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Abstract This study introduces a new signal analysis method, based on a semi-
classical approach. The main idea in this method is to interpret a pulse-shaped signal
as a potential of a Schrödinger operator and then to use the discrete spectrum of
this operator for the analysis of the signal. We present some numerical examples and
the first results obtained with this method on the analysis of arterial blood pressure
waveforms.
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1 Introduction

In this paper, we consider a signal, usually represented by a real-valued function y(t),
t ∈ R and introduce a new method to analyze this signal. The main idea in this method
is, under some assumptions given below, to interpret the signal y as a multiplication
operator, φ → y ·φ, on some function space. The spectrum of a (formally) regularized
version of this operator, denoted Hh(y) and defined by
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38 T.-M. Laleg-Kirati et al.

Hh(y)ψ(t) = −h2 d2ψ(t)

dt2 − y(t)ψ(t), ψ ∈ H2(R), h > 0, (1)

for small h, is then used for the analysis instead of the Fourier transform of y. Here
H2(R) denotes the Sobolev space of order 2. In this method, the signal is interpreted as
a potential of a Schrödinger operator. This point of view seems useful when associated
inverse spectral problem is well posed as it will be the case for some pulse-shaped
signals.

We suppose that y is a real-valued function and we define Hh on a space B such that

B =
{

y ∈ L1
1(R), y(t) ≥ 0, ∀t ∈ R,

∂m y

∂tm
∈ L1(R), m = 1, 2

}
, (2)

with, L1
1(R) = {V | ∫ +∞

−∞ |V (t)|(1 + |t |)dt < ∞}. L1
1(R) is known as the Faddeev

class [9].
For λ ≤ 0, we denote Nh(λ; y) the number of eigenvalues of the operator Hh(y)

below λ. Under hypothesis (2), there is a non-zero finite number Nh = Nh(0; y), as
it is described in Proposition 1. We denote −κ2

nh the negative eigenvalues of Hh(y)
with κnh > 0 and κ1h > κ2h > · · · > κnh , n = 1, . . . , Nh . Let ψnh , n = 1, . . . , Nh

be the associated L2-normalized eigenfunctions.
In this study, we focus our interest in representing the signal y with the discrete

spectrum of Hh(y) using the following formula (3)

yh(t) = 4h
Nh∑

n=1

κnhψ
2
nh(t), x ∈ R. (3)

As we will see, the parameter h plays an important role in our approach. Indeed, the
approximation |y − yh | improves as h decreases. We will be especially interested in
the asymptotic properties of the method when h goes to 0. Therefore, the method is
based on semi-classical concepts. Indeed ”semi-classical” is a concept used in quantum
mechanics to deign the fact that the actions of the studied system are large comparing
to the quantum h. In mathematics, this property can be interpreted as the asymptotic
expansions of the actions in a neighborhood of h = 0. We will call it semi-classical
signal analysis (SCSA).

In the next section, we will present some properties of the SCSA. In Sect. 3, we
will consider a particular case of an exact representation for a fixed h and show its
relation to a signal representation using the so-called reflectionless potentials of the
Schrödinger operator. Section 4 will deal with some numerical examples and Sect. 5
will present some results obtained on the analysis of arterial blood pressure (ABP)
signals using the SCSA. A discussion will summarize the main results and compare
the SCSA to related studies. In Appendices Appendix A:, Appendix B: and Appendix
C: some known results on direct and inverse scattering transforms are presented.

2 SCSA properties

To begin, we focuss our attention on the behavior of the number Nh of negative
eigenvalues of Hh(y) according to h as described by the following proposition.
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Semi-classical signal analysis 39

Proposition 1 Let y be a real-valued function satisfying hypothesis (2). Then,
(i) The number Nh of negative eigenvalues of Hh(y) is a decreasing function of h.

(ii) Moreover if y ∈ L
1
2 (R), then,

lim
h→0

hNh = 1

π

+∞∫
−∞

√
y(t)dt, (4)

Proof (i) The proof of this item is based on the following lemma.

Lemma 1 [2,28] For λ ≤ 0, let N1(λ; V ) be the number of negative eigenvalues of
H1(V ) less than λ. Let V (t) and W (t) be two potentials of the Schrödinger operator
such that W (t) ≤ V (t), ∀t then

N1(λ; W ) ≤ N1(λ; V ), ∀λ ≤ 0. (5)

Let y(t) ∈ B. We put V (t) = 1
h2

1
y(t),W (t) = 1

h2
2

y(t), with 0 < h1 ≤ h2.

For λ = 0, we obtain N1(0; 1
h2

2
y) ≤ N1(0; 1

h2
1

y), and we have N1(0; 1
h2

j
y) = Nh j ,

j = 1, 2, which proves the result.

(ii) Let y ∈ B ∩ L
1
2 (R) and λ ∈] − ymax, 0]. We denote

Sγ (h, λ) =
∑
κ2

nh≤λ

(
λ+ κ2

nh

)γ
, γ ≥ 0 (6)

the Riesz means of the values −κ2
nh less than λ. Remark that S0(h, λ) = Nh(λ; y).

Property (ii) results from the following Lemma 2.

Lemma 2 [23] For y ∈ Lγ+ 1
2 (R), y(t) ≥ 0, ∀x ∈ R and γ ≥ 0, we have

lim
h→0

hSγ (h, 0) = Lcl
γ

+∞∫
−∞

y(t)γ+ 1
2 dt, (7)

where Lcl
γ is the classical constant given by

Lcl
γ = 	(γ + 1)

2
√
π	(γ + 3

2 )
, (8)

for all γ ≥ 0

By taking γ = 0 in (7) we get the result.

Let us now study some properties of the negative eigenvalues −κ2
nh , n = 1, . . . , Nh

of Hh(y).

Proposition 2 Let y ∈ C∞(R), with y(t) > 0, ∀x ∈ R and such that ∃γ0 ∈ R,
minR (−y + γ0) > 0 and ∀α ∈ N, ∃Cα > 0 such that | ∂α y

∂tα | ≤ Cα(−y + γ0), then
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40 T.-M. Laleg-Kirati et al.

every regular value of y is an accumulation point of the set (κ2
nh, n = 1, . . . , Nh)

(v is a regular value if 0 < v < ymax and if y(t) = v then | dy(t)
dt | > 0).

Proof We want to show that every regular value of y is an accumulation point for
the set (κ2

nh , n = 1, . . . , Nh). For this purpose, we use the following result shown by
Helffer and Robert [14].

Theorem 1 [14] Let y ∈ C∞(R), with y(t) > 0, ∀x ∈ R such that for γ0 ∈ R,
minR (−y + γ0) > 0 and for all α ∈ N, there is a constant Cα > 0 such that
| ∂α y
∂xα | ≤ Cα(−y + γ0). Let λ < lim inf |t |→∞(−y(t)), then for 0 ≤ γ ≤ 1 the Riesz

means (6) are given by

Sγ (h, λ) = 1

h

⎛
⎝Lcl

γ

+∞∫
−∞

|λ+ y(t)|γ+ 1
2+ dt + O(h1+γ )

⎞
⎠, (9)

where |V |+ is the positive part of V and Lcl
γ , known as the classical constant, is given

by (8).

We put γ = 0 in (6). We notice that S0(h, λ) = Nh(λ, y). Substituting γ by 0 in
(9), we get

S0(h, λ) = 1

h
Lcl

0

+∞∫
−∞

√
|λ+ y(t)|+dt + O(1). (10)

We suppose that there is a regular value y0 of y that is not an accumulation point of
the set (κ2

nh , n = 1, . . . , Nh). So there is a neighborhood V (y0) of y0 and a value h0,
small enough such that ∀h < h0, V (y0) does not contain any element element κ2

nh .
Moreover, we can choose V (y0) small enough such that

inf

{∣∣∣∣dy(t)

dt

∣∣∣∣ , for t such that y(t) ∈ V (y0)

}
= c > 0. (11)

Then, we can take V (y0) = [y1, y2[, with y1 and y2 some regular values of y and
0 < y1 < y2.

For all h < h0, the difference S0(h,−y1) − S0(h,−y2) represents the number of
elements of (−κ2

nh , n = 1, . . . , Nh) in the interval ] − y2,−y1]. However, this set is
empty because there is no element in the neighborhood of y0.

Denoting T (λ) = {t |y(t)+ λ ≥ 0}, we have from (10)

S0(h,−y1)−S0(h,−y2) = 1

h
Lcl

0

⎛
⎜⎝

∫
T (−y1)

√
y(t)− y1dt−

∫
T (−y2)

√
y(t)− y2dt

⎞
⎟⎠

+O(1), (12)
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Semi-classical signal analysis 41

so, as the left quantity is null, we obtain

∫
T (−y1)

√
y(t)− y1dt =

∫
T (−y2)

√
y(t)− y2dt, (13)

and we have T (−y1) = T (−y2) ∪ y−1([y1, y2[), so

∫
T (−y2)

√
y(t)− y1dt +

∫

y−1([y1,y2[)

√
y(t)− y1dt =

∫
T (−y2)

√
y(t)− y2dt, (14)

∫
T (−y2)

(
√

y(t)− y1 − √
y(t)− y2)dt +

∫

y−1([y1,y2[)

√
y(t)− y1dt = 0. (15)

Hence as these two integrals are positives, we get

∫

y−1([y1,y2[)

√
y(t)− y1dt = 0, (16)

therefore |y(t)− y1| = 0 almost everywhere in y−1([y1, y2[), then y1 = y2, which is
a contradiction.

Now, Proposition 2 introduces an interesting property of the SCSA. Indeed, remem-
bering that

− h2 d2ψnh(t)

dt2 − y(t)ψnh(t) = −κ2
nhψnh(t). (17)

and by multiplying the previous equation by ψnh(t) and integrating it by part, we get

κ2
nh =

+∞∫
−∞

yψ2
nh(t)dt − h2

+∞∫
−∞

(
dψnh(t)

dt

)2

dt . (18)

Then, we notice that −ymax ≤ −κ2
nh < 0 as it is illustrated in Fig. 1. Hence, for a

fixed value of h, κ2
nh can be interpreted as particular values of y which define a new

quantization approach that can be interpreted by semi-classical concepts. The SCSA
appears then as a new way to quantify a signal.

To finish this section, we examine the convergence of the first two momentums of
κnh when h → 0 through Proposition 3. These quantities could be very interesting in
signal analysis as it is mentioned in Sect. 5 and also in a recent study [20].

Proposition 3 Under hypothesis (2), we have

lim
h→0

h
Nh∑

n=1

κnh = 1

4

+∞∫
−∞

y(t)dt, (19)
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Fig. 1 The negative spectrum of the Schrödinger operator −h2 d2

dt2 − y(t) provides a quantization of the

signal y

and remembering that

yh(t) = 4h
Nh∑

n=1

κnhψ
2
nh(t), t ∈ R, (20)

we have

lim
h→0

+∞∫
−∞

yh(t)dt =
+∞∫

−∞
y(t)dt . (21)

Moreover if y ∈ L2(R), then,

lim
h→0

h
Nh∑

n=1

κ3
nh = 3

16

+∞∫
−∞

y2(t)dt . (22)

Proof The limits (19) and (22) are deduced from Lemma 2 for γ = 1

2
and γ = 3

2
respectively,

lim
h→0

h
Nh∑

n=1

κnh = 1

4

+∞∫
−∞

y(t)dt, (23)

lim
h→0

h
Nh∑

n=1

κ3
nh = 3

16

+∞∫
−∞

y2(t)dt . (24)
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Semi-classical signal analysis 43

By integrating (3) we have

+∞∫
−∞

yh(t)dt = 4h
Nh∑

n=1

κnh . (25)

Then, combining (25) and (19), we get (21).

3 Exact representation and reflectionless potentials

In this section, we are interested in an exact representation of a signal for a fixed h
and its relation to reflectionless potentials (reflectionless potentials are defined in the
Appendix Appendix B:) of the Schrödinger operator as it is described in the following
proposition:

Proposition 4 The following properties are equivalent:

(i) Equality in (19) holds for a finite h;
(ii) ∃h such that yh = y;

(iii) ∃h such that
y

h2 is a reflectionless potential of H1(V ).

Proof The following proof uses some concepts and results from scattering trans-
form theory that are recalled in the appendix. First, we suppose that (i) is fulfilled
then

∃h,

+∞∫
−∞

y(t)dt = 4h
Nh∑

n=1

κnh . (26)

Writing the first invariant (56) (see the Appendix Appendix C:) for the potential − y

h2 ,

we have

+∞∫
−∞

y(t)dt = 4h
Nh∑

n=1

κnh + h2

π

+∞∫
−∞

ln (1 − |Rr(l)h(k)|2)dk, (27)

where Rr(l)h(k) is the reflection coefficient (see the Appendix Appendix A:).
Using (25), we get

+∞∫
−∞

y(t)dt =
+∞∫

−∞
yh(t)dt + h2

π

+∞∫
−∞

ln (1 − |Rr(l)h(k)|2)dk. (28)

Then, from (30) and (28) we obtain

+∞∫
−∞

ln (1 − |Rr(l)h(k)|2)dk = 0. (29)
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The reflection coefficient of a Schrödinger operator satisfies |Rr(l)h(k)| ≤ 1, ∀k ∈ R

(see for example [6]). Then, we get ln (1 − |Rr(l)h(k)|2) ≤ 0. Equality (29) is then
fulfilled if and only if ln (1 − |Rr(l)h(k)|2) = 0, k ∈ R a.e; which is true only
if |Rr(l)h(k)| = 0, k ∈ R a.e. This property defines a reflectionless potential. So,
(i) ⇒ (i i i).

Now, using the Deift-Trubowitz formula (52) (see Appendix Appendix B:) that we
rewrite for the potential − y

h2 and taking Rr(l)h(k) = 0, we can deduce that statement
(iii) implies statement (ii).

Then, if we suppose that yh = y for a given value of h we have

+∞∫
−∞

yh(t)dt =
+∞∫

−∞
y(t)dt, (30)

hence (i i) ⇒ (i)

4 Numerical results

In this section, we are interested in the validation of the SCSA through some numerical
examples. For this purpose, it will be more convenient to consider the problem associ-
ated to H1(

y
h2 ). Therefore, in order to simplify the notations, we put 1

h2 = χ , Nh = Nχ

and
κ2

nh
h2 = κ2

nχ , n = 1, . . . , Nχ . We denote the L2-normalized eigenfunctions ψnχ ,
n = 1, . . . , Nχ . Formula (3) is then rewritten

yχ (t) = 4

χ

Nχ∑
n=1

κnχψ
2
nχ (t), x ∈ R, (31)

We start by giving the numerical scheme used to estimate a signal with the SCSA.
Then, the sech-squared function will be considered. This example illustrates the influ-
ence of the parameter χ on the approximation. Gaussian, sinusoidal and chirp signals
will be also considered.

4.1 The numerical scheme

The first step in the SCSA is to solve the spectral problem of a one-dimensional
Schrödinger operator. Its discretization leads to an eigenvalue problem of a matrix.
In this work, we propose to use a Fourier pseudo-spectral method [15,30]. The latter
is well-adapted for periodic problems but in practice it gives good results for some
non-periodic problems, for instance, rapid decreasing signals.

We consider a grid of M equidistant points t j , j = 1, . . . ,M such that

a = t1 < t2 < · · · < tM−1 < tM = b. (32)
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Semi-classical signal analysis 45

Let �t = b − a

M − 1
be the distance between two consecutive points. We denote y j and

ψ j the values of y and ψ at the grid points t j , j = 1, . . . ,M

y j = y(t j ), ψ j = ψ(t j ), j = 1, . . . ,M. (33)

Therefore, the discretization of the Schrödinger eigenvalue problem leads to the
following eigenvalue matrix problem

(−D2 − χ diag (Y))ψ = λψ, (34)

where diag(Y) is a diagonal matrix whose elements are y j , j = 1, . . . ,M and ψ =[
ψ1 ψ2 · · · ψM−1 ψM

]T . D2 is the second order differentiation matrix given by
[30],

– If M is even

D2(k, j) = �2

(�t)2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−π2

3�2 − 1

6
for k = j,

− (−1)k− j 1

2

1

sin2
(
(k− j)�

2

) for k 
= j.
(35)

– If M is odd

D2(k, j) = �2

(�t)2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−π2

3�2 − 1

12
pour k = j,

− (−1)k− j 1

2

1

sin
(
(k− j)�

2

) cot
(
(k− j)�

2

)
pour k 
= j,

(36)

with � = 2π

M
, the matrix D2 is symmetric and definite negative. To solve the eigen-

value problem of the matrix (−D2 − χ diag(Y)) we use the Matlab routine eig.
The final step in the SCSA algorithm is to find an optimal value of the parameter

χ . So we look for a value χ̂ that gives a good approximation of y with a small number
of negative eigenvalues. From the numerical tests, we noticed that the number Nχ is
in general a step-by-step function of χ . So, we optimize the following criteria in each
interval [χ1, χ2] where Nχ is constant,

J (χ) = 1

M

M∑
i=1

(
yi − yχ i

)2
, yχ i = 4

χ

Nχ∑
n=1

κnχψ
2
niχ , i = 1, . . . ,M. (37)

For χ large enough (equivalently h small enough), we know an approximate relation
between the number of negative eigenvalues and χ thanks to Proposition 1.

Then, we can deduce approximate values of χ1 and χ2 according to a given number
of negative eigenvalues. Figure 2 summarizes the SCSA algorithm.

Remark 1 In practice, we often omit the optimization step and just fix Nχ to a large
enough value.
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46 T.-M. Laleg-Kirati et al.

Fig. 2 The SCSA algorithm

4.2 The sech-squared function

In order to illustrate the influence of the parameter χ on the SCSA, we first study a
sech-squared function given by

y(t) = sech2(t − t0), x ∈ R. (38)

The potential of the Schrödinger operator H1(χy) is given in this case by: −χ sech2(t−
t0). This potential is called in quantum physics Pöschl–Teller potential.

It is well-known that the Pöschl–Teller potential belongs to the class of reflectionless
potentials if,

χ = χp = N (N + 1), N = 1, 2, 3, . . . , (39)

N being the number of negative eigenvalues of H1(χy) [22].
So, for example, if χ = 2, the Schrödinger operator spectrum is negative and

consists of a single negative eigenvalue given by λ = −1. If χ = 6, there are two
negative eigenvalues: λ1 = −4, λ2 = −1 and so on.

123



Semi-classical signal analysis 47

0 5 10 15 20 25 30
1

2

3

4

5

χ

Number of negative eigenvalues

0 5 10 15 20 25 30
0

1

2

3

4
x 10

−3

χ

Mean square error

(a)

0 5 10 15 20 25 30
−30

−25

−20

−15

−10

−5

0

5

χ

T
he

 fo
ur

 fi
rs

t e
ig

en
va

lu
es

(b)

Fig. 3 a Mean square error and number of negative eigenvalues according to χ for y(t) = sech2(t − 6) in
[0, 15]. b Four first eigenvalues according to χ for y(t) = sech2(t − 6) in [0, 15]

Let us now apply the SCSA to reconstruct y. For this purpose, we must truncate
the signal and consider it on a finite interval so that the numerical computations could
be possible.

Figure 3a illustrates the variation of the mean square error and Nχ according to χ .
We notice that,
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Fig. 4 Four first eigenfunctions ψ2
nχ for χ = 20 for y(t) = sech2(t − 6) in [0, 15]

– Nχ is an increasing function of χ as described in proposition (1). Moreover, Nχ
is a step-by-step function.

– There are some particular values of χ for which the error is minimal. These values
are in fact the particular values χp = Nχ (Nχ + 1), Nχ = 1, 2, . . . for which −χy
is a reflectionless potential.

– For all ε > 0, there is a value χ = χε such that ∀χ > χε, J (χ) < ε.

Figure 3b illustrates the variation of the first four eigenvalues of the matrix
−D2 − χ diag(Y), settled in an increasing way, according to χ . We notice that these
eigenvalues, initially positive, are decreasing functions of χ and at every passage from
Nχ to Nχ + 1, a positive eigenvalue becomes negative.

Otherwise, in Fig. 4, the first four squared eigenfunctions ψ2
nχ , n = 1, . . . , 4 are

represented for χ = 20. Each ψ2
nχ has n − 1 zeros.

Figure 5 shows a satisfactory reconstruction of y for Nχ = 1, 2, 3 and 4.

4.3 Estimation of some signals

In this section, we are interested in the estimation of some signals with the SCSA.
In each case, we represent the estimation error, the number of negative eigenvalues
according to χ and the real and estimated signals for different values of χ .

123



Semi-classical signal analysis 49

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

y(
t)

Nχ=1

Real signal
Estimated signal

Real signal
Estimated signal

Real signal
Estimated signal

Real signal
Estimated signal

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

y(
t)

Nχ=2

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

y(
t)

Nχ=3

0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t

y(
t)

Nχ=4

Fig. 5 Estimation of y(t) = sech2(t − 6) in [0, 15], from the left to the right Nχ = 1, Nχ = 2 (top).
Nχ = 3, Nχ = 4 (bottom)

We start with a gaussian signal given by:

y(t) = 1

σ
√

2π
e− (t−μ)2

2σ2 . (40)

For the numerical tests we take σ = 0.1 and μ = 0.75.
Figures 6 and 7 illustrate the results. We notice that with Nχ = 2, the estimation is

satisfactory and as Nχ increases better is the approximation.
Now we are interested in a sinusoidal signal defined in a finite interval I ,

y(t) =
{

A sin(ωt + φ) t ∈ I
0 otherwise

(41)

This signal has negative values, so to apply the SCSA, we must translate the signal
by ymin = −A such that y − ymin > 0. The Schrödinger operator potential to be
considered is then given by −χ(y − ymin). For the numerical tests, we took A = 2,
ω = π and φ = −0.5.

The results are represented in Figs. 8, 9 and 10. In 9, a single period of the signal is
considered while in 10, four periods are represented. In the last case we noticed that
the negative eigenvalues are of multiplicity 4, they are repeated in each period.
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Fig. 6 Mean square error and number of negative eigenvalues according to χ for a gaussian signal
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Fig. 7 Estimation of a gaussian signal, from the left to the right Nχ = 1, Nχ = 2 (top). Nχ = 3, Nχ = 4
(bottom)
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Fig. 8 Mean square error and number of negative eigenvalues according to χ for a sinusoidal signal
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Fig. 9 Estimation of a sinusoidal signal, from the left to the right Nχ = 4, Nχ = 6 (top). Nχ = 8,
Nχ = 10 (bottom)
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Fig. 10 Estimation of 4 sinusoidal signal periods with Nχ = 10
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Fig. 11 Mean square error and number of negative eigenvalues according to χ for a chirp signal

Finally, Figs. 11 and 12 illustrate the results obtained in the case of a chirp signal.
We recall that a chirp signal is usually defined by a time varying frequency sinusoid.
In our tests, we considered a linear variation of the frequency.
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Fig. 12 Estimation of a chirp signal, from the left to the right Nχ = 30, Nχ = 50 (top). Nχ = 80,
Nχ = 100 (bottom)

5 Arterial blood pressure analysis with the SCSA

ABP plays an important role in the cardiovascular system. So many studies were done
aiming at proposing mathematical models in order to understand the cardiovascular
system both in healthy and pathological cases. Despite the large number of ABP mod-
els, the interpretation of ABP in clinical practice is often restricted to the interpretation
of the maximal and the minimal values called respectively the systolic pressure and
the diastolic pressure. None information on the instantaneous variability of the pres-
sure is given in this case. However, pertinent information can be extracted from ABP
waveform. The SCSA seems to provide a new tool for the analysis of ABP waveform.
This section presents some obtained results.

We denote the ABP signal P and P̂ its estimation using the SCSA such that

P̂(t) = 4

χ

Nχ∑
n=1

κnχψ
2
nχ (t), (42)

where −κ2
nχ , n = 1, . . . , Nχ are the Nχ negative eigenvalues of H1(χ P) andψnχ the

associated L2-normalized eigenfunctions.
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Fig. 13 Reconstruction of the pressure at the aorta and the finger level with the SCSA and Nχ = 9. On
the left the estimated and measured pressures, on the right the relative error

The ABP signal was estimated for several values of the parameter χ and hence Nχ .
Figure 13 illustrates the measured and estimated pressures for one beat of ABP and
the estimated error with Nχ = 9. Signals measured at the aorta level and the finger
respectively were considered. We point out that 5–9 negative eigenvalues are sufficient
for a good estimation of ABP signals [17,19].

A first interest in using the SCSA for ABP analysis is to decompose the signal
into its systolic and diastolic parts, respectively. This application was inspired from a
reduced model of ABP based on solitons introduced in [4,18]. Solitons are in fact solu-
tions of some nonlinear partial derivative equations for instance the Korteweg-de Vries
(KdV) equation which was considered in this reduced model [4]. This model proposes
ABP as the sum of two terms: N-soliton, solution of the KdV equation describing fast
phenomena that predominate during the systolic phase and a two-element windkessel
model that describes slow phenomena during the diastolic phase. Moreover, the KdV
equation can be solved with the Inverse Scattering Transform (IST) whose definition
is recalled in Appendix Appendix A:. In this approach, the KdV equation is associated
to a one-dimensional Schrödinger potential parameterized by time where the potential
is given by the solution of the KdV equation at a given time. Therefore, a relation
between the Schrödinger operator and solitons was found [10]; solitons are reflection-
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less potentials. Then according to Proposition 4, the SCSA coincides with a soliton
representation of a signal for a finite χ when −χy is an Nχ -soliton, where Nχ denotes
the number of negative eigenvalues1 of H1(χy). So each spectral component repre-
sents a single soliton. We know that solitons are characterized by their velocity which
is determined by the negative eigenvalues −κ2

nχ , n = 1, . . . , Nχ of the Schrödinger
operator. The largest values κnχ characterize fast components and the small values of
κnχ characterize slow components. From these remarks, we propose to decompose
Eq. (31) into two partial sums: the first one, composed of the Ns (Ns = 1, 2, 3 in gen-
eral) largest κnχ and the second partial sum composed of the remaining components.
The first partial sum describes the systolic phase and the second one describes the
diastolic phase. We denote P̂s and P̂d the systolic pressure and the diastolic pressure,
respectively estimated with the SCSA. Then, we have

P̂s(t) = 4

χ

Ns∑
n=1

κnχψ
2
nχ (t), P̂d(t) = 4

χ

Nχ∑
n=Ns+1

κnχψ
2
nχ (t). (43)

Figure 14 represents the measured pressure and the estimated systolic and diastolic
pressures, respectively. We notice that P̂s and P̂d are respectively localized during the
systole and the diastole.

6 Discussion

The spectral analysis of the Schrödinger operator introduces two inverse problems: an
inverse spectral problem and an inverse scattering problem.

On the one hand, the inverse spectral problem aims at reconstructing the potential
of a Schrödinger operator with its spectrum (spectral function). It has been exten-
sively studied for instance by Borg, Gel’Fand, Levitan and Marchenko [11] or more
recently by Ramm [27]. They considered the half-line case and used two spectra of the
Schrödinger operator with two different boundary conditions in order to reconstruct
the potential. The inverse spectral problem for a semi-classical Schrödinger opera-
tor Hh(y) have been recently considered for example by Colin de Verdiére [5] who
proposed to reconstruct the potential locally with a single spectrum or Guillemin and
Uribe [13] who showed that under some assumptions, the low-lying eigenvalues of
the operator determine the Taylor series of the potential at the minimum.

In this work, we have studied an inverse spectral approach that is different from
classical inverse spectral problems. Indeed, we used more information to reconstruct
the potential by including the eigenfunctions as illustrated by Eq. (3).

On the other hand, the inverse scattering problem aims at recovering the potential
from the scattering data (see Appendix Appendix A:). Many studies considered this
question for instance those of Marchenko [25] who proved that under some conditions
on the scattering data, a potential in L1

1(R) can be reconstructed from these scattering
data and gave an algorithm for recovering the potential. We can also quote works

1 Each soliton is characterized by a negative eigenvalue.
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Fig. 14 On the left the estimated systolic pressure. On the right estimated diastolic pressure

of Faddeev [9], Deift and Trubowitz [6] considering potentials in L1
1(R), Dubrovin,

Matveev and Novikov [7] for periodic potentials.
The convergence of the SCSA when h → 0 is not easy to study. Using the Deift-

Trubowitz formula (52), we have tried to consider this problem. However, despite
interesting results obtained regarding the convergence of some quantities depending
only on the continuous spectrum of the Schrödinger operator to zero, we did not
succeed in finding a result of convergence for yh . A study supported by semi-classical
concepts is now under consideration. The latter is based on the generalization of the
results of G. Karadzhov [16].
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The SCSA method has given promising results in the analysis of arterial blood
pressure waveforms. More than a good reconstruction of these signals, the SCSA
introduces interesting parameters that give relevant physiological information. These
parameters are the negative eigenvalues and the invariants which are given by the
momentums of κnχ , n = 1, . . . , Nχ introduced in Proposition 3. For example, these
new cardiovascular indices allow the discrimination between healthy patients and
heart failure subjects [21]. A recent study [20] shows that the first systolic momentum
(associated to the systolic phase) gives information on stroke volume variation, a
physiological parameter of great interest.

We have seen in Proposition 4 that for a fixed value of h the SCSA coincides with a
reflectionless potentials approximation. This point seems to be an interesting avenue of
research. Indeed, thanks to the relation between reflectionless potentials and solitons,
the approximation by reflectionless potentials could have interesting applications in
signal analysis and in particular in data compression. As we said in the previous section,
solitons are reflectionless potentials of the Schrödinger operator. Gardner et al [10]
showed that an N -soliton is completely determined by the discrete scattering data and
in particular by 2N parameters which are the negative eigenvalues and the normalizing
constants. Hence, if −χy is an Nχ -soliton, it is given by the following formula:

y(t) = 2

χ

∂2

∂t2 ln (det (I + Aχ ))(t), x ∈ R, (44)

Aχ (t) is an Nχ×Nχ matrix of coefficients

Aχ (t) =
[

cmχcnχ

κmχ+κnχ
e−(κmχ+κnχ )x

]
n,m

, n,m = 1, . . . , Nχ , (45)

where −κ2
nχ and cnχ , n = 1, . . . , Nχ are the negative eigenvalues and the normalizing

constants of H1(χy). Hence, this formula provides a parsimonious representation of
a signal.

The convergence of the approximation by solitons (or reflectionless potentials)
when χ → +∞ (equivalently h → 0) was studied by Lax and Levermore [24] in a
different context. Indeed they studied the small dispersion limit of the KdV equation
and approached the initial condition of the KdV equation by an N -soliton that depends
on the small dispersion parameter which is in our case h. They showed the results in
the mono-well potential case and affirmed without proving that the result still remains
true for multi-well potentials. However, the main limitation of this approach is the
difficulty to compute the normalizing constants. This difficulty can be explained by
the fact that these constants are defined at infinity which cannot be handled in the
numerical implementation. At the best of our knowledge there is no study enabling
the computation of these parameters apart a recent attempt by Sorine et al. [29].

7 Conclusion

A new method for signal analysis based on a semi-classical approach has been proposed
in this study: the signal is considered as a potential of a Schrödinger operator and then
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represented using the discrete spectrum of this operator. Some spectral parameters are
then computed leading to a new approach for signal analysis. This study is a first step
in the validation of the SCSA. Indeed, we have assessed here the ability of the SCSA to
reconstruct some signals. We have studied particularly a challenging application which
is the analysis of the arterial blood pressure waveforms. The SCSA introduces a novel
approach for arterial blood pressure waveform analysis and enables the estimation
of relevant physiological parameters. A theoretical study is now under consideration
regarding the convergence of the SCSA for h → 0. The work must be orientated at a
second step to the comparison between the performance of the SCSA and other signal
analysis methods like Fourier transform or the wavelets and also to the generalization
of the SCSA to other fields.

Acknowledgments The authors thank Doctor Yves Papelier from the Hospital Béclère in Clamart for
providing us arterial blood pressure data.

Appendix A: Direct and inverse scattering transforms

These appendices recall some known concepts on direct and inverse scattering trans-
forms of a one-dimensional Schrödinger operator. For more details, the reader can
refer to the large number of references on this subject for instance [1,3,6,8,9]. Note
that in this appendix we used the usual notations, in particular the variable here is x
and not t .

We consider here the spectral problem of a Schrödinger operator H1(−V ), given by

− d2ψ

dx2 + V (x, t)ψ = k2ψ, k ∈ C
+
, x ∈ R, (46)

where the potential V such that V ∈ B. For simplicity, we will omit the indice 1 of
the spectral parameters in the following.

For k2 > 0, we introduce the solutions ψ± of Eq. (46) such that

ψ−(k, x) =
{

T (k)e−ikx x → −∞,

e−ikx + Rr (k)e+ikx x → +∞,
(47)

ψ+(k, x) =
{

T (k)e+ikx x → +∞,

e+ikx + Rl(k)e−ikx x → −∞,
(48)

where T (k) is called the transmission coefficient and Rl(r)(k) are the reflection coeffi-
cients from the left and the right, respectively. The solution ψ− for example describes
the scattering phenomenon for a wave e−ikx of amplitude 1, sent from +∞. This wave
hit an obstacle which is the potential so that a part of the wave is transmitted T (k)e−ikx

and the other part is reflected Rr (k)e+ikx . ψ+ describes the scattering phenomenon
for a wave e+ikx sent from −∞.

For k2 < 0, the Schrödinger operator spectrum has N negative eigenvalues denoted
−κ2

n , n = 1, . . . , N . The associated L2-normalized eigenfunctions are such that
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ψn(x) = clne−κn x , x → +∞, (49)

ψn(x) = (−1)N−ncrne+κn x , x → −∞, (50)

cln and crn are the normalizing constants from the left and the right, respectively.
The spectral analysis of the Schrödinger operator introduces two transforms:

– The direct scattering transform (DST) which consists in determining the so-called
scattering data for a given potential. Let us denote Sl(V ) and Sr (V ) the scattering
data from the left and the right, respectively:

S j (V ) := {R j (k), κn, c jn, n = 1, . . . , N }, j = l, r, (51)

where j = r if j = l and j = l if j = r .
– The inverse scattering transform (IST) that aims at reconstructing a potential V

using the scattering data.

The scattering transforms have been proposed to solve some partial derivative equa-
tions for instance the KdV equation [10].

Appendix B: Reflectionless potentials

Deift and Trubowitz [6] showed that when the Schrödinger operator potential V sat-
isfies hypothesis (2), then it can be reconstructed using an explicit formula given by

V (x) = −4
N∑

n=1

κnψ
2
n (x)+ 2i

π

+∞∫
−∞

k Rr(l)(k) f 2±(k, x)dk, x ∈ R. (52)

This formula is called the Deift-Trubowitz trace formula. It is given by the sum of two
terms: a sum of κnψ

2
n that characterizes the discrete spectrum, and an integral term

that characterizes the contribution of the continuous spectrum.
There is a special class of potentials called reflectionless potentials for which the

problem is simplified. A reflectionless potential is defined by Rl(r)(k) = 0, ∀k ∈ R.
According to the Deift-Trubowitz formula, a reflectionless potential can be written
using the discrete spectrum only,

V (x, t) = −4
N∑

n=1

κnψ
2
n (x, t), (53)

Appendix C: An infinite number of invariants

There is an infinite number of time invariants for the KdV equation given by the con-
served quantities [10,12,26]. Let us denote these invariants Im(V ), m = 0, 1, 2, . . ..
They are of the form
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Im(V ) = (−1)m+1 2m + 1

22m+2

+∞∫
−∞

Pm

(
V,
∂V

∂x
,
∂2V

∂x2 , · · ·
)

dx, (54)

where Pm , m = 0, 1, 2, . . . are known polynomials in V and its successive derivatives
with respect to x ∈ R [3].

A general formula relates Im(V ) to the scattering data of H1(−V ) [3,12,26] as
follows:

Im(V ) =
N∑

n=1

κ2m+1
n + 2m + 1

2π

+∞∫
−∞

(−k2)m ln (1 − |Rr(l)(k)|2)dk, (55)

m = 0, 1, 2, . . .. So, for m = 0, P0(V, · · · ) = V , we get with (54) and (55):

+∞∫
−∞

V (x)dx = −4
N∑

n=1

κn − 1

π

+∞∫
−∞

ln (1 − |Rr(l)(k)|2)dk. (56)
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