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Abstract

We introduce intrinsic, non-linearly invariant, parameterizations of empirical data, generated by a non-linear transformation of
independent variables. This is achieved through anisotropic diffusion kernels on observable data manifolds that approximate a
Laplacian on the inaccessible independent variable domain. The key idea is a symmetrized second-order approximation of the un-
known distances in the independent variable domain, using the metric distortion induced by the Jacobian of the unknown mapping
from variables to data. This distortion is estimated using local principal component analysis. Thus, the non-linear independent
component analysis problem is solved whenever the generation of the data enables the estimation of the Jacobian. In particular, we
obtain the non-linear independent components of stochastic Itô processes and indicate other possible applications.
© 2008 Elsevier Inc. All rights reserved.

1. Introduction

In data analysis and signal processing it is often the case that the observable variables are unknown functions of
only a few underlying independent parameters. Those unknown functions map the low-dimensional parameter space
into a subset of a high-dimensional manifold in the observable space. The challenge is to recover those independent
quantities and to recover the low-dimensional intrinsic manifold.

In recent years there has been much progress in the development of new ideas and methods for dimensionality
reduction, that is, parameterizing, or embedding, high-dimensional data in a low-dimensional space [1–4]. The em-
bedding, however, is not unique. Indeed, any invertible mapping of the parameter space defines a legitimate embedding
of the data. In other words, the embedded coordinates may be some complicated non-linear functions of the original
parameters. On the other hand, the nature or the physics of a typical data problem usually suggests that there are
unique parameters which have real physical meaning. For example, it is desired to parameterize a data set of images
of a fixed object taken at different camera placements and lighting settings by those features, rather than by mixtures
of features that are not as meaningful.
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This leads to the following question: how to find good intrinsic coordinates? Here we define intrinsic coordinates
as a parametrization of the data which is invariant (modulo one-dimensional reparametrization in each intrinsic para-
meter) under non-linear changes of variables in the data.

In this paper we answer this question under different assumptions for the generation of the data. Such assumptions
are needed, for otherwise there is no way to favor one embedding over the other. Common to all of our assumptions
is that they enable the computation of the local Jacobian based metric distortion of the transformation that map the
parameter space into the observable space. We use the local Jacobian to construct an anisotropic diffusion operator on
the observable manifold which is equivalent to an isotropic diffusion operator on the parameter space. In other words,
we compute the Laplacian on the parameter manifold, whereas classical diffusion maps compute the Laplacian on the
observable manifold. Our reliance on the empirical metric distortion of the Jacobian assures us through the chain rule
that the parametrization obtained is non-linearly invariant.

In particular, if the parameters are statistically independent then the Laplacian is separable and its eigenfunctions
give the independent components. This extends our previous work [5] for solving the linear independent component
analysis (ICA) problem to the non-linear regime. This is demonstrated here by solving the non-linear ICA problem of
stochastic Itô processes. The existence and uniqueness of the non-linear ICA problem was studied in [6], where it was
shown that there are many possible solutions to the problem. Therefore, it is necessary to impose some assumptions
on either the generation of the data or to restrict the class of non-linear functions, in order to obtain a unique solution.
For example, articulation from acoustics is recovered in [7] by assuming that the unobserved signals of articulator
motion are band-pass. Here we assume that the data is generated by stochastic Itô processes. Non-linear ICA, other
assumptions on data generation and mixing functions, and factorizing probability density functions are reviewed in
[8,9].

We estimate the Jacobian from the local point cloud covariance obtained by short time stochastic simulations
(‘short bursts’). The local covariance estimation is performed by principal component analysis (PCA). The non-
linear ICA algorithm combines many local PCAs with one global eigenmap computation. In that sense, it serves as a
natural generalization of the spectral linear ICA algorithm [5], where a single global PCA is followed by an eigenmap
computation. The diffusion map puts together the many locally linear patches into one global atlas.

The assumption of statistical independence can be relaxed by a weaker assumption of time scale separation for the
different processes. Using the anisotropic diffusion we detect the slow manifold in multi-scaled coupled dynamical
systems such as chemical reactions. This important application is discussed in much further detail in [10].

The anisotropic diffusion embedding presented here can also be viewed as a method to uniformizing both the
density and geometric variability of the data. In general, the high-dimensional data points are distributed over the
observable manifold according to some non-uniform density and the discrete graph Laplacian does not approximate
the Laplace–Beltrami operator of the manifold. Instead, it approximates the backward Fokker–Planck operator with a
potential term derived from the non-uniform density. It was shown in [11–13] that the Laplace–Beltrami operator
can be recovered by a proper normalization of the kernel matrix, thus separating the density from the geome-
try. On the other hand, the anisotropic kernel approximates the Laplacian on the parametric manifold instead of
the Laplacian on the observable manifold. We point out this difference by examining the different embeddings of
a two-dimensional data set. For one-dimensional manifolds (i.e., curves) the Jacobian is merely a scalar and the
anisotropic diffusion kernel is identical to the self-tuning spectral clustering algorithm [14]. We mention the prob-
lem of tomography from unknown random projections [15,16] as one possible application of Laplacians on curves.
Uniformization of the data is also possible when the non-linear map is known to be conformal [6]. Conformal func-
tions map small circles into approximately small circles, because their Jacobian is isotropic and is fully determined
by the density of data points. Those examples serve as yet another interpretation to the self tuning clustering algo-
rithm [14].

As a final application we mention inverse problems. For example, consider a sequence of tubes that model the
vocal tract and produce acoustic signals [17]. The tubes are controlled by only a few parameters. It is easy to generate
acoustic signals for any given set of parameters, but the inverse problem of determining the exact parameters that
correspond to a given signal is perhaps more difficult. Generating local bursts of signals by locally perturbing the
parameters would give the local Jacobian of the mapping. The real parameters of a newly observed signal would then
be obtained by the anisotropic diffusion kernel.



228 A. Singer, R.R. Coifman / Appl. Comput. Harmon. Anal. 25 (2008) 226–239
The construction of the anisotropic kernel is summarized in Eq. (20) that defines the N × N weight matrix W in
terms of the local Jacobian J

Wij = exp

{
−‖J−1(y(i))(y(j) − y(i))‖2 + ‖J−1(y(j))(y(j) − y(i))‖2

4ε

}
, (1)

where y(i) (i = 1, . . . ,N ) are the observable data points.
The organization of the paper is as follows. In Section 2 we formulate the non-linear ICA problem of stochastic

Itô processes. In Section 3 we derive a symmetric second-order approximation for the distance metric using the
covariance matrix. Section 4 gives the construction of the anisotropic diffusion kernel, based on the symmetric distance
approximation. We prove that the discrete kernel-based operator converges to the Fokker–Planck operator in the limit
of large sample size, and explain how it enables the uncoupling of the Itô processes. A numerical example that
illustrates the performance of the algorithm is given in Section 5. Finally, in Section 6 we extend the anisotropic
diffusion kernel to a more general setting of inversion from an observable data space to an inaccessible underlying
parameter space.

2. Non-linear ICA of Itô processes

Consider a model in which the data points are non-linear functions of independent stochastic Itô processes. The
goal is to recover the non-linear functions and the parameters of the dynamics. Specifically, the independent processes
are given by

dxi = ai
(
xi

)
dt + bi

(
xi

)
dwi, i = 1, . . . , n, (2)

where ai and bi are unknown drift and noise coefficients, and ẇi are independent δ-correlated white noises (wi are
Brownian motions).

The n-dimensional process x = (x1, x2, . . . , xn) is inaccessible. Instead, we observe its non-linear mapping y =
f (x) given by

yj = f j
(
x1, x2, . . . , xm

)
, j = 1, . . . ,m, (3)

with m � n. The corresponding non-linear ICA problem is to recover the independent components xi , the unknown
non-linear functions f j , and the unknown coefficients ai and bi of the dynamics. Since the functions f j are arbitrary,
we can only hope to recover each of the original independent components xi up to some one-to-one mapping x̃i =
gi(xi), that is, to find a scaled version of the components.

The processes yj satisfy the stochastic dynamics given by Itô’s lemma

dyj =
n∑

i=1

(
1

2

(
bi

)2
f

j
ii + aif

j
i

)
dt +

n∑
i=1

bif
j
i dwi, j = 1, . . . ,m, (4)

where lower indices correspond to partial derivatives, e.g., f
j
i = ∂f j

∂xi .
The accessible m × m covariance matrix C of the observable processes is

Cjk ≡ Cov
(
yj , yk

) =
n∑

i=1

(
bi

)2
f

j
i f k

i , j, k = 1, . . . ,m, (5)

which can also be written in terms of the m × n Jacobian matrix J

Jij = f i
j , i = 1, . . . ,m, j = 1, . . . , n, (6)

as

C = JB2J T , (7)

where B is an n × n diagonal matrix with Bii = bi .
As f j are any non-linear functions, we may first apply any one-dimensional scaling transformation x̃i = gi(xi) to

each of the original inaccessible variables. In particular, we choose the scaling functions gi in order to eliminate the
bi dependence in (2), such that the scaled variables x̃i would satisfy the SDE

dx̃i = ãi
(
x̃i

)
dt + 1dwi. (8)
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Applying Itô’s lemma to (2), we see that each gi needs to satisfy

dgi(xi)

dxi
= 1

bi(xi)
,

for (8) to hold. In other words, we may assume B to be the identity matrix

B = I. (9)

This is similar to the linear ICA problem X = AS where the sources Si are assumed to have unit variance (ES2
i = 1) by

rescaling the coefficients of the mixing matrix A [18]. Hereafter we drop the tilde to facilitate notation. Equations (7)
and (9) are combined to give

C = JJ T . (10)

Therefore, the covariance matrix C is a semi-definite positive matrix of rank n whose eigen-decomposition recovers
the Jacobian matrix J up to an orthogonal transformation O

C = JJ T = JOOT JT = (JO)(JO)T . (11)

The accessible drift terms of (4) are (recall bi = 1)

1

2
Δf j + a · ∇f j , j = 1, . . . , n, (12)

where a = (a1, a2, . . . , an) is the drift vector. However, we will not make use of this information, because the drift
vector a is still unknown.

3. Euclidean distances and the Jacobian

The idea is to approximate the Euclidean distance between unobservable data points x(j) in the original space X us-
ing our knowledge of JJ T and the data points y(j) = f (x(j)) in the observable space Y . Once such an approximation
is obtained, the eigenfunctions of a suitable kernel would reveal the independent coordinates [5].

Let x, ξ be two points in the original space X and y = f (x), η = f (ξ) their mapping to the observable space Y .
Let g :Y → X be the inverse mapping of f :X → Y , that is, g(f (x)) = x and f (g(y)) = y, ∀x ∈ X,∀y ∈ Y .

Expanding the functions x = g(y) in a Taylor series at the point y gives

ξ i = xi +
∑
j

gi
j (y)

(
ηj − yj

) + 1

2

∑
kl

gi
kl(y)

(
ηk − yk

)(
ηl − yl

) + O
(‖η − y‖3). (13)

Therefore,

‖ξ − x‖2 =
∑

i

(
ξ i − xi

)2

=
∑
ijk

gi
j (y)gi

k(y)
(
ηj − yj

)(
ηk − yk

) + 1

2

∑
ijkl

gi
j (y)gi

kl(y)
(
ηj − yj

)(
ηk − yk

)(
ηl − yl

)

+ O
(‖η − y‖4). (14)

A similar expansion at the point η yields

‖ξ − x‖2 =
∑
ijk

gi
j (η)gi

k(η)
(
ηj − yj

)(
ηk − yk

) − 1

2

∑
ijkl

gi
j (η)gi

kl(η)
(
ηj − yj

)(
ηk − yk

)(
ηl − yl

)

+ O
(‖η − y‖4). (15)

Averaging (14) and (15) produces

‖ξ − x‖2 = 1
(η − y)T

[(
JJ T

)−1
(y) + (

JJ T
)−1

(η)
]
(η − y) + O

(‖η − y‖4), (16)

2
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because the Jacobian of the inverse g is the inverse of the Jacobian J , and

gi
j (η)gi

kl(η) − gi
j (y)gi

kl(y) = O
(‖η − y‖).

Thus, (16) is a second-order symmetric approximation for the Euclidean distance in the original space X. The averag-
ing of the first-order approximations (14) and (15) yields a second-order approximation (16), much like the trapezoidal
rule in numerical integration.

Although the Jacobian is known only up to an orthogonal transformation, the computation of the approxima-
tion (16) requires only the knowledge of JJ T , which is available through (10). Note that (16) may also be written as
follows

‖J−1(η)(η − y)‖2 + ‖J−1(y)(η − y)‖2

2
= ‖ξ − x‖2 + O

(‖ξ − x‖4). (17)

Other second-order symmetric approximations are also possible. For example, the mid-point Jacobian J ((y+η)/2)

satisfies∥∥J−1((y + η)/2
)
(η − y)

∥∥2 = ‖ξ − x‖2 + O
(‖ξ − x‖4). (18)

However, this approximation requires the knowledge of the Jacobian at the mid point for every pair of data points.
A knowledge which is usually not available in practice. This makes the approximation (16) much more attractive in
applications.

First-order non-symmetric approximations of the Euclidean distance are easily obtained, e.g.,∥∥J−1(y)(η − y)
∥∥2 = ‖ξ − x‖2 + O

(‖ξ − x‖3). (19)

However, such approximations are not of great interest, because their limiting continuous operator has an additional
drift term that depends on the specific mapping f . Therefore, their limiting operator would not be separable.

4. Convergence of the anisotropic kernel to the Fokker–Planck operator

Now that a suitable approximation of the Euclidean distance in X was established in (17), we construct the sym-
metric data affinity matrix

Wij = exp

{
−‖J−1(y(i))(y(j) − y(i))‖2 + ‖J−1(y(j))(y(j) − y(i))‖2

4ε

}
. (20)

The weight matrix W corresponds to an anisotropic kernel on the observable space Y , where the anisotropy is mea-
sured by the covariance matrix. We analyze the application of W to some function qY :Y → R by considering the
continuous limit. In the limit of number of data points N → ∞ the discrete operator converges to the integral operator

1

N

N∑
j=1

WijqY

(
y(j)

) →
∫
Y

exp

{
−‖J−1(y(i))(y − y(i))‖2 + ‖J−1(y)(y − y(i))‖2

4ε

}
qY (y)pY (y) dy, (21)

where pY (y) is the density of data points in the observable data space Y . Note that the density satisfies

pX(x) = pY (y)
(
detJJ T

)1/2
, (22)

where pX(x) is the density of points in the original space X. The function qY can be viewed as a function on X via

qX(x) = qY

(
f (x)

) = qY (y). (23)

Substituting y = f (x) in the integral (21) while employing (17) results in a Laplace type integral∫
X

exp

{
−‖x − ξ‖2 + O(‖x − ξ‖4)

2ε

}
h(x)dx, (24)

where h(x) = qX(x)pX(x), and ξ = x(i). Substituting z = (x − ξ)/
√

ε in (24) gives

εn/2
∫
n

exp
{−‖z‖2/2 + O

(
ε‖z‖4)}h(ξ + √

εz) dz, (25)
R
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where the O(ε‖z‖4) term also include curvatures terms, because we replaced the domain of integration with the
tangent space. The expansion of h and the exponent near ξ is given by

h(ξ + √
εz) = h(ξ) + √

ε
∑

i

hi(ξ)zi + ε

2

∑
ij

hij (ξ)zizj + O
(
ε3/2), (26)

and

exp
{−‖z‖2/2 + O

(
ε‖z‖4)} = exp

{−‖z‖2/2
}[

1 + ε
∑
ijkl

αijkl(ξ)zizj zkzl + O
(
ε2)], (27)

where the coefficients αijkl(ξ) depend on the partial derivatives of g as determined by the remainder term of (14). The
exact value of αijkl is not important, because it will cancel out upon normalization of the kernel. Substituting (26) and
(27) in (25), and observing that odd monomials of z integrate to zero, yields

(2πε)n/2
{
h(ξ) + ε

2

[
E(ξ)h(ξ) + Δh(ξ)

] + O
(
ε2)}, (28)

where Δ is the Laplacian

Δh =
∑

i

hii ,

and E(ξ) is a scalar function that depends on the mapping f through

E(ξ) = 1

(2π)n/2

∑
ijkl

αijkl(ξ)

∫
Rn

exp
{−‖z‖2/2

}
zizj zkzl dz.

The continuous limit of the discrete graph Laplacian corresponding to data points lying on a low-dimensional Rie-
mannian manifold also gives rise to a similar scalar potential E, which is due to the fact that Euclidean distances in
the ambient space are second-order approximations of geodesic distances over the manifold [11,19]. This emphasizes
once again why a second-order approximation of the Euclidean distance (17) is a necessity rather than a choice.

Normalizing the affinity matrix W to be row stochastic and subtracting the identity matrix yields the discrete
normalized graph Laplacian L

L = D−1W − I, (29)

where D is a diagonal matrix with Dii = ∑
j Wij . The row stochastic matrix D−1W can be viewed as a transition

probability matrix of an anisotropic Markov jump process over the data points due to the local Jacobian scaling. The
continuous limit of the discrete graph Laplacian L is obtained from (28)

∑
j

Lij qY

(
y(j)

) → qX(ξ)pX(ξ) + ε
2 [E(ξ)qX(ξ)pX(ξ) + Δ(qX(ξ)pX(ξ))] + O(ε2)

pX(ξ) + ε
2 [E(ξ)pX(ξ) + ΔpX(ξ)] + O(ε2)

− qX(ξ)

= ε

2

[
ΔqX + 2∇(logpX) · ∇qX

] + O
(
ε2). (30)

This shows that the graph Laplacian converges to a backward Fokker–Planck operator L on X

Lq = Δq − ∇U · ∇q,

where the potential is proportional to the logarithm of the density U = −2 logpX . Thus, the anisotropic diffusion over
Y is realized as an isotropic diffusion over X with an additional drift term due to the density in X.

As the original Itô processes xi are independent, it follows that their stationary density is multiplicative

pX(x) =
∏
i

pi
(
xi

)
,

where pi(xi) is the stationary density of the ith process. Therefore, the potential U is additive,

U(x) =
∑

Ui
(
xi

)
,

i
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and the backward Fokker–Planck operator separates into n one-dimensional operators. It follows that the eigenfunc-
tions of the Fokker–Planck operator are in a separation of variables form, and give the original coordinates as shown
in [5].

5. Numerical example

Consider the Brownian motion (x1, x2) = (w1,w2)
1 in the unit square [0,1] × [0,1] with normal reflection at the

boundary. The stationary density is the uniform distribution x1, x2 ∼ U [0,1]. Suppose that instead of (x1, x2) we
observe their non-linear mapping

y1 = x1 + x3
2 , y2 = x2 − x3

1 . (31)

This cubic transformation maps the unit square to a mushroom like domain, see Fig. 1. Although the original points
are uniformly distributed in the unit square, the density of the mapped points is non-uniform and is given by

detJ−1 =
∣∣∣∣ 1 3x2

2

−3x2
1 1

∣∣∣∣
−1

= [
1 + 9(x1x2)

2]−1
. (32)

Thus, the density at the leftmost point (0,0) = f (0,0) is 10 times bigger than the density at the rightmost point
(2,0) = f (1,1), as can be observed in Fig. 1.

The mapped coordinates (y1, y2) satisfy the dynamics derived by Itô’s lemma (4)

dy1 = 3x2 dt + dw1 + 3x2
2 dw2, (33)

dy2 = −3x1 dt − 3x2
1 dw1 + dw2, (34)

where x1 and x2 are now viewed as functions of y1 and y2. For example, x1 = x1(y1, y2) is the solution of the 9th
degree polynomial

x1 = y1 − x3
2 = y1 − (

y2 + x3
1

)3
.

Therefore, the processes (33)–(34) are fully coupled. We want to find the inverse mapping that decouples them to the
independent processes x1 = x1(y1, y2) and x2 = x2(y1, y2).

We conduct the following numerical experiment. We randomly generate N = 2000 points uniformly distributed in
the unit square, (x

(i)
1 , x

(i)
2 ), i = 1, . . . ,N , and non-linearly map them according to (31) to obtain (y

(i)
1 , y

(i)
2 ) (Fig. 1).

For every i = 1, . . . ,N , we run Nc = 200 stochastic simulations for only a short period of time Δt = 0.01, all initiating
at (x

(i)
1 , x

(i)
2 ). We then map the simulated trajectories to the mushroom. At time Δt we end up with a point cloud

Fig. 1. N = 2000 uniformly sampled points in the unit square (left), and their image under the non-linear mapping (31) (right).

1 We changed coordinates to subscript notation.
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Fig. 2. The numerical spectrum of the anisotropic diffusion kernel: λi are the eigenvalues of the 2000 × 2000 row stochastic matrix D−1W .

consisting of Nc mapped simulated points in the (y1, y2) plane. We calculate the sample covariance C(i) of the point
cloud and estimate the local Jacobian J (x

(i)
1 , x

(i)
2 ) using (10)

JJ T
(
x

(i)
1 , x

(i)
2

) = C(i)/Δt, i = 1, . . . ,N. (35)

We overall produce NNc = 4 × 105 data points by running those short time simulation bursts. The 2000 esti-
mated 2 × 2 covariance matrices are inverted for the calculation of the anisotropic kernel (20) with ε = 0.005.
The kernel is normalized to be row stochastic and the first few eigenvectors φj (j = 0,1, . . .) of L (29) are com-
puted.

According to (30), D−1W ≈ exp{− ε
2L}, where L is the Fokker–Planck operator on the parametric manifold. In

our case, the parametric manifold is the unit square with a uniform density, so that L is merely the Laplacian of the
unit square, whose eigenvalues (for the Neumann boundary conditions) are μn,m = π2(n2 + m2) (n,m = 0,1, . . .).
Therefore, the eigenvalues λi of D−1W are expected to be λi ≈ exp{− ε

2μm,n}. Fig. 2 shows −2 log(λi)/(π
2ε) for

the 2000 × 2000 matrix of the numerical example. The spectral lines n2 +m2 = 0,1,1,2,4,4,5,5,8,9, . . . are easily
identified.

The eigenfunctions of the Neumann Laplacian in the unit square are

φn,m(x1, x2) = cos(nπx1) cos(mπx2).

In particular, the second eigenfunction φ1 = cos(πx1) is only a function of x1 (but not of x2!) and φ2 = cos(πx2)

is only a function of x2 (but not of x1!).2 We have succeeded in decoupling the processes and finding the original
coordinates x1 and x2 in the form of φ1 and φ2 (up to a cosine scaling). Fig. 3 (left column) shows a color map of
φ1 (top) and φ2 (bottom) as functions of the original data points. It is apparent that φ1 is a function of x2 while φ2
is a function of x1. Alternatively, Fig. 4 (left column) shows the embedding (x1, x2) 
→ (φ1, φ2). Again, it is evident
that the unit square is mapped to a square. The density of points is not preserved by the embedded due to the cosine
scaling that shifts more points towards the boundary.

2 Due to multiplicity of the second eigenvalue, we find linear combinations of φ1 and φ2, but φ3 is used to give the correct linear transformation.
See [5] for more details.
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Fig. 3. Top: color map of φ1. Bottom: color map of φ2.

Fig. 4. Top: color map of x1. Bottom: color map of x2.

Figs. 3 and 4 also depict the classical isotropic diffusion map (center column) and the normalized Beltrami map
(right column) [11,12]. The eigenvectors of the isotropic diffusion map approximate the eigenfunctions of the Fokker–
Planck operator on the mushroom (rather than the square) with a potential derived from the non-uniform density (32).
The eigenvectors of the normalized Beltrami approximate the eigenfunctions of the Laplacian on the mushroom.
The figures clearly show that in both cases the computed eigenfunctions are some non-linear mixing functions of x1

and x2.
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6. From the observable manifold to the parametric manifold

The non-linear ICA example shows that in some cases it is much favorable to approximate the Laplacian on the
parametric manifold rather than on the observable manifold. In general, we want to construct the weight matrix

Wi,j = exp

{
−‖x(i) − x(j)‖2

2ε

}
(36)

that corresponds to the parameters x(i) instead of the weight matrix

Wi,j = exp

{
−‖y(i) − y(j)‖2

2ε

}
(37)

that corresponds to the observables y(i) = f (x(i)). Unfortunately, this usually cannot be done: the distances ‖x(i) −
x(j)‖ cannot be computed, because the parameters x(i) are unknown. In fact, in most applications, the whole point
is to find them! But in some cases, as was demonstrated in the non-linear ICA problem of Itô processes, there is
hope: instead of computing the distances ‖x(i) −x(j)‖, we show a good way of approximating them, which eventually
enables the computation of the Laplacian over the parametric manifold. The key is the local Jacobian, which we revisit
from a different perspective.

Throughout this section we assume that we observe data points y(i), but we cannot access the corresponding
parameters x(i). An additional assumption is that we can detect data points in the observable space that are the result
of mapping a small ball of known size in the parameter space. This assumption enables the estimation of the local
Jacobian, as explained below. We do not assume that the points in the parameter space are uniformly distributed or any
other knowledge of their density. We remark that in most cases of unsupervised learning the local Jacobian cannot be
estimated from the observable data, as the assumption for detecting data points that originate from small parametric
balls is not realistic. However, this assumption is realistic in other cases, such as inverse problems and semi-supervised
learning, as well as for the non-linear ICA problem of Itô processes, as was demonstrated in Sections 2–5.

6.1. Local principal component analysis: the Jacobian, balls and ellipsoids

The basic idea is that any smooth map between smooth manifolds f :MX 
→MY can be linearly approximated in
a local neighborhood of any given point by its differential. The first-order Taylor expansion near x0 reads

y = f (x) = y0 + Jf (x0)(x − x0) + O
(‖x − x0‖2), (38)

where Jf (x0) is the Jacobian of f at x0 and y0 = f (x0).3 This gives a first-order approximation for the distances

‖y − y0‖2 = ∥∥Jf (x0)(x − x0)
∥∥2 + O

(‖x − x0‖3). (39)

Similarly, for the inverse map f −1 :MY 
→ MX we have

‖x − x0‖2 = ∥∥Jf −1(y0)(y − y0)
∥∥2 + O

(‖x − x0‖3), (40)

where Jf −1(y0) is the Jacobian of the inverse map. This means that the image of the small ball{
x ∈MX: ‖x − x0‖2 � δ2}

is the (approximately) small ellipsoid{
y ∈MY : (y − y0)

T Jf −1(y0)
T Jf −1(y0)(y − y0) � δ2}.

Fig. 5 illustrates that small discs are mapped to small ellipses for a specific non-linear planar map.
We view the data points y(1), . . . , y(N) ∈ MY as points in R

n, but their sources x(1), . . . , x(N) ∈ MX are not
available to us. The sources{

x(j):
∥∥x(j) − x(i)

∥∥ < δ
}

3 The Jacobian is also known as the differential of f at x0, which is a linear map from Tx0MX (the tangent space of MX at x0) to Ty0MY (the
tangent space of MY at y0). Other frequently used notations for the Jacobian are Dfx0 , (f∗)x0 and f ′(x0).
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Fig. 5. Small discs are mapped into small ellipses.

inside a small ball Bx(i),δ of radius δ centered at x(i) are mapped by f to the data points{
y(j) = f

(
x(j)

)
: x(j) ∈ Bx(i),δ

}
inside the (approximately) small ellipsoid Ey(i),δ = f (Bx(i),δ ∩ MX) centered at y(i). Suppose that we can identify

which data points y(j) belong to the ellipsoid Ey(i),δ and which reside outside it. For example, in Fig. 5 we identify the
points inside the blue ellipse, because they were colored for us. In such a case, where the ellipsoid is known, we can
translate distances over MY to those over MX by contracting the major axis coordinates and expanding the minor
axis coordinates.

The ellipsoid Ey(i),δ is also identified with the covariance matrix Ci,δ of the data points inside it

Ci,δ = E
[(

y − y(i)
)(

y − y(i)
)T ] ≈ E

[
Jf

(
x(i)

)(
x − x(i)

)(
x − x(i)

)T
J T

f

(
x(i)

)]
= Jf

(
x(i)

)
E

[(
x − x(i)

)(
x − x(i)

)T ]
J T

f

(
x(i)

)
, (41)

where the approximation is due to the linear approximation (38) and we used the linearity of expectation. For suffi-
ciently small δ, the random variable x is uniformly distributed in a d-dimensional ball of radius δ in the tangent space
Tx(i)MX (d = dimMX = dimMY ). The symmetry of the ball implies that the covariance is proportional to the d ×d

identity matrix I

E
[(

x − x(i)
)(

x − x(i)
)T ] = cd,δI, (42)

where the constant cd,δ is directly calculated by integration4

cd,δ =
∫
Bδ

x2
1 dx

vol(Bδ)
= 1

d

∫ δ

0 r2rd−1ωd dr∫ δ

0 rd−1ωd dr
= δ2

d + 2
. (43)

Plugging (42)–(43) into (41) shows that we can approximate Jf (x(i))J T
f (x(i)) with the covariance matrix

Jf

(
x(i)

)
J T

f

(
x(i)

) = d + 2

δ2
Ci,δ + O(δ). (44)

For that reason, we also refer to the matrix Jf (x(i))J T
f (x(i)) as the covariance matrix.

Even though the covariance matrix Ci,δ is an n×n semi-positive matrix, its rank should only be d , because the data
points approximately lie on the d-dimensional tangent space Ty(i)MY . Its largest d eigenvalues μ1 � μ2 � · · · � μd

are the squares of the semi-principal axes of the ellipsoid, while the corresponding eigenvectors v1, v2, . . . , vd are
the principal components. The remaining n − d eigenvalues should be close to 0 (they do not completely vanish due

4 Notation: x = (x1, x2, . . . , xd ), r2 = x2
1 + x2

2 + · · · + x2
d

and ωd is the surface area of the d-dimensional unit sphere Sd−1 ⊂ R
d .
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to deviations from linearity and noisy data measurements). Therefore, the spectral decomposition of the covariance
matrix is

Ci,δ =
n∑

m=1

μmvmvT
m ≈

d∑
m=1

μmvmvT
m. (45)

The procedure we have just described is no other than local principal component analysis (PCA) of the ellipsoid point
cloud.

The inverse function theorem implies that J T
f −1(y

(i))Jf −1(y(i)) = (Jf (x(i))J T
f (x(i)))−1, and we can now approxi-

mate local distances on MX near x(i) using our estimation for the covariance matrix

∥∥x − x(i)
∥∥2 ≈ (

y − y(i)
)T (

Jf

(
x(i)

)
J T

f

(
x(i)

))−1(
y − y(i)

) ≈ δ2

d + 2

(
y − y(i)

)T
C−1

i,δ

(
y − y(i)

)
. (46)

We need to clarify what do we exactly mean by C−1
i,δ in (46), because Ci,δ is a matrix of rank d � n. By C−1

i,δ we

actually mean the pseudo-inverse C
†
i,δ of Ci,δ on the d-dimensional subspace of principal components

C
†
i,δ =

d∑
m=1

μ−1
m vmvT

m, (47)

so (46) reads

∥∥x − x(i)
∥∥2 ≈ δ2

d + 2

(
y − y(i)

)T
C

†
i,δ

(
y − y(i)

)
. (48)

The approximation (48) is valid only for points y in the local neighborhood of y(i), and is interpreted as follows.
Ignoring the remaining n−d components is equivalent to projecting the point y onto the d-dimensional tangent space
of principal components, and distances are measured in that tangent space. The principal coordinates (y − y(i))T vm

(m = 1, . . . , d) are scaled with their corresponding semi-principal axes
√

μm, thus stretching and contracting the
ellipsoid in all d directions so it becomes a ball.

The Euclidean chordal distance ‖x − x(i)‖ between points in the ambient space is a second-order approximation
of the geodesic distance dg(x, x(i)) over the low-dimensional intrinsic manifold MX

dg

(
x, x(i)

) = ∥∥x − x(i)
∥∥ + O

(∥∥x − x(i)
∥∥3)

.

Therefore, in order to approximate the Laplace–Beltrami operator over MX , a second-order approximation of the
distance must be used, for otherwise a different limiting differential operator is recovered. However, the linear ap-
proximation (40) is only a first-order approximation. We construct a second-order approximation, without including
second-order derivatives, by using symmetrization

∥∥x − x(i)
∥∥2 = 1

2

∥∥Jf −1

(
y(i)

)(
y − y(i)

)∥∥2 + 1

2

∥∥Jf −1(y)
(
y − y(i)

)∥∥2 + O
(∥∥x − x(i)

∥∥4) (49)

which in terms of the covariance matrices is rewritten as

∥∥x(j) − x(i)
∥∥2 = 1

2

δ2

d + 2

(
y(j) − y(i)

)T [
C

†
i,δ + C

†
j,δ

](
y(j) − y(i)

) + O
(∥∥x(j) − x(i)

∥∥4)
.

We construct the parametric graph Laplacian using the N × N weight matrix W ,

Wij = exp

{
−‖Jf −1(y(i))(y(j) − y(i))‖2 + ‖Jf −1(y(j))(y(j) − y(i))‖2

4ε

}
, (50)

or equivalently, using the covariance matrices

Wij = exp

{
− δ2

d + 2

(y(j) − y(i))T [C†
i,δ + C

†
j,δ](y(j) − y(i))

4ε

}
. (51)

Even though the data points y(i) are given on MY , the parametric graph Laplacian L = D−1W − I approximates the
Laplace–Beltrami on MX rather than that on MY , as required.
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Fig. 6. Points (y1, y2, y3) on the unit sphere are obtained by mapping uniformly sampled points in the unit square by (52).

Fig. 7. Top: color map of x1 (left) and x2 (right) as a function of the embedded coordinates φ1 and φ2. Bottom: color map of φ1 (left) and φ2
(right) as a function of the original sampled points in the unit square.

6.2. Numerical example

We illustrate uniformization through the following example. We map N = 2000 uniformly sampled points (x1, x2)

in the unit square to a mushroom-like manifold on the 2-sphere in R
3 (y2

1 + y2
2 + y2

3 = 1)

y1 = x1 + x3
2√

(x1 + x3)2 + (x2 − x3)2 + 1
,

2 1
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y2 = x2 − x3
1√

(x1 + x3
2)2 + (x2 − x3

1)2 + 1
,

y3 = 1√
(x1 + x3

2)2 + (x2 − x3
1)2 + 1

(52)

(see Fig. 6). For every point we compute the 3 × 3 covariance matrix Ci of a local burst of Nc = 1000 simulated
points with Δt = 0.001 (under the assumption of the standard dynamics dx1 = dw1 and dx2 = dw2, as in Section 5).
We compute the pseudo-inverse C

†
i by taking the two principal components (the third singular value of the covariance

matrix is much smaller because the manifold is two-dimensional). The eigenvectors of the normalized anisotropic
Laplacian (51) with ε = 0.005 are computed. The resulted embedding is shown in Fig. 7 where it is clear that the
computed coordinates φ1, φ2 recover the original coordinates x1, x2.
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