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1. Introduction

Given a finite graph G with n vertices and its Laplacian matrix L = L(G), we define the augmented
Laplacian matrix of G to be £L = L(G) =L+ J, where ] denotes the n x n matrix each of whose
entries is 1. The tree-number or complexity of G, denoted by k(G), is the number of spanning trees
in G. Temperley [7] showed

n? . k(G) =det £(G), (11)

which is an analog of the Matrix-Tree theorem [3] that states every cofactor of L equals «(G).

An important reason for our interest in the augmented Laplacian matrix £ is that it is invertible
when «(G) is nonzero, unlike the Laplacian matrix L. Moreover, £~! acts as an “inverse” of L for
solving the Laplace equations Lx =y in the sense that x= £y is a desired solution if y is in the
column space of L (see Section 4). An interesting application of these observations can be found in
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Stephenson and Zelen’s work on the information centrality for networks (see Appendix in [6]). Similar
methods using Green'’s functions were applied to compute the resistances in a finite resistor network
in terms of the eigenvalues and eigenvectors of the associated Kirchhoff matrix (see e.g. [2,10]).

We define the combinatorial Green’s function G = G(G) of a connected finite graph G to be the
inverse of its augmented Laplacian matrix £(G):

GG =L~

The main result of this paper is the following intriguing identities involving the entries in G(G) = (g;j)
whose rows and columns are indexed by the vertices of G. Let G denote the contraction of G
obtained by identifying two arbitrary vertices a and b (see Section 2). We will show

Kk (Gaxb)

W. (1.2)

8aa + 8bb — 8ab — 8ba =

The proof of (1.2) will be based on a generalization of (1.1) and combinatorial analysis of the Laplacian
matrix of Gg4p. In subsequent sections, we will see that all of our definitions and results are also valid
for a finite weighted graph G where the weights are non-negative.

As an application of our main result, we will derive a combinatorial formula for the network
resistance R,, between two arbitrary nodes a and b in a finite resistor network. We will see that
our formula for Ry, specializes to that of the effective resistance r(a, b, G) [8] which is valid only for
adjacent vertices a and b in a connected graph G. We will also discuss other networks (see e.g. [6])
that are similar to resistor networks.

2. Preliminaries

We will assume basic familiarity with standard terminologies from graph theory. One may refer
to most textbooks (e.g., [1] or [9]) for their definitions. The graphs that we consider are finite, unori-
ented, and loopless, but they may have multiple edges. A complete graph has one edge between each
pair of vertices. An edge connecting two distinct vertices i and j will be denoted ij.

2.1. Laplacian matrix of a weighted graph. A weighted graph G is a loopless graph such that a non-
negative weight w;j = wj; is assigned to each edge ij, where i and j are distinct vertices. A weighted
graph may be regarded as a complete graph with non-negative weights assigned to its edges. An
unweighted graph may be treated as a weighted graph by letting w;; equal the number of edges
between i and j. The adjacency matrix of G with the vertex set V(G) =[n]={1,2,...,n} isthenxn
symmetric matrix A = A(G) = (a;j) whose entries are given by a;; = w;j for i # j and a;; =0 for
every i. The degree d; of the vertex i is defined by d; = Zj wij where w;; =0 for every i. We define
D = D(G) to be the n x n diagonal matrix whose diagonal entries are d;.

The Laplacian matrix of a finite weighted graph G is L = L(G) = D — A, which is real symmetric.
Since the sum of the entries in every row and every column of L is zero, every cofactor of L has
the same value. We define the complexity k(G) of G to be the value of any cofactor of L. If G is
unweighted, k(G) equals the tree number in G by the Matrix-Tree theorem. A weighted graph is
defined to be connected if k(G) # 0.

2.2. Contraction of a weighted graph. An important minor of a graph G is the contraction Ggyp of G
that is obtained by shrinking (contracting) the edge ab to a point. We may contract ab by identifying
the vertex a with the vertex b so that all edges that were incident to a and b in G are incident to
b in G4 (and a is no longer a vertex of Gg,p). As a weighted graph, we define the contraction Ggp
of G to be a weighted graph satisfying the following conditions. Let w and w denote the weights, and
let d and § denote the degrees in G and Gg.p, respectively.

o V(Gasp) =V(G)\ {a},
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o wijp = Wig + Wip, and wjj = wj; if i, j #b,
e Sy =dg+dp — 2wy, and & =d; if i #Zb.

Although the roles of a and b may be switched in defining Gg.p, we will not do so in order to
avoid confusion in what follows. It is important to note that G, is defined as a weighted graph even
when wg, =0 in G. Hence, we may have «(Gg.p) > k(G). For example, if G has three vertices a, b,
and ¢ and wge = wpe =1 and wg, =0, then «(Ggyp) =2 and k(G) = 1.

Since a (weighted) graph can be recovered from its Laplacian matrix, we may also define G, to
be the graph whose Laplacian matrix is obtained from L = L(G) by applying the following sequence
of operations: (R;(M) and C;(M) denote row i and column j of a matrix M, respectively)

(1) replace Ry(L) by Rq(L) + Rp(L) (denote the result by M),
(2) replace Cp(M1) by Cq(M1) + Cp(M1) (denote the result by M>), and
(3) delete Rq(M3) and C4(M>3) (denote the result by Ms3).

Clearly, the entries in M, except those in R;(M3) and C,(M3) are the weights and degrees for Ggyp
as described above. The last operation (3) corresponds to eliminating the vertex a from V(G). It is
clear that we have M3 = L(Ggyp).

Note that the above three operations may be applied to any square matrix M, and we will denote
the resulting matrix by Mgy, called a contraction of M. With this notation, we have

L(Gaxp) = L(G)axp- (2.1)

We note the following useful properties of contractions. If M has the zero sum property for its rows
and columns, then so does any contraction of M. If M has rank < 1, then so does any contraction
of M. The sum of all entries of M equals that of any contraction of M. We also have

(M + N)gsp = Masb + Naap- (2.2)

Example. This example will be discussed again in Section 4. Let G be a weighted graph with the
vertex set {1, 2, 3,4} with the weights w3 =0, wa4 =2, and w;j =1 otherwise. Then

2 -1 0 -1
-1 4 -1 =2
0 -1 2 -1
-1 -2 -1 4

L(G) =

The following are the Laplacian matrices for various contractions of G:
4 -2 =2 2 0 =2 4 -1 -3
L(G143) = <—2 4 —2) L(Gaxa) = ( 0o 2 —2) L(G1x2) = (—1 2 —1).
-2 -2 4 -2 -2 4 -3 -1 4

Lemma 1. Let M = (m;;) be an n x n matrix, and let j;; be the (i, j)-cofactor of M, i.e., pij = (=1t det Mij,
where M;; is obtained from M by removing R;(M) and C;(M). Then the following identity holds for all i and j:

det Mixj = Wi + Mjj — Mij — Mji-

Proof. First, we will prove the case i =1 and j =2. Note that M{; and My, differ only in their first
columns. Also, My, and M;; differ only in their first columns. By the linearity of determinant on
columns, we have
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U11 — 12 = det M1 + det M, =detM and
U2z — 21 = det Moy + det My1 = det M”,

where
My +MmMy1 M3 -+ Moy muy+miz miz .- My
ms3y +m3; m33 -+ M3y m3p+m3p m33 - M3y
M = M =
Mp2 +Mpy Mp3 -+ Mpy Mp1 +Mp2 Mp3 -+ Mpy

Note that M’ and M” differ only in their first rows. It is now clear by the linearity of determinant on
rows that det M’ + det M” = det M1-.

In general, assume 1 <i < j<n. Let P be the matrix obtained from M by switching row i with
row 1, row j with row 2, column i with column 1, and column j with column 2. Let 7;; be the
(i, j)-cofactor of P. Then 711 = i because Py; and M;j; differ by an even permutation of rows and
columns. Similarly, we have 73, = jj, T12 = wij, and w1 = wji. Also it is easily checked that M,
and P14, differ by an even permutation of rows and columns. Therefore, det M, j = det P12, and the
result follows. O

3. Main theorems

If an n x n matrix M satisfies the zero sum condition for its rows and columns, then it is easily
checked that every cofactor of M has the same value (see e.g. [4, Lemma 5.6.5] for a proof). For
example, we've already seen that every cofactor of the Laplacian matrix L(G) of a finite graph G
is kK (G). The following is a generalization of Temperley’s tree-number formula (1.1).

Theorem 2. Let M be an n x n matrix such that the sum of entries in every row and every column is zero, and
let 1 denote the value of any cofactor of M. Let U be an n x n rank 1 matrix, and let o denote the sum of all of
its entries. Then the following identity holds:

u-o=det(M+ U).

Proof. Let M + U = (C; + D1,Cy + D3, ...,Cp + Dy), where C;’s and D;'s are the columns of M
and U, respectively. Given any subset S C [n], define As = (X1, X2,..., Xy), where X;=D; ifie S
and X; =C; if i ¢ S. For example, Ay =M and Ap;; = U. By the multilinearity of determinant on
columns, we have

det(M + U) = Z det Ag
Scn]

where the sum is over all subsets S of [n]. Clearly, we have det Ay = detM = 0. Also, if |S| > 1,
then det As = 0 because U has rank 1 and every column of U is a multiple of a single column.
Furthermore, if we let o; be the sum of all entries in D;, then detAy) = u - o; for every i e [n].
Therefore, we have

dett(M 4+ U) = ZdetA{i}: ZM-O’,‘ZM-U. O
o0<i<n o<i<n

Recall that for a finite weighted graph G, we defined k (G) to be the value of any cofactor of L(G).
Let £(G) = L(G) + J. The following is the weighted version of Temperley’s tree-number formula (1.1).
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Corollary 3. For a finite weighted graph G with n vertices, we have
n? - k(G) = det L(G).

It follows that £ = L£(G) is non-singular if x(G) # 0. As in the case of unweighted graphs, we
define the combinatorial Green's function of a finite weighted graph G to be G = G(G) = £~1. Assume
that the rows and columns of G are indexed by the vertices of G. The following is the main theorem
of the paper.

Theorem 4. Let G be a finite weighted graph with n (> 1) vertices and k (G) # 0. The entries in G = (gij)
satisfy the following identities:

K (Gaxb)
k(G)

8aa + 8bb — 8ab — 8ba =

for any arbitrary pair of distinct vertices a and b of G.

Proof. Let I;; be the (i, j)-cofactor of £. Note that we have g;; =1;j/ det £ because G = L£-1. We also
have det £ =n?k(G) by Corollary 3. Therefore,

Zaa + &bb — ab — &ba = (lag + Ipp — lap — lpa)

n2k(G)

1
= m det(Lq4p) (by Lemma 1)

1
= nzK(G) dEt(L(G)a*b + ]a*b) (by (2.2)).

Since J has rank 1 and the sum of its entries is n?, the same is true for Jg.p. Also we have L(G)qp =
L(Ggsp) by (2.1), and every cofactor of L(Ggyp) equals k(Ggyp). Therefore, by Theorem 2, we have

det(L(G)asp + Jasb) ="Kk (Gaxp),
and the theorem follows. O

4. Applications to networks

In this section, an (undirected) network is represented by a finite connected weighted graph G
with n vertices. Its Laplacian matrix L may be regarded as a symmetric linear transformation on R"
equipped with the standard inner product. Let 1 be the column vector each of whose entry is 1, and 0
the zero vector in R". Since £ =L+ J is invertible, let G = £~ 1.

Lemma 5. Suppose y L 1. Then, X = Gy is a solution to Lx =y.

Proof. Let x = Gy. Then we have £x =y. Multiplying this equation by J, we get JLx + J?x = Jy.
Since JLx= Jy=0 and J?=n]J, we see that Jx=0. Therefore Lx= (L + )x=Lx=y. O

In what follows, one may refer to [5] for relevant definitions and laws concerning electrical cir-
cuits. Our background discussion of a resistor network will follow [10]. Let G represent a finite resistor
network consisting of [n] ={1,2,...,n} as nodes and a resistor for each pair i, j € [n] with the resis-

tance rij =rj;. Let the weight of the edge ij in G be the conductance c;j =cji = r”1. If i and j are not
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connected by a resistor, then rj; = oo and ¢;; =0. Let G = (g;j;) be the combinatorial Green’s function
of G.

The network resistance R;; between i and j is what an ohm meter would read if it is connected
to i and j. The electrical potential at the node i is denoted by V; and the net current flowing
into the network at the node i by I; with the constraint Z?:l I; = 0. The Kirchhoff's law states
Z?:l cij(Vi — V;) =1; for each i, which is equivalent to

LV =1, (4.1)

where V and T are vectors in R" whose components are V; and [;, respectively. In order to compute
the resistance R,, between two nodes a and b, an external current source with current I is connected
toa and b so that I =1, I =—I and I; =0 for i #a, b. Then, the network resistance is given by

Va—Vp

] (4.2)

Rap =

Since we have I L1, Lemma 5 implies that V =Gl is a solution to (4.1). Therefore, we have
Ve = (8aa — &ap)! and Vy = (8pq — gpp)I. Now the following theorem is immediate from (4.2) and
Theorem 4.

Theorem 6. The network resistance between two arbitrary nodes a and b in a finite resistor network G is the
ratio

Ryp(G) = K (Gasp)

k(G)
Examples. 1. Let G be the complete graph K, with every weight equal to 1. Then x (Ggyp) equals the
number of the spanning trees in G that contain the edge ab. Since a spanning tree in G has n — 1
edges, one obtains the identity (5)k (Gasp) = (1 — 1k (G). Hence, Rap = k (Gaup) /K (G) = (n—1)/(5) =
2/n.

2. Let G be a cycle C, of length n with every weight equal to a constant w. Given two nodes
a and b, suppose Gg.p, is a one point union of two cycles one of length m and the other of length
(n —m). Clearly, we have «(G) =nw"! and k (Gg.p) = m(n —m)w" 2. Hence, Ry, = m(n — m)/nw.

3. Theorem 6 enables relative ranking among Rg;,’s without knowing their exact values. Referring
back to the example in Section 2, we have «(G143) = 12, k(G244) =4, and x (Ggp) = 6 for all other
pairs a and b. So the network resistances can be ranked in the order of R13, Ry, and Ry4.

4, If G is a finite graph (unweighted), and if a and b are required to be adjacent in G, then The-
orem 6 specializes to the formula for the effective resistances r(a, b, G) by Thomassen [8]. It is shown
that r(a, b, G) = 1745(G) /T (G), where 74, (G) is the number of spanning trees in G containing the edge
ab and t(G) = k(G), the tree-number of G. Since k(Gg4p) = Tqp(G) When a and b are adjacent in G,
we see that r(a, b, G) = Rgp(G) in this case.

5. The network conductance between two arbitrary nodes a and b in a resistor network is defined
Cap = R; =k (G)/k(Ggyp). It is interesting to note that this exact formula appeared in the computa-
tion of the amount of information I, contained in all possible paths between two arbitrary nodes a
and b in a network [6]. Here, a network is represented by a finite weighted graph G whose weights
correspond to, e.g., the frequency of communication. Based on the theory of statistical estimation, it
was shown that I, = (8qq + Zpp — 28ap) ', Where gij are the entries in G(G). Hence, it follows from
Theorem 4 that Iy =« (G)/k (Ggyp)-
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