
We introduce a scheme for the parametrization of an observed measurements set - Ȳ into its inde-
pendent components that enables an efficient extension to a larger set Y . Our work is related to
previous work on spectral independent components analysis (ICA), where the non-linear ICA prob-
lem is solved via the construction of an anisotropic diffusion kernel whose eigenfunctions comprise
the independent components. In our work a different diffusion construct is used, utilizing only the
small observed set Ȳ , that approximates the isotropic diffusion on the parametric manifold MX

of the full set Y . We employ an extension of the independent components on Ȳ to the orthogonal
independent components on Y . A validation scheme for our algorithm parameters is also provided,
suggesting also a method for the synthesis of new observables by merely using the empirical values
of X̄. We demonstrate our method on synthetic examples and on semi-supervised classification of
electro-magnetic measurements of geological formations.
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1 Introduction

Independent components analysis (ICA) is a fundamental tool in data analysis
[1]. Given some high dimensional observed data, many embedding techniques
have been suggested to reduce the data complexity and represent it in a lower
dimension (see [2]). However, in many situations a method that embeds the
data into its independent components may be the method of choice, since it
guarantees to represent the data in the unique space of its independent physical
parameters. The ICA, as a re-parametrization method, is a useful tool for
learning tasks (e.g. classification), since the relations between data points can
be computed in a meaningful space.

In order to solve the ICA problem, certain assumptions on the generation of
data need to be met. Similarly to [4], we assume that the data is generated by
independent Itô processes in the parametric space, and then transformed to a
higher dimensional observed space by some non-linear transformation f : X →
Y . f is an arbitrary non-linear transformation, however, we assume that it is
smooth and bi-Lipchitz: there exist a constant K ≥ 0 such that

1
K
|x(i) − x(j)| ≤ |f(x(i))− f(x(j))| ≤ K|x(i) − x(j)| (1)

for all x(i), x(j) ∈ X. In other words, f is Lipchitz and so is its inverse, thus,
both are differentiable everywhere. The smoothness allows one to use local
clouds generated in the parametric space and mapped to the observed space, to
estimate the local distortion by f of the parametric manifold, by using its differ-
ential J . The differential-based distortion is estimated by the local covariance
matrix, which is used within a metric we construct to estimate the Euclidean
distances between points in the parametric space. The local metric enables
the construction of a diffusion kernel approximating the isotropic diffusion on
the parametric data manifold MX , from which the normalized Laplacian of
the data graph is constructed. The normalized graph Laplacian asymptotically
converges to the Fokker-Planck (FP) operator on the parametric manifold that
is separable. Its first non-trivial eigenfunctions are monotonic functions of the
independent variables, as guaranteed by Sturm-Liouville theorem [3]. Thus, the
eigenfunctions form independent components (ICs) and can be used for data
re-parametrization.

In the context of supervised learning, the task of extending functions on
the data to new observables often arises. A variety of extension techniques
via eigenfunctions of data driven matrices have been employed and investigated
e.g. [8], [9], [10], [11], [12]. We emphasize the work of [9] which also addressees the
issue of the scale of the extension. In this paper we address the specific problem
of extending the independent components representation from a (challenging)
small reference set Ȳ to a larger set containing newly observed data - Y . To
this end, our work contributes a generalization of the non-linear ICA [4] in the
sense that it computes the ICA of a-priory given data, but also provides an
efficient extension for the ICA to any newly observed data. For this purpose
we construct an anisotropic diffusion kernel - W on Ȳ that is a Hilbert-Schmidt
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operator, differently than the construction in [4]. As a result W is compact
on Ȳ , self adjoint, and has a discrete sequence of eigenvalues and eigenvectors
that can be extended by a Nyström-type extension to new points in Y . The
extension itself yields an orthogonal set of eigenfunctions approximating the
eigenfunctions of the FP operator on Y . These eigenfunctions are independent
components of Y .

The mapping from the observables space into the independent components
space can also be seen as an inverse problem, in which the observed data is
transformed back to the input parameters of f . Given empirical values of some
function (’labeling’) on Ȳ , an interpolation or extension of that function to new
points can be done based on data affinities computed on the linearized manifold
in the IC-space, whereas data affinities computed on the non-linear manifold in
the observable space may yield erroneous results. We also exploit interpolation
in IC-space to compute f for new points on the parametric manifold by merely
interpolating known function values. This procedure can be used to synthesize
new observables that may also serve to validate the inverse map.

We demonstrate our method on synthetic examples as well as on classifica-
tion of electro-magnetic (EM) measurements associated with layered geological
models. In the last application we also demonstrate that our ICA extension
allows significant sub-sampling of the data manifold while maintaining high ac-
curacy of classification. In particular, we show that the classification done in
the IC-space is better than the one obtained by classifying with a Euclidean
metric in the observable space.

The mapping into independent components also suggests an invariancy with
respect to different sensors measuring the same physical phenomena. In other
words, we observe the same mapping even when the measurements are done by
different sensors. The invariancy can be used as a mean for efficient selection
of sensors, or, when it does not exist, as a mean to define a regime of the
independent parameters for which a particular subset of sensors is sensitive.

The paper is organized as follows. In section 2 we describe the non-linear
ICA problem and its setting. In section 3 the construction of anisotropic dif-
fusion kernels on subsets and their role in ICA is described. Section 4 entails
the extension scheme of ICA to new observables and includes a synthetic ex-
ample. Also, a validation method for the extension parameters is suggested. In
section 5 we describe the application of our method for the classification of EM
measurements associat6ed with layered geological models.

2 Problem Definition and Setting

Problem definition: At the setting of our problem is an unknown parametric
manifoldM⊆ X ⊂ Rd and a corresponding observed data set Y . Y is generated
by a non-linear bi-Lipchitz map f : X → Y , such that Y is embedded in a high
dimension Y ⊂ RD. The intrinsic dimension - d of the data parametric manifold
is lower or equal to the dimension of the observable space (d ≤ D). The variables
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xi are independent Itô processes, given by

dxi = ai(xi)dt + bi(xi)dwi, i = 1, ..., d, (2)

where ai and bi are drift and noise coefficients and wi is Brownian motion.
The unknown non-linear map yj = f j(x1, ..., xd), j = 1, ..., D, (often called the
mixing transformation), is to be found together with the processes xi. Moreover,
we would like to extend the inverse map f−1 for new observables yi after it was
already computed for a small set.

Local covariance and the Jacobian: The D × D covariance matrix of an
observed process is

C = JB2J (3)

where B is the d× d diagonal noise matrix with Bii = bi, and J is the Jacobian
matrix Jij = f j

i = ∂fj

∂xi . The matrix B can be assumed to be the identity by
applying a change of variables such that

dx̃i = ãi(xi)dt + 1dwi. (4)

This is equivalent to rescaling the mixing transformation to assume the sources
have unit variance. Using Itô’s lemma we can write the covariance matrix as

C = JJT . (5)

Clearly, the Jacobian of f is not accessible. All is available for us is the observed
data and the local covariance matrices.

3 Anisotropic Diffusion on Sub-manifolds

In this section we describe the construction of an anisotropic diffusion kernel on
the observed manifold of Ȳ that approximates the isotropic diffusion kernel on
the parametric manifold X̄. The diffusion kernel we construct has the desired
attribute that it is separable, and its first (non-trivial) eigenfunctions are mono-
tonic functions of the independent parameters. The construction of the discrete
operator is done for a minimal set sub-sampled from the manifold.

3.1 Approximating Euclidean distances on the parametric
manifold

The Euclidean distances between two observed points in X can be approximated
by using the Jacobian of the non-linear map. We take a different strategy then
in [4] and use the Jacobian at the mid-point to estimate the Euclidean distance.

Let x, ξ ∈ X be two points in the parametric space X, and f : X → Y a
nonlinear map such that y = f(x) and η = f(ξ). Define g : Y −→ X to be the
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inverse map of f : X −→ Y , g can be approximated by a Taylor series at the
point η+y

2 :
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Adding equations (6) and (7), yields a second-order approximation to the Eu-
clidean distance:

‖ξ − x‖2 = (η − y)T [(JJT )−1

(
η + y

2

)
](η − y) + O(‖η − y‖4). (8)

The following Lemma 3.1 provides a second order approximation to the
Jacobian at the mid-point:

Lemma 3.1. Let J be the Jacobian of the bi-Lipchitz function f : X → Y , and
let x, y ∈ X such that y = f(x), η = f(ξ). Then

(JJT )−1

(
η + y

2

)
= 2[JJT (η) + JJT (y)]−1 + O(‖η − y‖2). (9)
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Proof is given in Appendix A.

Using Lemma 3.1 in the Eq. (8) yields the second order approximation to
the Euclidean distance on X

‖ξ − x‖2 = 2(η − y)T [JJT (η) + JJT (y)]−1(η − y) + O(‖η − y‖4). (10)

3.2 The diffusion operator on the sub-manifold and its
limit operator

Construction of the integral operator. Consider an m-sample of reference
points Ȳ = ȳ(1), ..., ȳ(m) from the observed data y(1), ..., y(N) ∈ Y ⊆ RD. Ȳ
and Y are generated from X̄ and X by the same non-linear transformation f
as described in section 2. We compute the m ×N affinity matrix between the
sample and the set of size N points

Aij = exp

(
−

∥∥J−1(y(i))(ȳ(j) − y(i))
∥∥2

ε

)
i = 1, ..., N, j = 1, ..., m. (11)

We compute the matrix

W = ω−
1
2 (y)AT Aω−

1
2 (y). (12)

that comprises the anisotropic diffusion weights between on the points in the
reference set Ȳ via the points in Y . The density normalization used in (12) is
applied by using the vector of sums of A’s column entries: ω(y) = diag(AT 1),
where 1 is a column vector with all entries equal to 1. This particular normal-
ization corresponds to the approximation of the FP operator and its eigenfunc-
tions [15], that is pursued further below.

Remark 3.2. The transformation ω−
1
2 (y)A can be viewed as a map from Ȳ to

Y with the density measure ω(y).

The following result approximates the matrix (12) in the continuous limit
by a kernel employing a distortion-based metric with the inverse of the sum of
Jacobians at ȳ(i) and ȳ(j):

Theorem 3.3. The kernel

Wij = (13)
∫

Y
exp

{
−‖J−1(ȳ(i))(ȳ(i)−y)‖2+‖J−1(ȳ(j))(ȳ(j)−y)‖2

ε

}
ω−

1
2 (y)ω−

1
2 (y)ω(y)dy

corresponding to the matrix (14) can be approximated to a second order by

Wij =
π

det(JT (ỹ)J(ỹ))
exp

{
−‖[J(y(i)) + J(y(j))]−1(y(j) − y(i))‖2

ε

}
(14)

where ỹ = ȳ(i)+ȳ(j)

2 , and ȳ(i), ȳ(j) ∈ Ȳ .
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Proof is given in Appendix B.

Employing Lemma 3.3, it is straightforward to show that as ε → 0 and
m →∞ the discrete operator (12) converges to the integral operator

1

m

m∑

i=1

WijqȲ (ȳ(j)) →
∫

Ȳ
exp

{
‖[J(y) + J(ȳ(i))]−1(y − ȳ(i))‖2

ε

}
pȲ (y)qȲ (y)dy (15)

where qȲ : Ȳ → R is some function, pȲ (y) is the density, the constant π is
ignored, and we used the fact that 1

det(J(ỹ)J(ỹ)T )
approximates the density pȲ

near ỹ. The 2nd order approximation suggested in Eq. (10) can be used now
so that (15) is equal to the integral on the parametric space X̄

∫

X̄

exp
{
−‖x̄

(i) − x‖2 + ‖x̄(i) − x‖4
2ε

}
pX̄(x)qX̄(x)dx, (16)

where pX̄(x) is the density in X̄.

Convergence to the backward Fokker-Planck operator and spectral
ICA. The normalized graph Laplacian

L = D−1W − I (17)

constructed from W (15), with D = {dii}m
i=1, converges to the backward FP

operator L on X̄ [4], [15]:

Lq = 4q −∇U · ∇q, (18)

where the potential U depends on the density U = −2logpX̄ . Since the density
in X̄ is a product of the one-dimensional densities pi(x̄i), the potential satisfies
U(x̄) =

∑
i U i(x̄i). Therefore L separates into n one-dimensional operators:

L = 4+ 2∇ log pX̄∇ =
∑

i

(
∂2

∂2x̄i
+ 2

∂logpi(x̄i)
∂x̄i

∂

∂x̄i

)
=

∑

i

Li, (19)

where Li corresponds to the 1-dimensional backward FP operator on the data.
The eigenfunctions Φd = [ϕ1, ...., ϕd] of the operator (19) are monotonic func-
tions of the processes xi as guarantied by Sturm-Liouville theory. Thus one can
use them to re-parameterize the data in terms of its independent parameters.
In other words, these eigenfunctions are the independent components. The map
Φd can also be interpreted as the inverse map of our non-linear transformation
f , up to a local scaling.

4 Extension

In this section we show that a robust and efficient extension of the independent
components on Ȳ to new observables in Y can be obtained by using the singular
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value decomposition (SVD) of (11). We start with discussing the SVD in the
setting of reproducing kernel Hilbert space [7]. The SVD provides the algebraic
relation between the matrix A (eq. 11) and W (eq. 12): the eigenvectors of
W are the right singular vectors of A. The extension of the eigenvectors of
W for new observables is then done via a Nyström-type method. The extended
eigenfunctions form an orthogonal set that preserves the statistical independence
property. Thus, it forms an ICA for the points outside the reference set. We
demonstrate the extension on a synthetic example and show that a straight
forward validation of the results and parameter tuning can be performed as
well.

4.1 The restriction and extension operators

For deriving the extension of the independent components we first establish
a connection between the operator construction in section 3.2 to reproducing
kernels Hilbert space [7]. We consider again the m − sample Ȳ = {y(i)}m

i=1 of
Y = {y(i)}N

i=1 such that Ȳ ⊂ Y , and let µ be a measure on Y . Let Ŵ be a
symmetric, semi-positive definite, bounded kernel Ŵ : Y ×Y → R. Following [7]
there exists a unique reproducing kernel Hilbert space H of functions defined
on Y for which Ŵ is a reproducing kernel. To facilitate notation we refer to
A defined in (11) as if it was normalized: A = ω−

1
2 A. Then the density-

normalized operator A : L2(Ȳ , ω−
1
2 dµ) → H (known as the extension operator)

and its adjoint A∗ : H → L2(Ȳ , ω−
1
2 dµ) (restriction operator) can be used

to construct the Hilbert-Schmidt operator A∗A : L2(Ȳ , ωdµ) → L2(Ȳ , ωdµ),
defined in (12). The operator A∗A is compact, self adjoint and has a discrete
sequence of eigenvalues and eigenvectors.

To draw the algebraic connection between AA∗ and A∗A we revisit the
singular value decomposition: the SVD of the m × N matrix A produces a
singular system of strictly positive singular values λi, i = 1, ..., k, where k =
rank(A), and vectors {ϕ}m

j=1 ∈ Cm and {ψ}N
j=1 ∈ CN that form an orthonormal

basis of Cm and CN , respectively. In matrix form A = ΨΛΦ∗ such that

Aϕj =
√

λψj j = 1, ..., k

Aϕj = 0 j = k + 1, ..., m

A∗ψj =
√

λψj j = 1, ..., k

A∗ψj = 0 j = k + 1, ...,m,

and
A∗Aϕj = λϕj j = 1, ..., k

A∗Aϕj = 0 j = k + 1, ..., m

AA∗ψj = λψj j = 1, ..., k

AA∗ψj = 0 j = k + 1, ..., N.

The following observations are motivated by the SVD formulation:
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1. A∗A and AA∗ are positive, self-adjoint matrices.

2. The spectra of of A∗A and AA∗ are the same, and

ψj(y) =
1√
λj

∫

Ȳ

A(y, s)ϕj(s)dµ(s), y ∈ Y. (20)

3. The eigenfunctions of A∗A and AA∗ coincide up to a scaling factor on Ȳ .

4. ψ are the extension of ϕ outside the set Ȳ .

5. The extension preserves the orthonormality of the eigenfunctions.

We conclude that the extension Ψd of the independent components Φd on Ȳ
yields independent components on Y because each ψi, i = 1, ..., d is a weighted
combination of the independent φi. The monotonicity property is preserved in
Ψ since the weights are based on a 2nd-order approximation of the type (8) to
the Euclidean distances on the parametric manifold. Finally, we emphasis the
computational gain obtained by computing Ψ via (20) instead of using a direct
method for the eigen-decomposition of the matrix AA∗.

4.2 Synthetic example

We demonstrate the spectral ICA and its eigenvector extension with a synthetic
example. The example employs the non-linear map from polar coordinates to
cartesian coordinates in the 2D plane. We generate 500 reference points in the
parameters space X̄ = (r(i), θ(i))500i=1 such that r ∼ U [1, 2], and θ ∼ N (0, 1) is
conditioned to take values only within [−π

4 , π
4 ].

For each point x̄(i) = (r(i), θ(i)), we generate a local Gaussian cloud such
that each point x

(i)
c (r, θ) in the cloud is generated by

r
(i)
c = r(i) +

√
dtw(i)

θ
(i)
c = θ(i) − θ(i)

2 dt +
√

dtw(i),
(21)

with dt = 0.1. The reference points and their corresponding clouds are then
mapped by the non-linear mapping f(x) = y

ȳ(i) = (r(i)cos(θ(i)), r(i)sin(θ(i))) (22)

and
y(i)

c = (r(i)
c cos(θ(i)

c ), r(i)
c sin(θ(i)

c )) (23)

to its cartesian coordinates. The clouds are then used to compute the local co-
variance matrix in the observable space Ȳ . 2000 additional points are generated
from a similar distribution for which the independent components extension is
demonstrated below. The points in the parametric space and in the observed
space are plotted in Fig. 1-A,B, respectively.

Next, we construct the weight matrix W (Eq. (12)), using the local sample
covariance matrix to approximate JJT via Eq. (5), and ε = 0.2. The right
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eigenvectors {φ}2i=1 of the Markov matrix D−1W are then computed. These
eigenvectors approximate the eigenvectors of the FP operator, as discussed in
section 3.2. The first eigen-pair (φ0, λ0) corresponding to the eigenvalue λ0 = 1
is a constant φ0 = [1, 1, ..., 1] and thus disregarded. The next two eigenvectors
are monotonic functions of r and θ [3]. We construct the embedding of Ȳ using
Φ2 : ȳ(i) → [ϕ1(ȳ

(i)
1 ), ϕ2(ȳ

(i)
2 )]. That is, every point ȳ(i) is mapped to a vector in

R2 containing the i− th coordinate of the first two (non-trivial) eigenvectors. In
Fig. 1 C, D the embedding of the reference points is illustrated, where the color
coding corresponds to the true parameters r and θ. The color coding suggest
that the embedding coordinates comprise the independent components of the
set Ȳ . In sub-figures E and F we plot the extended points (only), where the
color coding demonstrates that the left eigenvectors ψ1 and ψ2 are independent
components of the set Y .

4.3 Validation via synthesis of new observations

Extension of functions on the data can be done in various ways (see for example
[9], [10], [11]). We consider the extension of the coordinates in the observable
space Ȳ to a new point x ∈ X, namely, synthesizing a new observable. For the
sake of simplicity, the extension of a function on X can be done by interpolation
within a patch around x. The interpolation reflects the linear weights between
points on MX and can be used to synthesize a new observable y ≈ f(x) by

Ψ−1
d (x) =

∑

k:x̄(k)∈Nx

ckȳ(k), (24)

where x̄(k) are neighbors of x, ȳ(k) are their corresponding coordinates in Y , and
ck are the interpolation coefficients. In our setting the parametric space X is
inaccessible to us. However, we can choose a points x̃ in the re-parametrization
Ψd and synthesize a corresponding observable by using the interpolation formula
in (24) in Ψd instead of X. The interpolation weights computed in the eigen-
space of Ψd are expected to be similar to the interpolation weights in the true
parametric space X.

Equation (24) can be used as a tool to validate the accuracy of our inverse
map into the eigen-space of independent components. The validation is done
in the following way: given a point y ∈ Y and its map Ψd = [ψ1(y), ..., ψd(y)],
we can validate the accuracy of our re-parametrization by checking whether
an observable mapped to the eigen-space Ψd is mapped back to its original
coordinates y. In practice, we can use the validation to find optimal values of
the algorithm parameters by minimizing the error

e = ‖y −Ψ−1
d (x)‖. (25)

We demonstrate the optimization of the parameter ε for the synthetic example
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Figure 1: A Synthetic example. A,B: 2D illustration of data in parametric
space (A), and in observed space (B). C,D: embedding of reference points into
Φ2 with color coding corresponding to r (A), and θ (B). E,F: Embedding of the
extended points into Ψ2 with color coding corresponding to r (E), and θ (F).
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in section 4.2. The interpolation coefficients ck in (24) are computed by

ck(x) =
exp

(
−‖x−x̄(k)‖2

σΨd(y)

)

∑
i:x̄(i)∈NX̄

exp
(
−‖x−x̄(i)‖2

σΨd(y)

) . (26)

The mean error (25) is computed for 100 randomly sampled points y(i) in the
synthetic example described in section 4.2. σΨd(y(i)) is chosen to be the minimal
distance between Ψd(y(i)) and its nearest neighbor. The parameter σ can also
be added to the optimization process, however, for simplicity we keep it fixed
and minimize the error (25) with respect to ε only. The minimal error e =
0.05 is attained at ε = 0.2. The error is of order O(ε2) as implied from the
approximation (10).

5 Classification of Layered Earth Model Forma-
tions

In this section we demonstrate our ICA-based re-parametrization and its exten-
sion on simulated directional electro-magnetic (EM) measurements that have
been used in oilfield applications, an introduction to which can be found in [13].
The signals are measured while traversing geological layers using a tool consist-
ing of antennas and receivers. These electromagnetic measurements are sensitive
to the position of Earth layer boundaries relative to the measurement device as
well as to the resistivities of the corresponding Earth layers. The electromag-
netic measurements are suitable for demonstrating our method for the following
reasons:

1. while the number of individual measurement channels can be quite large
(10-30), the number of geological parameters describing the Earth model
is typically much smaller (1-6).

2. this type of measurements suggest the existence of local clouds in para-
metric space which allows us to invert the nonlinear transformation and
obtain the independent geological parameters. The clouds emerge since
the composition of layers is typically not homogenous, which gives rise to
local perturbation in the resistivity parameters. Also, boundaries between
layers are typically not smooth and various scales of irregularity may exist.
Such irregularities give rise to perturbations in the distance between the
measurement tool and the boundary.

For the examples shown in this paper, we consider a set of simulated mea-
surements generated using a two layer Earth formation model illustrated in Fig.
2, where Ri is the i − th layer resistivity and h is the distance from the tool
to the boundary with the lower layer. For simplicity, we assume that the hori-
zontal resistivity of the layer containing the tool is known (pH = 6.3 Ohm-m)
and that all formation layers are isotropic, that is, their horizontal and vertical
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resistivities are equal. The measurements themselves can be modeled as pairs of
tilted transmitter and receiver dipoles that operate at various frequencies (100
and 400 kHz are typical frequencies) and spacings (96 and 34 inches are typical
coil spacings). In addition, these electromagnetic signals are measured using
complex voltage ratios, so that an individual measurement channel is either a
phase (in units of degrees) or amplitude (in units of decibels (db)).

Figure 2: Two-layers parametric model. Layers resistivity is denoted by R,
whereas the distance between the tool layer and the boundary is denoted by h.

5.1 Re-parametrization of EM measurements

An open problem in the interpretation of the EM measurements, is the direct
construction of the mapping between electromagnetic measuremnts and the cor-
responding geological parameters. One approach that could be used is based
on the lookup table: a set of measurements Ȳ has its own labeling comprised
of the true parameters, and a new observable y is assigned with labeling by
using interpolation from the closest table entries. The use of a lookup table
is based on employing the Euclidean metric in the observable space. When
the measurements exhibit non-linearity, the Euclidean distances do not reflect
any informative proximity between the data points, unless the manifold is over-
sampled. As shown below, use of Euclidean metric in Y leads to erroneous
results, when the task is to re-parameterize observed data, or when supervised
classification/parameterization of new observables is performed.

ICA and extension. We demonstrate the performance of our extension
on a data set of two-layer geological models in which the tool is traveling near
an interface with another layer. The governing parameters are the distance d
of the tool to the other layer and the layer resistivity R2. We use two tool
channels: one with spacing of 96" and 100kHz, and the other with spacing 34"
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and 400kHz. We generated a set of 961 reference points Ȳ = {ȳ(i)}961i=1 ∈ R4

such that ȳ(i) is a vector

ȳ(i) = (Att1, PS1, Att2, PS2)T (27)

of measurements taken from the two channels that corresponds to the model
parameters

x̄(i) = (R2, h, R1)T (28)

where R1 is held fixed for all i at 6.3095. The parameters h and R2 are sam-
pled with equidistant spacing within the rectangle [0.2, 10]ft × [0.2, 6.3095]Ωm.
Thus, the number of independent sources in this problem is 2. Next, a sample
{y(j)}24025j=1 of observables is generated such that each 25 observed points are
generated from a Gaussian distribution around each reference point.

We demonstrate below the extension of the data re-parametrization. First,
for each ȳ(i) corresponds a Gaussian cloud from which the local covariance
matrix C(y(i)) is computed. We can thus approximate J(y(i))JT (y(i)) using (3)
for the construction of the affinity matrix A between the reference points Ȳ and
Y (see equation (11)). We next construct the 961 × 961 matrix W (Eq. (12)).
The d = 3 right eigenvectors [ϕ0, ϕ1, ϕ2] of D−1W are computed, corresponding
to the eigenvectors of the normalized graph Laplacian

L = D−1W − I. (29)

The first eigen-pair is disregarded, whereas the next two eigenvectors approxi-
mate the eigenvectors of the FP operator and thus are monotonic functions of d
and R2, i.e. the independent components. We construct the re-parametrization
of Ȳ using Φ2 : ȳ(i) → [ϕ1(ȳ

(i)
1 ), ϕ2(ȳ

(i)
2 )]: ȳ(i) is mapped to a vector in R2 con-

taining the i − th coordinate of the first two (non-trivial) eigenvectors of (29).
Next, we construct the extension to Y , Ψ2 : y(i) → [ψ1(y

(i)
1 ), ψ2(y

(i)
2 )], by using

the extension formula (20).
We plot the reference points X̄ in the 2D parametric space in figure 3-A, and

the complete data set parameters - X in Fig. 3-B. The x-axis corresponds to
R2 and the y-axis corresponds to h. To demonstrate the non-linearity of f , the
observed reference points are plotted in Fig. 3-C,D. In Fig. 3-E and F we plot
the reference points re-parametrization Φ2 and its extension to Ψ2, respectively.

Extension error. Given the true parameters of Y (namely, X̄), the re-
parametrization error of a point y(i) ∈ Y is computed as the difference between
its interpolated parameters values and its true parameters x(i). Specifically, the
parameters of y(i) are approximated by

x̃(i)
new =

∑

k:Ψd(ȳ(k))∈Ni

cix̄
(k), (30)

where Ni are the k-nearest neighbors of Ψd(y(i)) computed with the Euclidean
metric on Ψd, and ci are the linear interpolation coefficients computed in Ψd.
The error of the re-parametrization is

errprm(Ψd(y(i))) = ‖x(i) − x̃(i)
new‖2. (31)
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Figure 3: Embedding and Extension of EM Data. A,B: The 2D parametric
space of d and R2 sampled. X̄ (A), X (B). C,D: Observed data Ȳ . 2D il-
lustration of observed data in 96” channel (C). 34” channel (D). E,F: Data
re-parametrization. Embedding of reference points Ȳ by Φ2 (E). The extension
Ψ2 (F).
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The interpolation error when using an interpolation in the observables space
Y is also considered.

x̂(i)
new =

∑

k:ȳ(k)∈Ni

cix̄
(k), (32)

where ci are linear interpolation coefficients computed in Y . The corresponding
error is measured by

errobs(y(i)) = ‖x(i) − x̂(i)
new‖2. (33)

In the following we show that we can reduce the number of reference points
and still obtain a low re-parametrization error - err(y(i)) (31) then the interpo-
lation error in the observable space (33). For the purpose of this demonstration
Ȳ is sub-sampled uniformly for fewer and fewer points. The remaining set Y rȲ
is used as a pool of points for testing our extension. In Fig. 5.1 the error is plot-
ted against the rate of sampling of the two parameters R2 and h. In figure 5 we
present histograms of the errors for a sampling rate of r = 0.2, demonstrating
that except for a few errors, the classification error employing our ICA extension
is very low, where a deeper examination reveals that the few high magnitude
errors take place only on the boundaries of the data set, where our embedding
suffers from some artifacts. On the other hand, the classification error using
Euclidean metric in Y is almost uniformly distributed on the interval [0, 2].
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Figure 4: Extension errors of ICA extension and a Euclidean-based lookup table.
Left: mean errors of resistivity - R2. Right: mean errors of distance to boundary
- h.

Feature space selection. We demonstrate that our ICA method can be
used as a tool for the selection of the features space - the channels being used
for optimal re-parametrization and classification. For this matter, we generate
the first data set using two channels of 96 inches with 100kHz and 400kHz.
The second data set is generated using one channel of 96 inches with 100kHz
and another channel of 96 inches with 400kHz. We also generate a data set
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Figure 5: Histograms of extension error of ICA extension and a Euclidean-
based lookup table. Left: errors of h for our method. Right: error of h for the
Euclidean metric in Y .

in 6D involving the union of all channels. The mappings of the two 4D data
sets into the independent components are very similar to each other. While
different channels exhibit different sensitivity to certain regimes of parameters,
the majority of the data is mapped similarly into the two components, as shown
in Fig. 6, where a close view of the interior of the manifold is shown. Thus
manifesting the invariancy of the sensors choice with respect to the true physical
parameters. The union of the six channels demonstrates an embedding that has
less distortion then the distortion in the embedding obtained from subsets of
channels, as seen in Fig. 7.

Observations. The results reported above motivate the following observa-
tions:

• The observed data is non-linear with varying density.

• The re-parametrization is an ICA. Namely, the x-axis corresponds to varia-
tions in the h coordinate only, whereas the y-axis corresponds to variations
in the R2 coordinate only.

• The re-parametrization approximates the rectangular domain of the orig-
inal parameters.

• Interpolation or classification of new observables is more accurate via the
re-parametrization then in the observables space.

• As the sampling rate increases, errprm is lower than the re-parametrization
error in the observable space (32) - errobs. Thus suggesting an efficient
compression of any lookup table by using our extendable ICA.
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• The histograms reveal that for most points the error errprm is very low,
and very few high errors are located near the boundaries of the data set.

• The mapping into independent components reveals the invariancy to the
measurements, namely, although the same physical phenomena is mea-
sured by different sensors, the mapping into the independent components
is similar.

• Using more channels may compensate for subsets of channels which yield
distorted parameterizations. On the other hand, adding unsensitive chan-
nels may also deteriorate good parameterizations. Thus, the ICA-based
re-parametrization suggests a tool for choosing a feature space, that yields
satisfactory ICA parameterizations, or identifying regimes of parameters
where a particular selection of features does not.
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Figure 6: Similar maps of different channel sets into their independent com-
ponents. Left: embedding of channels of distance 96 inches with frequencies
100kHz and 400kHz. Right: embedding of channels of distance 96 inches and
34 inches with frequencies 100kHz and 400kHz, respectively. A sampled region
of correspondence is circled in both embedding.

Figure 7: Similar maps of different channel sets into their independent compo-
nents: embedding of all channels. A sampled region of correspondence is circled
in both embedding.

6 Conclusion

We have described a method for the computation and extension of independent
components of high dimensional data generated by a non-linear transformation
of independent variables. Our assumption is that the variables in the parametric
space are governed by Itô processes that give rise to local clouds. The clouds
enable the approximation of the FP operator on the parametric manifold by
the graph Laplacian. The eigenfunctions of the resulting graph Laplacian are
independent components for which a Nyström-type extension can be used to
generate an ICA for the rest of the space. The results obtained suggest that our
method can be used for semi-supervised learning, in particular because it enables
to construct efficiently a physically meaningful coordinate system for new ob-
servables. We demonstrated the advantage of our method for the classification
of EM measurements of Earths layers structure, showing better classification
results then the results of classification performed in the observeable space.
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A Proof for Lemma 3.1

Proof. Expanding C(x) = JJT (x) and C(ξ) = JJT (ξ) in a Taylor series near
the point x+ξ

2 yields

C(x) = C

(
x + ξ

2

)
+∇C

(
x + ξ

2

)(
x− ξ

2

)
(A.1)

+
1
2
∇2C

(
x + ξ

2

) (
x− ξ

2

)2

+ O

((
x− ξ

2

)3
)

C(ξ) = C

(
x + ξ

2

)
+∇C

(
x + ξ

2

)(
ξ − x

2

)
(A.2)

+
1
2
∇2C

(
x + ξ

2

)(
ξ − x

2

)2

+ O

((
ξ − x

2

)3
)

,

Adding the two equations yields

C(x) + C(y) = 2C

(
x + ξ

2

)
+ O

((
ξ − x

2

)2
)

. (A.3)

To facilitate notation as we develop the right hand side of (A.3), we write C
where the Jacobian is taken at x+ξ

2 , and substitute ε = x−ξ
2 :

(
2C +

(
ξ − x

2

)2
)−1

= [(2I + C−1ε2)C]−1 =
C−1

2

(
1

I + C−1 · ε2

)
(A.4)

=
C−1

2

[
I − C−1 ε2

2
+

(
C−1 ε2

2

)2

− ...

]
(A.5)

=
C−1

2

[
I − C−1 ε2

2
+ O

(
ε4

4

)]
(A.6)

=
C−1

2
− (CT C)−1 ε2

2
+ O

(
ε4

4

)
(A.7)

=
C−1

2
+ O

(‖η − y)‖2) . (A.8)

Equality (A.5) is derived with the geometric series summation formula and
equality (A.8) is derived by using the bi-Lipchitz-continuity of f . Combining
(A.8) with (A.3) completes the proof.
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B Proof for Lemma 3.3

Proof. We introduce the change of variables ȳ = y−y(i) and denote Ji ≡ J(y(i)),
so that (14) becomes

Wij =
∫

Y

exp

{
−‖J

−1
i ȳ‖2 + ‖J−1

j (ȳ − (y(j) − y(i)))‖2
ε

}
dȳ (B.1)

where the ω-weights have canceled. Equation (B.1) is a convolution of two
Gaussians. We apply the Fourier transform on (B.1) via the convolution theorem
[5] and use the Fourier transform of a Gaussian [6]:

Fx[e−ax2
](k) =

√
π

a
e
−π2k2

a . (B.2)

to obtain

Fȳ[Wij ](ξ) =
π√

det(JiJT
i )det(JjJT

j )
exp

{−ξT (JiJ
T
i + JjJ

T
j )ξπ2ε

}
. (B.3)

Applying the inverse transform we obtain

Wij =

√
πdet(JiJT

i + JjJT
j )

det(JiJT
i )det(JjJT

j )
exp

{
‖[JiJ

T
i + JjJ

T
j ]−1(y(j) − y(i))‖2

ε

}
. (B.4)

Preposition B.1. The square root factor before the exponent in (B.4) can be
approximated to a second order by π

det(J(ỹ)J(ỹ)T )
.

Proof. We consider the Taylor expansion of the matrix C(x) = J(x)J(x)T near
x+y

2

C(x) = C

(
x + y

2

)
+∇C

(
x + y

2

)(
x− y

2

)
+ O((x− y)2) (B.5)

Adding (B.5) to the Taylor expansion of C(y) near x+y
2 yields

C(x) + C(y) = 2C(
x + y

2
) + O((x− y)2), (B.6)

since first order terms cancel. The product C(x)C(y) is approximated by

C(x)C(y) = C2

(
x + y

2

)
−∇C2

(
x + y

2

)(
x− y

2

)2

+ O((x− y)4). (B.7)

We thus obtain that√
det(JiJT

i + JjJT
j )

det(JiJT
i )det(JjJT

j )
≈

√
det(C((x+y

2 )) + O((x− y)2)
det(C2((x+y

2 )) + O((x− y)2)
≈ 1

det(C((x+y
2 ))

(B.8)
for x and y sufficiently close.

Combining preposition B.1 with (B.4) gives the result (14).
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