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CHARACTERIZATIONS OF THE FRIEDRICHS EXTENSIONS OF
SINGULAR STURM-LIOUVILLE EXPRESSIONS*

HANS G. KAPER’, MAN KAM KWONG’: AND ANTON ZETTLf:

Abstract. A method is presented to characterize selfadjoint realizations of a singular Sturm-Liouville
differential expression on a finite interval, where the singularities are of limit-circle type.
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1. Introduction. In this article we present a new method for defining selfadjoint
realizations of a certain class of singular Sturm-Liouville differential expressions

d d(1) "r -p ( l -+ q ( )

on a finite interval (a,b). We assume throughout that p and q are measurable and
real-valued functions on (a, b) which satisfy the minimal conditions

(2) p-l,qLloc(a,b ).
Moreover, we assume that p is positive,

(3) p(t)>0 a.e. on (a,b).
Thus, " is a quasi-differential expression in the sense of Naimark [1, V.1]. A function
y is said to be a solution of the equation ’y=0 if (i) y is absolutely continuous on
(a, b), (ii) py’ is equal a.e. on (a, b) to an absolutely continuous function (which, with a
slight abuse of notation, we denote by the symbol p’), and (iii) the identity
-(p’)’(t)+q(t)(t)=O holds a.e. on (a,b).

The right endpoint b is said to be a regular endpoint for - if

(4) p-X,qLl(c,b) for some c(a,b).
Similarly, the left endpoint a is regular if

(5) p-l,qLl(a,c) for some c(a,b).
If both endpoints are regular, then the differential expression - is called regular;
otherwise, it is called singular. Note that, for " to be regular, neither p-1 nor q need to
be bounded on (a, b).

All solutions y of a regular Sturm-Liouville equation ’y=0 are continuous on
[a,b], and the same property holds for the function p’. Hence, boundary values can be
assigned to these functions. The characterization of those boundary conditions which
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CHARACTERIZATIONS OF FRIEDRICHS EXTENSIONS 773

give rise to selfadjoint realizations of a regular differential expression in the Hilbert
space L2(a,b) is well known and can be found, for example, in the monographs by
Akhiezer and Glazman [2, Appendix II] and Naimark [1, [}5.18].

The study of singular differential expressions is considerably more difficult. The
solutions of a singular Sturm-Liouville equation ry=0 generally exhibit singularities
near the endpoints, so one cannot assign boundary values there. Weyl [3] has developed
a theory for the construction of selfadjoint realizations of singular differential expres-
sions, which is based on a distinction between singularities of limit-circle type and those
of limit-point type. The characterizations are, however, not concrete and therefore
difficult to apply. The same remarks can be made for the theory developed by
Titchmarsh [4].

In this article we present a new method for characterizing selfadjoint realizations
of singular Sturm-Liouville differential expressions of the form (1), where q is
bounded and the singularity at either endpoint is of limit-circle type. We limit the
discussion to the case of one singular endpoint; the extension of the method to cases
where both endpoints are singular is straightforward. Specifically, we assume that the
coefficients p and q satisfy, in addition to (2), (3), and (4), the conditions

(6) fbp_l(s)ds O((t-a)-V) as S a, 3, (0, 1

(7) qL(a,b).

Thus, b is a regular endpoint and a is a singular endpoint for r. For bounded
potentials q, the condition (6) is both necessary and sufficient for the singularity at a to
be of limit-circle type.

A selfadjoint realization of r in L2(a, b) requires the specification of two boundary
conditions, one at the regular endpoint b and one at the singular endpoint a. At b we
impose a condition of the usual type,

(8) BlY(b)+B2(py’)(b)=O BZ +B22 4=O.

Given such a condition, there are an infinite number of conditions at a which give rise
to a selfadjoint realization of r in L2(a, b). The particular condition

(9) limy(t) exists and is finite
tSa

is known to generate a selfadjoint realization which coincides with the Friedrichs
extension of the minimal operator in L(a, b) associated with r. Although the condition
(9) is often referred to as the "natural" one, relating it to the Weyl or Titchmarsh
theory of singular Sturm-Liouville problems is nontrivial.

As we will demonstrate, (9) is but one of several equivalent characterizations of the
same selfadjoint realization of r. These characterizations follow in a systematic way
from a particular representation of the elements in the domain of the maximal operator
defined by . The procedure sheds some light on the role that the particular condition
(9) plays within the general framework of Weyl’s theory.

2. Characterization of the Friedrichs extension. Let (a, b)- be defined by
the expression

-1(10) ,(t)=l+ p (s)ds, t(a,b).
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774 H. G. KAPER, M. K. KWONG AND A. ZETTL

Then L2(a,b), because (a,b) is finite and p satisfies (6). Furthermore, q,(t)> 1 for
all t(a,b) and ’(t)= -p-l(t) a.e. on (a,b).

Let M be the maximal operator associated with r,

(11) My=ry, ydomM,

where domM= (y L2(a,b):y and py’ locally absolutely continuous on (a,b) and
-y LZ(a,b)}. The following lemma gives a representation of the elements of domM.

LEMMA 1. For every y domM there exist two constants c and d and an element
g L2(a, b), such that

(12) y(t)=c(t)+d+fat(q(t)-q,(s))g(s)ds, t(a,b),

(13) y’(t) -cp-(t)-p-l(t)f’g(s)ds, t(a,b).

Proof. Because q is bounded, domM consists of those y L(a,b) for which y
and py’ are locally absolutely continuous on (a,b) and (py’)’ LZ(a,b). Hence, for
every ydomM there exists a gL2(a,b) such that -(py’)’=g. Integration of this
identity gives the representations (12) and (13). [3

Selfadjoint realizations T of - are obtained by restricting M. The restrictions result
in constraints on the element g and the constants c and d in the representation (12).
The boundary condition (8) imposes one such constraint, viz.,

(14) (n B2)-1- nld-- fal(n n2- nlt(s))g(s)ds.

Another constraint is obtained by imposing a "boundary condition" at the singular
endpoint. For example, the condition (9) leads to the constraint c--0. The following
lemma explores the ramifications of this constraint.

LEMMA 2. Let y domM. Then the following conditions are equioalent:
(i) y has a representation of the form (12) with c=0;
(ii) y is bounded on ( a, b );
(iii) lim/, aY(t) exists and is finite;
(iv) limt+(t-a)Vy(t)=O;
(v) lim, a( PY’)(t)= 0;
(vi) lim, . ( a) ( py ’)( 0 for any c (0, 1/2);
(vii) pa/2y, L2(a,b);
(viii) (t-a)-/pl/2y L2(a,b) for any a(0, 1/2);
(ix) y’ LX(a,b).

Proof. (i)* (ii). Elementary estimates yield the inequalities

(15) t(k(t)-q(s))g(s)ds <=q(t) g(s)ds + (s)g(s)ds

_< q ( )( a )1/2 -I- II][I g I["

Because of (6), q(t)(t-a)1/2 tends to zero as $ a, so there exists a positive constant C
such that, for any g L2(a, b),

(16) <=CIIg[I, t(a,b).
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CHARACTERIZATIONS OF FRIEDRICHS EXTENSIONS 775

Every ydomM has a representation of the form (12), where the integral obeys the
inequality (16). Clearly, y is bounded on (a,b) if and only if c=0.

(i)o (iii). A more careful estimate of the second term in (15) yields the inequality

fa [ (fa)1/21(17) (q(t)-q(s))g(s)ds <= q(t)(t-a)l/+ t(s)ds Ilgll.

Because of (6), there exists a positive constant C such that q,(s)=< C(s-a)- for s
sufficiently close to a. Thus we find that, for any g LZ(a, b), we have the more refined
estimate

(18) ft(rk(tl-rk(s)lg(s)ds]N+(t)llgll, t(a,b),

where q is independent of g, tk is bounded on (a,b) and +(t)= O((t- a)1/-) as
a. Every ydomM has a representation of the form (12), where the integral tends

to zero like (t-a)/- as + a. Clearly, y(t) tends to a finite limit as + a if and only
if c=0.

(i) (iv). The proof is similar to the proof of the previous equivalence.
(i) (v). For anygL2(a,b) we have

)1/2(19) (s)ds N(t-a Ilgll, t(a,b).

Representing y as in (12), so py’ is given by (13), we see that (py’)(t) tends to zero as
a if and only if c 0.
(i)(vi). The equivalence follows immediately from the proof of the previous

equivalence.
(i) (vii). According to Lemma 1, we have for any y domM,

(20) pl/2(t)y’(t)= -cp-1/2(t)-p-a/2(t)(s)ds, t(a,b),

for some constant c and some g LZ(a,b). Now, using (19),

2 b
-1(- tg( s p t)(t- a) at.p (t) )ds dtzllg

The last integral is bounded:

b (t)(t a)dt t’’(t)(t a)dt (b a)+%(t)dt C,

SO

b
p (t)

2

L’g( s ds dt C[Igll =.
The second term in the right member of (20) defines therefore an element of L2(a,b).
The first term, on the other hand, does not, unless c=0. Consequently, pl/2y, L2(a,b)
if and only if c 0.

(i)0 (viii). We use the representation (20) of pl/2y, and observe that

t-a) p (t) 12 2 btg(s)ds dt<=llgll p (t)(t-a) dt.
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776 H. G. KAPER, M. K. KWONG AND A. ZETTL

The last integral is still bounded if a (0, 1/2), so

t-a) p (t) )ds dt<C]lg

The expression (t-a)-/2p-/a(t)ftg(s)ds defines therefore an element of La(a,b) as
long as a(O, 1/2). On the other hand, the expression (t-a) -/2p-/2(t) clearly does
not define an element of L2( a, b) if a (0, 1/2), so the function ( a )- /:pl/:( ) y’( )
with a(O, 1/2) belongs to La(a,b) if and only if c-O.

(i) (ix). According to Lemma 1 we have, for any y domM,

(21) y’(t)=-cp-l(t)-p-l(t) g(s)ds, t(a,b),

for some constant c and some g L2(a, b). Now,

p t) g(s)dsdt<= p (t) Ig(s)]dsdt

-lg(s)l p (t)dtds<-Ilgl] p (t)dt ds

The last integral is bounded, so the second term in the right member of (21) defines an
element of LX(a,b). The first term does not, unless c-0. Hence, y’ L(a,b) if and
only if c 0. []

Lemma 2 shows that the domain of the maximal operator M can be restricted in
many equivalent ways. Let T be defined by

(22) Ty=My, ydomT,

where dom T= (ydomM :y satisfies (8) and any one of the conditions (i)-(ix) of
Lemma 2).

THEOREM 3. T is selfadjoint in L2(a, b).
Proof. Let f, g dom T. Then

(Tf g)= [f,g]b + (f rg)
where

[/,g] -(pf’),+f(p,’).
The bilinear form [.,. vanishes at b, because f and g satisfy the boundary condition
(9). It also vanishes at a, as one verifies most easily using the conditions (iii) and (v) of
Lemma 2. Hence, T is symmetric.

It follows from Lemma 1 and the definition of T that M, the maximal operator, is
a one-dimensional extension of T. Furthermore, M is a two-dimensional extension of
the minimal operator associated with -. Since T is symmetric, we have T* D T. But T*
cannot be a proper extension of T, because then T* would coincide with M; hence,
T*--T.

The operator T coincides with the Friedrichs extension of the minimal operator
associated with the differential expression ’. Hence, we have established several equiva-
lent characterizations of the Friedrichs extension. In the special case of the Legendre
differential operator, a proof of the equivalence of the condition (iii), (v) and (vii) of
Lemma 2 can be found in Akhiezer and Glazman [2, Appendix II, {}9]; the other
characterizations appear to be new. The simple characterization given by the condition
(i) of Lemma 2 appears to be particularly interesting.
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