f(y | x),

E[Y | X = x] =
∫

y f(y | x) dy

for all x ∈ R
p.

The conditional expectation is a function of X , and therefore a new random
variable g(X), which is denoted by E[Y | X ]. Now let V be a random field and
N a neighborhood system on I. Let Z denote the sequence of random variables
Zi = {Yi, Xi}i∈I , where Yi = V (i) is real valued and Xi = V (Ñi) is R

p valued. Recall
that Ñi = Ni \ {i}. Let us restrict Z to the n first elements {Yi, Xi}ni=1. Let us define
the function rn(x),

(4.1) rn(x) = Rn(x)/f̂n(x),

where

(4.2) f̂n(x) =
1

nhp

n∑
i=1

K

(
Xi − x

h

)
, Rn(x) =

1
nhp

n∑
i=1

φ(Yi)K
(
Xi − x

h

)
,

φ is an integrable real-valued function, K is a nonnegative kernel, and x ∈ R
p.

Let X and Y be distributed as X1 and Y1. Under this form the NL-means
algorithm can be seen as an instance for the exponential operator of the Nadaraya–
Watson estimator [67, 88]. This is an estimator of the conditional expectation r(x) =
E[φ(Y ) | X = x]. Some definitions are needed for the statement of the main result.

Definition 4.3. A stochastic process {Zt | t = 1, 2, . . .}, with Zt defined on
some probability space (Ω,A,P), is said to be (strict-sense) stationary if for any
finite partition {t1, t2, . . . , tn} the joint distributions Ft1,t2,...,tn(x1, x2, . . . , xn) are the
same as the joint distributions Ft1+τ,t2+τ,...,tn+τ (x1, x2, . . . , xn) for any τ ∈ N.

In the case of images, this stationary condition amounts to saying that as the size
of the image grows, we are able to find in the image many similar patches for all the
details of the image. This is a crucial point in understanding the performance of the
NL-means algorithm. The following mixing definition is a rather technical condition.
In the case of images, it amounts to saying that regions become more independent as
their distance increases. This is intuitively true for natural images.

Definition 4.4. Let Z be a stochastic and stationary process {Zt | t = 1, 2, . . . ,
n}, and, for m < n, let F

n
m be the σ-field induced in Ω by the random variables Zj,

m ≤ j ≤ n. Then the sequence Z is said to be β-mixing if for every A ∈ F
k
1 and every

B ∈ F
∞
k+n

|P (A ∩B) − P (A)P (B)| ≤ β(n), with β(n) → 0, as n → ∞.
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The following theorem establishes the convergence of rn to r; see Roussas [77].
The theorem is established under the stationary and mixing hypothesis of {Yi, Xi}∞i=1

and asymptotic conditions on the decay of φ, β(n), and K. This set of conditions will
be denoted by H .

Theorem 4.5 (conditional expectation theorem). Let Zj = {Xj, Yj} for j =
1, 2, . . . be a strictly stationary and mixing process. For i ∈ I, let X and Y be dis-
tributed as Xi and Yi. Let J be a compact subset J ⊂ R

p such that

inf{fX(x);x ∈ J} > 0.

Then, under hypothesis H,

sup[ψn|rn(x) − r(x)|;x ∈ J ] → 0 almost surely,

where ψn are positive norming factors.
Let v be the observed noisy image, and let i be a pixel. Taking for φ the identity,

we see that rn(v(Ñi)) converges to E[V (i) | V (Ñi) = v(Ñi)] under stationary and
mixing conditions of the sequence {V (i), V (Ñi)}∞i=1.

In the case where an additive or multiplicative white noise model is assumed, the
next result shows that this conditional expectation is in fact the function of V (Ñi)
that minimizes the mean square error with the original field U .

Theorem 4.6. Let V , U , N1, and N2 be random fields on I such that V =
U + N1 + g(U)N2, where N1 and N2 are independent white noises. Let N be a
neighborhood system on I. Then we have the following:

(i) E[V (i) | V (Ñi) = x] = E[U(i) | V (Ñi) = x] for all i ∈ I and x ∈ R
p.

(ii) The real value E[U(i) | V (Ñi) = x] minimizes the mean square error

(4.3) min
g∗∈R

E[(U(i)− g∗)2 | V (Ñi) = x]

for all i ∈ I and x ∈ R
p.

(iii) The expected random variable E[U(i) | V (Ñi)] is the function of V (Ñi) that
minimizes the mean square error

(4.4) min
g

E[U(i)− g(V (Ñi))]2.

Given a noisy image observation v(i) = u(i)+n1(i)+ g(u(i))n2(i), i ∈ I, where g
is a real function and n1 and n2 are white noise realizations, the NL-means algorithm
is the function of v(Ñi) that minimizes the mean square error with the original image
u(i).

4.4. Experiments with NL-Means. The NL-means algorithm chooses for each
pixel a different average configuration adapted to the image. As we explained in the
previous sections, for a given pixel i, we take into account the similarity between
the neighborhood configuration of i and all the pixels of the image. The similarity
between pixels is measured as a decreasing function of the Euclidean distance of the
similarity windows. Due to the fast decay of the exponential kernel, large Euclidean
distances lead to nearly zero weights, acting as an automatic threshold. The decay
of the exponential function, and therefore the decay of the weights, is controlled by
the parameter h. Empirical experimentation shows that one can take a similarity
window of size 7 × 7 or 9 × 9 for grayscale images and 5 × 5 or even 3 × 3 in color
images with little noise. These window sizes have shown to be large enough to be
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Fig. 6 NL-means denoising experiment with a nearly periodic image. Left: Noisy image with stan-
dard deviation 30. Right: NL-means restored image.

Fig. 7 NL-means denoising experiment with a Brodatz texture image. Left: Noisy image with stan-
dard deviation 30. Right: NL-means restored image. The Fourier transform of the noisy
and restored images shows how main features are preserved even at high frequencies.

robust to noise and at the same time to be able to take care of the details and fine
structure. Smaller windows are not robust enough to noise. Notice that in the limit
case, one can take the window reduced to a single pixel i and therefore get back
to the Yaroslavsky neighborhood filter. For computational aspects, in the following
experiments the average is not performed in all the images. In practice, for each pixel
p, we consider only a squared window centered in p and size 21 × 21 pixels.

Due to the nature of the algorithm, the most favorable case for the NL-means
algorithm is the periodic case. In this situation, for every pixel i of the image one
can find a large set of samples with a very similar configuration, leading to a noise
reduction and a preservation of the original image; see Figure 6 for an example.

Another case which is ideally suitable for the application of the NL-means al-
gorithm is the textural case. Texture images have a large redundancy. For a fixed
configuration many similar samples can be found in the image. In Figure 7 one can see
an example with a Brodatz texture. The Fourier transform of the noisy and restored
images shows the ability of the algorithm to preserve the main features even in the
case of high frequencies.
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Fig. 8 NL-means denoising experiment with a color image. Left: Noisy image with standard devi-
ation 20 in every color component. Right: Restored image. NL-means algorithm has been
applied with a 3 × 3 color comparison window, with a 21 × 21 pixels search window, and
h = 16.

The NL-means algorithm is not only able to restore periodic or texture images.
Natural images also have enough redundancy to be restored. For example, in a flat
zone, one can find many pixels lying in the same region and with similar configurations.
In a straight or curved edge a complete line of pixels with a similar configuration is
found. In addition, the redundancy of natural images allows us to find many similar
configurations in far away pixels. See Figure 8.

5. Discussion and Comparison.

5.1. NL-Means as an Extension of Previous Methods. As was said before, the
Gaussian convolution preserves only flat zones, while contours and fine structure are
removed or blurred. Anisotropic filters instead preserve straight edges, but flat zones
present many artifacts. One could think of combining these two methods to im-
prove both results. A Gaussian convolution could be applied in flat zones, while an
anisotropic filter could be applied on straight edges. Still, other types of filters should
be designed to specifically restore corners or curved edges and texture. The NL-means
algorithm seems to provide a feasible and rational method to automatically take the
best of each mentioned algorithm, reducing for every possible geometric configuration
the image method noise. Although we have not computed explicitly the image method
noise, Figure 9 illustrates how the NL-means algorithm chooses in each case a weight
configuration corresponding to one of the previously analyzed filters. In particular,
according to this set of experiments, we can consider that the consistency results given
in Theorems 2.1, 2.3, and 2.5 are all valid for this algorithm.

The NL-means algorithm is easily extended to the denoising of image sequences
and video. The denoising algorithm involves indiscriminately pixels not belonging
only to the same frame but also to all frames in the image. The algorithm favors
pixels with a similar local configuration, as the similar configurations move, so do the
weights. Thus, the algorithm is able to follow the similar configurations when they
move without any explicit motion computation (see Figure 10).
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(a) (b)

(c) (d)

(e) (f)

Fig. 9 On the right-hand side of each pair, we display the weight distribution used to estimate the
central pixel of the left image by the NL-means algorithm. (a) In flat zones, the weights
are distributed as a convolution filter (as a Gaussian convolution). (b) In straight edges,
the weights are distributed in the direction of the level line (as the mean curvature motion).
(c) On curved edges, the weights favor pixels belonging to the same contour or level line,
which is a strong improvement with respect to the mean curvature motion. (d) In a flat
neighborhood, the weights are distributed in a grayscale neighborhood (as with a neighborhood
filter). In the cases of (e) and (f), the weights are distributed across the more similar
configurations, even though they are far away from the observed pixel. This shows a behavior
similar to a nonlocal neighborhood filter or to an ideal Wiener filter.

Classical movie denoising algorithms are motion compensated. The underlying
idea is the existence of a “ground true” physical motion, which motion estimation
algorithms should be able to estimate. Legitimate information should exist only
along these physical trajectories. One of the major difficulties in motion estimation is
the ambiguity of trajectories, the so-called aperture problem. The aperture problem,
viewed as a general phenomenon in movies, can be positively interpreted in the fol-
lowing way: There are many pixels in the next or previous frames which can match
the current pixel. Thus, it seems sound to use not just one trajectory, but rather all
pixels similar to the current pixel across time and space (see [18] for more details on
this discussion).

5.2. Comparison. In this section we shall compare the different algorithms based
on four well-defined criteria: the method noise, the noise-to-noise, the mean square
error, and the visual quality of the restored images. Note that every criterion measures
a different aspect of the denoising method. It is easy to show that only one criterion
is not enough to judge the restored image, and so one expects a good solution to have
a high performance under the three criteria.
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(a)

(b)

(c)

Fig. 10 Weight distribution of NL-means applied to a movie. In (a), (b), and (c) the first row
shows a five-frame image sequence. In the second row, the weight distribution used to
estimate the central pixel (in white) of the middle frame is shown. The weights are equally
distributed over the successive frames, including the current one. They actually involve
all the candidates for the motion estimation instead of picking just one per frame. The
aperture problem can be taken advantage of for a better denoising performance by involving
more pixels in the average.

5.2.1. Method Noise Comparison. In previous sections we have defined the
method noise and computed it for the different algorithms. Remember that the de-
noising algorithm is applied on the original (slightly noisy) image. A filtering param-
eter, depending mainly on the standard deviation of the noise, must be fixed for most
algorithms. Let us fix σ = 2.5: we can suppose that most digital images are affected
by this amount of noise, since it is not visually noticeable.

The method noise tells us which geometrical features or details are preserved by
the denoising process and which are eliminated. In order to preserve as many features
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Fig. 11 Image method noise. From left to right and from top to bottom: original image, Gaussian
convolution, anisotropic filtering, total variation, neighborhood filter, HWT, TIHWT, DCT
empirical Wiener filter, and the NL-means algorithm. The parameters have been set for
each method to remove a method noise with variance σ2 = 2.52.

as possible of the original image, the method noise should look as much as possible
like white noise. Figure 11 displays the method noise of the different methods for a
set of standard natural images. Let us comment on them briefly.

• The Gaussian filter method noise highlights all important features of the
image. These features have a large Laplacian and are therefore altered by the
algorithm; see Theorem 2.1.

• As announced in Theorem 2.3, the anisotropic filter method noise displays
the corners and high frequency features. The straight edges are instead not
to be seen: they have a low curvature.

• The total variation method modifies most structures and details of the image.
Even straight edges are not well preserved.

• The neighborhood filter preserves flat objects and contrasted edges, while
edges with a low contrast are not kept. In any case, the contours, texture,
and details seem to be well preserved.
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• The TIHWT method noise is concentrated on the edges and high frequency
features. These structures cause coefficients with large enough value, but
lower than the threshold. They are removed by the algorithm. The average
of the application to all translated versions reduces the method noise, and
structures are hardly noticeable.

• It is difficult to find noticeable structure in the DCT empirical Wiener filter
method noise. Only some contours are noticeable. In general, this filter seems
to perform much better than all local smoothing filters and other frequency
domain filters. Its results are similar to those of a hard stationary wavelet
thresholding.

• The NL-means method noise seems closest to white noise.

5.2.2. The “Noise-to-Noise” Criterion. The noise-to-noise principle requires
that a denoising algorithm transforms a white noise into white noise. This paradox-
ical requirement seems to be the best way to characterize artifact-free algorithms.
The transformation of a white noise into any correlated signal creates structure and
artifacts. Only white noise is perceptually devoid of structure, as was pointed out by
Attneave [5].

Figure 12 shows how denoising methods transform a white noise. The convolution
with a Gauss kernel is equivalent to the product in the Fourier domain with a Gauss
kernel of inverse standard deviation. Therefore, convolving the noise with a kernel
reinforces the low frequencies and cancels the high ones. Thus, the filtered noise
actually shows big grains due to its prominent low frequencies.

Noise filtered by a wavelet thresholding is no more a white noise. The few coeffi-
cients with a magnitude larger than the threshold are spread all over the image. The
pixels which do not belong to the support of one of these coefficients are set to zero.
The visual result is a constant image with superposed wavelets as displayed in Figure
12. It is easy to prove that the denoised noise is spatially highly correlated.

Given a noise realization, the filtered value by the neighborhood filter at a pixel
i depends only on its value n(i) and the parameters h and ρ. The neighborhood filter
averages noise values at a distance from n(i) less than or equal to h. Thus, when
the size ρ of the neighborhood increases, by the law of large numbers the filtered
value tends to the expectation of the Gauss distribution restricted to the interval
(n(i) − h, n(i) + h). This filtered value is therefore a deterministic function of n(i)
and h. Independent random variables are mapped by a deterministic function on
independent variables. Thus the noise-to-noise requirement is asymptotically satisfied
by the neighborhood filter. The NL-means satisfies the noise-to-noise principle to the
same extent as a neighborhood filter. However, a mathematical statement and proof
of this property are more intricate and we shall skip them.

5.2.3. Visual Quality Comparison. The visual quality of the restored image is
another important criterion to judge the performance of a denoising algorithm. On
classic benchmark images, Figures 13–15 control the absence of artifacts and the
correct reconstruction of edges, texture, and fine structure.

Figure 13 illustrates the fact that a nonlocal algorithm is needed for the correct
reconstruction of periodic images. Local smoothing filters and local frequency filters
are not able to reconstruct the wall pattern. Only NL-means and the global Fourier–
Wiener filter reconstruct the original texture. The Fourier–Wiener filter is based on a
global Fourier transform which is able to capture the periodic structure of the image
in a few coefficients. But this only is an ideal filter: the Fourier transform of the
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Fig. 12 The noise to noise criterion. From left to right and from top to bottom: original noise im-
age of standard deviation 20, Gaussian convolution, anisotropic filtering, total variation,
neighborhood filter, HWT, TIHWT, DCT empirical Wiener filter, and NL-means. Param-
eters have been fixed for each method so that the noise standard deviation is reduced by a
factor of 4.

original image is being used. Figure 9(e) shows how NL-means chooses the correct
weight configuration and explains the correct reconstruction of the wall pattern.

Figure 14 shows that the frequency domain filters are well adapted to the recovery
of oscillatory patterns. Although some artifacts are noticeable in both solutions, the
stripes are well reconstructed. The DCT transform seems to be more adapted to this
type of texture, and stripes are a little better reconstructed. For a much more detailed
comparison between sliding window transform domain filtering methods and wavelet
threshold methods, we refer the reader to [96]. NL-means also performs well on this
type of texture, due to its high degree of redundancy.

5.2.4. Mean Square Error Comparison. The mean square error is the square of
the Euclidean distance between the original image and its estimate. This numerical
quality measurement is the more objective one, since it does not rely on any visual
interpretation. Table 1 shows the mean square error of the different denoising methods
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Fig. 13 Denoising experience on a periodic image. From left to right and from top to bottom: noisy
image (standard deviation 35), Gauss filtering, total variation, neighborhood filter, Wiener
filter (ideal filter), TIHWT, DCT empirical Wiener filtering, and NL-means.

Fig. 14 Denoising experience on a natural image. From left to right and from top to bottom: noisy
image (standard deviation 35), total variation, neighborhood filter, translation invariant
hard thresholding (TIHWT), empirical Wiener, and NL-means.

with the images presented in this paper. This error table seems to corroborate the
observations made for the other criteria. One sees, for example, how the frequency
domain filters have a lower mean square error than the local smoothing filters. One
also sees that in the presence of periodic or textural structures the empirical Wiener
filter based on a DCT transform performs better than the wavelet thresholding. Note
that, in the presence of periodic or stochastic patterns, NL-means is significantly more
precise than the other algorithms. Of course, the errors presented in this table cannot
be computed in a real denoising problem. Let us remark, however, that a small error
does not guarantee a good visual quality of the restored image.
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Fig. 15 Denoising experience on a natural image. From left to right and from top to bottom: noisy
image (standard deviation 35), total variation, neighborhood filter, translation invariant
hard thresholding (TIHWT), empirical Wiener, and NL-means.

Table 1 Mean square error table. A smaller mean square error indicates that the estimate is closer
to the original image. The numbers have to be compared on each row. The square of the
number on the left-hand column gives the real variance of the noise. By comparing this
square to the values on the same row, it is quickly checked that all studied algorithms indeed
perform some denoising. This is a sanity check! In general, the comparison performance
corroborates the previously mentioned quality criteria.

Image σ GF AF TV YNF EWF TIHWT NL-means

Boat 8 53 38 39 39 33 28 23
Airplane 20 159 138.06 57.15 68.72 78.3 50.97 38.31
Barbara 25 220 216 186 176 111 135 72
Wall 35 580 660 721 598 325 712 59

6. NL-Means Five Years Later.

6.1. The Nonlocal Paradigm. Since the publication of the 2005 paper [20], sev-
eral equivalent terms have been devised: “exemplar-based” processing, “self-similarity,”
“patch-based” processing, “nonlocal” processing, “block-matching,” and “sparse dic-
tionaries of blocks.” They all refer to generalizations or alternatives of the nonlocal
means algorithm.

Our conclusions on the better denoising performance of a nonlocal method with
respect to state-of-the-art algorithms such as the total variation or the wavelet thresh-
olding have been widely accepted [80] and [44]. The method noise methodology to
compare the denoising performance has been adopted ever since. The noise-to-noise
criterion introduced in [18] tackles the risk that, starting from pure noise, a denoising
algorithm creates structured features. This may well explain the interest for NL-
means in scientific or medical imaging, where the neutrality of algorithms is crucial.
Improvements or adaptations of NL-means have been proposed in cryon microscopy
[29], fluorescence microscopy [9], magnetic resonance imaging (MRI) [61], [26], [91],
[68], multispectral MRI [62], [12], and diffusion tensor MRI (DT-MRI) [90].
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The notion of image self-similarity itself has been explored and quantified in [2],
where it is noted that “blocks are well approximated by a number of other blocks at
the same or different scales when affine grey scale transformations are employed.” See
a similar conclusion in [73].

Likewise, several papers have explored which degree of invariance could be ap-
plied to image blocks. [100] explores a rotationally invariant block-matching strategy
improving NL-means, and [37] uses cross-scale (i.e., downsampled) neighborhoods in
the NL-means filter. Self-similarity has also been explored in the Fourier domain for
MRI in [63].

NL-means is a computationally demanding algorithm. Several papers have pro-
posed fast and extremely fast (linear) implementations, by block preselection [56], [7],
by Gaussian KD-trees to classify image blocks [1], by SVD [69], by using the FFT
to compute correlation between blocks [87], and by statistical arguments [25]. The
statistical validity of the NL-means algorithm is wide open. See [85], [50], and [36]
(where a Bayesian interpretation is proposed) or [93], where a bias of NL-means is
corrected. [45] gives “a probabilistic interpretation and analysis of the method viewed
as a random walk on the patch space.”

6.2. Generalization to Other Image Processing Tasks or Other Data. The
nonlocal denoising principle also works for 3D data set points [98], [31], [48]. But it
has also be expanded to most image processing tasks: Demosaicking, the operation
which transforms the “R or G or B” raw image in each camera into an “R and G
and B” image [19], [57]; movie colorization [41], [53]; image inpainting by proposing a
nonlocal image inpainting variational framework with a unified treatment of geometry
and texture [4] (see also [92]); zooming by a fractal-like technique where examples
are taken from the image itself at different scales [36]; movie flicker stabilization
[30], compensating for spurious oscillations in the colors of successive frames; and
superresolution, an image zooming method by which several frames from a video, or
several low resolution photographs, can be fused into a larger image [76].

The main point of this superresolution technique is that it gives up an explicit
estimate of the motion, allowing actually for a multiple motion, since a block can look
like several other blocks in the same frame. The very same observation is made in
[35] for devising a superresolution algorithm; see also [39], [28].

Other classic image nonlocal applications include image contrast enhancement
by applying a reverse nonlocal heat equation [15], and stereo vision by performing
simultaneous nonlocal depth reconstruction and restoration of noisy stereo images [47].
Of course, nonlocal techniques apply still better to movies, the main discovery being
that, contrary to the previous state-of-the-art algorithms, denoising image sequences
does not require motion estimation [14]. This claim is extensively explored in [9], [8],
[18].

6.3. Hybrid Approaches: Combining NL-Means and Linear Transforms. Most
improvements of NL-means combine the nonlocal principle with former classic algo-
rithms and have indeed shown an improved denoising performance. Probably the
best performing method so far is the hybrid method BM3D proposed in [27], which
combines not less than block-matching, linear transform thresholding, and Wiener
filtering! In the words of the authors:

The enhancement of the sparsity is achieved by grouping similar 2-D im-
age fragments (e.g., blocks) into 3-D data arrays which we call groups.
Collaborative filtering is a special procedure developed to deal with these
3-D groups. We realize it using the three successive steps: 3-D transfor-
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mation of a group, shrinkage of the transform spectrum, and inverse 3-D
transformation. The result is a 3-D estimate that consists of the jointly
filtered grouped image blocks. By attenuating the noise, the collaborative
filtering reveals even the finest details shared by grouped blocks and, at
the same time, it preserves the essential unique features of each individual
block. The filtered blocks are then returned to their original positions. Be-
cause these blocks are overlapping, for each pixel, we obtain many different
estimates which need to be combined. Aggregation is a particular averag-
ing procedure which is exploited to take advantage of this redundancy. A
significant improvement is obtained by a specially developed collaborative
Wiener filtering.

Another iterative and variational version of NL-means which improves the patch
distance at each iteration is given in [11]. A related approach combining NL-means
and wavelet subband mixing is proposed in [74].

6.4. Nonlocal PDEs, Nonlocal Variational Principles. The relationship of neigh-
borhood filters to classic local PDEs has been discussed in [16] and [17], leading to
an adaptation of NL-means which avoids the staircasing effect. Yet the main interest
has shifted to defining nonlocal PDEs. The extension of the NL-means method to de-
fine nonlocal image-adapted differential operators and nonlocal variational methods
starts with [51], which proposes to perform denoising and deblurring by a nonlocal
functionals. The general goal of this development is actually to give a variational to
all neighborhood filters, and to give a nonlocal form to the total variation as well.
More precisely, the neighborhood filters derive from the functional

J(u) =
∫

Ω×Ω

g

( |u(x) − u(y)|2
h2

)
w(|x − y|)dxdy,

where g and w have a Gaussian decay. The nonlocal total variation is

NLBV (u) :=
∫

Ω×Ω

|∇u(x) −∇(y)|dxdy.

In the same line, a functional yields a (variational) interpretation to NL-means:

JNL(u) =
∫

Ω×Ω

(
1 − e−

Gσ∗|u(x−.)−u(y−.)|2(0)
h2

)
w(|x − y|)dxdy.

Nonlocal regularization seems adapted to image deblurring, a notoriously ill-posed
problem. The nonlocal differential operators permit one to define a total variation
or a Dirichlet integral. Several articles on deblurring have followed this variational
line [49], [66], [43] (for image segmentation), [9] (in fluorescence microscopy), [99],
(again for nonlocal deconvolution), and [55] (for deconvolution and tomographic re-
construction). In [39], a paper dedicated to another notoriously ill-posed problem, the
superresolution, the nonlocal variational principle is viewed as “an emerging powerful
family of regularization techniques”; the paper “proposes to use the example-based
approach as a new regularizing principle in ill-posed image processing problems such
as image superresolution from several low resolution photographs.” A particular no-
tion of nonlocal PDE has emerged, whose coefficients are actually image-dependent.
For instance, in [41] the image colorization is viewed as the minimization of a discrete
partial differential functional on the weighted block graph. Thus, it can be seen either
as a nonlocal heat equation on the image or as a local heat equation on the space of
image patches.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

IMAGE DENOISING METHODS 143

In an almost equivalent framework, in [84] the set of blocks is viewed as a weighted
graph, and the weights of the edge between two blocks centered at x and y, respec-
tively, are decreasing functions of the block distances. Then a graph Laplacian can be
calculated on this graph, seen as the sampling of a manifold, and NL-means can be
interpreted as the heat equation on the set of blocks endowed with these weights. In
the same way, the neighborhood filter is associated with a heat equation on the image
graph. This approach is further extended to a variational formulation on patch graphs
in [40]. In this same framework [15] proposed to perform image contrast enhancement
by applying a nonlocal reverse heat equation. Finally, always in this nonlocal partial
differential framework, [10] extends the Mumford–Shah image segmentation energy to
contain a nonlocal self-similarity term replacing the usual Dirichlet term. The square
of the gradient is replaced by the square of the nonlocal gradient.

6.5. Sparse Representations on Blocks. The exploration of image redundancy
and its application to image restoration has led to new attempts at sparse image
representations by block dictionaries [50]. The paper [57] contains a careful bibli-
ographical analysis of sparse image representations. It also proposes an algorithm
building a redundant block basis. Using the K-SVD algorithm, an optimal redundant
basis is looked for in the space of blocks, with the criterion that the decomposition
of all other blocks in the image must be as sparse as possible. Such sparse bases can
be efficiently used for such tasks as image denoising and image demosaicking. This
approach and variants applied to video have been considered in [58], [75], and [23].
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CMLA Preprint 22, Centre de Mathématiques et Leurs Applications, Cachan, France, 2006.

[16] A. Buades, B. Coll, and J. Morel, Neighborhood filters and PDE’s, Numer. Math., 105
(2006), pp. 1–34.

[17] A. Buades, B. Coll, and J. Morel, The staircasing effect in neighborhood filters and its
solution, IEEE Trans. Image Process., 15 (2006), pp. 1499–1505.

[18] A. Buades, B. Coll, and J. Morel, Nonlocal image and movie denoising, Internat. J. Com-
puter Vision, 76 (2008), pp. 123–139.

[19] A. Buades, B. Coll, J. Morel, and C. Sbert, Self-similarity driven color demosaicking,
IEEE Trans. Image Process., 18 (2009), pp. 1192–1202.

[20] A. Buades, B. Coll, and J. M. Morel, A review of image denoising algorithms, with a new
one, Multiscale Model. Simul., 4 (2005), pp. 490–530.
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