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SINGULAR SECOND-ORDER OPERATORS: THE MAXIMALAND MINIMAL
OPERATORS, AND SELFADJOINT OPERATORS IN BETWEEN*

MOJDEH HAJMIRZAAHMADt atD ALLAN M. KRALLt

Abstract. Differential operators arising from the differential equation

-(py’)’ + qy Awy

are put in the Hilbert space setting L2 (a, b; w). A new and simpler characterization of the minimal operator
is exhibited.

Selfadjoint operators, which lie in between the minimal and maximal operator, are easily described in
terms of conditions on boundary coefficients, which look like, and indeed are, the same as those imposed on
regular problems.

Examples, drawn from mathematical physics, include the Legendre, Laguerre, Hermite, and Bessel prob-
lems.

Keywords, singular operators, Sturm-Liouville problems, boundaryvalue problems, spectral theory, Weyl
theory
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1. Introduction. Many ofthe equations ofthe special functions, orthogonal polyno-
mials, Bessel functions, and others from mathematics applications have been well known
for over a century, with their primary use being in the writing of series and integral so-
lutions of certain partial differential equations of mathematical physics. While regular
problems, those over finite intervals with well behaved coefficients that pose no prob-
lem, those for which there are difficulties because of infinite regions or infinite or zero
coefficients, and are therefore labelled as singular, need a more careful examination.

The problem usually first encountered with singular problems is in narrowing the
choice of acceptable solutions for the various equations involved. Most of the times
these problems have been studied, the methods employed to determine these acceptable
solutions have been largely ad hoc with no real underlying mathematical justification.
Cohditions such as "boundedness," or "having a zero limit" have been used intuitively
without adequate mathematical reasons.

With such a shaky foundation, the verification of other properties has also been
somewhat unsatisfactory. For example, in order to assume that certain characteristic
values are real, an application of the spectral resolution theorem for selfadjoint opera-
tors on a Hilbert space is essential. Many discussions show via Green’s formula that the
expressions in question are symmetric or hermitian, but fail to show that the operator
involved is maximally extended. Unless the domain of the operator is adequately de-
scribed, the verification of such a maximal extension and selfadjointness is impossible.
Fortunately, in most cases there is an underlying selfadjoint operator, and so the desired,
needed results are available, even if they are under the surface.

As an example, consider the expression

Hy y" (-) 1
y, a>

in L2(0, ). First considered by Case [6] with the constraint y(0) 0, the "eigenfunc-
tions" and "eigenvalues" seemed to involve an undetermined parameter b.
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SINGULAR SECOND-ORDER OPERATORS 615

The problem was reconsidered by Burnap et al. [5], who used a boundary term
involving the solutions of

Hy +/-i y.

Since there are two independent solutions of this equation that are square integrable
near zero, there was a problem of which to use; again there was an undetermined pa-
rameter b.

Actually there is a different selfadjoint operator Hb for each choice of b. The con-
dition y(0) 0 is not really a condition at all, since every solution of Hy y vanishes

at z 0 at least as fast as z 7. (See [38].)
This was state of the art, more or less, until some fifteen years ago. Then some

significant refinements began to be developed.
Within the past ten years certain crucial advancements in the algebraic formulas de-

scribing singular situations have been made, which makes possible a complete descrip-
tion analogous to the case of regular problems. Singular boundary conditions, described
as Wronskian limits, remove the need for ad hoc constraints. Green’s formula for sin-
gular problems was newly refined, making transparent what is required. All this makes
it possible to describe the really interesting singular problems at an intermediate level
with little work required beyond what is already available for regular problems.

A word or two concerning the history of the problem, those who contributed to its
solution, and a brief description of its extensions is in order. The fundamental begin-
nings are found in two papers by Weyl [64], [65] in 1910, where the now famous limit-
point limit-circle criterion for classifying singular points was introduced. Progress con-
tinued steadily in the 1920s with the development of functional analyses and the theory
of Hilbert spaces. Of particular interest is the work ofvon Neumann [63] and Stone [60],
culminating with the derivation of the spectral resolution of an unbounded selfadjoint
operator on a Hilbert space.

Another approach was developed during the 1930s and 1940s by Titchmarsh, who
applied complex analysis techniques to the development of the spectral resolution of
differential operators. His work culminated in his now famous book [62].

In the late 1940s and early 1950s Levinson [45], [46] and Kodaira [35] applied Helly’s
theorems from statistics to the resolution problem. Subsequent contributions by Levin-
son and his student Coddington led to their classic textbook [8], which is still in use today.

In 1964 Atkinson [1] extended the theory to systems in a unique book, which still
contains original insights and is still intriguing to researchers in the field. During the
1960s and 1970s Atkinson and his friend W. N. Everitt, both Titchmarsh students, made
a number of contributions, filling in many parts of the theory [1], [2], [14]-[19].

The 1970s saw two significant contributions to the field. The idea of using a Sobolev
or energy norm was introduced by Pleijel [58], [59]. A major improvement in how to
write singular boundary conditions, particularly in Green’s formula, was developed by
Fulton [23]. Although the book by Dunford and Schwartz [12] had done similar things
a few years earlier, Fulton’s paper really got the ball rolling.

The 1970s also saw the introduction of indefinite inner product spaces, following the
work of Bognar [4]. Krall [36] and Mingarelli and Krall [54], [55], [56] developed these
spaces for the Laguerre-Legendre type, Laguerre type, and Jacobi type polynomials.
There is still much to do here.

During the 1980s Hinton and Shaw [27]-[32] vigorously pursued the development
of singular Hamiltonian systems, which generalize the scalar differential problems. Krall
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616 M. HAJMIRZAAHMAD AND A. M. KRALL

[39]-[42] developed the spectral resolutions of such systems. Littlejohn [49], [50] consid-
ered higher-order orthogonal polynomial problems, which serve as examples for systems.
He and Everitt [20] and also with Krall [21] considered various polynomial problems in
left definite or energy normed spaces.

One extremely important contribution, made in 1986, is due to Kaper, Kwong, and
Zettl [33]. Here are connected the classic ad hoc conditions with other constraints, es-
pecially including the appropriate limiting Wronskians.

The Russians have been heavy contributors since the 1950s. Namark’s work is ex-
hibited by his book [57]. The books of Levitan [47], [48] contribute substantially to dif-
ferential systems. There are many others from the Soviet Union which space prohibits
us from mentioning.

The Chinese have also recently been making substantial contributions. Cao Zhi-
jiang [16], [11] and Sun Jiong [61] have worked on higher-order problems with middle
deficiency indices as well as limit circle problems.

Most recently Hajmirzaahamad [25], [26] has extended the theory of the second-
order problems associated with the generalized Laguerre and Jacobi polynomials to non-
classical situations (c < -1 [Laguerre], c, fl < -1 [Jacobi]). She also developed a left
definite or energy norm theory for these problems.

There are, of course, many other contributors whose work has not been cited. We
apologize. Lack of space makes a really complete list impossible. It is not our intent
here to present a complete historical survey, however. To do so would really require the
writing of a book, and so we hope this limited, biased introduction will suffice.

Rather, it is our aim there to describe only what occurs in the classical second-order
case in the classical L setting. This is indeed the situation encountered most often by
users of the subject; it is here that there are substantial refinements in the theory that
are easy to describe, and it is here where there is the most interest. We do so in what we
believe to be the most efficient way, using the improvements of those listed, as well as
many of those we have failed to cite. We hope the article will make the presentation of
the subject easier for all.

In 2 we highlight the classical Weyl theory of "limit points" and "limit circles" and
their implications concerning solutions in L(a, b; w). Section 3 uses these square in-
tegrable solutions to produce Wronskian (and regular) boundary conditions. Section 4
examines the classical boundary value problem first discussed by Weyl [64]. Using these
results 5 develops four singular Green’s formulas. These are used in 6 to introduce
the maximal and minimal operators. Lying between the maximal and minimal operators
are the selfadjoint operators. These are determined by imposing singular boundary con-
ditions, the subject of 7. Section 8 concludes with examples. A brief 9 contains some
remarks.

We hope the reader will find the descriptions rendered herein accessible. It is our
main goal to keep the material understandable with as little Hilbert space theory as pos-
sible.

2. Weyl theory highlights. We consider the differential expression

(-(py’)’ + qy)
w

over an interval (a, b), -oc < a < b < oc, where p-l, q, and w > 0 are locally integrable
within (a, b). This ensures that, given appropriate values of y and py’ at any point e
(a, b), the equation gy f has a unique solution [22].

We make the following definition.
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SINGULAR SECOND-ORDER OPERATORS 617

DEFINITION. The endpoint a is regular if a is finite, and p-l, q, and w are integrable
in an interval [a, a + ) for some e > 0. Otherwise a is a singular point. Likewise the
endpoint b is regular if b is finite, and p-l, q, and w are integrable in an interval (b e, b]
for some e > 0. Otherwise b is a singular point (see [22]).

Our setting is no longer the traditional space of continuous functions C(a, b), but is
of necessity L2 (a, b; w), the Hilbert space with inner product

(f g) f-ff zo dr.

A lack of study on a student’s part of Hilbert spaces or, in particular, of L2 spaces should
prove no great burden when it is explained that the Lebesgue theory is needed primarily
for completeness. Most results do not require or require only marginally the full force
of Lebesgue measure.

It is our goal to study selfadjoint differential operators generated by the expression
e in L(a, b; w). For example, if (a, b) (-1, 1), the expression

ey ((1 x2)y’)

in LZ(-1, 1; 1) is related to the Legendre polynomials. With appropriate boundary con-
ditions, the boundary value problem associated with has the Legendre polynomials as
eigenfunctions.

If (a, b) (0, ), the expression

ey (-x e-Zy’)

is associated with the Laguerre polynomials.
If (a, b) (-cx, x), the expression

--x
is associated with the Hermite polynomials.

If (a, b) is either of the intervals (0, c) or (0, 1), the expression

[-(xy’)’ + (n2/x)y]
iy=

x

involves Bessel functions of various kinds.
These problems are all singular at least one endpoint. At such singular points there

are a number of difficulties, not occurring with regular problems, which must be over-
come. For instance, how many solutions are acceptable? Is a boundary condition re-
quired? What is a boundary condition? How is the problem made selfadjoint in the
Hilbert space context?

In 1910, Weyl [64] invented an ingenious technique for surmounting some of these
problems. He showed that each regular problem over an interval [e, U], a < e < b < b,
corresponds to a point on a circle. Then he found an explicit bound for the integral
square of a specific solution of the homogeneous differential equation

(-py’)’ / qy ,kwy.

But, most importantly, as b approaches the singular point b, the circle contracts to a
"limit point" or "limit circle," and the bound on the integral square remains finite.
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618 M. HAJMIRZAAHMAD AND A. M. KRALL

A similar application on [a’, e], letting a’ approach a singular point a, generates an-
other solution, square integrable on (a, el. Using both allows the door to be opened on
problems singular at both endpoints.

We present the highlights of Weyl’s approach: Weyl begins by studying the regular
problem on a finite interval and then letting the right end point slide to approach a
singular end.

Therefore let us focus our attention on an interval [e, U], a < e < b’ < b. For an
arbitrary, but fixed, real a. Let 01 and 02 be solutions of

(-py’)’ + qy Awy,

satisfying the initial conditions

 os.,

p(e)O (e) sin a,

02 (e) sin c,

cos..

Thus 01 and 02 are linearly independent and

W[01,02] p(OlOt2 0102) -1

for all x.
In addition to the differential expression

(-py’) + qy
w

and the differential equation ey y, we impose a boundary condition at e:

cos (xy(e) + sin op(e)y’ (e) O,

which is satisfied by 02.
We also impose a boundary condition at b’:

cos y(b’) + sin p(b’)y’ (b’) O,

where is also real, but otherwise arbitrary.
Thus the problem

(-py’)’ + qy ,kwy,

cos oy(e) + sin op(e)y’ (e) O,

cos fly(U) + sin p(b’)y’ (b’) O,

defines a regular selfadjoint boundary value problem over [e, b’]. Solutions involve cer-
tain real values of ) only. ) cannot be complex and have a solution y(x, .) associated
with it.

Weyl’s approach to the singular problem begins by requiring Im 0, and attempt-
ing to find a solution

)b 01 -- rob,02
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SINGULAR SECOND-ORDER OPERATORS 619

of the differential equation that satisfies the b’ boundary condition only. As noted, )b’
and 02 must be linearly independent, otherwise Cb, and/or 02 would be a solution saris-
lying both boundary conditions, and A would be real.

Inserting 428, into the b’ boundary condition, we find

at z b’. Let z cot/3. Then

Z

is real. Setting Im(z) 0, we find

Expanded, this is

p(Otl + rob,0)
(/91 -t- mb,02)

W[)b’, )b’] O.

Imb 12W[02, 2] -- mb, W[02, -1] -]- b’W[01, 2] + W[O1, -1] O,

with z b’, a circle in the complex m plane, which we call Cb,.
Let rob, u + v, and let

2i A W[02, 02],

B + iC -W[02, 0],

B iC W[O, 02],

2iD W[O, 0].

We find the circle equation is equivalent to

v _)2 (B2 + C2 4AD)+ 4A2

The center of the circle Cb, is

(C + iB) W[01, 02]
2A W[02,02]

The radius is

r I(B2 + C2 4AD)/4A211/2.
A bit of arithmetic shows

The interior of the circle Cb, is also important. The "equal sign" should be replaced
by "<" above. This translates into

< 0.
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620 M. HAJMIRZAAHMAD AND A. M. KRALL

Why do all this? Be patient.
We next compute the Wronskians to show how the circle Cb, affects solutions of the

differential equations. If y and z are solutions of

(-py) + qy Awy,

then manipulation of the differential equations associated with y and z result in

Hence

b

W[y, ](b’) W[y, z](e) + 2i Im(,) fe wydr.

bW[02, 02](U) 0 + 2i Im(,k) fe wlOlzdt 2iA,

bW[Ol,O2](bt) 1 -- 2i Im(,k) fe WOlO2dt B iC,

bW[Ol,O1](bt) 0 -- 2i Im(),) f wlOldt 2iD,

bW[b,, Cb,](b’) rob, rob, + 2i Im(,k) fe wl’ledt"

Thus the center of the circle Cb, is

b
1 2i Im(A) f wOO2dt

2i Im()0 f:’ wlO212dt
The radius is

b

r=12iIm(A)f wlOl:dtl-.
Furthermore m, inside or on the circle is equivalent to

b(Im(mb,)/Im())) + fe wlCb’ledt
fb’wlOldt

This is equivalent to

b’ Im(mb,)WlCb’[2dt <- Im(A"
Finally, let b" < b < b, and let rob, be inside the circle Cb,. Then

fe
b’’

fe
b’ Im(mb,)WlCb’12dt <-- WlCb’ 12dr <- Im(,k---"

This shows that rob, is also in Cb,,. The circles, therefore, are nested as b’ b, and
contract to a limitpoint or limit circle. If mb is in their intersection and Cb 01 + mbO,
then

b Im(mb)wlCbledt<-Im( )

D
ow

nl
oa

de
d 

03
/0

5/
13

 to
 1

69
.2

37
.2

15
.1

79
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



SINGULAR SECOND-ORDER OPERATORS 621

So )b is square integrable over [e, b).
We call the situation where the limit is a circle, the limit circle case. Likewise if the

limit is a point, we call this the limitpoint case.
An elementary argument involving variation of parameters and Schwarz’s inequal-

ity shows that the case is independent of A. That is, once in the limit circle case for a
particular choice of A, then always in the limit circle case for all, even real, A. A proof of
this is found in [8, p. 225].

If the limit is a circle Cb, then the limit radius r is greater than zero. This implies
that 02 is also square integrable. Hence all solutions are square integrable, Im(A) 0.

If the limit is a point, then the limit radius r is zero. This only occurs if 02 is not
square integrable. In this instance only b is square integrable, Im(A) 0.

We need to perform the same calculations at z a. We impose at a’, a < a’ < e,
the boundary condition

cos ’Ty(a’) + sin /p(a’)y’ (a’) O,

where q, is real, and ask that

a’ 01 -It- ma,02

satisfy it. The only changes come when f2 is replaced by fa, in the expressions that
replace the Wronskians. Thus the center of the circle C, is

2i Im(a) L
and the radius is

r 2i Im(,) w

ma, inside the circle is equivalent to

which is equivalent to

Oldt1-1.

-(Im(ma,)/Im(,k)) + fae, wlba, 12dt
f, wlOlat

e Im(ma,)wl’ldt<- Im(,)

ewlaig.dt <
Im(ma)
Im(,k)

So b is square integrable over (a, e]. Note that the sign of Im(ma) is the opposite of
Im(mb). Thus ma and mb are not the same.

The other statements concerning limit circle and limit point cases and invariance
with respect to A still hold. Note that a regular end can be thought of as a limit circle
case.

We shall use these L2 solutions ba and ?/3b as building blocks in what follows.

The contraction argument is unchanged, leading to nesting circles Ca, as a’ a. If
m is in their intersection, then b O + mO satisfies
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622 M. HAJMIRZAAHMAD AND A. M. KRALL

3. Singular boundary values. Regular boundaryvalues at singular endpoints simply
will not do. There are examples, for instance, where all solutions approach zero at the
end. (Use Euler’s equation.) Fixing the value of the dependent variable is futile in
general.

Other constraints, such as boundedness, are likewise of little use in general. There
are times, however, when such conditions are equivalent to what we propose here as a
general answer. What is needed is something that generalizes regular boundary values,
generates them at regular ends, but still holds at singular ends. The answer is to use
Wronskian limits.

Let y be such that y and gy are in L2 (e, b; w), and let gy f. Let 0 be a solution of

(-py’)’ + qy Awy,

which is in L2 (e, b; w). Then

b

[O(gy) y(gO)]w dt W[y, O] (b’) W[y, O](e).

Since gO AO is also square integrable, the left side has a limit as b’ b. At e the
Wronskian is fixed, and so the limb,__.b Wig, O] (b’) exists.

Further, at a regular end b, let 0 be a solution with initial values

O(b) -/, p(b)O’(b) c.

Then

W[y, 0](b) y(b)p(b)O’(b) p(b)y’(b)O(b)

cy(b) + p(b)y’(b),

a general regular boundary value.
The converse to the argument above is also valid: If limb,_b W[y, 0] (b’) is finite for

all y, then the solution 0 is square integrable. Singular boundary values are generated
by square integrable solutions of the homogeneous differential equation.

There is more to be said. In the limit point case all such Wronskian limits are of the
form limb,_.b W[y, b] (b’). That is, no 02 Wronskians. Such limits are always zero, and so
in the sense ofDunford and Schwartz are not only boundaryvalues, but also annihilators.

In the limit circle case the boundary value limb,--b W[y, 0] (bt) exists for all solutions,
even if A is real. Zero is a very convenient choice of A in this case.

In either limit point or limit circle case, if z and gz are in L2(e, b; w), even if z is
not a solution to the homogeneous equation, then limb,._b W[y, z] (bt) exists. In the limit
point case it is always zero. In the limit circle case, it is a linear combination of solution
generated boundary values, and so is not a new constraint.

Solution generated boundary values (with A 0 in the limit circle case) suffice.
As z --. a, the other singular end, we use Wronskian limits as a’ a.
As stated in the introduction, Kaper, Kwong, and Zettl [33] have connected these

Wronskian conditions with the classic ad hoc assumptions, used in many applications.
Let b be the boundary point in question. It is assumed that for some point e between a
and b, p-1 and q are integrable over (e, b), that p > 0, that

tp-l(s)ds O((t b) -’)
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SINGULAR SECOND-ORDER OPERATORS 623

as t b, 0 < 7 < 1/2, and finally that q is bounded on (e, b). Under these conditions the
following are equivalent whenever y and y are in L2(e, b).

(1) y is bounded on (e, b);
(2) limt-,b y(t) exists and is finite;
(3) limt__,b(t b)Ty(t) 0;
(4) limt-b(py’)(t) 0;
(5) limt-b(t b)-(py’)(t) O, 0 < a < 1/2;
(6) pSy’ is in LZ(e, b);
(7) (t-b)-/2p1/2y isinL2(e,b),O < < 1/2;
(8) y’ is in LZ(e, b).
The Wronskian condition is represented by 4.

ipy’ t--.blim W[y, 1].

In virtually all the cases arising from applications, the function i is in L2 (e, b).
4. The classical Weyl boundary value problem. In order to verify some of the state-

ments of the preceding section, we turn our attention to a particularly useful boundary
value problem, considered first by Weyl [64] in the same paper in which he developed
the limit circle, limit point argument. We choose A, fixed, with Im(A) =/= 0, and solve

(-py’)’ + qy Awy wf,

lim W[y, Cb](X) O,
x-+b

lima W[y, Ca](X) O.

Variation of parameters quickly yields

wd + a

Evaluation of the Wronskian limits yields

Y Cb
f
/

x b bbfwd+
ma lFtb

(see [51]).
If we define

a(a, a<<x<b,

a<x<<b,

then

b

y G(A, x, )f()w()d.D
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624 M. HAJMIRZAAHMAD AND A. M. KRALL

Note. that G satisfies

We are now in a position to show that the boundary value problem is selfadjoint in
the setting L2 (a, b; w). That is, we can show that the differential operator

-Py + qYLy=
w

whose domain in L2 (a, b; w) is restricted by the Wronskian boundary conditions, is self-
adjoint.

Let (L- ,) f. Then
b

(L A)-f y G(,k, x, )f()w()d.

Therefore, ifg is in the range of (L-A)*, and (., .) denotes the inner product in L2(a, b; w),
we have

((L ,)-1 f, g) G(), x, ()f(()w(()d -ff(x)w(x)dx

f(() G(,X, x, ()g(x)w(x)dx w()d(

(f, (L ,)-lg).

This says

Taking inverses and cancelling the terms , we find L L*.
A simple argument shows that (L ,)-1 is a bounded operator. In fact,

1
[](L- A)-ll] <_

]ImAl"

For let (L- A)y f; then

(y, f)- (f, y) (y, (L-))y)- ((L-))y, y)

2i Im)(y, y).

Apply Schwarz’s inequality on the left:

211yll Ilfll 21Im l Ilyll 2,
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SINGULAR SECOND-ORDER OPERATORS 625

Cancel 211yll and set y (L A)-lf to find

(1)
Divide by Ilfll and take the supremum.

1

IImAI
is the result.

The solution of the Weyl problem can be used in a number of ways. In particular
it can be used to resolve the difficulty of the A dependence of the boundary conditions.
It can also be used to show that if the limit point case holds at a singular end, then the
boundary condition is automatic, satisfied by all.

First, let y and z satisfy Ly f, Lz g as well as the boundary conditions at a and
b. Then Green’s formula shows

0 (Ly, z) (y, Lz),

[((-p’)’ + qy)- y((-p’)’ + qg)]dt,

If y and z are modified so they vanish near a or b, then at the other end W[y, ] 0. In
summary: If limx-a W[y, a] 0 and limx W[z,] 0, then lim_ W[y, ] 0.
If lim-b W[y, Cb] 0 and lim_b W[z, Cb] 0, then lim__.b W[y, ] 0.

Second, there is a lemma due to Titchmarsh [62, p. 26], which says that if (z, A)
and Ca (x, ,0) are defined by the same sequence of a’ boundary conditions, then

lim W[(x, ,k0), (x, ))] 0
g---a

so long as Im A0 0, Im A 0. Likewise, if Cb(X, A) and Cb(X, A0) are defined by the
same sequence of b’ boundary conditions, then

lim W[b(X, ,k0), Cb(X, ,k)] 0,
x--.*b

so long as Im A0 0, Im A 0.
In otherwords, (x, A0), modified to be zero near b, satisfies both Wronskian bound-

ary conditions. b(X, A0), modified to be zero near a satisfies both boundary conditions.
If the second statements are used in the first, we conclude that if lim__. W[y, a]

0 or lim--.b W[y,b] 0 for a specific fixed ), then limx---,a[Y,a] 0 or
limx_.b W[y, Cb] 0 for all A, Im , # 0.

This implies that, regardless of the case, the Green’s function G(,, x, () is given by
the same formula for all ,k, Im , # 0.

The independence of the boundary conditions on ) also permits us to replace z by
in the first statement to conclude that if both y and z satisfy the boundary conditions,

then lim__.a W[y, z] 0 and lim,__,b W[y, z] O.
Finally, let us suppose that a is in the limit point case. Then ifwe solve the differential

equation

(e- y,
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626 M. HAJMIRZAAHMAD AND A. M. KRALL

requiring only that y be in L2 (a, b; w), we find

y G(,k, x, )f()w()d +

There is no term b. Ifwe now compute lim__., W[y, ,], we find it is zero.
Likewise if b is in the limit point case, then limb W[y, eb] 0.
In these limit point cases, bounda conditions are automatically satisfied, so

lim W[y, z] 0 or limb W[y, z] 0 for all y and z for which gy f and z g
are also in L2 (a, b; w).

5. Green’s formulas. e regular Green’s formula, which involves the Lagrange bi-
linear concomitant, evaluated at a and b, must be replaced by four variations, one for
each of the following cases:

(1) Limit point at a, limit point at b;
(2) Limit circle at a, limit point at b;
(3) Limit point at a, limit circle at b;
(4) Limit circle at a, limit circle at b.

We examine each case in turn.

5.1. LP at a, LP at b. Green’s formula over (a’, b’) C (a, b) has the form

b

(ez) l 

In the previous section, under limit point conditions, we showed the right side vanishes
asaa, bb.us

$.. LC , LP b. e difference here is that lim W[, g] is not always zero,
and in addition at , both O1 and O are in (, e; w) for all . We choose O,
and assume O1 and O are real valued. e problem is to eress lim W[, ].

We obsee the following. First,

0 py

Second,

1 0 --191 -02 1 0 pO, -02

since W[01,02] -1. If the second is inserted in the middle of the first, we find

(D
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SINGULAR SECOND-ORDER OPERATORS 627

The importance of this substitution is that while originally z, pz’, y, py’ may not have
individual limits at x a, the Wronskians do. Hence Green’s formula becomes

b

[(/y) (gz)y]w dt

xx-a(lim W[z, Ol], x--,alim W[z, 02]) (01 0 lzirn W[y, 02]

5.3. LP at a, LC at b. This is virtually the same as the previous case. On the right b
replaces a, and the sign changes.

[(/?y) (ez)y]w dt

( )(olim W[z 01] lim W[z, 02]
k,x--b x--*b 1 0 limz.._,b W[y, 02]

5.4. LC at a, LC at b. This case is the "sum" of the two previous cases on the right
side. Within it as a special case is the regular Green’s formula. We shorten notation a
bit. Let

lim W[y, 01] )Ba(y) x--,a

lima W[y, 02]

and letd=( -1) Theno

lim W[y, 01] /Bb(y) -b

lim W[y, 02]
x--b

[(t?y)- (gz)y]w dt= (B(z)*, Bb(z)*)
0 -J Bb(y)

where denotes conjugate transpose.
We shall use these formulas in the next sections when discussing both the maximal

and minimal operators, as well as those selfadjoint operators lying in between them.

6. Maximal and minimal operators. Maximal and minimal operators are important
because selfadjoint operators lie in between. That is, if LM is the maximal operator and
L, is the minimal operator, then examining the domains we would find Lm C L C LM
and Lm C L* C LM for a large collection of operators L and L* having the same form
as LM and Lm. In other words, the domains of these operators obey the set inclusion
relations

Dm C DL C DM, Dm C DL* C DM.

The trick is to rig DL so DL DL.. Then L is selfadjoint.
The domain DM consists of those elements y in L2 (a, b; w) for whichy exists almost

everywhere and is also in L2 (a, b; w). It is the largest possible associated with L
By general agreement, the minimal operator L, is the Hilbert space adjoint of LM.

L L,. There are two problems. First, what is its form? Second, what is its domain?
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628 M. HAJMIRZAAHMAD AND A. M. KRALL

The first is answered quickly using a trick from the calculus of variations. Called the
fundamental lemma, it shows that the form ofL, is the same as the form of LM. In both
cases Lmy ey, LMy gy [24, p. 131]. The problem lies in characterizing the domain
Dm.

Green’s formula unlocks the domain problem. In case 1 (LP-LP), Green’s formula
shows that if y is in DM and z is in D,, then

fab fab(LMy)w dt (Lmz)y wdt,

and so no further constraint is put on D,. Hence DM Din, and the maxffnal operator
is itself selfadjoint. We already knew this.

In case 2 (LC-LP), with y in DM and z in Dm, we find

fab fab(LMy)w dt (Lmz)y w dt

\x--,a(lim W[z, O1], x--,alim Wig, 02]) (01 0 lima W[y, 02]

Since no constraints are placed on the y terms, we are forced to conclude that

lim W[z, 0] O, lim W[z, 02] O.
x--.a x..-a

In case 3 (LP-LC) we conclude that

lim W[z, 01] O, lim W[z, 02] O,
x--*b

In case 4, we conclude that Wronskians of z with 01 and 02 vanish at both a and b.
These constraints are both necessary and sufficient, and so complete the characteri-

zation of the domain of the minimal operator.
We now turn our attention to those operators L satisfying Lm C L C LM and

L, c L* C LM, and, in particular, those for which L L*.

7. Selfadjoint operators. We noted in the previous section that when both a and b
are in the limit point case, the maximal operator LM and the minimal operator L, agree
with the Weyl operator. The result is selfadjoint.

Still left to be considered are the cases (LC-LP), (LP-LC), and (LC-LC). The simi-
larity of cases (LC-LP) and (LP-LC) will again allow us to get a lot for free.

7.1. Boundary value problems in the case (LC-LP). Green’s formula for elements
and z in DM is

fab fab(LMy)w dt- (LMz)y w dt

(lim W[z, 01], lim W[z, 02])
x--*a x--a

Operators L lying between L, and LM are determined by having their domains
restricted by boundary conditions of the form

a lim W[y, 01] //3 lim W[y, 02] O,
x--,a x--a
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SINGULAR SECOND-ORDER OPERATORS 629

[a[ + 1/31 # 0. The adjoint L* is also such an operator. We shall show how to find it.
We choose 7 and 6 so that (-r ) is nonsingular, and then e, , r/, so

* * , 5 1 0

If this is inserted into the right side of Green’s formula, then

(LMy)w dt (LMz)y w dt

( )’( )e lirna W[z, 01] + zlirna W[z, 02] a lirn W[y, 01] + Z lina W[y, 02]

( )+ r/lim W[z, 01] + lim W[z, 02 7 lim W[y, 01] + 5 lim W[y, 02]
x--a x-a x--.a x--+a

Now require y to be in DL, determined by the (c, fl) boundary condition, and require
z to be in DL.. The left side of the formula is zero. The first term on the right is zero.
Since the (-),, 5) boundary value in y is arbitrary, we conclude that

r/lim W[z, 01] + lim W[z, 02] 0.
x--a

This is a necessary and sufficient condition for determining the domain DL.. L* has the
same form as L. Its domain is determined by a different boundary condition.

In order to determine when selfadjointness occurs, it is convenient to introduce
parametric boundary conditions [51]. We have

7 lxirna W[z, 01] + toW[z, 02] O.

The other constraint

e lim W[z, 01] + lim W[z, 02] A,
-’-a flT---a

where A is arbitrary. This is equivalent to

(xlilTla W[z, O1], lxima W[z, 02])
*

Right muliplication by ( ) yields

lim W[z, 011 -fl* A, lim W[z, 01] a*A,
flTa ---a

parametric boundary conditions. If z is in DL, then it satisfies the (a, fl) boundary con-
dition. Using the parametric forms, we find that

+ 0.

Since A is arbitral,

This is equivalent to making a and fl real. The condition is reversible, and so

is necessaw and sufficient.
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630 M. HAJMIRZAAHMAD AND A. M. KRALL

7.2. Boundary value problems in the case (LP-LC). Here the only changes are a
minus sign on the right side of Green’s formula and the replacement of x a by x b.
The results are the same. The boundary condition

a lim W[y, 01] + fl lim W[y, 02] 0
x b x--..b

is selfadjoint if and only if a fl* a*.

7.3. Boundary value problems in the case (LC-LC). Green’s formula, given in 5.4,
is

(LMy)wdt- (LMz)ywdt (B(z)*,Bb(z)*)
0 -J Bb(y)

JWe exploit again the idea of making an insertion, in this case for 0
oj), find the

adjoint and parametric adjoint conditions, then examine selfadjointness.
Let A an/3 be m 2 matrices, 0 < m < 4, and let C and D be (4 m) 2 matrices

such that (cA g) is nonsingular. We further let and/ be m x 2 matrices, and let
and/) be (4 m) 2 matrices such that

B* D* C D 0 -J

J oSubstituting for ( 0 _j) in Green’s formula we find

fab (LMy)w dt (LMz)y wdt

(fi.B(z)+ [3 Bb(Z))*(AB(y)+ B Bb(y))

+( Ba(z) -b [9 Bb(Z))*(C Ba(y) - D Bb(y)).

If L is a restriction of LM with domain restricted by the boundary condition

ABa(y) + B Bb(y) O,

then L* has a domain restricted by

B(z) + [9 Bb(z) O.

If Be(Z) + [ Bb(z) A, arbitrary, then

( [9 Bb(z) 0

This can be solved by yielding the parametric boundary conditions

Ba(Z)=JA*A, Bb(Z) -JB*A.
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SINGULAR SECOND-ORDER OPERATORS 631

If L is selfadjoint, then z satisfies the (A, B) boundary condition. Hence

AJA* B JB*,

again a necessary and sufficient condition for L to be selfadjoint.
Note that regular boundary conditions are subsumed within this case. The condition

for selfadjointness is well known in the regular case.
In summary, the operator

Ly ((-pu’)’ + qu)

whose domain is restricted by
(1) In the case (LP-LP), nothing;
(2),(3) In the case (LC-LP) or (LP-LC) by

a lim W[y, 01] -1- fl lim W[y, 0] O,

(4) In the case (LC-LC) by

ABa(y)+BBb(y) =0, AJA* BJB*,

is selfadjoint in L2 (a, b; w).
$. Examples. We limit ourselves to one in each case and refer to [51] and [52] for

further examples.

8.1. The l-lermite operator. The Hermite operator is given by

Ly- --x

set in L2(-oc, oc; e-X). It is in the limit point case at both +oc, and so is selfadjoint
without the need to specify boundary conditions.

8.2. The Laguerre operator. The Laguerre operator is given by

(-x e-Zyt)
e_,-x

set in L2(0, oc; e-X). It is limit point at , and no boundary condition needs to be spec-
ified there. It is limit circle at zero. Two solutions to (x e-Xy/) 0 are 01 1, and
02 f(e/)d. (In 2 let a 0, e 1.) A boundary condition at z 0 takes the
form

a lim W[y, 01] + lim W[y, 02] 0.
x--.* b x.--b

It is selfadjoint if a and/3 are real. The Laguerre polynomials are found to be eigenfunc-
tions of L if a 1,/3 0. The boundary condition in this case is

lim x e-xy1(x) O.
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632 M. HAJMIRZAAHMAD AND A. M. KRALL

8.3. The Bessel operator. Let the interval in question be (0, 1]. The Bessel operator
(of "order n") is given by

+

set in Lg.(0, 1; x). We can let the "interior point" e be at e 1, since it is a regular point.
--nSolutions of Ly 0 are 01 (x’ + x-’) and 09. (x’ x if n 0. If n 0,

01 1 and 09. log x are solutions.
If Inl >_ 1, z 0 is in the limit point case. No boundary condition is required. At

x 1, W[y, 01] -y’(1), W[y, 09.] y(1), and so the boundary condition is

-ay’(1) +/3y(1) O.

If In < 1, both zero and one are in the limit circle case. The general boundary
condition

A Bo(y) + B B1 (y) 0

is appropriate. Bessel functions of the first kind satisfy separated boundary conditions
of the form

lim x(nx-ly(x) xny’(x)) O,
x..--O

or

lim (-x y’ (x)) O,
x---+O

and at z 1,

-ay(1) + /3y’(1) =0.

8.4. The Legendre operator. Set in L9.(-1, 1; 1), the Legendre operator is given by

Ly (-(1

The limit circle case holds at both +1. If the interior point e 0, the solutions 01 1
log((1 X) / (1 + X)) generate the appropriate Wronskian boundary valuesand 09. 7

as x +/-1. In general a boundary condition would involve terms from both +/-1. We
content ourselves here with noting that the Legendre polynomials satisfy

lim -(1 x2)y’(x) O, lim -(1 x2)y (x) O.

9. Remarks. It is possible to extend these results to higher-order equations. We cite
[13], [39], [40], and [61]. We note, however, that for higher-order problems the results
are substantially more complicated.

The spectral resolutions or eigenfunction expansions are also substantially more in-
volved than in the regular case. In general neither a sum (Fourier series) nor an integral
(Fourier transform) is sufficient, but instead integration with respect to a measure of
bounded variation is required [8]. For the specific examples mentioned, there are other
more direct methods that are more efficient [7], [9], [34].

We hope the reader has found this description of singular boundary value problems
illuminating. It is a fascinating subject, truly worthy of serious examination.
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