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Abstract

We introduce a measure of how well a com-
binatorial graph fits a collection of vectors.
The optimal graphs under this measure may
be computed by solving convex quadratic
programs and have many interesting proper-
ties. For vectors in d dimensional space, the
graphs always have average degree at most
2(d+1), and for vectors in 2 dimensions they
are always planar. We compute these graphs
for many standard data sets and show that
they can be used to obtain good solutions to
classification, regression and clustering prob-
lems.

1. Introduction

Given a collection of vectors x 1, . . . ,xn ∈ IRd, we ask
the question,

“What is the right graph to fit to this
set of vectors?”

In recent years, a number of researchers have gained
insight by fitting graphs to their data and then using
these graphs to solve clustering, classification, or re-
gression problems on their data, e.g. (Ng et al., 2001;
Zhu et al., 2003; Belkin & Niyogi, 2003; Joachims,
2003; Zhou & Schölkopf, 2004a; Coifman et al., 2005).
They have employed simply defined graphs that are
easy to compute, associating a vertex of the graph
with each data vector, and then connecting vertices
whose vectors are sufficiently close, sometimes with
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weights depending on the distance. Not surprisingly,
different results are obtained by the use of different
graphs (Maier et al., 2008), and researchers have stud-
ied how to combine different graphs in a way that tends
to give heavier weight to the better graphs (Argyriou
et al., 2005). In this paper, we study what can be
gained by choosing the graphs with more care.

For a set of vectors x 1, . . . ,xn, we construct a
weighted, undirected graph on n vertices, where wi,j =
wj,i ≥ 0 denotes the weight of edge (i, j), and di =∑

j wi,j denotes the weighted degree of vertex i. When
there is no edge (i, j), we have wi,j = 0. We do not
allow self-loops, so wi,i = 0 for all i.

We measure how well the graph with weights w fits the
vectors by how small it makes the following function,
which is a weighted sum of the squared distance from
each vertex to the weighted average of its neighbors:

f(w) =
∑

i

∥∥dix i −
∑

j

wi,jx j

∥∥2
.

If we let X be the n-by-d matrix with ith row x i, and
let L be the graph Laplacian matrix, defined as

Li,j =

{
−wi,j if i 6= j

di if i = j
,

then f may be rewritten as

f(w) = ‖LX‖2F ,

where ‖M‖F is the Frobenius norm (
∑

i,j M
2
i,j)1/2.

Since f = 0 for a graph with no edges, we construct
graphs that minimize f subject to constraints that
bound the vertex degrees away from zero.

We define a hard graph of the vectors x 1, . . . ,xn to
be a graph minimizing f subject to each vertex hav-
ing weighted degree at least 1. As some vectors could
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Figure 1. The hard graph for a random set of vectors in
two dimensions.

be outliers, we also consider allowing some vertices to
have lower weighted degree. To this end, we define an
α-soft graph of x 1, . . . ,xn to be a graph minimizing
f subject to

∑
i

(max(0, 1− di))
2 ≤ αn. (1)

In special cases, such as when the vectors exhibit cer-
tain symmetries, the solutions to these programs will
not be unique. Thus, when we refer to a hard graph
or α-soft graph for a set of vectors, this is not intended
to imply that it is the unique such graph.

Our measure of quality of fit f = ‖LX‖2F is similar
to the one found in the locally linear embedding al-
gorithm of (Roweis & Saul, 2000). If the graph is a
collection of k disjoint cliques, with the weight on each
edge being the reciprocal of the number of vertices in
its clique, then f is just the value of the k-means ob-
jective function of the partition of the vectors into sets
corresponding to the cliques. Also, the singular value
decomposition of X may be understood to compute
for each k the k-dimensional projection matrix mini-
mizing ‖(I −Π)X‖F .

In Section 2, we sketch how we compute these graphs.
In Section 3, we prove that the hard and α-soft graphs
of a point set in IRd are sparse and that they are planar
for two-dimensional data. We expect these graphs will
be discovered to have other interesting combinatorial
properties. In Sections 4.1, 4.2 and 4.3 we present the
results of using these graphs to solve classification, re-
gression, and clustering problems on many standard
data sets. The classification and regression experi-
ments are done in the transductive setting, where un-
labeled data is used to construct the graph. Even with
no parameters to choose, our graphs provide very good
answers to many of these problems.

2. Computing the graphs

2.1. Hard Graph

Let us first show that a hard graph is obtained by
solving a convex quadratic program.

Let E be the set of all possible edges in the graph,
and let m = |E|. We define U to be the n×m matrix
such that the column of U corresponding to edge e =
(i, j) ∈ E has exactly two nonzero entries: Ui,e = 1
and Uj,e = −1. We also define the length-m vector
w to contain all the edge weights, and we let W be
the m×m diagonal matrix with diagonal entries given
by w . The graph Laplacian may then be expressed as
L = UWUT .

Let x (k) be the kth column of X. Define the vector
y (k) = UTx (k), and let Y (k) be the diagonal matrix
containing the entries of y (k) on its diagonal.

Then the edge weights w of the hard graph are the
weights satisfying di ≥ 1 that minimize

f(w) = ‖LX‖2F =
d∑

k=1

∥∥∥Lx (k)
∥∥∥2

=
d∑

k=1

∥∥∥UWUTx (k)
∥∥∥2

=
d∑

k=1

∥∥∥UWy (k)
∥∥∥2

=
d∑

k=1

∥∥∥UY (k)w
∥∥∥2

= ‖Mw‖2

where MT =
[
Y (1)UT . . . Y (d)UT

]
.

Since there are
(
n
2

)
edges that could appear in the hard

graph, it is computationally infeasible to directly solve
this quadratic program in all

(
n
2

)
variables for even

moderately large n. Instead, we solve the quadratic
program on a small subset of edges. We then compute
a small set of new edges that will improve the hard
graph, add these in to the quadratic program, and
compute the solution with the new edges, removing
those edges whose weights have been set to zero. We
repeat until the graph cannot be improved. Since these
graphs are sparse, as will be proven in the next section,
our quadratic programs never get too large.

To determine which edges to add to the quadratic pro-
gram, we consider the Lagrange function

Λ(w , z ) = f(w)−
∑

i

zi(di−1) = ‖Mw‖2−zT (Aw−1),

where A is the matrix obtained by taking the absolute
values of the entries of U , so that Aw gives the vector
of weighted degrees.

The primal-dual solution pair (w , z ) ≥ 0 must satisfy
the Karush-Kuhn-Tucker conditions, namely: dΛ

dw ≥ 0,
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dΛ
dz ≤ 0, wT dΛ

dw = 0, and zT dΛ
dz = 0, where

dΛ
dw

= 2MTMw −AT z and
dΛ
dz

= 1−Aw .

When we solve the quadratic program on a subset of
edges, we obtain a solution pair (w , z ) ≥ 0 that sat-
isfy all of the KKT conditions on the full quadratic
program, except that dΛ

dw(i,j)
may be negative on the

excluded edges. If there are any edges (i, j) for which
dΛ

dw(i,j)
< 0, we add to our quadratic program the edges

with the smallest dΛ
dw(i,j)

values. If there are no such
edges, then we have a solution to the full quadratic
program, and we are done.

In our experiments, we use the Matlab package
SDPT3 (Tütüncü et al., 2003; Toh et al., 1999) to
solve the quadratic programs. In Table 1, we indicate
how long it took to compute the hard graph for the
data sets on which we performed experiments.

2.2. α-Soft graph

Let us define η(w) = ‖max(0,1−Aw)‖2 to be the
left-hand-side term in (1), which indicates to what ex-
tent the weighted degrees are smaller than 1. Since the
value of f(w) is always improved by uniformly scaling
down all edge weights, it is clear that an α-soft graph
must satisfy (1) with equality, that is, it must have
η(w) = αn.

It is inefficient to directly solve the optimization prob-
lem that yields an α-soft graph. Instead, to compute
the α-soft graphs, we solve optimization problems of
the form

min
w
{f(w) + µ · η(w) : w ≥ 0} (2)

for various values of µ. For any given µ, if w is a
solution to (2) then it must also be an α-soft graph for
α = η(w)/n. Furthermore, note that as µ increases, α
decreases monotonically. Thus, to compute an α-soft
graph, we solve (2) using an initial guess for the value
of µ, and we then adjust µ up or down proportionally
to how far η(w)/n is from the desired value of α. We
may repeat this until we are arbitrarily close to the
desired α. In our experiments, when we construct 0.1-
soft graphs, we actually search for graphs which have
α in the range 0.1± 0.01.

To solve a convex program of the form in (2), note that
it can be formulated as a non-negative least squares
problem:

min
w ,s
{‖Mw‖2 + µ ‖1−Aw − s‖2 : w , s ≥ 0}.

In our experiments, we solve these problems using
Matlab’s quadprog routine. As with the hard graphs,
we use the technique described in section 2.1 to reach
the solution to the non-negative least squares problem
by solving a sequence of such problems on subsets of
the edges.

3. Properties of the graphs

We begin by mentioning that for the set of vectors in
{0, 1}5 with an even number of ones, neither the hard
graph nor the α-soft graph are unique. However, we
conjecture that both graphs are unique for almost all
sets of vectors (with probability 1 under arbitrarily
small perturbations).

Let us prove that these graphs have average degree at
most 2(d+ 1). We suggest that the average degree of
the hard or α-soft graph of a set of vectors may be a
useful measure of the essential dimensionality of those
vectors, and that it will be small if they lie close to
a low-dimensional manifold of low curvature. We also
conjecture that for every set of vectors of arbitrarily
high dimension, there is a sparse, approximately op-
timal solution to the programs defining the hard and
α-soft graphs.

Theorem 3.1. For every α > 0, every set of n vectors
in IRd has a hard and an α-soft graph with at most
(d+ 1)n edges.

Proof. Recall that the objective function optimized by
these graphs is given by a quadratic form ‖Mw‖2 on
the weights w , where the matrix M has dn rows. Let
us again write the vector of degree sums as Aw , where
A has n rows.

Suppose for the sake of contradiction that the mini-
mum number of edges in a hard graph (or α-soft graph)
is m > (d+1)n. Let w be the weights in such a graph.

Then there must be some some non-zero (but not nec-
essarily positive) vector w∗, with non-zero entries re-
stricted to these m edges, such that

[
M
A

]
w∗ = 0.

Clearly there is some r such that the weights w ′ =
(w + rw∗) remain nonnegative and have at least one
fewer positive edge than w . Since Mw ′ = Mw and
Aw ′ = Aw , the score and degrees have not changed.
So these new weights still form a hard (or α-soft)
graph, but now with fewer than m edges.

Theorem 3.2. For every α > 0, every set of n vectors
in IR2 has a hard and an α-soft graph that are planar.

We prove a more general statement, which implies
Theorem 3.2 by treating edges as cliques of size 2.
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Theorem 3.3. Let S = {x 1, . . . ,xn} and T =
{y1, . . . ,ym} be two sets of points the interior of whose
convex hulls intersect. Then, for every α > 0, any hard
or α-soft graph of maximum total degree of a set con-
taining S ∪ T either does not contain a clique on S or
does not contain a clique on T .

Proof. Let z be a point in the intersection of the interi-
ors of the convex hulls of S and T . We know that there
exist αi > 0 such that 1 =

∑
i αi and z =

∑
i αix i,

and there also exists βi > 0 such that 1 =
∑

i βi and
z =

∑
i βiy i.

Consider a hard graph (or α-soft graph) that contains
a clique on S and a clique on T . Suppose that we
decrease the weight on every edge (x i,x j) by rαiαj

and on every edge (y i,y j) by rβiβj , while we increase
the weight on every edge (x i,y j) by rαiβj . We choose
r just large enough to eliminate some edge from one of
the cliques. We will show that these changes increase
the weighted degree of every vertex in S ∪ T and do
not change the objective function, so we can always
construct a hard (or α-soft) graph with an edge missing
from one of the two cliques and larger total degree.

First let us confirm that the weighted degrees increase:
indeed, the weighted degree of x i ∈ S increases by∑

j∈[m]

rαiβj −
∑
k∈[n]
k 6=i

rαiαk

= rαi

∑
j∈[m]

βj −
∑

k∈[n]

αk + αi


= rα2

i > 0.

A symmetric argument holds for the vertices in T .

Now let us show that the score of the graph does not
change. For each vertex v , let us define the vector

δ(v) =
∑

(v ,v ′)∈E

w(v ,v ′)(v − v ′),

and note that the objective function is
∑

v ‖δ(v)‖2.
So it suffices for us to show that we are not changing
the value of any δ(x i) or δ(y j). Indeed, the amount
by which we change δ(x i) is∑

j∈[m]

rαiβj(x i − y j)−
∑

k∈[n]

rαiαk(x i − xk)

= rαi

[( ∑
j∈[m]

βj −
∑

k∈[n]

αk

)
x i

+
( ∑

k∈[n]

αkxk −
∑

j∈[m]

βjy j

)]
= rαi [(1− 1)x i − (z − z )] = 0.

4. Experimental Results

Table 1 lists the data sets we used in our experiments.
For each data set, we provide the average degrees of
the hard and 0.1-soft graphs as dhard and dsoft. Before
building our graphs, we always normalize the data by
rescaling each dimension so that it has standard de-
viation one. Observe that the average degree of each
graph is lower than that predicted by the analysis in
Theorem 3.1. (Recall that the average degree of a
graph is twice the number of edges, divided by the
number of vertices.)

In our experiments, we compare our graphs with
those obtained by standard approaches of construct-
ing graphs from vectors. The most common approach
is to use weighted k-nearest neighbor graphs (denoted
knn in the tables). These graphs are specified by two
parameters, k and σ. Each vertex is connected to its k
nearest neighbors, in Euclidean distance, with an edge
weight of either 1, or with weight inverse exponential
in the square of the edge of the length, divided by
2σ2. We tried all k = 3, 5, 7, 10, 15, 20, 25, 30, 40, and
σ a power of 2 between 2−10 and 210 times σ0, where
σ0 is the mean distance across edges in the k-nearest
neighbor graph. We also tried forming graphs by con-
necting all pairs of vertices within a given distance r
and considered weighting the edges as we did for the
k-nearest neighbor graphs (denoted thresh in the ta-
bles). For r, we tried dividing the median inter-vertex
distance by all powers of 21/3 between 0 and 27.

4.1. Classification

We employed the simple algorithm of (Zhu et al., 2003)
for learning labels of vertices in the graphs. We do not
yet know if our results would be improved by using
one of the algorithms from (Zhou & Schölkopf, 2004a;
Sindhwani et al., 2005; Zhou & Schölkopf, 2004b; Zhou
et al., 2003; Belkin et al., 2004; Wang et al., 2008). We
first explain how we handle the case of two classes. Let
S be the set of vectors whose labels we know, and let
c ∈ IRn be a vector such that ci ∈ {0, 1} for each i ∈ S,
depending on the class of vector i. We then solve for
the vector x minimizing

xTLx =
∑

(i,j)∈E

wi,j(xi − xj)2, (3)

subject to xi = ci for i ∈ S. For every j 6∈ S, we
then guess that the class of vector j is 0 if xj < 1/2
and 1 otherwise. Note that x can be found by solving
one linear equation in a diagonally-dominant matrix,
so this can be done very quickly (Spielman & Teng,
2004).

When we have k > 2 classes, we construct a vector cj
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Table 1. Average degrees of our graphs for various data sets. Source indicates whether we obtained the data from the
UCI Machine Learning Repository (Asuncion & Newman, 2007) or from LIBSVM (Chang & Lin, 2001). Type indicates
whether the data come from a classification problem, and if so how many classes, or whether they come from a regression
problem. Soft time and hard time indicate how many seconds it took to compute the soft and hard graphs on a single
core of a Dell Precision 690 workstation with an Intel Xeon 2.66 GHz processor and 4GB of RAM. For each data set, we
normalized every column to have variance one.

Data set Source Type n dim dhard dsoft soft time (sec) hard time (sec)

abalone libsvm regression 4177 8 13.1 12.7 1,582 49,986
glass UCI 6 classes 214 9 8.9 8.6 8 22
heart UCI 2 classes 270 13 11.1 11.0 12 36
housing libsvm regression 506 13 8.8 10.1 23 114
ionosphere UCI 2 classes 351 34 13.0 11.9 72 148
iris UCI 3 classes 150 4 7.0 7.0 4 17
machine UCI regression 209 6 8.9 8.0 11 26
mpg libsvm regression 392 7 7.6 8.8 16 43
pima UCI 2 classes 768 8 11.2 10.9 111 529
sonar UCI 2 classes 208 60 12.7 13.0 38 50
vehicle UCI 4 classes 846 18 11.8 11.5 159 889
vowel990 libsvm 11 classes 990 10 10.4 10.1 85 706
wine UCI 3 classes 178 13 9.1 9.9 6 15

for class j that is 1 for labeled examples in the class
and 0 elsewhere. We then solve (3) for each class to
obtain a vector xj , and we guess that an unlabeled
vertex i belongs to the class j for which xj

i is largest.

Table 2 presents the results of performing classifica-
tion using 10-fold cross-validation. For each exper-
iment, we compute the hard graph and the 0.1-soft
graph once. We then randomly partition the vectors
into 10 sets of size as equal as possible, and for each set
we use the algorithm above to infer the classes, using
the labels on the other nine sets. We repeat each of
these experiments 100 times, and report the average
error. There were no parameters to train.

For comparison, we also report results of experiments
done using conventional graphs, LIBSVM (Chang &
Lin, 2001), and from experiments reported in (Su &
Zhang, 2006) and (Kotsiantis et al., 2006). In the
experiments that we performed on competing algo-
rithms, we used the other nine sets to train param-
eters. In the columns knn and thresh we compare to
the graphs described above, and chose parameters by
leave-one-out cross validation on the nine other sets.
In each experiment with LIBSVM, we called the easy
routine on the nine tenths of the data to choose pa-
rameters and train the support vector classifier. We
then used this classifier on the remaining tenth of the
data. The results are the averages of shifting over all
10 parts of the partition and repeating the whole pro-
cess 50 times.

The results we copy from the (Su & Zhang, 2006) are
for FBC: Full Bayes Classifier, AODE: Averaged One-
Dependence Estimators (Webb et al., 2005), and HGC:

the Hill Climbing BN Learning Algorithm (Hecker-
man). The results we copy from the (Kotsiantis
et al., 2006) are for NB: Naive Bayesian networks,
C4.5 (Quinlan, 1993), BP: Back Propagation, and
SMO: Sequential Minimal Optimization.

These results suggest that our graphs provide very
good classifiers. They perform exceptionally well on
the ionosphere and sonar data sets. The only data set
on which any algorithm performs significantly better
is vehicle, on which LIBSVM does particularly well.

4.2. Regression

We again use the algorithm of (Zhu et al., 2003) to
predict the values of the unlabeled vertices. Supposing
that we know the values fi for i ∈ S, we predict the
remaining fi values to be those that minimize

f TLf =
∑

(i,j)∈E

wi,j(fi − fj)2

subject to fixing the known fi values.

Table 3 presents the results of the regression experi-
ments using 10-way cross-validation. Again, for each
experiment, we compute the hard graph and the 0.1-
soft graph once. We then randomly partition the vec-
tors into 10 sets of size as equal as possible, and for
each set we use the algorithm above to infer the func-
tion. We repeat each of these experiments 50 times
and report the average error. For the Abalone data
set, because of time constraints due to its larger size,
we perform 2-way rather than 10-way cross-validation.

Again we observed what happens when we replace our
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Table 2. Classification error (%), 10-fold cross validation. The best result for each data set is bold. The experiments that
do not perform better than ours have a grey background.

Data set hard 0.1-soft knn thresh libsvm FBC AODE HGC NB C4.5 BP SMO

glass 27.78 28.30 26.92 33.30 31.44 37.56 38.27 41.64 50.55 32.37 32.68 42.64
heart 18.18 17.81 16.05 16.1 17.01 16.19 16.37 17.41 16.41 21.85 16.70 16.19
ionosphere 4.75 5.57 18.50 6.34 6.20 9.20 8.26 6.60 17.83 10.26 12.93 12.07
iris 4.87 4.21 4.46 6.20 3.87 6.27 6.00 3.93 4.47 5.27 15.20 15.13
pima 26.64 26.61 24.54 26.45 23.24 25.15 23.43 24.08 24.25 25.51 22.96 22.93
sonar 9.16 8.64 13.80 14.94 11.71 22.62 20.09 30.84 32.29 26.39 21.33 22.12
vehicle 23.03 22.47 27.70 29.98 14.87 25.77 28.35 31.90 55.32 27.72 18.89 25.92
vowel990 1.19 0.95 2.62 0.98 0.64 6.54 10.36 7.30 37.10 19.80 7.27 29.39
wine 2.92 2.62 2.86 3.64 2.57 2.54 6.80 1.98 1.24

Table 3. Regression mean-square error, k-fold cross validation (k=2 for Abalone, k=10 for other data sets). For each
data set, the labels have been rescaled to have variance one. The best result for each data set is bold. The experiments
that do not perform better than ours have a grey background.

Data set hard 0.1-soft knn thresh epsilon-svr gproc

abalone 0.479 0.482 0.492 0.657
housing 0.136 0.138 0.224 0.507 0.138 0.112
machine 0.170 0.185 0.164 0.608 0.394 0.890
mpg 0.120 0.118 0.137 0.145 0.128 0.129

graphs with the knn and thresh graphs described
above. In the knn and thresh regression experi-
ments, we ran each experiment 10 times. The hard and
0.1-soft graphs outperform these graphs for all but one
data set, and even in that data set the performance is
very close.

We again also ran experiments using LIBSVM (Chang
& Lin, 2001). We modified the classification routine
easy to search the same parameter ranges but do ε-
support vector regression instead of classification. We
fed this routine nine tenths of the data to choose pa-
rameters and train the support vector machine, which
we then used to predict values on the remaining tenth
of the data. We did this for each of the 10 partitions
of data, and repeated the whole experiment 20 times.

We also ran 10-way cross validation experiments using
the gproc Gaussian process regression algorithm from
Spider (Weston et al., 2008), repeating each experi-
ment 5 times.

Due to the size of Abalone, we were unable to run
regression tests on it with LIBSVM or Spider. On
the other three sets of regression data that we tested,
our graphs outperformed LIBSVM on all of them, and
Spider on all but one.

4.3. Clustering

Given the graph associated with a set of unlabeled
vectors x 1, . . . ,xn, one may obtain a clustering of the

vectors into k subsets by finding a good k-partition of
the corresponding graph. We did this with a spectral
algorithm; it remains an interesting question whether
other graph partitioning algorithms would improve the
results.

The graph partitioning algorithm that we applied is
essentially the same as that used by Ng, Jordan, and
Weiss (Ng et al., 2001). We formed the normalized
Laplacian L̃ = D−1/2LD−1/2, where D is the diagonal
matrix whose ith diagonal entry is the weighted degree
of vertex i. We then found its eigenvectors v1, . . . , vn,
where the v i are sorted in increasing order of the cor-
responding eigenvalues.

Let V = [v1, . . . , v t] be the n×t matrix whose columns
are given by the first t eigenvectors. (We shall discuss
the correct value of t below.) Following Ng, Jordan,
and Weiss, we let W be the matrix obtained by scal-
ing the rows of V to each have norm 1. The rows of
W give us n points in IRt, which we clustered using
k-means. We then lifted this clustering back to the
original vectors.

It is not immediately obvious how best to choose t.
A standard answer, which was the one employed by
Ng, Jordan, and Weiss, is to set it equal to the desired
number of clusters k. However, we found that this was
not the best strategy with our graphs. Intuitively, one
may view the matrix V as a low-rank approximation
to L. If one works in a model in which the graph is
expected to have a very sparse cut that breaks it into
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Table 4. Clustering error (%). We compare our results to k-means and the Ng-Jordan-Weiss algorithm. For both the
hard and 0.1 soft graphs, we list the performance when t = k and when t is chosen heuristically as described in the text.
In the t chosen columns, the selected value of t is listed in parentheses.

Data set k-means NJW Hard, t = k Hard, t chosen 0.1-soft, t = k 0.1-soft, t chosen

glass 0.41 0.43 0.44 0.43 (12) 0.45 0.45 (12)
heart 0.41 0.42 0.35 0.35 (2) 0.19 0.19 (2)

ionosphere 0.29 0.33 0.26 0.09 (15) 0.33 0.09 (15)
iris 0.11 0.33 0.33 0.15 (5) 0.17 0.09 (8)

pima 0.34 0.35 0.35 0.35 (12) 0.35 0.35 (12)
sonar 0.45 0.47 0.41 0.41 (35) 0.4 0.35 (35)

vehicle 0.55 0.62 0.58 0.54 (6) 0.56 0.53 (6)
vowel990 0.66 0.76 0.65 0.66 (30) 0.65 0.6 (30)

wine 0.3 0.33 0.03 0.03 (3) 0.03 0.03 (3)

k large and well-connected pieces, L will be well ap-
proximated by its rank-k approximation, and taking
t = k is the right course of action. This occurs in most
random graph models in which one assumes a good
k-partition exists (McSherry, 2001). The theoretical
basis for this arises from the existence in these models
of a large gap between the kth and (k+1)st eigenvalues.
However, this gap arises from the very strong cluster-
ing assumed to exist in these models, and it does not
always occur in practice, even when there is a good
partition into k clusters.

Ideally, one wants to include only as many eigenvectors
as are necessary to get a good approximation of the
data. Let γj =

∑
i(v j ·x i)2 be the total squared norm

of the projections of the xi into the jth eigenspace. In
practice, there tend to be some number of reasonably
large γi, after which they fall off quite sharply. Setting
t to be an index after which the γi are small yielded
considerably better results than simply setting t = k.
While the choice of the exact cutoff point is somewhat
arbitrary, it tends to be fairly clear in practice, and
the quality of the resulting clusterings tended not to
be very sensitive to its exact value.

To evaluate the efficacy of this approach, we removed
the class labels from the data sets from Section 4.1 and
applied our algorithm. We then compared the result-
ing clustering to the actual correct classification and
computed the fraction of the points that were misclas-
sified. For comparison, we performed the same exper-
iments using k-means and the Ng-Jordan-Weiss rou-
tines implemented in Spider (Weston et al., 2008).

We computed the classification error for both the hard
and 0.1-soft graphs. In order to allow a fair comparison
to the Ng-Jordan-Weiss algorithm, which used exactly
k values, we computed the performance of our method
with t = k. In addition, we computed the cluster-
ing error when t was chosen heuristically as described
above. We note that we selected the t at which the γi

appeared to become negligible, not the t that gave the
lowest error rate (as doing so would require using the
actual classification, which was not given to us in the
problem).

For both the hard and 0.1-soft graphs, our algorithm
with t = k was never significantly worse than the
Ng-Jordan-Weiss algorithm, and it was usually signif-
icantly better. As the two algorithms performed the
same operations on their respective graphs, this pro-
vides strong support for the notion that our graphs
improve upon the traditional ones. When t was chosen
more carefully, our graphs tended to significantly out-
perform both k-means and Ng-Jordan-Weiss. In par-
ticular, they provided extreme improvements on the
ionosphere and wine datasets.

5. Conclusions and Future work

We have suggested optimizing a graph to fit a data set,
and found a measure of fitness under which the opti-
mal graphs are sparse, have interesting combinatorial
properties, and provide good answers to classification,
regression, and clustering properties. We ask if there
are other natural graphs to fit to a data set, and if our
graphs can be improved for these learning problems.
For example, we ask if one can incorporate labeled ex-
amples into the construction of the graph. We also
ask if there is a natural way to use our graphs to infer
labels of vectors that were not used in the graph con-
struction, such as was done in the work of (Yu et al.,
2004; Sindhwani et al., 2005; Coifman & Lafon, 2006).
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