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Map makers have for many years searched for a way to construct
cartograms, maps in which the sizes of geographic regions such as
countries or provinces appear in proportion to their population or
some other analogous property. Such maps are invaluable for the
representation of census results, election returns, disease inci-
dence, and many other kinds of human data. Unfortunately, to
scale regions and still have them fit together, one is normally
forced to distort the regions’ shapes, potentially resulting in maps
that are difficult to read. Many methods for making cartograms
have been proposed, some of them are extremely complex, but all
suffer either from this lack of readability or from other pathologies,
like overlapping regions or strong dependence on the choice of
coordinate axes. Here, we present a technique based on ideas
borrowed from elementary physics that suffers none of these
drawbacks. Our method is conceptually simple and produces use-
ful, elegant, and easily readable maps. We illustrate the method
with applications to the results of the 2000 U.S. presidential
election, lung cancer cases in the State of New York, and the
geographical distribution of stories appearing in the news.

Suppose we wish to represent on a map some data concerning,
to take the most common example, the human population.

For instance, we might wish to show votes in an election,
incidence of a disease, number of cars, televisions, or phones in
use, numbers of people falling in one group or another of the
population, by age or income, or any of very many other variables
of statistical, medical, or demographic interest. The typical
course under such circumstances would be to choose one of the
standard projections for the area of interest and plot the data on
it with some color code or similar representation. Such maps,
however, can be misleading. A plot of disease incidence, for
example, will inevitably show high incidence in cities and low
incidence in rural areas, solely because more people live in cities.

The obvious cure for this problem is to plot a fractional
measure rather than raw incidence data; we plot some measure
of the number of cases per capita, binned in segments small
enough to give good spatial resolution but large enough to give
reliable sampling. This method has its own problems, however,
because it discards all information about where most of the cases
are occurring. One case per thousand people means something
entirely different in Sydney from what it means in Siberia.

What we would like is some representation of the data that
factors out variations in the population density but, at the same
time, shows how many cases are occurring in each region. It
appears at first that these two goals are irreconcilable, but this
is not the case. On a normal area-preserving or approximately
area-preserving projection, such as a Robinson projection or an
equal-area conic projection, they are indeed irreconcilable.
However, if we can construct a projection in which areas on the
map are proportional not to areas on the ground but instead to
human population, then we can have our cake and eat it. Disease
cases or other similar data plotted on such a projection will have
the same density in areas with equal per capita incidence
regardless of the population, since both the raw incidence rate
and the area will scale with the population. However, each case
or group of cases can still be represented individually, so it will
be clear to the eye where most of the cases occur. Projections of

this kind are known as value-by-area maps, density-equalizing
maps, or cartograms.

The construction of cartograms is a challenging undertaking.
A variety of methods have been put forward, but none is entirely
satisfactory. In particular, many of these methods produce highly
distorted maps that are difficult to read or projections that are
badly behaved under some circumstances, with overlapping
regions or strong dependence on coordinate axes. In many cases
the methods proposed are also computationally demanding,
sometimes taking hours to produce a single map. In this article
we propose a method that is, we believe, intuitive, but also
produces elegant, well behaved, and useful cartograms, whose
calculation makes relatively low demands on our computational
resources.

Previous Methods for Constructing Cartograms
Mathematically, the construction of a (flat 2D) cartogram
involves finding a transformation r3 T(r) of a plane to another
plane such that the Jacobian !(Tx,Ty)!!(x,y) of the transforma-
tion is proportional to some specified (population) density "(r),
thus:
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where "! is the mean population density averaged over the area
to be mapped. (This choice of normalization for the Jacobian
ensures that the total area before and after the transformation
is the same.)

Eq. 1 does not determine the cartogram projection uniquely.
To do that, we need one more constraint; two constraints are
needed to fix the projection for a 2D cartogram. Different
choices of the second constraint give different projections, and
no single choice appears to be the obvious candidate, which is
why many methods of making cartograms have been suggested.
One idea is to demand conformal invariance under the carto-
gram transformation, i.e., to demand that angles be preserved
locally. This requirement is equivalent to demanding that the
Cauchy–Riemann equations be satisfied, but this imposes two,
not one, additional constraints, and hence it is normally not
possible to construct a conformally invariant cartogram.

In an attempt at least to minimize the distortion of angles,
Tobler (1, 2) took the first steps in the automated computer
generation of cartograms in the late 1960s. He proposed a
method in which the initial map is divided into small rectangular
or hexagonal cells, each of which is then independently dilated
or shrunk to a size proportional to its population content.
Because each cell is scaled separately, the corners of adjacent
cells do not match afterward. To reestablish a match, Tobler’s
method takes a vector average over the positions of correspond-
ing corners and draws a new map with the resulting distorted
cells. The process is iterated until a fixed point of the transfor-
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mation is reached. Although the principle is simple and intuitive
it runs into practical problems. First, convergence tends to be
rather slow because a node a few cells away from a population
center will feel the effect of that center only after several
iterations. Second, under some circumstances the transforma-
tion can produce overlapping or ‘‘folded’’ regions of the map,
thereby ruining the topology. This problem can be corrected by
introducing additional constraints, but the result is a more
complex algorithm with even slower run times.

To increase the speed of the calculations, Dougenik et al. (3)
introduced an algorithm where the borders of a cell move in
response not only to local space requirements but also to
‘‘forces’’ exerted by other cells. Cells create force fields that
diminish with distance from the cell and that are larger for cells
that contain larger populations. These forces ‘‘push’’ other cells
away from areas of high population in a manner reminiscent of
the behavior of charged objects in electrostatics (although the
authors do not use this metaphor). Again, the positions are
relaxed iteratively to achieve the final cartogram, and conver-
gence is substantially faster than Tobler’s algorithm, although
topological errors still cannot be ruled out.

Gusein-Zade and Tikunov (4) suggested a further twist that
does away with the cells altogether and uses a continuous
‘‘displacement field’’ that measures the displacement of each
point in the map. Areas of high population exert a repulsive force
on this displacement field and the authors are able to derive a
differential equation for the field, which they integrate numer-
ically. The method is somewhat arcane but produces some of the
most attractive cartograms among the existing algorithms (see
Fig. 1).

Appel et al. (5) and recently Dorling (6) have both proposed
methods based on cellular automata, which are quite intuitive. In
Dorling’s method, for instance, the original map is drawn on a
fine grid. On each iteration of the algorithm, cells lying on or
close to the boundaries of regions are identified and if a
neighboring region needs extra area those cells are reassigned to
the neighbor. The procedure is iterated and the regions with
greatest population grow slowly larger until an equilibrium is
reached and no further changes are needed. The procedure is
elegant and simple, but in practice it can distort shapes quite
badly (see Fig. 2). One can add additional constraints on the
shapes to make the maps more readable, but then the method
quickly loses its main advantage, namely its simplicity.

Researchers have also experimented with several other meth-
ods. Kocmoud (7), for example, uses a mass-and-spring model
acting on a map expressed as points and lines, with constraints
applied to maintain certain topographic features such as angles

or lengths. Because of its complexity, however, this algorithm is
prohibitively slow. The method of D. Keim, S. North, and C.
Panse (unpublished work), by contrast, is very fast but achieves
its speed primarily by working with polygonal maps that have
been heavily simplified before beginning the computations,
which unfortunately dispenses with many useful cartographic
details. Finally, if one is willing to live with a noncontiguous
cartogram (one in which regions adjacent in real life are not
adjacent on the cartogram), then several quite simple methods
give good results, such as Dorling’s circular cartograms (6).
Other reviews and discussions of cartogram methods can be
found in refs. 8–11.

The Diffusion Cartogram
In this article we propose a different type of cartogram, which
might be called a ‘‘diffusion cartogram’’ for reasons we now
describe. It is a trivial observation that, on a true population
cartogram, the population is necessarily uniform; once the areas
of regions have been scaled to be proportional to their popula-
tion then, by definition, population density is the same every-
where. Thus, one way to create a cartogram, given a particular
population density, is to allow population somehow to ‘‘f low
away’’ from high-density areas into low-density ones, until the
density is equalized everywhere. An obvious candidate process
exists that achieves this, the linear diffusion process of elemen-
tary physics (12), and this is the basis of our method. We describe
the population by a density function "(r), where r represents
geographic position, and then we allow this density to diffuse. In
the limit of long time t 3 #, the population density becomes
uniform and so comes to rest, and its total displacement from
start to finish determines the projection of the map necessary to
produce a perfectly density-equalizing cartogram.

In the standard treatment of diffusion, the current density is
given by

J $ v!r, t""!r, t", [2]

where v(r,t) and "(r,t) are the velocity and density, respectively,
at position r and time t. Diffusion follows the gradient of the
density field, thus,

J $ $%", [3]

meaning that the flow is always directed from regions of high
density to regions of low density and will be faster when the

Fig. 1. U.S. population cartogram constructed with the method of Gusein-
Zade and Tikunov. [Reproduced with permission from ref. 17 (Copyright 1993,
American Congress on Surveying and Mapping)] Fig. 2. Population cartogram of Britain by county. (Left) The original map.

(Right) Cartogram generated with the cellular automaton algorithm of
Dorling. [Reproduced with permission from Dorling (6) (Copyright 1996,
University of East Anglia)].
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gradient is steeper. (A diffusion constant conventionally appears
in Eq. 3, but we can set this constant to 1 without affecting our
results.) The diffusing population is also conserved locally so that

%!J %
!"

!t $ 0. [4]

Combining Eqs. 2, 3, and 4 we then arrive at the familiar
diffusion equation:

%2" #
!"

!t $ 0, [5]

and the expression for the velocity field in terms of the popu-
lation density:

v!r, t" $ $
%"

"
. [6]

The calculation of the cartogram involves solving Eq. 5 for "(r,t)
starting from the initial condition in which " is equal to the given
population density of the region of interest and then calculating
the corresponding velocity field from Eq. 6. The cumulative
displacement r(t) of any point on the map at time t can be
calculated by integrating the velocity field thus:

r!t" $ r!0" %#
0

t

v!r, t&"dt&. [7]

In the limit t3 # the set of such displacements for all points on
the original map defines the cartogram.

Most of the time, we are not interested in mapping the entire
globe, but only some part of it, which means that the area of
interest will have boundaries (e.g., country borders or coastlines)
beyond which we don’t know or don’t care about the population
density. It would be inappropriate to represent the regions
outside these boundaries as having zero population, even if they
are, like the ocean, unpopulated, since this would cause arbitrary
expansion of the cartogram as the population diffused into its
uninhabited surroundings. (This is true of essentially all methods
for constructing cartograms.) Instead, therefore, we apply a
‘‘neutral buoyancy’’ condition, f loating the area of interest in a
‘‘sea’’ of uniform population density equal to the mean density
of the map as a whole. This keeps the total area under consid-
eration constant during the diffusion process.

The whole system, including the sea, is then enclosed in a box.
For simplicity in this article, we will consider only rectangular
boxes, as most others have done also. (Note that we do not fix
the shape of the borders or coastlines in our cartogram, as others
have occasionally done. Doing so can create bottlenecks in the
diffusion flow, which we avoid by allowing free motion of all
points, whether they are near a border or not.) Provided the
dimensions Lx and Ly of the box are substantially larger than the
area to be mapped, the dimensions themselves do not matter. In
the limit Lx,Ly3 # the cartogram will be a unique deterministic
mapping, independent of the coordinate system used, with no
overlapping regions. In practice, we find that quite moderate
system sizes are adequate; dimensions two to three times the
linear extent of the area to be mapped appear to give good
results.

We also need to choose boundary conditions on the walls of
the box. These conditions also have no great effect on the results,
provided the size of the box is reasonably generous, and we have
found a good choice to be the Neumann boundary conditions in
which no flow of population occurs through the walls of the box.

These considerations completely specify our method and are
intuitive and straightforward. The actual implementation of the

method, if one wants a calculation that runs quickly, involves a
little more work. We solve the diffusion equation in Fourier
space, where it is diagonal, and backtransform before integrating
over the velocity field. With the Neumann boundary conditions,
the appropriate Fourier basis is the cosine basis, in which the
solution to the diffusion equation has the form

"!r, t" $
4

LxLy
$
k

"̃!k" cos!kx x" cos!kyy" exp!$k2t", [8]

where the sum is over all wave vectors k ' (kx,ky) ' 2&(m!
Lx,n!Ly), with m and n nonnegative integers, and "̃(k) is the
discrete cosine transform of "(r,t ' 0):

"̃!k" $ 1
4
!'kx,0 % 1"!'ky,0 % 1" (

#
0

Lx #
0

Ly

"!r, 0" cos!kx x" cos!kyy" dx dy, [9]

where 'i,j is the Kronecker symbol. The velocity field v is then
easily calculated from Eqs. 6 and 8 and has components

vx!r, t" $
$kkx"̃!k" sin!kx x" cos!kyy" exp!$k2t"$k"̃!k" cos!kx x" cos!kyy" exp!$k2t"

, [10a]

vy!r, t" $
$kky"̃!k" cos!kx x" sin!kyy" exp!$k2t"$k"̃!k" cos!kx x" cos!kyy" exp!$k2t"

. [10b]

Eqs. 9 and 10 can be evaluated rapidly by using the fast Fourier
transform and its backtransform, respectively, both of which in
this case run in time of order LxLy log(LxLy). We then use the
resulting velocity field to integrate Eq. 7, which is a nonlinear
Volterra equation of the second kind and can be solved numer-
ically by standard methods (13). In practice, it is the Fourier
transform that is the time-consuming step of the calculation and
with the aid of the fast Fourier transform this step can be
performed fast enough that the whole calculation runs to
completion in a matter of seconds or at most minutes, even for
large and detailed maps.

It is straightforward to see that our diffusion cartogram
satisfies the fundamental definition, Eq. 1, of a cartogram. In the
limit t 3 #, Eq. 8 is dominated by the k ' 0 term and gives

"!r, #" $
4"̃!0"

LxLy
$

1
LxLy

#
0

Lx #
0

Ly

"!r, 0" dx dy $ "! , [11]

where "! is again the mean population density over the area
mapped. Furthermore, by definition, the total population within
any moving element of area does not change during the diffusion
process, and hence, denoting by T(r) the final position of a point
that starts at position r, we have "(r) dx dy ' "!dTxdTy, and,
rearranging, the Jacobian is given by !(Tx,Ty)!!(x,y) ' "(r)!"! , in
agreement with Eq. 1.

Conceptually our algorithm is in some respects similar to the
cellular automaton method of Dorling (6). Our description of the
diffusion method has been entirely in terms of macroscopic
variables and equations, but one could equally look at the
method as a microscopic diffusion process in which each indi-
vidual member of the population performs a Gaussian random
walk about the surface of the map. Over time the population will
diffuse until it is uniform everywhere within the box enclosing
the map, except for statistical f luctuations. The cartogram is
derived by moving all boundaries on the map in such a way that
the net flow passing through them is zero at all times during the
diffusion process. This resembles Dorling’s method in the sense
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that different regions trade their area until a fair distribution is
reached.

Our method, however, has the advantage of being based on a
global, lattice-independent process. The exchange of area be-
tween regions in Dorling’s method occurs only between nearest-
neighbor squares along the principle axes of a square lattice and
this introduces a strong signature of the lattice topology into the
final cartogram (Fig. 2). Furthermore, the cellular automaton
method gives only the displacements of region boundaries,
whereas our method gives the displacement of any point on the
map. In this respect, our algorithm is more like the method of
Gusein-Zade and Tikunov (4). (We provide an implementation
of our algorithms in pseudo-code in Supporting Text, which is
published as supporting information on the PNAS web site.)

Population Density Function
The description of our method tells, in a sense, only half the story
of how to create a cartogram. Before applying this or indeed any
method, we need to choose the starting density "(r) for the map.
We can, by defining "(r) in different ways, control the properties
of the resulting cartogram, including crucially the balance be-
tween accurate density equalization and readability.

Population density is not strictly a continuous function, since
people are themselves discrete and not continuous. To make a
continuous function the population must be binned or coarse-
grained at some level. All methods of constructing cartograms
require one to do this, and no single accepted standard approach
exists. Part of the art of making a good cartogram lies in shrewd
decisions about the definition of the population density.

If we choose a very fine level of coarse-graining for the
population density, then the high populations in centers such as
cities will require substantial local distortions of the map to
equalize the density. A coarser population density will cause less

distortion, resulting in a map with features that are easier to
recognize, but will give a less accurate impression of the true
population distribution. The most common choice made by
others has been to coarse-grain the population at the level of the
(usually political) regions of interest. For example, if one were
interested in the United States, one might take the population
of each state and distribute it uniformly over the area occupied
by that state. This method can be used also with our cartogram
algorithm, and we give some examples below. But we are not
obliged to use it, and in some cases it may be undesirable,
because binning at the level of states erases any details of
population distribution below the state level. Instead, in our
work, we have mostly adopted a spatially uniform Gaussian blur
as our coarse-graining function. By varying the width ) of the
blurring function we can tune our cartogram between accuracy
and readability.

Ultimately the choice of population-density function is up to
the user of the method, who must decide what particular features
are most desirable in his or her application. One advantage of
our diffusion-based algorithm is that it is entirely agnostic about
this choice; the process of computing the cartogram is decoupled
from the calculation of the population density and, hence, is not
slanted in favor of one choice or another.

Applications
We give three examples of the use of our cartograms, focusing
on the United States and using population data from the 2000
U.S. Census.

First, we examine the results of the U.S. presidential election
of 2000. Fig. 3c shows the popular vote by state in this election,
the simple fraction of voters voting each way, with state major-
ities for the two major candidates represented as shades of red
(George Bush, Republican) and blue (Al Gore, Democrat). The

Fig. 3. (a) Population density with Gaussian blur, as described in the text. The width ) of the Gaussian is (80 km. (b) Gaussian blur with width (8 km. Results
of the 2000 U.S. presidential election shown on a standard Albers conic projection (c), on a cartogram based on the population density in a (d), and on a cartogram
constructed with the finer population density of b (e). The latter results in greater distortion of some state boundaries, most noticeably for Pennsylvania and
Indiana. ( f) A cartogram based on states’ representation in the electoral college. The density of electors was calculated by spreading each state’s electors evenly
across the state.
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briefest appraisal immediately reveals that the Republicans
dominate much more than a half of the country. This finding,
however, is misleading, because the population of the United
States is highly nonuniform, as shown in Fig. 3 a and b. Much of
the Republicans’ dominance comes from their success in the
large but relatively unpopulated states in the center of the map,
whereas the Democrats carry the more populous areas in the
northeast and on the west coast. Clearly then, a simple map is a
poor visual representation of the election results, in the sense
that it is hard to tell which party got more votes by looking at the
map.

A better representation is given by Fig. 3d, in which the same
data are shown on a population cartogram constructed with the
methods described in this article. This cartogram is based on the
density function of Fig. 3a, which incorporates a moderately
broad Gaussian blur, as described above, yielding a map whose
features are distorted relatively little on short scales; the indi-
vidual states are still easily recognizable while being scaled close
to the size appropriate to their populations. To a good approx-
imation the amounts of red and blue in the figure now corre-
spond to the true balance of the popular vote, and, as is clear to
the eye, this vote was very close between the two parties, in fact
being won not by the Republican candidate but by the Democrat.
In Fig. 3e, we show a further cartogram constructed with the
population density of Fig. 3b, which is less heavily coarse-
grained, resulting in a map that more perfectly represents states’
populations, but that also has more distortion on short length
scales, making some regions hard to recognize. For example, the
small but densely populated Long Island now expands (quite
correctly) to a size greater than the entire state of Wyoming. The
user concerned both with readability and accurate portrayal of
the data would probably choose a map similar to Fig. 3d in this
case.

Ultimately, the presidency is decided not by the popular vote,
but by the electoral college. Under the U.S. system, each state
contributes a certain number of electors to the electoral college,
who vote according to the majority in their state. The candidate
receiving a majority of the votes in the electoral college wins the
election. The appropriate visualization for a vote of this kind is
one in which the sizes of the states are scaled in proportion to
their numbers of electors. This then is an example in which a
coarse-graining according to political boundaries (state bound-
aries in this case) makes good sense. We show a cartogram
calculated in this way in Fig. 3f. The allocation of electors to
states roughly follows population levels, but contains a deliberate
bias in favor of less populous states, and as a result some of these
states appear larger in Fig. 3f than in 3e; Wyoming, Montana, and
the Dakotas are good examples. Since most such states are
majority Republican, we can now understand how the Repub-

lican candidate came to win the election despite losing the
popular vote.

For our second example, we look at a case in which a very fine
level of coarse-graining is needed to understand the data fully.
We study the distribution of cases of lung cancer among the male
population in the state of New York. [A similar study using a
different technique and for a smaller area was carried out by
Merrill (14).] In Fig. 4a we show a scatter plot of lung cancer
cases between 1993 and 1997. This map is of precisely the kind
discussed in the introduction; it shows clearly how many cases
exist and that they are geographically concentrated in the areas
that have high populations. However, it is impossible to tell
whether a statistically higher per capita incidence of lung cancer
occurs in one area or another, because any such variation is
masked by the highly nonuniform population density.

In Fig. 4b, we show the same data on a population cartogram
with moderate coarse-graining of the initial population density.
Although the map is visibly distorted, little difference is visible
in the distribution of cancer cases. In Fig. 4c, on the other hand,
we use a very fine-grained population density, creating a carto-
gram with better population equalization and significantly
greater distortion. Now, the virtue of this representation be-
comes strikingly clear. As the figure shows, when we use a
projection that truly equalizes the population density over the
map, there is no longer any significant variation in the distribu-
tion of cases over the state; the dots have about the same density
everywhere. The shape of the map in Fig. 4c does not much
resemble the shape of the original any more, but this is the price
we pay for equalizing the population almost perfectly.

Our method of generating cartograms is fast, an important
consideration for interactive use. As discussed above, the bulk of
the work involved in creating the maps is in the Fourier
transforms, which can be computed rapidly by using fast Fourier
transforms. Fig. 4c, for example, was produced in )100 s on a
standard desktop computer, including the time to read in the
census data, perform the Gaussian blur, solve the diffusion
equation, and plot the figure. Previous techniques are either
significantly slower [Kocmoud (7) reports 16 h for a U.S. state
cartogram using his constraint-based approach] or are obliged to
use simplified maps to reduce the computational load.

The cartograms shown so far have all been based, more or less,
on human population density, which is certainly the most
common type of cartogram. Other types, however, are also
possible and for our third example we study one such. Anyone
who reads or watches the news in the United States (and similar
observations probably apply in other countries as well) will have
noticed that the geographical distribution of news stories is not
uniform. Even allowing for population, a few cities, notably New
York and Washington, DC, get a surprisingly large fraction of
the attention, whereas other places get little. Apparently, some

Fig. 4. Lung cancer cases among males in the state of New York, 1993–1997. Each dot represents 10 cases, randomly placed within the zip-code area of
occurrence. (a) The original map. (b) Cartogram with a coarse-grained population density with ) ' 0.3°. (c) Cartogram with a much finer-grained population
density with ) ' 0.04°. (Data are from the New York State Department of Health.)
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locations loom larger in our mental map of the nation than
others, at least as presented by the major media. We can turn this
qualitative idea of a mental map into a real map by using our
cartogram method.

We have taken (72,000 newswire stories from November 1994
to April 1998 (15), and extracted from each the ‘‘dateline,’’ a line
at the head of the story that gives the date and the location that
is the main focus of the story. Binning these locations by state,
we then produce a map in which the sizes of the U.S. states are
proportional to the number of stories concerning that state over
the time interval in question. The result is shown in Fig. 5.

The stories are highly unevenly distributed. New York City
alone contributes 20,000 stories to the corpus, largely because of
the preponderance of stories about the financial markets, and

Washington, DC, contributes another 10,000, largely political
stories. We chose to bin by state to avoid large distortions around
the cities that are the focus of most news stories. We made one
exception, however; because New York City had far more hits
than any other location, including the rest of the state of New
York (which had (1,000), we split New York State into two
regions, one for the greater New York City area and one for the
rest of the state.

The cartogram is a dramatic depiction of the distribution of
U.S. news stories. The map is highly distorted because the
patterns of reporting show such extreme variation. Washington,
DC, for instance, which normally would be virtually invisible on
a map of this scale, becomes the second largest ‘‘state’’ in the
union. (The District of Columbia is not technically a state.)
People frequently overestimate the size of the northeastern part
of the United States by comparison with the middle and western
states, and this map may give us a clue as to why. Perhaps
people’s mental image of the United States is not really an
inaccurate one; it is simply based on things other than geograph-
ical area, such as the news.

Numerous other possible applications of cartograms come
readily to mind, such as visualizations of gross regional products,
energy consumption, crime rates, and so forth. Diffusion carto-
grams might also have applications outside geography. One possi-
bility is the creation of a homunculus, a representation of the human
body in which each bodily part is scaled in proportion to the size of
the brain region devoted to it (16). Such representations are usually
constructed as 2D plots, but there is no reason in theory why one
could not create a fully 3D homunculus; the diffusion process is
easily generalized to any number of dimensions.

Conclusions
In this article we have presented a general method for construct-
ing density-equalizing projections or cartograms, which provide
an invaluable tool for the presentation and analysis of geographic
data. Our method is simpler than many earlier methods, allowing
for rapid calculations, while generating accurate and readable
maps. The method allows its users to choose their own balance
between good density equalization and low distortion of map
regions, making it f lexible enough for a wide variety of appli-
cations. We have presented several examples of the use of our
cartograms in the representation of human data, including
election results and incidence data for cancer.

Implementation in GIS software packages should be straight-
forward, and we hope that in this or other forms it will prove a
valuable tool for researchers in a wide variety of disciplines.
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Algorithm for cartogram displacement field construction

Constants and variables
! Length of map in x and y directions
integer LX,LY

! Array for densities
float rho 0[LX + 1][LY + 1], rho[LX + 1][LY + 1]
! rho 0[j][k] is the density at t = 0, rho[j][k] that at t > 0.

! Arrays for the velocity field at integer-valued positions
float gridvx[LX + 1][LY + 1], gridvy[LX + 1][LY + 1]
! gridvx[j][k] is the velocity component in x direction at position (j, k). Similarly for y.

! Arrays for the position at t > 0
float x[LX + 1][LY + 1], y[LX + 1][LY + 1]
! x[j][k] is the x-coordinate for the element that was at position (j, k) at time t = 0.

! Arrays for the velocity field at position (x[j][k], y[j][k])
float vx[LX + 1][LY + 1], vx[LX + 1][LY + 1]
! vx[j][k] is the velocity component in x direction at the position (x[j][k], y[j][k]).

Program CARTOGRAM
Initialize rho 0.
If wanted, perform Gaussian blur by Fast Fourier Transform.
Replace rho 0 by cosine Fourier transform in both variables.
t ← 0 ! Initialize time.
h ← HINITIAL ! Initialize time step size.
! Initialize x, y, vx and vy.
for j ← 0 to LX

do for k ← 0 to LY
do x[j][k] ← j

y[j][k] ← k
Call subroutine CALCV(time = 0.0).
for j ← 0 to LX

do for k ← 0 to LY
do vx[j][k] ← gridvx[j][k]

vy[j][k] ← gridvy[j][k]

1



while the position arrays x and y have not sufficiently converged
do Call subroutine CALCV(time = t + h).

for j ← 0 to LX
do for k ← 0 to LY

do ! Find the new positions in the following manner. First we
take a naive integration step:
vxminus ← vx[j][k]
vyminus ← vy[j][k]
vxplus ← !vx(t + h, x[j][k]+h*vx[j][k],

y[j][k]+h*vy[j][k])
vyplus ← !vy(t + h, x[j][k]+h*vx[j][k],

y[j][k]+h*vy[j][k]),
! where the velocity !v at time t + h and position
(x[j][k]+h*vx[j][k], y[j][k]+ h*vy[j][k]) can be interpolated
from the arrays gridvx and gridvy. Then we expect the new
position at time t + h to be:
xguess ← x[j][k] + 0.5*h*(vxminus+vxplus)
yguess ← y[j][k] + 0.5*h*(vyminus+vyplus)
! Then we make a better approximation by solving
the two nonlinear equations:
xappr[j][k] - 0.5*h*!vx(t + h, xappr[j][k], yappr[j][k]) - x[j][k]

- 0.5*h*vx[j][k] = 0,
yappr[j][k] - 0.5*h*!vy(t + h, xappr[j][k], yappr[j][k]) - y[j][k]

- 0.5*h*vy[j][k] = 0
! simultaneously for xappr[j][k], yappr[j][k], e.g., using the
Newton-Raphson method with (xguess, yguess) as initial guess.
The velocity !v at time t + h and position (xappr[j][k],yappr[j][k])
can again be interpolated from the arrays gridvx and gridvy.
If (xguess, yguess) and (xappr[j][k], yappr[j][k]) differ by more
than some predefined tolerance, reduce step size h, break, and
try again.

t ← t + h
for j ← 0 to LX

do for k ← 0 to LY
do x[j][k] ← xappr[j][k]

y[j][k] ← yappr[j][k]
vx[j][k] ← !vx(t + h, xappr[j][k], yappr[j][k])
vy[j][k] ← !vy(t + h, xappr[j][k], yappr[j][k])

Increase step size h.
2



Subroutine CALCV(time t)
! First calculate the density rho by filling the array with the Fourier coefficients.
for j ← 0 to LX

do for k ← 0 to LY
do rho[j][k] ←

exp(-((π ∗ j/LX)*(π ∗ j/LX)+(π ∗ k/LY )*(π ∗ k/LY ))*t)*rho 0[j][k]
! Calculate the Fourier coefficients for the partial derivative of rho. Store temporary result

in arrays gridvx, gridvy.
for j ← 0 to LX

do for k ← 0 to LY
do gridvx[j][k] ← -(π ∗ j/LX)*rho[j][k]

gridvy[j][k] ← -(π ∗ k/LY )*rho[j][k]
Replace rho by cosine Fourier backtransform in both variables.
Replace vx by sine Fourier backtransform in the first and cosine Fourier

backtransform in the second variable.
Replace vy by cosine Fourier backtransform in the first and sine Fourier

backtransform in the second variable.
! Calculate the velocity field.
for j ← 0 to LX

do for k ← 0 to LY
do gridvx[j][k] ← -gridvx[j][k]/rho[j][k]

gridvy[j][k] ← -gridvy[j][k]/rho[j][k]
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