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Abstract. We present a method for proving upper bounds on the eigenvalues of
the graph Laplacian. A main step involves choosing an appropriate “Riemannian”
metric to uniformize the geometry of the graph. In many interesting cases, the
existence of such a metric is shown by examining the combinatorics of special types
of flows. This involves proving new inequalities on the crossing number of graphs.

In particular, we use our method to show that for any positive integer k, the kth

smallest eigenvalue of the Laplacian on an n-vertex, bounded-degree planar graph
is O(k/n). This bound is asymptotically tight for every k, as it is easily seen to
be achieved for square planar grids. We also extend this spectral result to graphs
with bounded genus, and graphs which forbid fixed minors. Previously, such spectral
upper bounds were only known for the case k = 2.

1 Introduction

Eigenvalues of the Laplacian on graphs and manifolds have been studied for over
forty years in combinatorial optimization and geometric analysis. In combinatorial
optimization, spectral methods are a class of techniques that use the eigenvectors
of matrices associated with the underlying graphs. These matrices include the ad-
jacency matrix, the Laplacian, and the random-walk matrix of a graph. One of the
earliest applications of spectral methods is to graph partitioning, pioneered by Hall
[H] and Donath and Hoffman [DoH1,2] in the early 1970s. The use of the graph
Laplacian for partitioning was introduced by Fiedler [Fi1,2,3], who showed a con-
nection between the second-smallest eigenvalue of the Laplacian of a graph and its
connectivity. Since their inception, spectral methods have been used for solving a
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wide range of optimization problems, from graph coloring [AsG], [AlK] to image
segmentation [SM], [ToM] to web search [Kle], [BrP].

Analysis of the Fiedler value. In parallel with the practical development of
spectral methods, progress on the mathematical front has been extremely fruitful,
involving a variety of connections between various graph properties and correspond-
ing graph spectra.

In 1970, independent from the work of Hall and of Donath and Hoffman, Cheeger
[Che] proved that the isoperimetric number of a continuous manifold can be bounded
from above by the square root of the smallest non-trivial eigenvalue of its Laplacian.
Cheeger’s inequality was then extended to graphs by Alon [Al], Alon and Milman
[AlM], and Sinclair and Jerrum [SiJ]. They showed that if the Fiedler value of a
graph – the second smallest eigenvalue of the Laplacian of the graph – is small,
then partitioning the graph according to the values of the vertices in the associated
eigenvector will produce a cut where the ratio of cut edges to the number of vertices
in the cut is similarly small.

Spielman and Teng [SpT] proved a spectral theorem for planar graphs, which
asserts that the Fiedler value of every bounded-degree planar graph with n vertices
is O(1/n). They also showed that the Fiedler value of a finite-element mesh in d
dimensions with n vertices is O(n−2/d). Kelner [K] then proved that the Fiedler
value of a bounded-degree graph with n vertices and genus g is O((g + 1)/n). The
proofs in [SpT], [K] critically use the inherent geometric structure of the planar
graphs, meshes, and graphs with bounded genus. Recently, Biswal, Lee, and Rao
[BLR] developed a new approach for studying the Fiedler value; they resolved most
of the open problems in [SpT]. In particular, they proved that the Fiedler value of a
bounded-degree graph on n vertices without a Kh minor is O((h6 log h)/n). These
spectral theorems together with Cheeger’s inequality on the Fiedler value immedi-
ately imply that one can use the spectral method to produce a partition as good
as the best known partitioning methods for planar graphs [LiT], geometric graphs
[MTTV], graphs with bounded genus [GHT], and graphs free of small complete
minors [AlST].

Higher eigenvalues and our contribution. Although previous work in the
graph setting focuses mostly on k = 2 (the Fiedler value of a graph), higher eigenval-
ues and eigenvectors are used in many heuristic algorithms [AlpY], [CSZ], [ChGT],
[ToM].

In this paper, we prove the following theorem on higher graph spectra, which
concludes a long line of work on upper bounds for the eigenvalues of planar graphs.

Theorem 1.1 (Planar and bounded-genus graphs). Let G be a bounded-degree
n-vertex planar graph. Then the kth smallest eigenvalue of the Laplacian on G is
O(k/n).

More generally, if G can be embedded on an orientable surface of genus g, then
the kth smallest eigenvalue of the Laplacian is at most

O
(
(g + 1)

(
log(g + 1)

)2 k
n

)
. (1)



GAFA METRIC UNIFORMIZATION AND SPECTRAL BOUNDS FOR GRAPHS 1119

The asymptotic dependence on k and n is seen to be tight even for the special
case of square planar grids; see Remark 5.1. Our spectral theorem provides a math-
ematical justification of the experimental observation that when k is small, the kth

eigenvalues of the graphs arising in many application domains are small as well. We
hope our result will lead to new progress in the analysis of spectral methods.

We remark that the (log(g + 1))2 factor of (1) comes from a certain geometric
decomposability property of genus-g graphs (see Theorem 2.2) and is most likely
non-essential. Without this factor, the bound is tight up to a universal constant, as
shown by the construction of [GHT].

A well-known generalization of graphs which can be drawn on a manifold of
fixed genus involves the notion of a graph minor. Given finite graphs H and G,
one says that H is a minor of G if H can be obtained from G by a sequence of
edge contractions and vertex deletions. A family F of graphs is said to be minor-
closed if whenever G ∈ F and H is a minor of G, then H ∈ F as well. By the
famous graph minor theorem of Robertson and Seymour [RoS2], every such family
F is characterized by a finite list of forbidden minors. For instance, by Wagner’s
theorem [W], the family of planar graphs is precisely the family of graphs which do
not have K3,3 or K5 as a minor. We prove the following (see the end of section 5.1).

Theorem 1.2 (Minor-closed families). If F is any minor-closed family of graphs
which does not contain all graphs, then there is a constant cF > 0 such that for all
G ∈ F with n vertices and maximum degree dmax, and all 1 ≤ k ≤ n,

λk(G) ≤ cF · dmax
k
n .

The Riemannian setting and conformal uniformization. The spectra of the
Laplacian on compact Riemannian surfaces of fixed genus is also well-studied. Let
M be a compact Riemannian manifold of genus g, and let λk(M) be the kth smallest
eigenvalue of the Laplace operator on M . (In Riemannian geometry, the convention
is to number the eigenvalues starting from λ0, but we use the graph theory convention
to make direct comparison easier.)

Hersch [He] showed that λ2(M) ≤ O(1/vol(M)) for Riemannian metrics on the
2-sphere, i.e. for the g = 0 case. This was extended by Yang and Yau [YY] to a
bound of the form λ2(M) ≤ O((g + 1)/n) for all g ≥ 0. Yau asked whether, for
every g ≥ 0, there was a constant cg such that

λk(M) ≤ cg
k

vol(M)
, (2)

for all k ≥ 1. The question was resolved by Korevaar [Ko] who proved that one can
take cg = O(g + 1). As mentioned at the end of the section, we prove that bounds
in the graph setting yield bounds in the setting of surfaces, and thus our result also
gives a new proof of (2) with the slightly worse constant cg = O((g+1)(log(g+1))2).

An important point is that the bounds for planar and genus-g graphs – in addi-
tion to the work discussed above for Riemannian surfaces – are proved using some



1120 J.A. KELNER, J.R. LEE, G.N. PRICE AND S.-H. TENG GAFA 

manifestation of conformal uniformization. In the graph case, this is via the Koebe–
Andreev–Thurston circle packing theorem, and in the manifold case, by the uni-
formization theorem. The methods of Hersch, Yang–Yau, and Spielman–Teng start
with a representation of the manifold or graph on the 2-sphere, and then apply an
appropriate Möbius transformation to obtain a test vector that bounds λ2. There is
no similar method known for bounding λ3, and indeed Korevaar’s approach to (2)
is significantly more delicate and uses very strongly the geometry of the standard
2-sphere.

However, the spectra of graphs may be more subtle than the spectra of surfaces.
We know of a reduction in only one direction: Bounds on graph eigenvalues can be
used to prove bounds for surfaces; see section 5.2. For graphs with large diameter,
the analysis of graph spectra resembles the analysis for surfaces. For example, Chung
[Chu] gave an upper bound of O(1/D2) on the the Fiedler value, where D is the
diameter of the graph. Grigor’yan and Yau [GrY] extended Korevaar’s analysis to
bounded genus graphs that have a strong volume measure – in particular, these
graphs have diameter Ω(

√
n).

Bounded-degree planar graphs (and bounded genus graphs), however, may have
diameter as small as O(log n), making it impossible to directly apply these diameter-
based spectral analyses. Our work builds on the method of Biswal, Lee, and Rao
[BLR], which uses multi-commodity flows to define a deformation of the graph ge-
ometry. Essentially, we try to construct a metric on the graph which is “uniform”
in a metrically defined sense. We then show that sufficiently uniform metrics allow
us to recover eigenvalue bounds.

To construct metrics with stronger uniformity properties, which can be used
to capture higher eigenvalues, we study a new flow problem, which we define in
section 1.2 and call subset flows; this notion may be independently interesting. As
we discuss in the next section, these flows arise as dual objects of certain kinds
of optimal spreading metrics on the graph. We use techniques from the theory of
discrete metric spaces to build test vectors from spreading metrics, and we develop
new combinatorial methods to understand the structure of optimal subset flows.

Our spectral theorem not only provides a discrete analog for Korevaar’s theorem
on higher eigenvalues, but also extends the higher-eigenvalue bounds to graphs with
a bounded forbidden minor, a family that is more combinatorially defined. Because
the Laplacian of a manifold can be approximated by that of a sufficiently fine mesh
graph (see section 5.2), our result also provides a new proof of Korevaar’s theorem,
with a slightly worse constant.

1.1 Outline of our approach. For the sake of clarity, we restrict ourselves for
now to a discussion of the case where G = (V, E) is a bounded-degree planar graph.
Let n = |V |, and for 1 ≤ k ≤ n, let λk be the kth smallest eigenvalue of the Laplacian
on G (see section 1.2.1 for a discussion of graph Laplacians). We first review the
known methods for bounding λ2 = λ2(G).

Bounding λ2. By the variational characterization of eigenvalues, giving an upper
bound on λ2 requires finding a certain kind of mapping of G into the real line (see
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section 1.2). Spielman and Teng [SpT] obtain an initial geometric representation
using the Koebe–Andreev–Thurston circle packing theorem for planar graphs. Be-
cause of the need for finding a test vector which is orthogonal to the first eigenvector
(i.e. the constant function), one has to post-process this representation before it will
yield a bound on λ2. They use a topological argument to show the existence of an
appropriate Möbius transformation which achieves this. (As we discussed, a similar
step was used by Hersch [He] in the manifold setting.) Even in the arguably simpler
setting of manifolds, no similar method is known for bounding λ3, due to the lack
of a rich enough family of circle-preserving transformations.

Our approach begins with the arguments of Biswal, Lee, and Rao [BLR]. Instead
of finding an external geometric representation, those authors begin by finding an
appropriate intrinsic deformation of the graph, expressed via a non-negative vertex-
weighting ω : V → [0,∞), which induces a corresponding shortest-path metric on G,

distω(u, v) = length of shortest u-v path ,

where the length of a path P is given by
∑

v∈P ω(v). (Strictly speaking, this is
only a pseudometric since distω(u, v) = 0 is possible for u �= v, but we ignore this
distinction for the sake of the present discussion.) The proper deformation ω is
found via variational methods, by minimizing the ratio,√∑

v∈V ω(v)2∑
u,v∈V distω(u, v)

. (3)

The heart of the analysis involves studying the geometry of the minimal solutions, via
their dual formulation in terms of certain kinds of multi-commodity flows. Finally,
techniques from the theory of metric embeddings are used to embed the resulting
metric space (V, distω) into the real line, thus recovering an appropriate test vector
to bound λ2.

Controlling λk for k ≥ 3. In order to bound higher eigenvalues, we need to
produce a system of many linearly independent test vectors. The first problem
one encounters is that the optimizer of (3) might not contain enough information
to produce more than a single vector if the geometry of the ω-deformed graph is
degenerate, e.g. if V = C ∪ C ′ for two large, well-connected pieces C, C ′ where C
and C ′ are far apart, but each has small diameter. (Intuitively, there are only two
degrees of freedom, the value of the eigenfunction on C and the value on C ′.)

Spreading metrics and padded partitions. To combat this, we would like to
impose the constraint that no large set collapses in the metric distω, i.e. that for
some k ≥ 1 and any subset C ⊆ V with |C| ≥ n/k, the diameter of C is large.
In order to produce such an ω by variational techniques, we have to specify this
constraint (or one like it) in a convex way. We do this using the spreading metric
constraints which are well-known in mathematical optimization (see, e.g. [ENRS]).
The spreading constraint on a subset S ⊆ V takes the form,

1
|S|2

∑
u,v∈S

distω(u, v) ≥ ε

√∑
u∈V

ω(u)2 , (4)

for some ε > 0.
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Given such a spreading weight ω for sets of size ≈ n/k, we show in section 2
how to obtain a bound on λk by producing k smooth, disjointly suppported bump
functions on (V, distω), which then act as our k linearly independent test vectors.
The bound depends on the value ε from (4), as well as a certain geometric decom-
posability property of the space (V, distω). The bump functions are produced using
padded metric partitions (see, e.g. [KrLMN] and [LN]), which are known to exist
for all planar graphs from the seminal work of Klein, Plotkin, and Rao [KlPR].

The spreading deformation, duality, and subset flows. At this point, to
upper bound λk, it suffices to find a spreading weight ω for subsets of size ≈ n/k,
with ε (from (4)) as large as possible. To the end, in section 2.3, we write a convex
program whose optimal solution yields a weight ω with the largest possible value
of ε. The dual program involves a new kind of multi-commodity flow problem, which
we now describe.

Consider a probability distribution μ on subsets S ⊆ V . For a flow F in G (see
section 1.2 for a review of multi-commodity flows), we write F [u, v] for the total
amount of flow sent from u to v, for any u, v ∈ V . In this case a feasible μ-flow is
one which satisfies, for every u, v ∈ V ,

F [u, v] = PS∼μ[u, v ∈ S] ,

where we use the notation S ∼ μ to denote that S is chosen according to the
distribution μ. In the language of demands, every set S places a demand of μ(S)
between every pair u, v ∈ S. For instance, the classical all-pairs multi-commodity
flow problem would be specified by choosing μ which concentrates all its weight on
the entire vertex set V .

Given such a μ, the corresponding “subset flow” problem is to find a feasible
μ-flow F so that the total �2-norm of the congestion of F at vertices is minimized
(see section 2.3 for a formal definition of the �2-congestion). Finally, by duality,
bounding λk requires us to prove lower bounds on the congestion of every possible
μ-flow with μ concentrated on sets of size ≈ n/k.

An analysis of optimal subset flows: New crossing number inequalities.
In the case of planar graphs G, we use a randomized rounding argument to relate
the existence of a feasible μ-flow in G with small �2-congestion to the ability to draw
certain kinds of graphs in the plane without too many edge crossings. This was
done in [BLR], where the relevant combinatorial problem involved the number of
edge crossings necessary to draw dense graphs in the plane, a question which was
settled by Leighton [Le], and Ajtai, Chvátal, Newborn, and Szemerédi [ACNS].

In the present work, we have to develop new crossing weight inequalities for a
“subset drawing” problem. Let H = (U, F ) be a graph with non-negative edge
weights W : F → [0,∞). Given a drawing of H in the plane, we define the crossing
weight of the drawing as the total weight of all edge crossings, where two edges
e, e′ ∈ F incur weight W (e) ·W (e′) when they cross. Write cr(H; W ) for the minimal
crossing weight needed to draw H in the plane. In section 4, we prove a generalization
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of the following theorem (it is stated there in the language of flows), which forms
the technical core of our eigenvalue bound.

Theorem 1.3 (Subset crossing theorem). There exists a constant C ≥ 1 such that
if μ is any probability distribution on subsets of [n] with ES∼μ|S|2 ≥ C, then the
following holds. For u, v ∈ [n], let

W (u, v) = PS∼μ[u, v ∈ S] .

Then we have,

cr(Kn; W ) � 1
n

(
ES∼μ|S|2

)5/2
,

where Kn is the complete graph on {1, 2, . . . , n}.
Observe that the theorem is asymptotically tight for all values of E|S|2. It is

straightforward that one can draw an r-clique in the plane using only O(r4) edge
crossings. Thus if we take μ to be uniform on k disjoint subsets of size n/k, then
the crossing weight is on the order of k · (1/k)2 · (n/k)4 = n4/k5, which matches the
lower bound 1

n(E|S|2)5/2 = 1
n(n/k)5. The proof involves some delicate combinatorial

and analytic arguments, and is discussed at the beginning of section 4.

More general families: Bounded genus and excluded minors. Clearly the
preceding discussion was specialized to planar graphs. A similar approach can be
taken for graphs of bounded genus (orientable or non-orientable) using the appro-
priate generalization of Euler’s formula.

To handle general minor-closed families, we can no longer deal with the notion of
drawings, and we have to work directly with multi-commodity flows in graphs. To
do this, we use the corresponding “flow crossing” theory developed in [BLR], with
some new twists to handle the regime where the total amount of flow being sent is
very small (this happens when bounding λk for large values of k, e.g. k ≥ √

n).

1.2 Preliminaries. We often use the asymptotic notation A � B to denote
A = O(B). We use A  B to denote the conjunction of A � B and A � B.
For a graph G, we use V (G) and E(G) to denote the edge and vertex sets of G,
respectively. We write R+ = [0,∞).

1.2.1 Laplacian spectrum. Let G = (V, E) be a finite, undirected graph.
We use u ∼ v to denote {u, v} ∈ E. We consider the linear space RV = {f : V → R}
and define the Laplacian L : RV → RV as the symmetric, positive-definite linear
operator given by

(Lf)(v) =
∑

u:u∼v

(
f(v) − f(u)

)
,

which in matrix form could be written as L = D − A where A is the adjacency
matrix of G and D the diagonal matrix whose entries are the vertex degrees. We
wish to give upper bounds on the kth eigenvalue of L for each k. To do this we
consider the seminorm given by

‖f‖2
L = 〈f,Lf〉 =

∑
u∼v

(
f(u) − f(v)

)2
,
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and restrict it to k-dimensional subspaces U ⊂ RV . By the spectral theorem, the
maximum ratio ‖f‖2

L/‖f‖2 over U is minimized when U is spanned by the k eigen-
vectors of least eigenvalue, in which case its value is λk. Therefore, if we exhibit a
k-dimensional subspace U in which ‖f‖2

L ≤ c for all unit vectors f , it follows that
λk ≤ c. In particular, this yields the following simple lemma.

Lemma 1.4. For any k ≥ 1, suppose that f1, f2, . . . , fk ∈ RV is a collection of
non-zero vectors such that, for all 1 ≤ i < j ≤ k, supp(fi) ∩ supp(fj) = ∅. Then,

λk ≤ max
{‖fi‖2

L
‖fi‖2 : i ∈ {1, 2, . . . , k}

}
.

1.2.2 Flows. Let G = (V,E) be a finite, undirected graph, and for every pair
u, v ∈ V , let Puv be the set of all paths between u and v in G. Let P =

⋃
u,v∈V Puv.

Then a flow in G is a mapping F : P → [0,∞). For any u, v ∈ V , let F [u, v] =∑
p∈Puv

F (p) be the amount of flow sent between u and v.
Our main technical theorem concerns a class of flows we call subset flows. Let

μ be a probability distribution on subsets of V . Then F is a μ-flow if it satisfies
F [u, v] = PS∼μ[u, v ∈ S] for all u, v ∈ V . For r ≤ |V |, we write Fr(G) for the set of
all μ-flows in G with supp(μ) ⊆ (

V
r

)
.

We say a flow F is an integral flow if it is supported on only one path p in each
Puv, and a unit flow if F [u, v] ∈ {0, 1} for every u, v ∈ V . An edge-weighted graph H
is one which comes equipped with a non-negative weight function w : E(H) → [0,∞)
on edges. We say that a flow F in G is an H-flow if there exists an injective mapping
φ : V (H) → V such that for all {u, v} ∈ E(H), we have F [φ(u), φ(v)] ≥ w(u, v). In
this case, H is referred to as the demand graph and G as the host graph.

We define the squared �2-congestion, or simply congestion, of a flow F by con(F ) =∑
v∈V CF (v)2, where CF (v) =

∑
p∈P:v∈p F (p). This congestion can also be written

as
con(F ) =

∑
p,p′∈P

∑
v∈p∩p′

F (p)F (p′)

and is therefore bounded below by a more restricted sum, the intersection number:

inter(F ) =
∑

u,v,u′,v′
|{u,v,u′,v′}|=4

∑
p∈Puv

p′∈Pu′v′

∑
x∈p∩p′

F (p)F (p′) .

2 Eigenvalues and Spreading Weights

We will now reduce the problem of proving upper bounds on the eigenvalues of a
graph G, to the problem of proving lower bounds on the congestion of subset flows
in G. In the present section, if (X, d) is a metric space, and x ∈ X, R ≥ 0, we will
use the notation

B(x, R) =
{
y ∈ X : d(x, y) ≤ R

}
.
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2.1 Padded partitions. Let (X, d) be a finite metric space. We will view a
partition P of X as a collection of subsets, and also as a function P : X → 2X

mapping a point to the subset that contains it. We write β(P, Δ) for the infimal
value of β ≥ 1 such that∣∣{x ∈ X : B(x,Δ/β) ⊆ P (x)

}∣∣ ≥ |X|
2

.

Let PΔ be the set of all partitions P such that for every S ∈ P , diam(S) ≤ Δ.
Finally, we define

βΔ(X, d) = inf
{
β(P, Δ) : P ∈ PΔ

}
.

The following theorem is a consequence [R] of the main theorem of Klein, Plotkin,
and Rao [KlPR], with the dependence of r2 due to [FT].

Theorem 2.1. Let G = (V,E) be a graph without a Kr,r minor and (V, d) be any
shortest-path semimetric on G, and let Δ > 0. Then βΔ(V, d) = O(r2).

In particular, if G is planar then βΔ(V, d) is upper bounded by an absolute
constant, and if G is of genus g > 0 then βΔ(V, d) = O(g), since the genus of Kh

is Ω(h2) [Ha, p. 118]. The paper [LS] proves the following strengthening (which is
tight, up to a universal constant).

Theorem 2.2. Let G = (V,E) be a graph of orientable genus g, and (V, d) be any
shortest-path semimetric on G, and let Δ > 0. Then βΔ(V, d) = O(log g).

2.2 Spreading vertex weights. Consider a non-negative weight function ω :
V → R+ on vertices, and extend ω to subsets S ⊆ V via ω(S) =

∑
v∈V ω(v). We

associate a vertex-weighted shortest-path metric by defining

distω(u, v) = min
p∈Puv

ω(p) .

Say that ω is (r, ε)-spreading if, for every S ⊆ V with |S| = r, we have

1
|S|2

∑
u,v∈S

distω(u, v) ≥ ε

√∑
v∈V

ω(v)2 .

Write εr(G, ω) for the maximal value of ε for which ω is (r, ε)-spreading.

Theorem 2.3 (Higher eigenvalues). Let G = (V, E) be any n-vertex graph with
maximum degree dmax, and let λk be the kth Laplacian eigenvalue of G. For any
k ≥ 1, the following holds. For any weight function ω : V → R+ with∑

v∈V

ω(v)2 = 1 , (5)

we have

λk ≤ 64 dmax

ε2n

(
βε/2(V, distω)

)2
,

where ε = ε�n/4k�(G, ω).
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Proof. Let ω be an (�n/4k�, ε)-spreading weight function. Let V = C1∪C2∪· · ·∪Cm

be a partition of V into sets of diameter at most ε/2, and define for every i ∈ [m],

Ĉi =
{
x ∈ Ci : B(x, ε/(2β)) ⊆ Ci

}
,

where β = βε/2(V, distω). By the definition of β, there exists a choice of {Ci} with

|Ĉ1 ∪ Ĉ2 ∪ · · · ∪ Ĉm| ≥ n/2 .

Now, for any set A ⊆ V with diam(A) ≤ ε/2, we see that

1
|A|2

∑
u,v∈A

distω(u, v) ≤ ε

2
=

ε

2

√∑
v∈V

ω(v)2 . (6)

Since diam(Ci) ≤ ε/2, if |Ci| > n/4k, then we could pass to a subset of Ci of size
exactly �n/4k� which satisfies (6), but this would violate the (�n/4k�, ε)-spreading
property of ω. Hence we know that |Ci| ≤ n/4k for each i = 1, 2, . . . , m.

Thus by taking disjoint unions of the sets {Ĉi} which are each of size at most
n/4k, we can find sets S1, S2, . . . , S2k with

n

2k
≥ |Si| ≥ n

4k
. (7)

For each i ∈ [2k], let S̃i be the ε/(2β)-neighborhood of Si. Observe that the sets
{S̃i} are pairwise disjoint, since by construction each is contained in a union of Ci’s,
which are themselves pairwise disjoint.

Now define, for every i ∈ [2k], define

W (S̃i) =
∑
u∈S̃i

∑
v:uv∈E

[
ω(u) + ω(v)

]2
.

Clearly, we have
2k∑
i=1

W (S̃i) ≤ 2
∑

uv∈E

[
ω(u) + ω(v)

]2 ≤ 4dmax
∑
v∈V

ω(v)2 = 4dmax ,

where the latter equality is (5). Hence if we renumber the sets so that
{
S̃1, S̃2, . . . , S̃k

}
have the smallest W (S̃i) values, then for each i = 1, 2, . . . , k, we have W (S̃i) ≤
4dmax/k.

Finally, we define functions f1, f2, . . . , fk : V → R by

fi(x) = max
{

0,
ε

2β
− distω(x, Si)

}
so that fi is supported on S̃i, and fi(x) = ε/(2β) for x ∈ Si.

Since each fi is 1-Lipschitz and has supp(fi) ⊆ S̃i, we have

‖fi‖2
L =

∑
uv∈E

∣∣fi(u) − fi(v)
∣∣2 =

∑
u∈S̃i

∑
v:uv∈E

∣∣fi(u) − fi(v)
∣∣2

≤
∑
u∈S̃i

∑
v:uv∈E

distω(u, v)2



GAFA METRIC UNIFORMIZATION AND SPECTRAL BOUNDS FOR GRAPHS 1127

=
∑
u∈S̃i

∑
v:uv∈E

[
ω(u) + ω(v)

]2
= W (S̃i) ≤ 4dmax

k
.

Furthermore the functions have disjoint support and satisfy

‖fi‖2 ≥
(

ε

2β

)2

|Si| ≥ ε2

16β2
n

k
,

where in the final inequality we have used (7).
Combining the preceding two estimates shows that, for each fi,

‖fi‖2
L

‖fi‖2 ≤ dmax

64n

(
β

ε

)2

,

and the proof is complete by Lemma 1.4. �

2.3 Spreading weights and subset flows. We now show a duality between the
optimization problem of finding a spreading weight ω and the problem of minimizing
congestion in subset flows. The following theorem is proved by a standard Lagrange
multipliers argument.

Theorem 2.4 (Duality). Let G = (V, E) be a graph and let r ≤ |V |. Then

max
{
εr(G, ω) | ω : V → R+

}
=

1
r2 min

{√
con(F ) | F ∈ Fr(G)

}
.

Proof. We shall write out the optimizations maxω εr(G, ω) and 1
r2 minF

√
con(F )

as convex programs, and show that they are dual to each other. The equality then
follows from Slater’s condition [BoV, Ch. 5]:

Fact 2.5 (Slater’s condition for strong duality). When the feasible region for a
convex program (P) has non-empty interior, the values of (P) and its dual (P∗) are
equal.

We begin by expanding maxω εr(G, ω) as a convex program(P). Let P∈{0,1}P×V

be the path incidence matrix, Q ∈ {0, 1}P×(V
2) the path connection matrix, and

R ∈ {0, 1}(V
r )×(V

2) a normalized set containment matrix, respectively defined as

Pp,v =
{

1 v ∈ p ,
0 else ,

Qp,uv =
{

1 p ∈ Puv ,
0 else ,

RS,uv =
{

1/r2 {u, v} ⊂ S ,
0 else .

Then the convex program (P) = maxω εr(G, ω) is

minimize −ε
subject to ε1 � Rd Qd � Ps s	s ≤ 1

d � 0 s � 0
.

Introducing the non-negative Lagrange multipliers μ, λ, ν, the Lagrangian function
is

L(d, s, μ, λ, ν) = −ε + μ	(ε1 − Rd) + λ	(Qd − Ps) + ν(s	s − 1) ,
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so that (P) and its dual (P∗) may be written as

(P) = inf
ε,d,s

sup
μ,λ,ν

L(d, s, μ, λ, ν) ,

(P∗) = sup
μ,λ,ν

inf
ε,d,s

L(d, s, μ, λ, ν) .

Now we simplify (P∗). Rearranging terms in L, we have

(P∗) = sup
μ,λ,ν

inf
ε,d,s

(μ	1 − 1)ε + (λ	Q − μ	R)d + (νs	s − λ	Ps) − ν

= sup
μ,λ,ν

inf
ε

(μ	1 − 1)ε + inf
d

(λ	Q − μ	R)d + inf
s

(νs	s − λ	Ps) − ν .

Now the infima infε(μ	1 − 1)ε and infd(λ	Q − μ	R)d are either 0 or −∞, so at
the optimum they must be zero and μ	1 − 1 ≥ 0, λ	Q − μ	R � 0. With these
two constraints, the optimization reduces to supλ,ν infs(νs	s − λ	Ps) − ν. At the
optimum, the gradient of the infimand is zero, so s = P	λ/2ν and the infimum is
−‖P�λ‖22

4ν . Then at the maximum, ν = 1
2‖P	λ‖2, so that the supremand is −‖P	λ‖2.

We have shown that (P∗) is the convex program

maximize −∥∥P	λ
∥∥

2
subject to λ	Q � μ	R μ	1 ≥ 1

λ � 0 μ � 0
.

This program is precisely (the negative of) the program to minimize vertex 2-
congestion of a subset flow in Fr(G), where the subset weights are normalized to
have unit sum. The proof is complete. �

3 Congestion Measures

In this section, we develop concepts that will enable us to give lower bounds on the
congestion con(F ) of all subset flows F in a given graph G. The reader may wish to
consult with section 1.2.2 to recall the relevant definitions.

Definition 3.1. Let G be an arbitrary host graph, and H an edge-weighted demand
graph. Define the G-congestion of H by

conG(H) = min
F an H-flow in G

con(F )

and the G-intersection number of H by

interG(H) = min
F an H-flow in G

inter(F ) ,

and the integral G-intersection number of H by

inter∗G(H) = min
F an integral H-flow in G

inter(F ) .

Note that even if H is a unit-weighted graph and inter∗G(H) = 0, this does
not imply that G contains an H-minor. This is because the intersection number
involves quadruples of four distinct vertices. For example, if H is a triangle, then
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inter∗G(H) = 0 for any G, even when G is a tree (and thus does not have a triangle as
a minor). However, we recall the following (which appears as Lemma 3.2 in [BLR]).

Lemma 3.2 [BLR]. If H is a unit-weighted, bipartite demand graph in which every
node has degree at least two, then for any graph G, inter∗G(H) = 0 implies that G
contains an H-minor.

The next lemma is proved via randomized rounding.

Lemma 3.3 (Rounding). For any graph G and unit flow F , there is an integral
unit flow F ∗ with F ∗[u, v] = F [u, v] for all u, v ∈ V (G), and such that

inter(F ∗) ≤ inter(F ) .

Consequently for every G and unit-weighted H,

inter∗G(H) = interG(H) ≤ conG(H) . (8)

Proof. We produce an integral flow F ∗ randomly by rounding F . For each pair of
endpoints u, v, choose independently a path puv in Puv with P[puv = p] = F (p) for
each p. Then

E
[
inter(F ∗)

]
=

∑
u,v,u′,v′

|{u,v,u′,v′}|=4

E
[ |puv ∩ pu′v′ | ]

=
∑

u,v,u′,v′
|{u,v,u′,v′}|=4

∑
p∈Puv

p′∈Pu′v′

∑
x∈p∩p′

F (p)F (p′) = inter(F ) ,

so that with positive probability we must have inter(F ∗) ≤ inter(F ). Equation (8)
follows because inter(F ) ≤ con(F ) always. �

Definition 3.4. Given a host graph G, we say that interG is a (c, a)-congestion
measure if for all unit-weighted graphs H = (V, E), we have the inequality

interG(H) ≥ |E|3
c|V 2| − a|V | . (9)

In particular, interG(Kn) ≥ n4

8c − an.

Lemma 3.5. Suppose that for some G and k = k(G), every unit-weighted H obeys

inter∗G(H) = interG(H) ≥ |E(H)| − k|V (H)| − k2. (10)

Then it follows that, for every unit-weighted H,

interG(H) ≥ 1
27

|E(H)|3
k2|V (H)|2 − k|V (H)| , (11)

so that interG is an (27k2, k)-congestion measure.
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Proof. It suffices to consider |E(H)| ≥ 3k|V (H)| since otherwise the right-hand side
of inequality (11) is negative.

Fix any H-flow F in G. Sample the nodes of H independently with probability
p each to produce a new demand graph H ′ and flow F ′ = F |H′ . Then inter(F ′) ≥
interG(H ′) ≥ |E(H ′)| − k|V (H ′)| − k2, and by taking expectations we have

p4inter(F ) ≥ p2|E(H)| − pk|V (H)| − k2.

Choosing p = 3k|V (H)|/|E(H)| and using the fact that |E(H)|/|V (H)|2 < 1 we
obtain (11). �

The next proof employs the techniques of [BLR].

Corollary 3.6. If G is planar, then interG is an (O(1), 3)-congestion measure.
If G has genus g > 0, then interG is an (O(g), O(

√
g))-congestion measure. If G is

Kh-minor-free, then interG is an (O(h2 log h), O(h
√

log h))-congestion measure.

Proof. Suppose that H is a unit-weighted demand graph. If F is an integral H-flow
with inter(F ) > 0, then some path in F and corresponding edge of H can be removed
to yield an integral H ′-flow F ′ with inter(F ′) ≤ inter(F )−1. Therefore, to prove (10)
it suffices to consider H with interG(H) = 0 and show that |E(H)| ≤ k|V (H)|+ k2.
Then Lemma 3.5 will imply interG is an (O(k2), k)-congestion measure.

When G is planar, an H-flow F in G with inter(F ) = 0 gives a drawing of
H in the plane without crossings, so that H itself is planar. Then an elementary
application of the Euler characteristic gives

|E(H)| ≤ 3|V (H)| − 6 < 3|V (H)| .
When G is of genus at most g > 0, the same argument gives

|E(H)| ≤ 3|V (H)| + 6(g − 1) ,

which suffices for k = O(
√

g).
For Kh-minor-free G and H with interG(H) = 0, if H is bipartite with mini-

mum degree 2, then Lemma 3.2 implies that H is Kh-minor-free, so that |E(H)| ≤
cKT |V (H)|h√log h by the theorem of Kostochka [Kos] and Thomason [T].

For general H, we can first take a partition to obtain a bipartite subgraph H ′

with |E(H ′)| ≥ |E(H)|/2. We then remove isolated vertices from H ′, and iteratively
remove vertices of degree one and the associated edges to obtain a bipartite subgraph
H ′′ with minimum degree two, and

|E(H ′′)| ≥ |E(H ′)| − |V (H ′)| ≥ |E(H)|/2 − |V (H)| . (12)

Now interG(H) = 0 together with Lemma 3.2 implies that

|E(H ′′)| ≤ 2cKT h
√

log h|V (H ′′)|
which together with (12), implies that |E(H)| ≤ O(h

√
log h)|V (H)|. �

In the next section, we will also require the following lemma.
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Lemma 3.7. Let μ be any probability distribution over subsets of V . Writing Hμ

for the graph on V with edge weights Hμ(u, v) = PS∼μ[u, v ∈ S], we have

interG(Hμ) ≥ ES∼μ,S′∼μ

[
interG(K|S∩S′|)

]
,

where by Kn we mean the unit-weighted complete graph on n vertices.

Proof. Let F be any Hμ-flow, and let the vertices of Hμ be identified with the
corresponding vertices of G (recall that every H-flow in G comes with an injection
from V (H) into V (G)).

Now, for every u, v ∈ V , S ⊆ V , and p ∈ Puv, define the flow FS by,

FS(p) =

{
F (p)

F [u,v]μ({S}) u, v ∈ S and F [u, v] �= 0 ,

0 otherwise ,

and observe that since F [u, v] = PS∼μ[u, v ∈ S], we have F =
∑

S⊆V FS .
In this case, we can write

inter(F ) =
∑

u,v,u′,v′
|{u,v,u′,v′}|=4

∑
p∈Puv

p′∈Pu′v′

|p ∩ p′|F (p)F (p′)

=
∑

u,v,u′,v′
|{u,v,u′,v′}|=4

∑
p∈Puv

p′∈Pu′v′

|p ∩ p′|
(∑

S

FS(p)
)(∑

S

FS(p′)
)

=
∑

u,v,u′,v′
|{u,v,u′,v′}|=4

∑
p∈Puv

p′∈Pu′v′

|p ∩ p′|
∑
S,S′

FS(p)FS′
(p′)

=
∑
S,S′

∑
u,v∈S

u′,v′∈S′
|{u,v,u′,v′}|=4

∑
p∈Puv

p′∈Pu′v′

|p ∩ p′|FS(p)FS′
(p′)

=
∑
S,S′

∑
u,v∈S

u′,v′∈S′
|{u,v,u′,v′}|=4

∑
p∈Puv

p′∈Pu′v′

|p ∩ p′|μ({S}) F (p)
F [u, v]

μ({S′}) F (p′)
F [u′, v′]

≥
∑
S,S′

μ({S})μ({S′})
∑

u,v,u′,v′∈S∩S′
|{u,v,u′,v′}|=4

∑
p∈Puv

p′∈Pu′v′

|p ∩ p′| F (p)
F [u, v]

F (p′)
F [u′, v′]

≥ ES∼μ,S′∼μ

[
interG(K|S∩S′|)

]
,

where we have used the fact that the double sum in the penultimate line contains
precisely the intersection number of a unit-weighted complete-graph flow on S∩S′. �

4 Congestion for Subset Flows

We now prove our main estimate on the congestion incurred by subset flows in terms
of a graph’s congestion measure.
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The proof of Theorem 4.1 below involves some delicate combinatorial and ana-
lytic arguments. The difficulty lies in controlling the extent to which μ is a mixture
of three different types of “extremal” distributions:

1. μ is uniformly distributed on all sets of size r;
2. μ is concentrated on a single set of size r;
3. μ is uniform over n/r disjoint sets, each of size r.
In the actual proof, we deal with the corresponding cases: (1′) μ is “uniformly

spread” over edges, i.e. PS∼μ[u, v ∈ S] is somewhat uniform over choices of u, v ∈ V .
In this case, we have to take a global approach, showing that not only are there many
intra-set crossings, but also a lot of crossing weight is induced by crossing edges
coming from different sets. (2′) PS∼μ[u ∈ S] is unusually large for all u ∈ V ′ with
|V ′| � |V |. In this case, there is a “density increment” on the induced subgraph
G[V ′], and we can apply induction. Finally, if we are in neither of the cases (1′) or
(2′), we are left to show that, in some sense, the distribution μ must be similar to
case (3) above, in which case we can appeal to the classical dense crossing bounds
applied to the complete graph on S ∩ S′ where S, S′ ∼ μ are chosen i.i.d.

Theorem 4.1. There is a universal constant c0 > 0 such that the following holds.
Let μ be any probability distribution on subsets of [n]. For u, v ∈ [n], define

F (u, v) = PS∼μ[u, v ∈ S] ,

and let Hμ be the graph on [n] weighted by F . For any graph G such that interG is
a (c, a)-congestion measure, we have

interG(Hμ) � 1
cn

(
E|S|2)5/2 − c0

a

n
E|S|2 ,

Corollary 4.2. If μ is supported on
([n]

r

)
for some r, then interG(Hμ) � r5

cn−c0
ar2

n .

In particular, if r � (a · c)1/3, then

interG(Hμ) � r5

cn
.

Proof of Theorem 4.1. We will freely use the fact that

E|S|2 =
∑
u,v

F (u, v) .

Also, put F (u) = PS∼μ[u ∈ S] for u ∈ [n].
The proof will proceed by induction on n, and will be broken into three cases.

Let

β =
√

1
n2

∑
u,v

F (u, v) ,

and put E(α′, α) = {(u, v) : α′ ≤ F (u, v) ≤ α}. Define the set of “heavy vertices”
as

HK = {u : F (u) ≥ Kβ} ,

for some constant K ≥ 1 to be chosen later. Let EH = {(u, v) : u, v ∈ HK} and
EHL = E(0, β) ∪ EH .
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Case I (Light edges).
∑

(u,v)∈E(0,β)

F (u, v) ≥ 1
4

∑
u,v

F (u, v) .

The desired conclusion comes from applying the following claim.

Claim 4.3. For every β ∈ [0, 1], we have

interG(Hμ) �
(∑

(u,v)∈E(0,β) F (u, v)
)3

βcn2 − 2β2an . (13)

Proof. First, observe that by (9), the subgraph consisting of the edges in E(α, β)
contributes at least

α2 |E(α, β)|3
cn2 − β2an

to interG(Hμ) for every α, β ∈ [0, 1]. Therefore, letting Ei = E
(
2−i−1β, 2−iβ

)
, we

have

interG(Hμ) � 1
cn2

∞∑
i=0

2−2iβ2|Ei|3 − an
∞∑
i=0

2−2iβ2.

Let Fi =
∑

(u,v)∈Ei
F (u, v) so that |Ei| ≥ (2i/β)Fi, and then

interG(Hμ) � 1
βcn2

∞∑
i=0

2iF 3
i − 2β2an ,

but also
∑∞

i=0 Fi =
∑

u,v∈E(0,β) F (u, v). Thus (13) is proved by noting that
∞∑
i=0

Fi =
∞∑
i=0

(
2−i/3 · 2i/3Fi

)
≤

( ∞∑
i=0

2−i/2
)2/3( ∞∑

i=0

2iF 3
i

)1/3
< 2.27

( ∞∑
i=0

2iF 3
i

)1/3
,

using Hölder’s inequality. �

Case II (Heavy endpoints).
∑

(u,v)∈EH

F (u, v) ≥ 1
4

∑
u,v

F (u, v) .

Observe that∑
u∈[n]

F (u) = ES∼μ|S| ≤
√

ES∼μ|S|2 =
√∑

u,v

F (u, v) = βn ,

hence |HK | ≤ n/K by Markov’s inequality.
Apply the statement of the theorem inductively to the distribution over subsets

of V (HK) corresponding to the random set S ∩ V (HK), to conclude that

interG(Hμ) � K

cn

( ∑
(u,v)∈EH

F (u, v)
)5/2 − c0

a

n

∑
(u,v)∈EH

F (u, v) . (14)

Consequently, by choosing K = 32, under the assumption of this case,

K

(∑
(u,v)∈EH

F (u, v)∑
u,v F (u, v)

)5/2

≥ 1

and the conclusion again follows.
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Case III (Heavy edges, light endpoints).
∑

(u,v)∈EHL

F (u, v) ≥ 1
2

∑
u,v

F (u, v).

By definition, EHL = {(u, v) : F (u, v) > β, {u, v} � HK}. Let κ = (16ac)1/3, so
that κ4/8c ≥ 2aκ. Using Lemma 3.7 and the fact that interG is a (c, a)-congestion
measure, we have

interG(Hμ) ≥ ES∼μ,S′∼μ

[
interG(K|S∩S′|)

]
≥ ES∼μ,S′∼μ

[
interG(K|S∩S′|)1|S∩S′|≥κ

]
≥ 1

8c
ES∼μ,S′∼μ

[|S ∩ S′|4 1|S∩S′|≥κ

]− aES∼μ,S′∼μ

[|S ∩ S′|1|S∩S′|≥κ

]
≥ 1

16c
ES∼μ,S′∼μ

[|S ∩ S′|4 1|S∩S′|≥κ

]
=

1
16c

∑
u∈[n]

P[u ∈ S ∩ S′]ES∼μ,S′∼μ

[|S ∩ S′|3 1|S∩S′|≥κ | u ∈ S ∩ S′
]

=
1

16c

∑
u∈[n]

(P[u ∈ S])2ES∼μ,S′∼μ

[|S ∩ S′|3 1|S∩S′|≥κ | u ∈ S ∩ S′
]

≥ 1
16c

∑
u:β≤F (u)≤Kβ

F (u)2 ES∼μ,S′∼μ

[|S ∩ S′|3 1|S∩S′|≥κ | u ∈ S ∩ S′
]

≥ β2

16c

∑
u:β≤F (u)≤Kβ

ES∼μ,S′∼μ

[|S ∩ S′|3 | u ∈ S ∩ S′
]− K2β2

16c
nκ3.

Since K2β2

16c nκ3 = K2a
n E|S|2, to finish the proof we need only show that∑

u:β≤F (u)≤Kβ

ES∼μ,S′∼μ

[|S ∩ S′|3 | u ∈ S ∩ S′
]

� n
(
E|S|2)3/2

. (15)

Now for each u ∈ [n] with F (u) = P[u ∈ S] > 0, let μu denote the distribution
μ conditioned on u ∈ S. Let IvS denote the indicator of the event {v ∈ S}, so that
P[v ∈ S | u ∈ S] = ES∼μu [IvS ]. In this case,

ES∼μ,S′∼μ

[|S ∩ S′|3 | u ∈ S ∩ S′
]

=
∑

v,v′,v′′∈[n]

ES∼μu,S′∼μu [IvSIv′SIv′′SIvS′Iv′S′Iv′′S′ ]

= ES∼μu,S′∼μu

[(∑
v

IvSIvS′
)3]

≥
(
ES∼μu,S′∼μu

[∑
v

IvSIvS′
])3

=
(∑

v

(
ES∼μu [IvS ]

)2
)3

.

Therefore, the left-hand side of (15) is at least∑
u:β≤F (u)≤Kβ

(∑
v

P[v ∈ S | u ∈ S]2
)3 ≥ 1

K6

∑
u:β≤F (u)≤Kβ

∣∣{v : F (u, v)/F (u) ≥ 1/K}∣∣3
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≥ 1
K6

∑
u:β≤F (u)≤Kβ

∣∣{v : F (u, v) ≥ β}∣∣3 (16)

≥ 1
K6

∑
u:β≤F (u)≤Kβ

∣∣{v : (u, v) ∈ EHL}
∣∣3,

since each of the edges in EHL appears at least once in the sum (16), because every
edge (u, v) ∈ EHL has either F (u) ≤ Kβ or F (v) ≤ Kβ.

In particular, for such edges, F (u, v) ≤ Kβ, which means that

|EHL| ≥
∑

(u,v)∈EHL
F (u, v)

Kβ
. (17)

Thus by the power-mean inequality, the left-hand side of (15) is at least

1
K6

∑
u:β≤F (u)≤Kβ

∣∣{v : (u, v) ∈ EHL}
∣∣3 ≥ 1

K6n2

( ∑
u:β≤F (u)≤Kβ

∣∣{v : (u, v) ∈ EHL}
∣∣)3

≥ 1
K6n2 |EHL|3,

and when
∑

(u,v)∈EHL
F (u, v) ≥ 1

2
∑

u,v F (u, v) it follows from (17) that this is at
least

1
8K9n2β3

(∑
u,v

F (u, v)
)3

� n
(
E|S|2)3/2

,

completing the proof. �

5 Eigenvalues of Graphs and Surfaces

5.1 Graphs. We can now prove our main theorem.

Theorem 5.1. If G is an n-node graph, then for every 1 ≤ k ≤ n, we have the
following bounds. If G is planar, then

λk ≤ O
(
dmax

k
n

)
. (18)

If G is of genus g > 0, then

λk ≤ O
(
dmax

k
ng(log g)2

)
.

If G is Kh-minor-free, then

λk ≤ O
(
dmax

k
nh6 log h

)
.

Proof. We prove the planar case; the other cases follow similarly. Let G = (V, E) be
planar with maximum degree dmax and n = |V |. First, by Theorem 2.3, we see that
for any weight function ω : V → R+ and every k ≥ 1,

λk � dmax

ε2n

(
βε/2(V, distω)

)2
,
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where ε = ε�n/4k�(G, ω). Since G is planar, by Theorem 2.1, we have βε/2(V, distω) =
O(1) for any ω, hence

λk � dmax

(ε�n/4k�(G, ω))2 n
. (19)

Using Corollaries 4.2 and 3.6, we see that for some constant c0 ≥ 1 and any c0 ≤
r ≤ |V |, if F ∈ Fr(G), i.e. F if a μ-flow with supp(μ) ⊆ (

V
r

)
, then

con(F ) � r5

n
.

Now, by Theorem 2.4, this implies that for r ≥ c0, there exists a weight ωr : V → R+
with εr(G, ωr) � 1

r2

√
r5/n =

√
r/n.

If �n/4k� < c0, then (18) holds trivially using the bound λk ≤ 2 dmax for all
1 ≤ k ≤ n. Finally, using (19), for r = �n/4k� ≥ c0, we have

λk � dmax

(εr(G, ωr))
2 n

� dmax

r
� dmax

k

n
,

completing the proof.

Remark 5.1 (Asymptotic dependence on k). We remark that the asymptotic de-
pendence on k in Theorem 5.1 is tight. First, consider the eigenvalues λ′1 ≤ · · · ≤ λ′n
for the n-node path graph Pn. It is a straightforward calculation to verify that the
eigenvalues are precisely the set{

2 − 2 cos(2πk/n) : 1 ≤ k ≤ n/2
}

,

and each such eigenvalue has multiplicity at most 2. In particular, λ′k  k2/n2 for
all k ≥ 2.

Now, since the n × n grid graph Gn is the Cartesian product graph Pn × Pn, it
is easy to verify that the eigenvalues are precisely

{λi,j = λ′i + λ′j : 1 ≤ i, j ≤ n} .

In particular, since λi,j  max(i2, j2)/n2, we have λk(Gn)  k/n2  k/|Gn|. �

Finally, we use the Robertson–Seymour structure theorem to prove Theorem 1.2.
Proof of Theorem 1.2. If F is any minor-closed family of graphs that does not
contain all graphs, then by the deep Robertson–Seymour structure theory [RoS1],
there exists some number h ∈ N such that no graph in F has Kh as a minor. An
application of Theorem 5.1 finishes the proof. �

5.2 Surfaces. In this section, we shall show how our result implies a bound on
the eigenvalues of the Laplacian of a compact Riemannian surface.

Theorem 5.2. Let (M, g) be a compact, orientable Riemannian surface of genus
g and area A, and let ΔM be its Laplacian. The kth smallest Neumann eigenvalue
of ΔM is at most

O
(
k(g + 1) log2(g + 1)/A

)
.
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Intuitively, this theorem follows by applying the eigenvalue bound for genus g
graphs from Theorem 5.1 to a sequence of successively finer meshes that approxi-
mate M .

Our proof will begin with the combinatorial Hodge theory of Dodziuk [D], which
produces a sequence of finite-dimensional operators Δ(1)

M , Δ(2)
M , . . . whose eigenvalues

converge to those of ΔM . Unfortunately, the objects that this produces will not be
the Laplacians of unweighted graphs of bounded degree. However, we will show
that, when applied to a sufficiently nice triangulation, the operators produced by
Dodziuk’s theory can be approximated well enough by such graph Laplacians to
establish our desired result.

5.2.1 The Whitney map and combinatorial Hodge theory. We begin
by recalling the basic setup of Dodziuk’s combinatorial Hodge theory [D]. Let χ :
K → M be a finite triangulation of M with vertices p1, . . . , pn ∈ K. For all q ∈ N,
let L2Λq = L2Λ(M) be the space of square integrable q-forms on M , and let Cq =
Cq(K) be the space of real simplicial cochains on K. We will identify each simplex
σ of K with the corresponding cochain, which allows us to write elements of Cq(K)
as formal sums of the q-simplices in K. For any triangle σ ∈ K, we will use area(σ)
and diam(σ) to denote that area and diameter of χσ with respect to the Riemannian
metric on M .

For each pi, let βi : K → R equal the pth
i barycentric coordinate on simplices

in St(pi), the open star of pi, and 0 on K \ St(pi). This lets us define barycentric
coordinate functions μi = χ∗βi on M .

Let σ = [pi0 , . . . , piq ] be a q-simplex in K with i0 ≤ · · · ≤ iq. We define the
Whitney map W : Cq(K) → L2Λ to be the linear map that takes each such simplex
to

Wσ = q!
q∑

k=0

(−1)kμikdμi0 ∧ · · · ∧ d̂μik ∧ · · · ∧ dμiq .

Whitney [Wh] showed that the above definition gives a well-defined element
of L2Λq, even though the μi are not differentiable on the boundaries of top-dimen-
sional simplices.

The Riemannian metric endows L2Λq with the inner product

(f, g) =
∫

M
f ∧ ∗g ,

where ∗ is the Hodge star operator. Using the Whitney map, this lets us define an
inner product on Cq by setting

(a, a′) = (Wa, Wa′)

for a, a′ ∈ Cq. Let dc be the simplicial coboundary operator. Dodziuk defined the
combinatorial codifferential δc to be the adjoint of dc with respect to this inner
product, and he defined the combinatorial Laplacian Δc

q : Cq → Cq by

Δc
q = dcδc + δcdc.
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In the remainder of this paper, we will only use the Laplacian on functions, which
we will denote by Δc := Δc

0.
To obtain a sequence of successively finer triangulations, we will use Whitney’s

standard subdivision procedure [Wh]. For a complex K, this produces a new complex
SK in which each q-dimensional simplex of K is divided into 2q smaller simplices.
In contrast to barycentric subdivision, it is constructed in a way that prevents the
simplices from becoming arbitrarily poorly conditioned under repeated subdivision.

Let S0K = K, and inductively define Sn+1K = S (SnK). Dodziuk showed the
following convergence result about the discrete Laplacians on functions (Dodziuk
and Patodi [DP] later proved an analogous result for the Laplacians on q-forms, for
arbitrary q):

Theorem 5.3 (Dodziuk). Let λ
(n)
i be the ith smallest eigenvalue of Δc(SnK), and

let λi be the ith smallest eigenvalue of ΔM . Then λ
(n)
i → λi as n → ∞.

5.2.2 Relating the combinatorial and graph Laplacians. To relate the
combinatorial Laplacian to a graph Laplacian, we will construct a triangulation in
which all of the triangles have approximately the same volume, are fairly flat, and
have vertex angles bounded away from 0. We will then show that the eigenvalues
of combinatorial Laplacians arising from such a triangulation and its standard sub-
divisions can be bounded in terms of those of the Laplacian of an unweighted graph
of bounded degree.

Lemma 5.4. There exist strictly positive universal constants C1, C2, C3, and θ
such that, for any ε > 0, every compact Riemannian surface M has a triangulation
K with the following properties:

(1) For every triangle σ ∈ K, diam(σ) < ε, the interior angles of σ all lie in
[θ, π − θ], and

1
C2

≤ area(σ)
diam(σ)2

≤ C2 .

(2) For any two triangles σ1, σ2 ∈ K,

1
C1

≤ area(σ1)
area(σ2)

≤ C1 ,

and
1
C1

≤ diam(σ1)
diam(σ2)

≤ C1 .

(3) The edges of K are embedded as geodesics, and every vertex of K has degree
at most C3.

Furthermore, these properties are satisfied by SnK for all n ≥ 0.

Proof. The existence of such a triangulation is established by Buser, Seppälä, and
Silhol [BuSS], following an argument originally due to Fejes Tóth [Tot]. They do
not explicitly state the degree bound, but it follows immediately from the fact that
the angles are bounded away from zero. The fact that these properties remain true
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under subdivision follows from the basic properties of standard subdivision given by
Whitney [Wh]. �

Proof of Theorem 5.2. For a given ε, let Kε be a triangulation with the proper-
ties guaranteed by Lemma 5.4, and let G = (V, E) be the 1-skeleton of Kε. Let
f : V → R, and let fi = f(pi). We will show that, for sufficiently small ε,

(f, Δcf)
(f, f)

� |V |
A

‖f‖2
LG

‖f‖2
2

(20)

for all f , and that this remains true when Kε is replaced by SnKε for any n. By the
variational characterization of eigenvalues, this implies that λk(Δc) � |V |

A λk(LG).
By applying Theorem 5.1 to LG, we obtain

λk(Δc) � |V |
A

λk(LG) � |V |
A

k(g + 1) log2 g

|V | =
k(g + 1) log2 g

A
.

This bound remains true as we subdivide Kε, so Theorem 5.2 now follows from
Theorem 5.3. It thus suffices to prove equation (20).

Let σ = [pi0 , pi1 , pi2 ] be a triangle in Kε. We can write the restriction of Wf to
σ in barycentric coordinates as

Wf |σ = f1μi1 + f2μi2 + f3μi3 .

When ε is sufficiently small compared to the minimum radius of curvature of M , we
have ∫

σ
μiμj dV =

{
(1 ± o(1))area(σ)/6 if i = j ,

(1 ± o(1))area(σ)/12 if i �= j ,

where dV is the volume element on M , and the o(1) indicates a function that goes
to zero with ε.

This gives∫
σ
(Wf) ∧ ∗(Wf) =

∫
σ
(Wf)2dV

=
∫

σ
(f1μi1 + f2μi2 + f3μi3)

2 dV

 area(σ)
6

(f2
1 + f2

2 + f2
3 + f1f2 + f1f3 + f2f3)

=
area(σ)

12
(
f2
1 + f2

2 + f2
3 + (f1 + f2 + f3)2

)
≥ area(σ)

12
(f2

1 + f2
2 + f2

3 ) .

Let Aε be the maximum area of a triangle in Kε. Since all triangles have the
same area up to a multiplicative constant, and each vertex appears in only a constant
number of triangles, summing this over all of the triangles in Kε gives

(f, f) =
∫

M
(Wf) ∧ ∗(Wf) � Aε

n∑
i=1

f2
i = Aε‖f‖2

2 . (21)
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When restricted to σ, we have

dcf |σ = (f1 − f0)[pi0 , pi1 ] + (f2 − f1)[pi1 , pi2 ] + (f2 − f0)[pi0 , pi2 ] ,

so

Wdcf |σ = (f1 − f0) (μi0dμi1 − μi1dμi0) + (f2 − f1) (μi1dμi2 − μi2dμi1)
+ (f2 − f0) (μi0dμi2 − μi2dμi0) . (22)

By again assuming that ε is sufficiently small and using the fact that the triangles
in Kε are all well-conditioned, we obtain by a simple calculation the estimate∫

σ
dμik ∗ dμik �

(
1

diam(σ)

)2

· area(σ)  1

for each k ∈ {0, 1, 2}, where the asymptotic equality of the last two quantities follows
from property (1) of Lemma 5.4. Applying this and Cauchy–Schwartz to equation
(22), and using the fact that the μij are bounded above by 1, gives∫

σ
(Wdcf) ∧ ∗(Wdcf) � (f1 − f0)2 + (f2 − f1)2 + (f2 − f0)2.

Summing this over all of the triangles and using Lemma 5.4 then yields

(df, df) =
∫

M
(Wdcf) ∧ ∗(Wdcf) �

∑
(i,j)∈E

(fi − fj)
2 = ‖f‖2

L . (23)

The total area of M equals A, and the area of each triangle is within a constant
factor of Aε, so |V |  A/Aε. If we combine this with the inequalities in (21) and
(23), we obtain

(f, Δcf)
(f, f)

=
(df, df)
(f, f)

� ‖f‖2
L

Aε‖f‖2
2
 |V |

A

‖f‖2
L

‖f‖2
2

.

This proves equation (20), which completes the proof of Theorem 5.2. �
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