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Given a finite weighted graph G and its Laplacian matrix L, the
combinatorial Green’s function G of G is defined to be the inverse
of L + J , where J is the matrix each of whose entries is 1. We
prove the following intriguing identities involving the entries in
G = (gij) whose rows and columns are indexed by the vertices
of G: gaa + gbb − gab − gba = κ(Ga∗b)/κ(G), where κ(G) is the
complexity or tree-number of G , and Ga∗b is obtained from G
by identifying two vertices a and b. As an application, we derive
a simple combinatorial formula for the resistance between two
arbitrary nodes in a finite resistor network. Applications to other
similar networks are also discussed.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Given a finite graph G with n vertices and its Laplacian matrix L = L(G), we define the augmented
Laplacian matrix of G to be L = L(G) = L + J , where J denotes the n × n matrix each of whose
entries is 1. The tree-number or complexity of G , denoted by κ(G), is the number of spanning trees
in G . Temperley [7] showed

n2 · κ(G) = det L(G), (1.1)

which is an analog of the Matrix-Tree theorem [3] that states every cofactor of L equals κ(G).
An important reason for our interest in the augmented Laplacian matrix L is that it is invertible

when κ(G) is nonzero, unlike the Laplacian matrix L. Moreover, L−1 acts as an “inverse” of L for
solving the Laplace equations Lx = y in the sense that x = L−1y is a desired solution if y is in the
column space of L (see Section 4). An interesting application of these observations can be found in
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Stephenson and Zelen’s work on the information centrality for networks (see Appendix in [6]). Similar
methods using Green’s functions were applied to compute the resistances in a finite resistor network
in terms of the eigenvalues and eigenvectors of the associated Kirchhoff matrix (see e.g. [2,10]).

We define the combinatorial Green’s function G = G(G) of a connected finite graph G to be the
inverse of its augmented Laplacian matrix L(G):

G(G) = L(G)−1.

The main result of this paper is the following intriguing identities involving the entries in G(G) = (gij)

whose rows and columns are indexed by the vertices of G . Let Ga∗b denote the contraction of G
obtained by identifying two arbitrary vertices a and b (see Section 2). We will show

gaa + gbb − gab − gba = κ(Ga∗b)

κ(G)
. (1.2)

The proof of (1.2) will be based on a generalization of (1.1) and combinatorial analysis of the Laplacian
matrix of Ga∗b . In subsequent sections, we will see that all of our definitions and results are also valid
for a finite weighted graph G where the weights are non-negative.

As an application of our main result, we will derive a combinatorial formula for the network
resistance Rab between two arbitrary nodes a and b in a finite resistor network. We will see that
our formula for Rab specializes to that of the effective resistance r(a,b, G) [8] which is valid only for
adjacent vertices a and b in a connected graph G . We will also discuss other networks (see e.g. [6])
that are similar to resistor networks.

2. Preliminaries

We will assume basic familiarity with standard terminologies from graph theory. One may refer
to most textbooks (e.g., [1] or [9]) for their definitions. The graphs that we consider are finite, unori-
ented, and loopless, but they may have multiple edges. A complete graph has one edge between each
pair of vertices. An edge connecting two distinct vertices i and j will be denoted i j.

2.1. Laplacian matrix of a weighted graph. A weighted graph G is a loopless graph such that a non-
negative weight wij = w ji is assigned to each edge i j, where i and j are distinct vertices. A weighted
graph may be regarded as a complete graph with non-negative weights assigned to its edges. An
unweighted graph may be treated as a weighted graph by letting wij equal the number of edges
between i and j. The adjacency matrix of G with the vertex set V (G) = [n] = {1,2, . . . ,n} is the n × n
symmetric matrix A = A(G) = (aij) whose entries are given by aij = wij for i �= j and aii = 0 for
every i. The degree di of the vertex i is defined by di = ∑

j wij where wii = 0 for every i. We define
D = D(G) to be the n × n diagonal matrix whose diagonal entries are di .

The Laplacian matrix of a finite weighted graph G is L = L(G) = D − A, which is real symmetric.
Since the sum of the entries in every row and every column of L is zero, every cofactor of L has
the same value. We define the complexity κ(G) of G to be the value of any cofactor of L. If G is
unweighted, κ(G) equals the tree number in G by the Matrix-Tree theorem. A weighted graph is
defined to be connected if κ(G) �= 0.

2.2. Contraction of a weighted graph. An important minor of a graph G is the contraction Ga∗b of G
that is obtained by shrinking (contracting) the edge ab to a point. We may contract ab by identifying
the vertex a with the vertex b so that all edges that were incident to a and b in G are incident to
b in Ga∗b (and a is no longer a vertex of Ga∗b). As a weighted graph, we define the contraction Ga∗b
of G to be a weighted graph satisfying the following conditions. Let w and ω denote the weights, and
let d and δ denote the degrees in G and Ga∗b , respectively.

• V (Ga∗b) = V (G) \ {a},
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• ωib = wia + wib , and ωi j = wij if i, j �= b,
• δb = da + db − 2wab , and δi = di if i �= b.

Although the roles of a and b may be switched in defining Ga∗b , we will not do so in order to
avoid confusion in what follows. It is important to note that Ga∗b is defined as a weighted graph even
when wab = 0 in G . Hence, we may have κ(Ga∗b) > κ(G). For example, if G has three vertices a,b,
and c and wac = wbc = 1 and wab = 0, then κ(Ga∗b) = 2 and κ(G) = 1.

Since a (weighted) graph can be recovered from its Laplacian matrix, we may also define Ga∗b to
be the graph whose Laplacian matrix is obtained from L = L(G) by applying the following sequence
of operations: (Ri(M) and C j(M) denote row i and column j of a matrix M , respectively)

(1) replace Rb(L) by Ra(L) + Rb(L) (denote the result by M1),
(2) replace Cb(M1) by Ca(M1) + Cb(M1) (denote the result by M2), and
(3) delete Ra(M2) and Ca(M2) (denote the result by M3).

Clearly, the entries in M2 except those in Ra(M2) and Ca(M2) are the weights and degrees for Ga∗b
as described above. The last operation (3) corresponds to eliminating the vertex a from V (G). It is
clear that we have M3 = L(Ga∗b).

Note that the above three operations may be applied to any square matrix M , and we will denote
the resulting matrix by Ma∗b , called a contraction of M . With this notation, we have

L(Ga∗b) = L(G)a∗b. (2.1)

We note the following useful properties of contractions. If M has the zero sum property for its rows
and columns, then so does any contraction of M . If M has rank � 1, then so does any contraction
of M . The sum of all entries of M equals that of any contraction of M . We also have

(M + N)a∗b = Ma∗b + Na∗b. (2.2)

Example. This example will be discussed again in Section 4. Let G be a weighted graph with the
vertex set {1,2,3,4} with the weights w13 = 0, w24 = 2, and wij = 1 otherwise. Then

L(G) =
⎛
⎜⎝

2 −1 0 −1
−1 4 −1 −2
0 −1 2 −1

−1 −2 −1 4

⎞
⎟⎠ .

The following are the Laplacian matrices for various contractions of G:

L(G1∗3) =
( 4 −2 −2

−2 4 −2
−2 −2 4

)
L(G2∗4) =

( 2 0 −2
0 2 −2

−2 −2 4

)
L(G1∗2) =

( 4 −1 −3
−1 2 −1
−3 −1 4

)
.

Lemma 1. Let M = (mij) be an n×n matrix, and let μi j be the (i, j)-cofactor of M, i.e., μi j = (−1)i+ j det Mij ,
where Mij is obtained from M by removing Ri(M) and C j(M). Then the following identity holds for all i and j:

det Mi∗ j = μii + μ j j − μi j − μ ji .

Proof. First, we will prove the case i = 1 and j = 2. Note that M11 and M12 differ only in their first
columns. Also, M22 and M21 differ only in their first columns. By the linearity of determinant on
columns, we have
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μ11 − μ12 = det M11 + det M12 = det M ′ and

μ22 − μ21 = det M22 + det M21 = det M ′′,

where

M ′ =

⎛
⎜⎜⎜⎝

m22 + m21 m23 · · · m2n

m32 + m31 m33 · · · m3n

...
...

. . .
...

mn2 + mn1 mn3 · · · mnn

⎞
⎟⎟⎟⎠ M ′′ =

⎛
⎜⎜⎜⎝

m11 + m12 m13 · · · m1n

m31 + m32 m33 · · · m3n

...
...

. . .
...

mn1 + mn2 mn3 · · · mnn

⎞
⎟⎟⎟⎠ .

Note that M ′ and M ′′ differ only in their first rows. It is now clear by the linearity of determinant on
rows that det M ′ + det M ′′ = det M1∗2.

In general, assume 1 � i < j � n. Let P be the matrix obtained from M by switching row i with
row 1, row j with row 2, column i with column 1, and column j with column 2. Let πi j be the
(i, j)-cofactor of P . Then π11 = μii because P11 and Mii differ by an even permutation of rows and
columns. Similarly, we have π22 = μ j j , π12 = μi j , and π21 = μ ji . Also it is easily checked that Mi∗ j
and P1∗2 differ by an even permutation of rows and columns. Therefore, det Mi∗ j = det P1∗2, and the
result follows. �
3. Main theorems

If an n × n matrix M satisfies the zero sum condition for its rows and columns, then it is easily
checked that every cofactor of M has the same value (see e.g. [4, Lemma 5.6.5] for a proof ). For
example, we’ve already seen that every cofactor of the Laplacian matrix L(G) of a finite graph G
is κ(G). The following is a generalization of Temperley’s tree-number formula (1.1).

Theorem 2. Let M be an n × n matrix such that the sum of entries in every row and every column is zero, and
let μ denote the value of any cofactor of M. Let U be an n × n rank 1 matrix, and let σ denote the sum of all of
its entries. Then the following identity holds:

μ · σ = det(M + U ).

Proof. Let M + U = (C1 + D1, C2 + D2, . . . , Cn + Dn), where Ci ’s and Di ’s are the columns of M
and U , respectively. Given any subset S ⊂ [n], define �S = (X1, X2, . . . , Xn), where Xi = Di if i ∈ S
and Xi = Ci if i /∈ S . For example, �∅ = M and �[n] = U . By the multilinearity of determinant on
columns, we have

det(M + U ) =
∑

S⊂[n]
det�S

where the sum is over all subsets S of [n]. Clearly, we have det�∅ = det M = 0. Also, if |S| > 1,
then det �S = 0 because U has rank 1 and every column of U is a multiple of a single column.
Furthermore, if we let σi be the sum of all entries in Di , then det �{i} = μ · σi for every i ∈ [n].
Therefore, we have

det(M + U ) =
∑

0�i�n

det�{i} =
∑

0�i�n

μ · σi = μ · σ . �

Recall that for a finite weighted graph G , we defined κ(G) to be the value of any cofactor of L(G).
Let L(G) = L(G) + J . The following is the weighted version of Temperley’s tree-number formula (1.1).
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Corollary 3. For a finite weighted graph G with n vertices, we have

n2 · κ(G) = det L(G).

It follows that L = L(G) is non-singular if κ(G) �= 0. As in the case of unweighted graphs, we
define the combinatorial Green’s function of a finite weighted graph G to be G = G(G) = L−1. Assume
that the rows and columns of G are indexed by the vertices of G . The following is the main theorem
of the paper.

Theorem 4. Let G be a finite weighted graph with n (> 1) vertices and κ(G) �= 0. The entries in G = (gij)

satisfy the following identities:

gaa + gbb − gab − gba = κ(Ga∗b)

κ(G)

for any arbitrary pair of distinct vertices a and b of G.

Proof. Let li j be the (i, j)-cofactor of L. Note that we have gij = li j/det L because G = L−1. We also
have det L = n2κ(G) by Corollary 3. Therefore,

gaa + gbb − gab − gba = 1

n2κ(G)
(laa + lbb − lab − lba)

= 1

n2κ(G)
det(La∗b) (by Lemma 1)

= 1

n2κ(G)
det

(
L(G)a∗b + Ja∗b

) (
by (2.2)

)
.

Since J has rank 1 and the sum of its entries is n2, the same is true for Ja∗b . Also we have L(G)a∗b =
L(Ga∗b) by (2.1), and every cofactor of L(Ga∗b) equals κ(Ga∗b). Therefore, by Theorem 2, we have

det
(
L(G)a∗b + Ja∗b

) = n2κ(Ga∗b),

and the theorem follows. �
4. Applications to networks

In this section, an (undirected) network is represented by a finite connected weighted graph G
with n vertices. Its Laplacian matrix L may be regarded as a symmetric linear transformation on R

n

equipped with the standard inner product. Let 1 be the column vector each of whose entry is 1, and 0
the zero vector in R

n . Since L = L + J is invertible, let G = L−1.

Lemma 5. Suppose y ⊥ 1. Then, x = G y is a solution to Lx = y.

Proof. Let x = G y. Then we have Lx = y. Multiplying this equation by J , we get J Lx + J 2x = Jy.
Since J Lx = Jy = 0 and J 2 = n J , we see that Jx = 0. Therefore Lx = (L + J )x = Lx = y. �

In what follows, one may refer to [5] for relevant definitions and laws concerning electrical cir-
cuits. Our background discussion of a resistor network will follow [10]. Let G represent a finite resistor
network consisting of [n] = {1,2, . . . ,n} as nodes and a resistor for each pair i, j ∈ [n] with the resis-
tance ri j = r ji . Let the weight of the edge i j in G be the conductance ci j = c ji = r−1

i j . If i and j are not
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connected by a resistor, then ri j = ∞ and ci j = 0. Let G = (gij) be the combinatorial Green’s function
of G .

The network resistance Rij between i and j is what an ohm meter would read if it is connected
to i and j. The electrical potential at the node i is denoted by V i and the net current flowing
into the network at the node i by I i with the constraint

∑n
i=1 Ii = 0. The Kirchhoff’s law states∑n

i=1 ci j(V i − V j) = Ii for each i, which is equivalent to

L 
V = 
I, (4.1)

where 
V and 
I are vectors in R
n whose components are V i and Ii , respectively. In order to compute

the resistance Rab between two nodes a and b, an external current source with current I is connected
to a and b so that Ia = I , Ib = −I and Ii = 0 for i �= a,b. Then, the network resistance is given by

Rab = Va − Vb

I
. (4.2)

Since we have 
I ⊥ 1, Lemma 5 implies that 
V = G
I is a solution to (4.1). Therefore, we have
Va = (gaa − gab)I and Vb = (gba − gbb)I . Now the following theorem is immediate from (4.2) and
Theorem 4.

Theorem 6. The network resistance between two arbitrary nodes a and b in a finite resistor network G is the
ratio

Rab(G) = κ(Ga∗b)

κ(G)
.

Examples. 1. Let G be the complete graph Kn with every weight equal to 1. Then κ(Ga∗b) equals the
number of the spanning trees in G that contain the edge ab. Since a spanning tree in G has n − 1
edges, one obtains the identity

(n
2

)
κ(Ga∗b) = (n − 1)κ(G). Hence, Rab = κ(Ga∗b)/κ(G) = (n − 1)/

(n
2

) =
2/n.

2. Let G be a cycle Cn of length n with every weight equal to a constant w . Given two nodes
a and b, suppose Ga∗b is a one point union of two cycles one of length m and the other of length
(n − m). Clearly, we have κ(G) = nwn−1 and κ(Ga∗b) = m(n − m)wn−2. Hence, Rab = m(n − m)/nw .

3. Theorem 6 enables relative ranking among Rab ’s without knowing their exact values. Referring
back to the example in Section 2, we have κ(G1∗3) = 12, κ(G2∗4) = 4, and κ(Ga∗b) = 6 for all other
pairs a and b. So the network resistances can be ranked in the order of R13, Rab , and R24.

4. If G is a finite graph (unweighted), and if a and b are required to be adjacent in G , then The-
orem 6 specializes to the formula for the effective resistances r(a,b, G) by Thomassen [8]. It is shown
that r(a,b, G) = τab(G)/τ (G), where τab(G) is the number of spanning trees in G containing the edge
ab and τ (G) = κ(G), the tree-number of G . Since κ(Ga∗b) = τab(G) when a and b are adjacent in G ,
we see that r(a,b, G) = Rab(G) in this case.

5. The network conductance between two arbitrary nodes a and b in a resistor network is defined
Cab = R−1

ab = κ(G)/κ(Ga∗b). It is interesting to note that this exact formula appeared in the computa-
tion of the amount of information Iab contained in all possible paths between two arbitrary nodes a
and b in a network [6]. Here, a network is represented by a finite weighted graph G whose weights
correspond to, e.g., the frequency of communication. Based on the theory of statistical estimation, it
was shown that Iab = (gaa + gbb − 2gab)

−1, where gij are the entries in G(G). Hence, it follows from
Theorem 4 that Iab = κ(G)/κ(Ga∗b).
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