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Abstract The current on a linear strip or wire solves an equation governed by a linear integro-differential
operator that is the composition of the Helmholtz operator and an integral operator with a logarith-
mically singular displacement kernel. Investigating the spectral behaviour of this classical operator, we
first consider the composition of the second-order differentiation operator and the integral operator with
logarithmic displacement kernel. Employing methods of an earlier work by J. B. Reade, in particular
the Weyl–Courant minimax principle and properties of the Chebyshev polynomials of the first and sec-
ond kind, we derive index-dependent bounds for the ordered sequence of eigenvalues of this operator
and specify their ranges of validity. Additionally, we derive bounds for the eigenvalues of the integral
operator with logarithmic kernel. With slight modification our result extends to kernels that are the sum
of the logarithmic displacement kernel and a real displacement kernel whose second derivative is square
integrable. Employing this extension, we derive bounds for the eigenvalues of the integro-differential
operator of a linear strip with the complex kernel replaced by its real part. Finally, for specific geometry
and frequency settings, we present numerical results for the eigenvalues of the considered operators using
Ritz’s methods with respect to finite bases.

Keywords: eigenvalue problems; integro-differential operators; logarithmic kernel; linear antennas

2010 Mathematics subject classification: Primary 34L15; 47G20
Secondary 45C05; 78A50

1. Introduction

Spectral analysis is one of the tools used to obtain insight into the electromagnetic
behaviour of antennas and microwave components. The analysis of the eigenmodes of a
rectangular waveguide that are obtained from Maxwell’s equations by applying Sturm–
Liouville theory to electric and magnetic scalar potentials is an example [20]. The eigen-
values corresponding to the eigenmodes are directly related to their cut-off frequencies,
i.e. frequencies above which the modes propagate. A second example concerns the analy-
sis of antenna arrays, where the eigenfunctions are standing waves that represent specific
scan and resonant behaviours of the array. The corresponding eigenvalues are character-
istic impedances; they predict resonance phenomena, which are related to the occurrence
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of surface waves supported by the truncated periodic structure [1,3,18]. For overviews
with other examples we refer the reader to [15,26].

Apart from the electromagnetic insight, existing calculational methods rely on pre-
knowledge of the spectrum [1,2,9,11,12,17,22]. Generally, a sufficiently fast decay of
the eigenvalues or their reciprocals is assumed to limit the numbers of eigenfunctions in
the spectral transformations for single scatterers and arrays. In [1,2,17] these numbers
are chosen on the basis of physical insight or empirical rules derived from numerical
results. In this respect we emphasize that the spectral transformation is analytically
known only for relatively simple shapes, such as the rectangular waveguide or a loop
antenna [28]. For problems that require numerical techniques to obtain this transforma-
tion, spectral analysis can provide a basis for its approximation by empirical and physical
insight. In this paper we concentrate on properties of the spectrum of a linear antenna,
where such techniques are required [1,2].

One of the most common linear antennas is a straight, good conducting wire, or strip, of
approximately half a wavelength, referred to as a dipole. The wire diameter and the strip
thickness and strip width are small with respect to the wavelength and the dipole length.
For the indicated lengths, the linear antenna carries a sinusoidal current distribution of
half a period. For larger lengths the dipole turns into a multipole that carries currents of
more periods, while for much smaller lengths it turns into a monopole. Focusing first on
a linear strip, we outline the derivation of an equation for the current, where we apply
the classical assumptions that the electromagnetic field is time harmonic and that the
metal is perfectly conducting. Since the strip thickness is much smaller than its width
and the wavelength, we model the strip as an infinitely thin sheet. Then, introducing a
magnetic vector potential, we express the scattered electric field in terms of the current
by Maxwell’s equations. Invoking the condition that the total tangential electric field
vanishes at the strip surface, we obtain an integro-differential equation, the electric field
integral equation (EFIE), that relates the current to the tangential excitation field. Since
the strip width is much smaller than the wavelength, we average the current and the
tangential excitation field over the strip width. Thus, we link the averaged current to the
averaged tangential excitation field by the operator [1, § 2.3.2]

Zw = 1
2 iZ0k

2�b

(
1 +

1
k2�2

d2

dx2

)
Gw, (1.1)

where 2� and 2b are the dipole length and width, k is the wavenumber, Z0 =
√

µ0/ε0 is
the characteristic impedance of free space, x is the length coordinate normalized on �, w

is the width-averaged current, and G is the integral operator defined by

(Gw)(x) =
∫ 1

−1
w(ξ)G(x − ξ) dξ. (1.2)

The displacement kernel G of this operator is defined by

G(x) =
1

2πk�

∫ 2

0
(2 − y)

exp(ik�
√

x2 + β2y2)√
x2 + β2y2

dy, β =
b

�
. (1.3)
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and decomposes as

G(x) = − 1
πk�β

log |x| + Greg(x), (1.4)

where Greg is even and once differentiable with a square integrable derivative [1, § 2.3.2,
Appendix A.1]. For linear wires, a similar expression for the integro-differential operator
is obtained in the literature, where the current is averaged with respect to the wire
circumference. The corresponding equation is called Pocklington’s equation with exact
kernel, which has a similar decomposition as (1.4) [13,21]. Recently, the decomposition
F1(z) log |z| + F2(z) has been proposed with F1 and F2 analytic functions on the real
line [4]. In other modelling approaches for linear wire antennas the result is an equation
with a continuous kernel, which is called the reduced kernel. Contrary to the equation
with the exact kernel [25], the equation with the reduced kernel is driven by a compact
operator and is therefore ill-posed [6,30]. For justifications of the approximations made
in the derivations of both kernels we refer the reader to [5,29].

Several investigations of spectra of integral operators related to the integral operator G
can be found in the literature. Reade [23] derived upper and lower bounds for the integral
operators generated by the kernels log |x − ξ| and |x − ξ|−α with (x, ξ) ∈ [−1, 1] × [1, 1]
and 0 < α < 1. These kernels were considered earlier by Richter, who characterized the
singularities in the solutions of the corresponding integral equations [24]. Asymptotic
expressions for the eigenvalues of the slightly modified kernel V (y)|x− ξ|−α were derived
by Kac [14]. Estrada and Kanwal [8, Lemmas A.1 and A.2] proved two results for eigen-
value bounds of positive compact operators and applied them to kernels considered by
Reade. Dostańıc [7] derived asymptotic expressions for the eigenvalues related to the ker-
nel |x−ξ|−α and put them in correspondence with the Riemann zeta function. Simı́c [27]
followed similar lines as Dostańıc to derive asymptotic upper and lower bounds for the
singular values of the integral operator with kernel logβ |x − ξ|−1 with 0 < ξ < x < 1
and β > 0.

No investigations seem to exist of spectra of integro-differential operators related to Z,
in particular the composition of the second-order differentiation operator and an integral
operator with displacement kernel log |x − ξ|. Given the aforementioned approximations
of the spectral transformation in several methods of analysis and solution, particularly
[1,2,17], the objective of our paper is the asymptotics of the eigenvalues of the integro-
differential operator Z and related operators. In our approach we consider the integral
operator K on the Hilbert space L2([−1, 1]),

(Kf)(x) =
∫ 1

−1
log |x − ξ|f(ξ) dξ, (1.5)

and the integro-differential operator (d2/dx2)K on the domain

W = {f ∈ H2,1([−1, 1]) | f(−1) = f(1) = 0}. (1.6)

According to Reade [23], K is a compact self-adjoint operator with negative eigenvalues
λn(K) that satisfy the inequalities

π

4n
� |λn(K)| � π

n − 1
, n � n0, (1.7)
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where the eigenvalues are indexed according to decreasing magnitude starting from n = 1.
The upper bound is valid for n0 = 3, while the validity of the lower bound is not
specified by Reade. In this paper we put Reade’s result in a more general perspective.
By this generalization we prove that (d2/dx2)K, with domain W, extends to a positive
self-adjoint operator with compact inverse and that the ordered sequence of eigenvalues
λn((d2/dx2)K), n = 1, 2, . . . , satisfies λn � πn for n � 1 and λn � π(4n − 2) for n � 2.
These results extend with a slight modification to integral operators K̃ with displacement
kernels of the form

k̃(x − ξ) = log |x − ξ| + h(x − ξ), (1.8)

where h is real, even and twice differentiable. Employing this modified result, we derive
bounds for the eigenvalues of the integro-differential operator Z with kernel Greg replaced
by its real part. As an additional result of our generalization we find values for n0

in (1.7) for which the upper and lower bounds are valid. In the last section of this
paper we compare our analytic approach with numerical results for the eigenvalues of
the considered operators.

2. Prerequisites

The Weyl–Courant minimax principle for positive, or non-negative, compact operators
is formulated in [10, Chapter 2, § 1].

Theorem 2.1. Let C be a positive self-adjoint compact operator with eigenvalues
λ1(C) � λ2(C) � · · · � 0. Then,

λn(C) = min
F

‖C − F‖, (2.1)

where the minimum is taken over all finite rank operators F with rank less than or equal
to n − 1.

The principle has the following two consequences.

Corollary 2.2. Let C be a compact positive self-adjoint operator and let B be a
bounded operator. Then λn(BCB∗) � ‖B‖2λn(C).

Proof. The chain of inequalities

λn(BCB∗) = min
F

‖BCB∗ − F‖ � inf
F

‖BCB∗ − BFB∗‖ � ‖B‖2 min
F

‖C − F‖ (2.2)

proves the statement. �

Corollary 2.3. Let C1 and C2 be compact positive self-adjoint operators such that
C1 � C2, i.e.

for all f : 〈C1f, f〉 � 〈C2f, f〉. (2.3)

Let the eigenvalues of both operators be indexed according to decreasing magnitude as
in Theorem 2.1. Then, λn(C1) � λn(C2) for all n.
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Proof. Let Pn be the orthogonal projection onto the linear span of the eigenvectors
corresponding to λ1(C1), . . . , λn−1(C1). Since C1 and Pn commute, C1(I − Pn) is self-
adjoint. Then, its spectral radius equals its norm [16, pp. 391, 394] and its norm equals
its numerical radius [16, p. 466]. Consequently,

λn(C1) = ‖C1(I − Pn)‖ = max
f,‖f‖=1

〈C1(I − Pn)f, f〉, (2.4)

where we write the maximum instead of the supremum, because C1(I − Pn) is compact.
By decomposing f = Pnf + (I − Pn)f , we readily observe that 〈C1(I − Pn)f, f〉 =
〈C1(I−Pn)f, (I−Pn)f〉. Then, substituting this result in (2.4) and subsequently applying
the assumption C1 � C2, we derive

λn(C1) = max
f,‖f‖=1

〈C1(I − Pn)f, (I − Pn)f〉 (2.5)

� max
f,‖f‖=1

〈C2(I − Pn)f, (I − Pn)f〉

= ‖(I − Pn)C2(I − Pn)‖ (2.6)

= ‖C2 − (PnC2 + C2Pn − PnC2Pn)‖. (2.7)

Since PnC2+C2Pn−PnC2Pn has finite rank n, it follows from Theorem 2.1 that λn(C1) �
λn(C2). �

As we noted in § 1, our techniques are closely related to the ones used by Reade, who
employs properties of the Chebyshev polynomials. Since we want to keep the paper self-
contained, we introduce these properties, starting with the definition of the Chebyshev
polynomials {Tn}∞

n=0 and {Un}∞
n=0:

Tn(cos θ) = cos nθ, Un(cos θ) =
sin(n + 1)θ

sin θ
, n = 0, 1, 2, . . . . (2.8)

The polynomials satisfy the orthogonality relations

∫ 1

−1
Tn(x)Tm(x)

1√
1 − x2

dx =

{
π, (n, m) = (0, 0),
1
2πδnm, (n, m) �= (0, 0),

(2.9)

and ∫ 1

−1
Un(x)Um(x)

√
1 − x2 dx = 1

2πδnm. (2.10)

Correspondingly, we introduce two complete orthogonal sequences in L2([−1, 1]):

T̂n(x) = (1 − x2)−1/4Tn(x), Ûn(x) = (1 − x2)1/4Un(x), n = 0, 1, . . . . (2.11)

Furthermore, for ν ∈ R we introduce the self-adjoint multiplication operator Mν in
L2([−1, 1]) by Mνf = (1 − x2)νf . For ν � 0, the operator is bounded with ‖Mν‖ = 1,
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i.e. the essential supremum of the function (1 − x2)ν on the interval [−1, 1]. From the
goniometric formulae

cos nθ sin θ = 1
2 (sin(n + 1)θ − sin(n − 1)θ), (2.12)

sin θ sin(n + 1)θ = 1
2 (cos nθ − cos(n + 2)θ), (2.13)

we derive the relations

M1/2T̂0 = Û0, M1/2T̂1 = 1
2 Û1, M1/2T̂n = 1

2 (Ûn − Ûn−2), n = 2, 3, . . . , (2.14)

M1/2Ûn = 1
2 (T̂n − T̂n+2), n = 0, 1, . . . . (2.15)

3. Asymptotic behaviour of eigenvalues of integral operators described by
Chebyshev polynomial expansions

In this section we study the asymptotics of the eigenvalues of the integral operators on
the Hilbert space L2([−1, 1]) related to the following two types of kernels:

k1(x, ξ) =
∞∑

n=0

αnTn(x)Tn(ξ) (3.1)

and

k2(x, ξ) =
∞∑

n=0

αnUn(x)Un(ξ)
√

1 − x2
√

1 − ξ2. (3.2)

Here the sequence (αn) satisfies αn ↓ 0 as n → ∞, α0 � α1 � · · · � 0. The symmetric
kernels k1 and k2 correspond to the integral operators K1 and K2

(K1,2f)(x) =
∫ 1

−1
k1,2(x, ξ)f(ξ) dξ. (3.3)

We define the positive self-adjoint compact operators K̂1 and K̂2 on L2([−1, 1]) by

K̂1f =
∞∑

n=0

αn〈f, T̂n〉L2 T̂n, K̂2f =
∞∑

n=0

αn〈f, Ûn〉L2Ûn. (3.4)

Employing (2.9), (2.10) and (2.11), we find

K̂1T̂0 = πα0T̂0, K̂1T̂n = 1
2παnT̂n, n = 1, 2, . . . , (3.5)

K̂2Ûn = 1
2παnÛn, n = 0, 1, . . . . (3.6)

The operators K̂1 and K̂2 are related to the operators K1 and K2 according to

K1 = M1/4K̂1M1/4, K2 = M1/4K̂2M1/4. (3.7)

Since M1/4 is self-adjoint and bounded, K1 and K2 are compact, positive and self-adjoint.
Let S1 and S2 denote the bounded operators on L2([−1, 1]) defined by S1T̂n = T̂n+2 and
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S2Ûn = Ûn+2, with adjoints S∗
1 and S∗

2 that satisfy

S∗
1 T̂0 = S∗

1 T̂1 = 0, S∗
1 T̂2 = 1

2 T̂0, S∗
1 T̂n = T̂n−2, n � 3, (3.8)

S∗
2 Û0 = S∗

2 Û1 = 0, S∗
2 Ûn = Ûn−2, n � 2. (3.9)

Employing the relations (2.14)–(2.15), we obtain

M1/2K̂1M1/2f

= α0〈f, Û0〉L2Û0 + 1
4α1〈f, Û1〉L2Û1 + 1

4

∞∑
n=2

αn〈f, Ûn − Ûn−2〉L2(Ûn − Ûn−2)

= 3
4α0〈f, Û0〉L2Û0 + 1

4 (I − S2
∗)K̂2(I − S2)f (3.10)

and, similarly,
M1/2K̂2M1/2 = 1

4 (I − S1)K̂1(I − S1
∗). (3.11)

Let P1,N and P2,N denote the orthogonal projections onto the linear spans of {T̂n |
n = 0, . . . , 2N} and {Ûn | n = 0, . . . , 2N}, respectively. Then K̂2 � 1

2πα2NP2,N and
K̂1 � 1

2πα2NQ1,N , where

Q1,Nf = P1,Nf +
1
π

(f, T̂0)L2 T̂0,

so that
M1/2K̂1M1/2 � 1

8πα2NAN , M1/2K̂2M1/2 � 1
8πα2NBN . (3.12)

where the operators AN and BN are defined as

AN = (I − S2
∗)P2,N (I − S2), BN = (I − S1)Q1,N (I − S1

∗). (3.13)

By Corollary 2.3 it then follows that

λn(M1/2K̂1M1/2) � 1
8πα2Nλn(AN ), λn(M1/2K̂2M1/2) � 1

8πα2Nλn(BN ), (3.14)

where all eigenvalues are indexed according to decreasing magnitude.
Since AN Ûn = 0 for n > 2N and

AN Ûn =

⎧⎪⎪⎨
⎪⎪⎩

2Ûn − Ûn+2, n = 0, 1,

2Ûn − Ûn+2 − Ûn−2, n = 2, . . . , 2N − 2,

Ûn − Ûn−2, n = 2N − 1, 2N,

(3.15)

its matrix AN (N � 2) with respect to the orthonormal basis

{
√

2/πÛ2n+1 | n = 0, . . . , N − 1} ∪ {
√

2/πÛ2n | n = 0, . . . , N} (3.16)

has the block structure

AN =

(
CN 0
0 CN+1

)
, (3.17)
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where CN is the symmetric tridiagonal N × N matrix with main diagonal (2, . . . , 2, 1)
and codiagonal (−1, . . . ,−1). Reade [23] derives the eigenvalues of CN by expressing its
characteristic polynomial qN as

qN (λ) = pN (λ) − pN−1(λ), (3.18)

where pN is the characteristic polynomial of the symmetric tridiagonal N × N matrix
with main diagonal (2, . . . , 2) and codiagonal (−1, . . . ,−1). The polynomials pN can
be expressed as pN (λ) = UN (1 − 1

2λ), since they satisfy the recurrence relation of the
Chebyshev polynomials UN with argument 1 − 1

2λ,

pN+1(λ) = (2 − λ)pN (λ) − pN−1(λ), (3.19)

with initial conditions p0 = 1 and p1(λ) = 2 − λ. The eigenvalues of CN follow by
substitution of this expression in (3.18), by which [23, p. 143]

qN (λ) =
cos( 1

2 (2N + 1)θ)
cos( 1

2θ)
, λ = 2(1 − cos θ). (3.20)

Finally, the eigenvalues of AN with N � 2 are those of CN and CN+1,

ν
(1)
AN ,m = 4 cos2

πm

2N + 1
, m = 1, 2, . . . , N, (3.21)

ν
(2)
AN ,m = 4 cos2

πm

2N + 3
, m = 1, 2, . . . , N + 1. (3.22)

To calculate the eigenvalues of BN , we employ a basis decomposition similar to (3.16)
and properties of the characteristic polynomials qN . Since BN T̂n = 0 for n > 2N +2 and

BN T̂n =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2(T̂0 − T̂2), n = 0,

T̂1 − T̂3, n = 1,

2T̂n − T̂n+2 − T̂n−2, n = 2, . . . , 2N,

T̂n − T̂n−2, n = 2N + 1, 2N + 2,

(3.23)

its matrix BN (N � 1) with respect to the orthonormal basis

{
√

1/πT̂0} ∪ {
√

2/πT̂2n | n = 1, . . . , N + 1} ∪ {
√

2/πT̂2n+1 | n = 0, . . . , N} (3.24)

has the block structure

BN =

(
DN+2 0

0 EN+1

)
, (3.25)

where the symmetric tridiagonal matrices DN+2 and EN+1 have main diagonals (2, . . . ,
2, 1) and (1, 2, . . . , 2, 1), and codiagonals (−

√
2,−1, . . . ,−1) and (−1, . . . ,−1), respec-

tively. In terms of the polynomials qN , their characteristic polynomials satisfy

χDN+2(λ) = (2 − λ)qN+1(λ) − 2qN (λ), χEN+1(λ) = (1 − λ)qN (λ) − qN−1(λ). (3.26)



Spectral analysis in linear antenna modelling 341

Since the polynomials qN satisfy the same recurrence relation (3.19) as the polynomials
pN (but with different initial conditions), we obtain the relations

χDN+2(λ) = qN+2(λ) − qN (λ), χEN+1(λ) = qN+1(λ) − qN (λ). (3.27)

Substituting the expression (3.20) for qN in these expressions we obtain

χDN+2(λ) = −4 sin 1
2 (2N + 3)θ sin 1

2θ, χEN+1(λ) = −
2 sin(N + 1)θ sin 1

2θ

cos 1
2θ

. (3.28)

Then, the eigenvalues of DN+2 and EN+1 follow straightforwardly from the expression
for λ in (3.20). Therewith we obtain the eigenvalues of BN for N � 1,

ν
(1)
BN ,m = 4 sin2 mπ

2N + 3
, m = 0, . . . , N + 1, (3.29)

ν
(2)
BN ,m = 4 sin2 mπ

2(N + 1)
, m = 0, . . . , N. (3.30)

Theorem 3.1. Let K1 be the integral operator defined on the Hilbert space L2([−1, 1])
by (3.3) with kernel k1 defined by (3.1), where the sequence (αr) satisfies αr ↓ 0 as r → ∞,
αr � 0 for all r, αr � αr+1 for r � N0 � 1 and αr � αN0 for r < N0. The operator K1

is compact and positive with eigenvalues λn(K1), n = 1, 2, . . . , that satisfy

λn(K1) � 1
2παn−1, n � max(N0, 2), (3.31)

λn(K1) � 1
4πα2n, n � max(� 1

2N0�, 2), (3.32)

where the eigenvalues are indexed according to decreasing magnitude.

Proof. Since K1 = M1/4K̂1M1/4, we obtain by Corollary 2.2 and by (3.5)

λn(K1) � λn(K̂1) = 1
2παn−1, n � max(N0, 2). (3.33)

To derive a lower bound we recall that the inequalities in (3.14) are derived for monoton-
ically decreasing sequences (αn). It straightforwardly follows that the first inequality is
also valid for the sequences (αn) in this theorem if the requirement N � � 1

2N0� is added.
Then, since AN is defined for N � 2, it follows from (3.14) and Corollary 2.2 that

λn(K1) � λn(M1/2K̂1M1/2) � 1
8πα2Nλn(AN ), (3.34)

where we can select an appropriate N � max(� 1
2N0�, 2). Indexing the eigenvalues

λn(AN ), n = 1, 2, . . . , 2N + 1, given by (3.21) and (3.22) according to decreasing magni-
tude, we find that λ1(AN ) is ν

(2)
AN ,1. To determine λn(AN ) we invoke the property

ν
(2)
AN ,m > ν

(1)
AN ,m > ν

(2)
AN ,m+1. (3.35)

Then,

λn(AN ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ν
(1)
AN ,n/2 = 4 cos2

(
π

4
n

N + 1
2

)
, n even,

ν
(2)
AN ,(n+1)/2 = 4 cos2

(
π

4
n + 1
N + 3

2

)
, n odd.

(3.36)
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Considering the eigenvalues with index n � max(� 1
2N0�, 2) and choosing N = n, we

obtain from (3.36) that λn(An) � 4 cos2(π/4) = 2. Consequently, (3.34) with N = n

yields (3.32). We note that Reade chooses N = n + 1 in his analysis of the eigenvalues of
the integral operator with logarithmic kernel [23, p. 143], since he indexes the eigenvalues
starting from n = 0. We index the eigenvalues starting from n = 1 because of the
application of the Weyl–Courant minimax principle in the form (2.1). �

Theorem 3.2. Let K2 be the integral operator defined on the Hilbert space L2([−1, 1])
by (3.3) with kernel k2 defined by (3.2), where the sequence (αr) satisfies αr ↓ 0 as r → ∞,
αr � 0 for all r, αr � αr+1 for r � N1 � 1 and αr � αN1 for r < N1. The operator K2

is compact and positive with eigenvalues λn(K2), n = 1, 2, . . . , that satisfy

λn(K2) � 1
2παn−1, n � N1, (3.37)

λn(K2) � 1
4πα2(n−1), n � � 1

2N1� + 1, (3.38)

where the eigenvalues λn(K2) are indexed according to decreasing magnitude.

Proof. Analogously to (3.33), the upper bound follows from K2 = M1/4K̂2M1/4 by
application of Corollary 2.2 and (3.6). To derive the lower bound we follow similar argu-
ments as in the previous proof; the difference is mainly in the way in which the eigenvalues
are counted. Analogously to (3.34), we obtain from (3.14) and Corollary 2.2

λn(K2) � 1
8πα2Nλn(BN ), (3.39)

where we can select an appropriate N � � 1
2N1�. Indexing the eigenvalues λn(BN ), n =

1, 2, . . . , 2N + 3, given by (3.29) and (3.30) according to decreasing magnitude, we find
that λ1(BN ) is ν

(1)
BN ,N+1. The eigenvalues of BN satisfy (3.35) with AN replaced by BN

and with the superindices interchanged. Hence,

λn(BN ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ν
(2)
BN ,N−(n−2)/2 = 4 sin2

(
π

4
2N + 2 − n

N + 1

)
, n even,

ν
(1)
BN ,N+1−(n−1)/2 = 4 sin2

(
π

4
2N + 3 − n

N + 3
2

)
, n odd.

(3.40)

Then, (3.38) follows from (3.39) and (3.40) with N = n − 1 and n � � 1
2N1� + 1. �

4. Application: asymptotic behaviour of an integro-differential operator
with logarithmically singular kernel

Since

log |x − ξ| = −
∞∑

n=0

γnTn(ξ)Tn(x) (4.1)

with γ0 = log 2 and γn = 2/n [23, Lemma 1], the operator K on L2([−1, 1]) defined
by (1.5) is compact, negative and self-adjoint. Applying Theorem 3.1 with N0 = 3 (since
γ2 > γ0 > γ3), we obtain the inequalities (1.7), as follows.
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Corollary 4.1. The (negative) eigenvalues λn(K), n = 1, 2, . . . , of the compact self-
adjoint operator K defined by (1.5) on the Hilbert space L2([−1, 1]) satisfy

π

4n
� |λn(K)|, n � 2, |λn(K)| � π

n − 1
, n � 3, (4.2)

where the eigenvalues are indexed according to decreasing magnitude.

Next we apply the results of § 3 to the derivation of the asymptotics of the eigenvalues
of the operator (d2/dx2)K. For that we do some auxiliary work. The Hilbert transform
V on the Hilbert space L2(R) is defined by the principal-value (PV) integral

(Vw)(x) = PV
∫ ∞

−∞

w(ξ)
x − ξ

dξ. (4.3)

The operator is bounded and its adjoint satisfies V∗ = −V. The Fourier transformation
F on L2(R) defined by

(Fw)(y) =
∫ ∞

−∞
w(x)e−iyx dx (4.4)

and the Hilbert transform satisfy the relation

((F ◦ V)w)(y) = −πi sgn(y)(Fw)(y). (4.5)

The well-known identity −V2 = V∗V = π2I follows by composing F and V2, applying
(4.5) twice and taking the inverse Fourier transform of the result.

On L2([−1, 1]) we introduce the finite Hilbert transform H by Hf = (Vwf )|[−1,1] with
wf the natural extension of f ∈ L2([−1, 1]) to L2(R). We conclude that H is bounded
with ‖H‖ � π. The Chebyshev polynomials satisfy the relations [19, p. 261]

1
π

PV
∫ 1

−1

1
x − ξ

1√
1 − ξ2

Tn(ξ) dξ = −Un−1(x), (4.6)

1
π

PV
∫ 1

−1

1
x − ξ

√
1 − ξ2Un−1(ξ) dξ = Tn(x), (4.7)

for −1 � x � 1 and n = 1, 2, . . . . Note that from (4.7) we conclude that ‖H‖ = π. We
write the relations (4.6) and (4.7) as

HM−1/4T̂n = −πM−1/4Ûn−1, HM1/4Ûn−1 = πM1/4T̂n. (4.8)

The first relation inspires us to introduce Ĥ on L2([−1, 1]) by

Ĥg = −2
∞∑

n=0

〈g, T̂n+1〉L2Ûn, (4.9)

such that ĤT̂n = −πÛn−1 for n = 1, 2, . . . and ĤT̂0 = 0. Applying Ĥ to M1/4f with
f ∈ L2([−1, 1]) and multiplying by M−1/4, we obtain

M−1/4ĤM1/4f = −2
∞∑

n=0

〈f, Tn+1〉L2Un (4.10)
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by straightforwardly employing the definitions of Mν , T̂n and Ûn. Alternatively, the
action of the operator M−1/4ĤM1/4 can also be calculated as

M−1/4ĤM1/4f = −2
∞∑

n=0

〈f,M1/4T̂n+1〉L2Un

= − 2
π

∞∑
n=0

〈f,HM1/4Ûn〉L2Un

=
2
π

∞∑
n=0

〈Hf,M1/2Un〉L2Un = Hf, (4.11)

where the second equality is obtained by invoking the second relation of (4.8) and the
third equality is obtained by invoking the adjoint H∗ = −H. Combining (4.10) and (4.11),
we conclude that H = M−1/4ĤM1/4 and

Hf = −2
∞∑

n=0

〈f, Tn+1〉L2Un (4.12)

with convergence in L2([−1, 1]). Since

Kf = − log 2〈f, T0〉L2T0 − 2
∞∑

n=0

1
n + 1

〈f, Tn+1〉L2Tn+1 (4.13)

and dTn+1/dx = (n + 1)Un for n = 0, 1, 2, . . . , we observe that, for all f ∈ L2([−1, 1]),

d
dx

Kf = −2
∞∑

n=0

〈f, Tn+1〉L2Un = Hf (4.14)

and thus Kf ∈ H2,1([−1, 1]). By straightforward partial integration, we derive, for f ∈
H2,1([−1, 1]),

(Kf)(x) =
∫ 1

−1
f(ξ)

d
dξ

(
−

∫ x−ξ

0
log |t| dt

)
dξ

= −f(1)
∫ x−1

−1
log |t| dt + f(−1)

∫ x+1

0
log |t| dt +

∫ 1

−1

∫ x−ξ

0
log |t| dt

df

dx
(ξ) dξ.

(4.15)

From this expression we observe that K satisfies d(Kf)/dx = K(df/dx) for all f ∈ W,
where W is the dense subspace of L2([−1, 1]) defined by (1.6). Employing this property
and (4.14), we derive, for f ∈ W,

d2

dx2 (Kf) = H
(

df

dx

)
= −2

∞∑
n=0

〈
df

dx
, Tn+1

〉
L2

Un = 2
∞∑

n=0

(n + 1)〈f, Un〉L2Un. (4.16)
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We introduce the compact positive self-adjoint operator T̂ on L2([−1, 1]) by

T̂ f =
2
π2

∞∑
n=0

1
n + 1

〈f, Ûn〉L2Ûn (4.17)

and, correspondingly, we introduce T on L2([−1, 1]) by T = M1/4T̂ M1/4. Then, for all
f ∈ W,

d2

dx2 (Kf) = 2
∞∑

n=0

(n + 1)〈M−1/4f, Ûn〉L2M−1/4Ûn = M−1/4T̂ −1M−1/4f = T −1f.

(4.18)
Thus, we show that the unbounded operator (d2/dx2)K extends to a positive self-adjoint
operator, given by T −1, with domain the range of the compact self-adjoint operator T .
From (4.17) and the definition of T , it follows that the kernel of T is equal to

KT (x, ξ) =
2
π2

∞∑
n=0

1
n + 1

Un(x)Un(ξ)
√

1 − x2
√

1 − ξ2. (4.19)

Applying Theorem 3.2 with N1 = 1, we obtain the following result.

Corollary 4.2. The eigenvalues λn(T ), n = 1, 2, . . . , of the compact positive self-
adjoint operator T defined on the Hilbert space L2([−1, 1]) satisfy

1
π(4n − 2)

� λn(T ), n � 2, λn(T ) � 1
πn

, n � 1, (4.20)

where the eigenvalues are indexed according to decreasing magnitude.

Theorem 4.3. Let K be the compact self-adjoint operator on the Hilbert space
L2([−1, 1]) defined by (1.5). Then, the integro-differential operator (d2/dx2)K defined
on W according to (

d2

dx2 Kf

)
(x) = PV

∫ 1

−1

1
x − ξ

df

dx
(ξ) dξ (4.21)

extends to a positive self-adjoint operator with domain ran(T ), where T is the integral
operator defined by the kernel KT in (4.19). The eigenvalues λn(T −1), n = 1, 2, . . . , of
the self-adjoint extension T −1 of (d2/dx2)K satisfy

πn � λn(T −1), n � 1, λn(T −1) � π(4n − 2), n � 2, (4.22)

where the eigenvalues are indexed according to increasing magnitude.

Theorem 4.4. Let K̃ be the integral operator on the Hilbert space L2([−1, 1]) defined
by the displacement kernel

k̃(x − ξ) = log |x − ξ| + h(x − ξ), (4.23)
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where h is real, even and twice differentiable with square integrable second derivative.
Then, the operator

d2

dx2 K̃ =
d2

dx2 K + H̃

extends to a self-adjoint operator with a discrete spectrum of eigenvalues that satisfy

πn − ‖H̃ − γI‖L2 + γ � λn

(
d2

dx2 K̃
)

� π(4n − 2) + ‖H̃ − γI‖L2 + γ, (4.24)

with γ = inff,‖f‖=1〈H̃f, f〉L2 , n � 1 for the first inequality, and n � 2 for the second
inequality.

Proof. We use Corollary A 2 with A the self-adjoint extension of (d2/dx2)K and D
the bounded self-adjoint operator H̃ − γI, where H̃ is the integral operator generated
by the symmetric kernel d2h(x − ξ)/dx2. Then, A + D has a compact inverse and its
eigenvalues λn(A + D) satisfy

λn(A) − ‖D‖L2 � λn(A + D) � λn(A) + ‖D‖L2 . (4.25)

Moreover, we conclude that (d2/dx2)K̃ extends to the self-adjoint operator A + D + γI
with a discrete spectrum of eigenvalues that satisfy

λn

(
d2

dx2 K̃
)

= λn(A + D) + γ. (4.26)

From (4.22), (4.25) and (4.26) it follows that these eigenvalues satisfy (4.24). �

Theorem 4.4 can be applied to the operator Z in (1.1) with the integral kernel G

replaced by its real part. To this end we first specify the regular part of G by decomposing
it as Greg = G1 + G2 + G3, where

G1(x) =
1

πk�

∫ 2

0

1√
x2 + β2y2

dy +
1

πk�β
log |x|

=
1

πk�β
log(2β +

√
4β2 + x2), (4.27)

G2(x) =
1

πk�

∫ 2

0

exp(ik�
√

x2 + β2y2) − 1√
x2 + β2y2

dy

=
1

πk�

∞∑
n=0

(ik�)n+1

(n + 1)!
Qn(x), (4.28)

Qn(x) =
∫ 2

y=0
(x2 + β2y2)n/2 dy (4.29)

and

G3(x) = − 1
2πk�

∫ 2

0

y exp(ik�
√

x2 + β2y2)√
x2 + β2y2

dy

= − 1
2πik2�2β2 [exp(ik�

√
x2 + β2y2) − exp(ik�|x|)]. (4.30)
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For decompositions of the thin-wire kernel we refer the reader to [4], where Taylor
expansions as in G2 are employed to arrive at the aforementioned kernel decomposition
F1(z) log |z| + F2(z). Next, we write the action of Z as

Zw = − iZ0

2πk�

(
d2

dx2 Kw − πk�β
d2

dx2 Gregw − πk3�3βGw

)
, (4.31)

where Greg is the integral operator induced by the kernel Greg. The second derivative of
G1 is square integrable. By termwise differentiation of the series expansion of G2, it can
be shown straightforwardly that the second derivative of G2 is also square integrable and
has a logarithmic singularity. Decomposing G3 as

G3(x) = − 1
2πik2�2β2 (−ik�|x| + g3(x)), (4.32)

we observe that g3 is twice continuously differentiable. Moreover, the composition of the
second derivative and the integral operator induced by the displacement kernel |x| is
equal to twice the identity operator. The action of Z can thus be written as

1
Z1

(Zw)(x) =
d2

dx2 (Kw)(x) − 1
β

w(x) +
∫ 1

−1

d2

dx2 h(x − ξ)w(ξ) dξ, (4.33)

where Z1 = −iZ0/2πk� and

d2h

dx2 = −πk�β

(
d2G1

dx2 +
d2G2

dx2 − 1
2πik2�2β2

d2g3

dx2

)
− πk3�3βG. (4.34)

For the second derivative of G2 and the evaluation of Qn we refer the reader to
Appendix B.

Let Z̃ be the operator Z with the kernel G replaced by its real part or, equivalently,
with h in (4.33) replaced by Reh. Applying Theorem 4.4 to the kernel k̃ = log | · |+Re h,
we obtain

πn − ‖H̃‖L2 − 1
β

� λn

(
1
Z1

Z̃
)

� π(4n − 2) + ‖H̃‖L2 − 1
β

, (4.35)

for the same values of n as in Theorem 4.4, where the operator H̃ is generated by the
kernel Re(d2h/dx2) and where we employed ‖H̃ − γI‖L2 ± γ � ‖H̃‖L2 (Theorem 4.4).
In our numerical results we replace ‖H̃‖L2 by its upper bound,

‖H̃‖L2 �
∫ 2

−2

∣∣∣∣Re
d2h

dx2 (ξ)
∣∣∣∣ dξ. (4.36)

5. Numerical results

To validate the theorems derived in the previous section, we compute the eigenvalues of
the operators K and (d2/dx2)K by employing a projection method. For a specified set
of independent functions that belong to W, we compute the matrix G−1Z, where G is
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Figure 1. Absolute eigenvalues of K obtained with piecewise linear splines (◦, N = 40) and
with the Fourier basis (∗, N = 20). The bounds (4.2) are depicted by solid lines.

the Gram matrix of the set of functions with respect to the classical inner product in
L2([−1, 1]) and Z are the matrices of inner products generated by 〈· ,K·〉L2 and〈

· , d2

dx2 K ·
〉
L2

.

On W, the second inner product can be rewritten as

−
〈

d
dx

· ,K d
dx

·
〉
L2

.

We define two sets of functions in W. The first one is the Fourier basis cos( 1
2 (2n−1)πx),

sin nπx, where n = 1, 2, . . . , N . The second one is a set of uniformly distributed, piecewise
linear splines,

Λn(x) = Λ

(
x − xn

∆

)
, (5.1)

where Λ(x) = (1 − |x|)1[1,1](x), ∆ = 2/(N + 1), xn = −1 + n∆ and n = 1, 2, . . . , N .
We calculate the matrix Z by rewriting its entries as the inner product of the kernel
and the convolution of the two basis functions. Next we calculate the contribution of the
logarithmic part of the integrand analytically and we compute the contribution of the
regular part by a composite Simpson rule [1, §§ 3.3, 3.4]. For the Fourier basis the Gram
matrix G is the identity, and for the splines it is a tridiagonal matrix with 2

3∆ on its
diagonal and 1

6∆ on its two codiagonals.
Figure 1 shows the absolute eigenvalues of K computed with both sets of functions

together with the upper and lower bounds of Corollary 4.1. Similarly, Figure 2 shows the
eigenvalues of (d2/dx2)K together with the upper and lower bounds of Theorem 4.3. For
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Figure 2. Eigenvalues of (d2/dx2)K obtained with piecewise linear splines (◦, N = 40) and
the Fourier basis (∗, N = 20). The bounds (4.22) are depicted by solid lines.

both results we employed N = 20 for the Fourier basis and N = 40 for the piecewise
linear splines. We may clearly observe that the (absolute) computed eigenvalues satisfy
the derived bounds for both operators. Moreover, for the operator (d2/dx2)K, we observe
that the eigenvalues obtained with the two bases start to deviate for eigenvalue indices
n � 20. In this respect, we demonstrated in [1, § 5.2] that if the eigenvalues of a dipole are
generated by a set of P uniformly distributed linear splines and by the first P functions
in the Fourier basis, the first � 1

2P � eigenvalues match.
Next we consider the operator Z for the current on a strip. First we choose the fre-

quency such that the dipole is half a wavelength long, 2� = 1
2λ, and that it is narrow

with respect to the wavelength, β = 1
50 . Figure 3 shows the real part of the eigenvalues

of the operator Z/Z1, the eigenvalues of Z/Z1 with the kernel G replaced by its real
part (i.e. Z̃/Z1), the eigenvalues of (d2/dx2)K − I/β, and the upper and lower bounds
obtained from (4.35) and (4.36). Note that in this numerical example ‖H̃‖L2 � 48.5. For
all three operators, the eigenvalues are computed by the Fourier basis with N = 20.
We observe that the real parts of the eigenvalues of Z/Z1 and the eigenvalues of Z/Z1

with G replaced by its real part are the same. We also observe that for n � 20 the
eigenvalues of (d2/dx2)K − I/β match the real parts of the eigenvalues of Z/Z1. The
first observation demonstrates that the real parts of the eigenvalues are determined by
the real part of the integral kernel and suggests that a similar conclusion is valid for
the imaginary parts. The second observation is explained by the boundedness of the
integral operator with kernel d2h/dx2 in (4.33) and of its real counterpart H̃ with ker-
nel Re(d2h/dx2). These explanations suggest that the imaginary parts of the eigenval-
ues of Z/Z1 are only significant for the lower eigenvalues and that the eigenvalues of
Z/Z1 with complex kernel G also satisfy the bounds in Figure 3, which is confirmed
by numerical results. Physically, this observation indicates that only a limited number
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Figure 3. For a dipole of half a wavelength: real part of the eigenvalues of Z/Z1 (∗), eigenvalues
of Z/Z1 with G replaced by its real part (◦), and eigenvalues of (d2/dx2)K−I/β (�), computed
by the Fourier basis (N = 20). The bounds given by (4.35), combined with (4.36), are depicted
by solid lines. Parameter values: 2� = 1

2λ, β = 1
50 .
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Figure 4. For a dipole of one-fifteenth wavelength: real part of the eigenvalues of Z/Z1 (∗),
eigenvalues of Z/Z1 with G replaced by its real part (◦), and eigenvalues of (d2/dx2)K − I/β

(�), computed by the Fourier basis (N = 20). The bounds given by (4.35), combined with
(4.36), are depicted by solid lines. Parameter values: 2� = 1

15λ, β = 3
20 .

of eigenfunctions are radiative, since the real parts of the eigenvalues of Z/Z1, or the
imaginary parts of the eigenvalues of Z, correspond to the reactive energy of the eigen-
functions of the dipole, while the imaginary parts correspond to the radiated energy of
these eigenfunctions.
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As a second example we consider a much shorter dipole, 2� = 1
15λ, with the same width

by which β = 3
20 . Analogously to Figure 3, Figure 4 shows the three curves of eigenvalues

and the upper and lower bounds. Note that in this numerical example ‖H̃‖L2 � 5.7. The
real parts of the eigenvalues Z/Z1 are not only the same as the eigenvalues of Z/Z1

with G replaced by its real part, but also approximately the same as the eigenvalues of
(d2/dx2)K−I/β, except for significant deviations in the smallest eigenvalues. The imag-
inary parts of the eigenvalues of Z/Z1 are a factor 103 or more smaller than their real
parts, which means physically that all eigenfunctions are reactive. Based on these obser-
vations we may consider to compute the smallest eigenvalues of Z/Z1 from Rayleigh–Ritz
quotients applied to the first few eigenfunctions of (d2/dx2)K and to approximate the
other eigenvalues by the eigenvalues of (d2/dx2)K − I/β. This approach facilitates a
rapid eigenvalue computation, since the eigenvalues and eigenfunctions of (d2/dx2)K do
not depend on the geometrical parameters.

6. Conclusion

In our investigation of the spectral behaviour of the integro-differential operator that
governs the time-harmonic current on a linear strip or wire, we came across the problem
of deriving explicit bounds for the ordered sequence of eigenvalues of the composition
of the second-order differentiation operator and the integral operator with logarithmic
displacement kernel. To tackle this problem, we used methods of an earlier work by
Reade, who employed the Weyl–Courant minimax principle and explicit properties of
the Chebyshev polynomials of the first and second kind. By his methods, Reade was able
to derive explicit index-dependent bounds for the ordered sequence of eigenvalues of the
integral operator K with logarithmic displacement kernel. In this paper, we modified and
extended Reade’s result to integral operators with kernels described by arbitrary expan-
sions of Tm(x)Tm(ξ) and Um(x)Um(ξ). In particular, we showed that the upper and lower
bounds π/(n − 1) and π/4n derived by Reade for the absolute values of the eigenvalues
λn of K (n = 1, 2, . . . ) are valid for n � 4 and n � 2, respectively. Furthermore, for the
integro-differential operator (d2/dx2)K we proved that its eigenvalues are bounded from
below by πn for n � 1 and from above by π(4n − 2) for n � 2. We extended this result
to kernels that are the sum of the logarithmic displacement kernel and a real displace-
ment kernel whose second derivative is square integrable. Subsequently, we applied this
extension to the integro-differential operator corresponding to a linear strip, where we
replaced the complex integral kernel by its real part. For this operator we found lower
and upper bounds expressed in terms of the bounds πn and π(4n − 2), a uniform shift,
and the norm of the integral operator corresponding to the regular part of the kernel.
Numerically, we showed how well the eigenvalues of the considered operators, computed
by Ritz’s methods, fit the analytically derived bounds. Although our analysis does not
provide bounds for the complex kernel corresponding to a linear strip, the absolute values
of the computed eigenvalues satisfy the bounds derived for the real part of the kernel.
Moreover, for the larger eigenvalue indices, the computed eigenvalues for the complex
kernel match those computed for the real kernel.
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Appendix A. Additional theorems

Lemma A 1. Let A be an invertible positive self-adjoint operator and let the operator
B be such that B � A. Then, B is invertible and B−1 � A−1.

Proof. By the Spectral Theorem A1/2 exists and is positive and invertible. Define the
positive self-adjoint operator P by

P = A−1/2(B − A)A−1/2.

Then,

B = A1/2(I + P)A1/2.

It follows from the Spectral Theorem for unbounded self-adjoint operators [31] that I+P
is invertible and (I + P)−1 � I. We derive

B−1 = A−1/2(I + P)−1A−1/2 � A−1/2IA−1/2 = A−1, (A 1)

where the inequality follows from (I + P)−1 � I and A−1/2 being self-adjoint. �

Corollary A 2. Let A be a positive self-adjoint operator with compact inverse and
let D be a bounded self-adjoint operator such that A + D is invertible (with bounded
inverse). Then A + D has a compact inverse and its eigenvalues λn(A + D) satisfy

λn(A) − ‖D‖ � λn(A + D) � λn(A) + ‖D‖. (A 2)

Proof. Since A + D = A(I + A−1D) and since A+D and A are invertible, I + A−1D
has a bounded inverse. Then, since the operator (A + D)−1 is the product of the bounded
operator (I + A−1D)−1 and the compact operator A−1, it is compact. If dom(A) is
the domain of definition of A, then A + D is self-adjoint on dom(A). By the Cauchy–
Schwarz inequality we have |〈Df, f〉| � ‖D‖〈f, f〉, and thus ±D � ‖D‖I. Consequently,
A � A + D + ‖D‖I � A + 2‖D‖I. From Corollary A 1 it follows that

(A + 2‖D‖I)−1 � (A + D + ‖D‖I)−1 � A−1. (A 3)

Since (A + D + ‖D‖I)−1 and (A + 2‖D‖I)−1 are positive and compact, it follows by
Corollary 2.3 that

λn((A + 2‖D‖I)−1) � λn((A + D + ‖D‖I)−1) � λn(A−1). (A 4)

Thus, λn(A) � λn(A + D + ‖D‖I) � λn(A + 2‖D‖I), from which (A 2) follows. �
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Appendix B. Derivatives of G2

The second derivative of G2 is given by

d2G2

dx2 =
k�

2πβ

[
log |x| + 1 − log(2β +

√
4β2 + x2) − x2√

4β2 + x2(2β +
√

4β2 + x2)

]

+
k3�3

8πβ
x2[− log |x| + log(2β +

√
4β2 + x2)]

+
1

πk�

∞∑
n=0

(ik�)n+3

(n + 3)(n + 1)!

(
1 − k2�2

n + 5
x2

)
Qn(x). (B 1)

The function Qn(x) given by (4.29) can be evaluated by the recurrence relation

Qn(x) =
2

n + 1
(x2 + 4β2)n/2 +

n

n + 1
x2Qn−2(x) (B 2)

with initial conditions Q0(x) = 2 and

Q1(x) =
√

x2 + 4β2 +
x2

2β
[− log |x| + log(2β +

√
4β2 + x2)]. (B 3)
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