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In many modern applications, including analysis of gene expression and
text documents, the data are noisy, high-dimensional, and unordered—with
no particular meaning to the given order of the variables. Yet, successful
learning is often possible due to sparsity: the fact that the data are typi-
cally redundant with underlying structures that can be represented by only
a few features. In this paper we present treelets—a novel construction of
multi-scale bases that extends wavelets to nonsmooth signals. The method
is fully adaptive, as it returns a hierarchical tree and an orthonormal basis
which both reflect the internal structure of the data. Treelets are especially
well-suited as a dimensionality reduction and feature selection tool prior to
regression and classification, in situations where sample sizes are small and
the data are sparse with unknown groupings of correlated or collinear vari-
ables. The method is also simple to implement and analyze theoretically. Here
we describe a variety of situations where treelets perform better than principal
component analysis, as well as some common variable selection and cluster
averaging schemes. We illustrate treelets on a blocked covariance model and
on several data sets (hyperspectral image data, DNA microarray data, and in-
ternet advertisements) with highly complex dependencies between variables.

1. Introduction. For many modern data sets (e.g., DNA microarrays, finan-
cial and consumer data, text documents and internet web pages), the collected
data are high-dimensional, noisy, and unordered, with no particular meaning to
the given order of the variables. In this paper we introduce a new methodology
for the analysis of such data. We describe the theoretical properties of the method,
and illustrate the proposed algorithm on hyperspectral image data, internet adver-
tisements, and DNA microarray data. These data sets contain structure in the form
of complex groupings of correlated variables. For example, the internet data in-
clude more than a thousand binary variables (various features of an image) and
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a couple of thousand observations (an image in an internet page). Some of the
variables are exactly linearly related, while others are similar in more subtle ways.
The DNA microarray data include the expression levels of several thousand genes
but less than 100 samples (patients). Many sets of genes exhibit similar expression
patterns across samples. The task in both cases is here classification. The results
can therefore easily be compared with those of other classification algorithms.
There is, however, a deeper underlying question that motivated our work: Is there
a simple general methodology that, by construction, captures intrinsic localized
structures, and that as a consequence improves inference and prediction of noisy,
high-dimensional data when sample sizes are small? The method should be pow-
erful enough to describe complex structures on multiple scales for unordered data,
yet be simple enough to understand and analyze theoretically. Below we give some
more background to this problem.

The key property that allows successful inference and prediction in high-
dimensional settings is the notion of sparsity. Generally speaking, there are two
main notions of sparsity. The first is sparsity of various quantities related either
to the learning problem at hand or to the representation of the data in the orig-
inal given variables. Examples include a sparse regression or classification vec-
tor [Tibshirani (1996)], and a sparse structure to the covariance or inverse covari-
ance matrix of the given variables [Bickel and Levina (2008)]. The second notion is
sparsity of the data themselves. Here we are referring to a situation where the data,
despite their apparent high dimensionality, are highly redundant with underlying
structures that can be represented by only a few features. Examples include data
where many variables are approximately collinear or highly related, and data that
lie on a nonlinear manifold [Belkin and Niyogi (2005), Coifman et al. (2005)].1

While the two notions of sparsity are different, they are clearly related. In fact,
a low intrinsic dimensionality of the data typically implies, for example, sparse
regression or classification vectors, as well as low-rank covariance matrices. How-
ever, this relation may not be directly transparent, as the sparsity of these quantities
sometimes becomes evident only in a different basis representation of the data.

In either case, to take advantage of sparsity, one constrains the set of possible
parameters of the problem. For the first kind of sparsity, two key tools are graphi-
cal models [Whittaker (2001)] that assume statistical dependence between specific
variables, and regularization methods that penalize nonsparse solutions [Hastie,
Tibshirani and Friedman (2001)]. Examples of such regularization methods are the
lasso [Tibshirani (1996)], regularized covariance estimation methods [Bickel and
Levina (2008), Levina and Zhu (2007)] and variable selection in high-dimensional
graphs [Meinshausen and Bühlmann (2006)]. For the second type of sparsity,
where the goal is to find a new set of coordinates or features of the data, two stan-
dard “variable transformation” methods are principal component analysis [Jolliffe

1A referee pointed out that another issue with sparsity is that very high-dimensional spaces have
very simple structure [Hall, Marron and Neeman (2005), Murtagh (2004), Ahn and Marron (2008)].
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(2002)] and wavelets [Ogden (1997)]. Each of these two methods has its own
strengths and weaknesses which we briefly discuss here.

PCA has gained much popularity due to its simplicity and the unique property
of providing a sequence of best linear approximations in a least squares sense. The
method has two main limitations. First, PCA computes a global representation,
where each basis vector is a linear combination of all the original variables. This
makes it difficult to interpret the results and detect internal localized structures in
the data. For example, in gene expression data, it may be difficult to detect small
subsets of highly correlated genes. The second limitation is that PCA constructs
an optimal linear representation of the noisy observations, but not necessarily of
the (unknown) underlying noiseless data. When the number of variables p is much
larger than the number of observations n, the true underlying principal factors
may be masked by the noise, yielding an inconsistent estimator in the joint limit
p,n → ∞,p/n → c [Johnstone and Lu (2008)]. Even for a finite sample size n,
this property of PCA and other global methods (such as partial least squares and
ridge regression) can lead to large prediction errors in regression and classifica-
tion [Buckheit and Donoho (1995), Nadler and Coifman (2005b)]. Equation (25)
in our paper, for example, gives an estimate of the finite-n regression error for a
linear mixture error-in-variables model.

In contrast to PCA, wavelet methods describe the data in terms of localized
basis functions. The representations are multi-scale, and for smooth data, also
sparse [Donoho and Johnstone (1995)]. Wavelets are used in many nonparametric
statistics tasks, including regression and density estimation. In recent years wavelet
expansions have also been combined with regularization methods to find regres-
sion vectors which are sparse in an a priori known wavelet basis [Candès and Tao
(2007), Donoho and Elad (2003)]. The main limitation of wavelets is the implicit
assumption of smoothness of the (noiseless) data as a function of its variables. In
other words, standard wavelets are not suited for the analysis of unordered data.
Thus, some work suggests first sorting the data, and then applying fixed wavelets
to the reordered data [Murtagh, Starck and Berry (2000), Murtagh (2007)].

In this paper we propose an adaptive method for multi-scale representation and
eigenanalysis of data where the variables can occur in any given order. We call
the construction treelets, as the method is inspired by both hierarchical clustering
trees and wavelets. The motivation for the treelets is two-fold: One goal is to find
a “natural” system of coordinates that reflects the underlying internal structure of
the data and that is robust to noise. A second goal is to improve the performance
of conventional regression and classification techniques in the “large p, small n”
regime by finding a reduced representation of the data prior to learning. We pay
special attention to sparsity in the form of groupings of similar variables. Such
low-dimensional structure naturally occurs in many data sets; for example, in DNA
microarray data where genes sharing the same pathway can exhibit highly corre-
lated expression patterns, and in the measured spectra of a chemical compound that
is a linear mixture of certain simpler substances. Collinearity of variables is often
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a problem for a range of existing dimensionality reduction techniques—including
least squares, and variable selection methods that do not take variable groupings
into account.

The implementation of the treelet transform is similar to to the classical Jacobi
method from numerical linear algebra [Golub and van Loan (1996)]. In our work
we construct a data-driven multi-scale basis by applying a series of Jacobi rotations
(PCA in two dimensions) to pairs of correlated variables. The final computed basis
functions are orthogonal and supported on nested clusters in a hierarchical tree.
As in standard PCA, we explore the covariance structure of the data but—unlike
PCA—the analysis is local and multi-scale. As shown in Section 3.2.2 the treelet
transform also has faster convergence properties than PCA. It is therefore more
suitable as a feature extraction tool when sample sizes are small.

Other methods also relate to treelets. In recent years hierarchical cluster-
ing methods have been widely used for identifying diseases and groups of co-
expressed genes [Eisen et al. (1998), Tibshirani et al. (1999)]. Many researchers
are also developing algorithms that combine gene selection and gene grouping;
see, for example, Hastie et al. (2001), Dettling and Bühlmann (2004), Zou and
Hastie (2005) among others, and see Fraley and Raftery (2002) for a review of
model-based clustering.

The novelty and contribution of our approach is the simultaneous construction
of a data-driven multi-scale orthogonal basis and a hierarchical cluster tree. The
introduction of a basis enables application of the well-developed machinery of or-
thonormal expansions, wavelets, and wavelet packets for nonparametric smooth-
ing, data compression, and analysis of general unordered data. As with any ortho-
normal expansion, the expansion coefficients reflect the effective dimension of the
data, as well as the significance of each coordinate. In our case, we even go one
step further: The basis functions themselves contain information on the geometry
of the data, while the corresponding expansion coefficients indicate their impor-
tance; see examples in Sections 4 and 5.

The treelet algorithm has some similarities to the local Karhunen–Loève Basis
for smooth ordered data by Coifman and Saito (1996), where the basis functions
are data-driven but the tree structure is fixed. Our paper is also related to recent
independent work on the Haar wavelet transform of a dendrogram by Murtagh
(2007). The latter paper also suggests basis functions on a data-driven cluster tree
but uses fixed wavelets on a pre-computed dendrogram. The treelet algorithm of-
fers the advantages of both approaches, as it incorporates adaptive basis functions
as well as a data-driven tree structure. As shown in this paper, this unifying prop-
erty turns out to be of key importance for statistical inference and prediction: The
adaptive tree structure allows analysis of unordered data. The adaptive treelet func-
tions lead to results that reflect the internal localized structure of the data, and that
are stable to noise. In particular, when the data contain subsets of co-varying vari-
ables, the computed basis is sparse, with the dominant basis functions effectively
serving as indicator functions of the hidden groups. For more complex structure, as
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illustrated on real data sets, our method returns “softer,” continuous-valued loading
functions. In classification problems, the treelet functions with the most discrimi-
nant power often compute differences between groups of variables.

The organization of the paper is as follows: In Section 2 we describe the treelet
algorithm. In Section 3 we examine its theoretical properties. The analysis includes
the general large-sample properties of treelets, as well as a specific covariance
model with block structure. In Section 4 we discuss the performance of the treelet
method on a linear mixture error-in-variable model and give a few illustrative ex-
amples of its use in data representation and regression. Finally, in Section 5 we
apply our method to classification of hyperspectral data, internet advertisements,
and gene expression arrays.

A preliminary version of this paper was presented at AISTATS-07 [Lee and
Nadler (2007)].

2. The treelet transform. In many modern data sets the data are not only
high-dimensional but also redundant with many variables related to each other.
Hierarchical clustering algorithms [Jain, Murty and Flynn (1999), Xu and Wunsch
(2005)] are often used for the organization and grouping of the variables of such
data sets. These methods offer an easily interpretable description of the data struc-
ture in terms of a dendrogram, and only require the user to specify a measure of
similarity between groups of observations or variables. So called agglomerative hi-
erarchical methods start at the bottom of the tree and, at each level, merge the two
groups with highest inter-group similarity into one larger cluster. The novelty of
the proposed treelet algorithm is in constructing not only clusters or groupings of
variables, but also functions on the data. More specifically, we construct a multi-
scale orthonormal basis on a hierarchical tree. As in standard multi-resolution
analysis [Mallat (1998)], the treelet algorithm provides a set of “scaling functions”
defined on nested subspaces V0 ⊃ V1 ⊃ · · · ⊃ VL, and a set of orthogonal “de-
tail functions” defined on residual spaces {W�}L�=1, where V� ⊕ W� = V�−1. The
treelet decomposition scheme represents a multi-resolution transform, but techni-
cally speaking, not a wavelet transform. (In terms of the tiling of “time-frequency”
space, the method is more similar to local cosine transforms, which divide the
time axis in intervals of varying sizes.) The details of the treelet algorithm are in
Section 2.1.

In this paper we measure the similarity Mij between two variables si and sj
with the correlation coefficient

ρij = �ij√
�ii�jj

,(1)

where �ij = E[(si − Esi)(sj − Esj )] is the usual covariance. Other information-
theoretic or graph-theoretic similarity measures are also possible. For some ap-
plications, one may want to use absolute values of correlation coefficients, or a
weighted sum of covariances and correlations as in Mij = |ρij | + λ|�ij |, where
the parameter λ is a nonnegative number.
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2.1. The algorithm: Jacobi rotations on pairs of similar variables. The treelet
algorithm is inspired by the classical Jacobi method for computing eigenvalues of
a matrix [Golub and van Loan (1996)]. There are also some similarities with the
Grand Tour [Asimov (1985)], a visualization tool for viewing multidimensional
data through a sequence of orthogonal projections. The main difference from Ja-
cobi’s method—and the reason why the treelet transform, in general, returns an
orthonormal basis different from standard PCA—is that treelets are constructed on
a hierarchical tree.

The idea is simple. At each level of the tree, we group together the most simi-
lar variables and replace them by a coarse-grained “sum variable” and a residual
“difference variable.” The new variables are computed by a local PCA (or Jacobi
rotation) in two dimensions. Unlike Jacobi’s original method, difference variables
are stored, and only sum variables are processed at higher levels of the tree. Hence,
the multi-resolution analysis (MRA) interpretation. The details of the algorithm are
as follows:

• At level � = 0 (the bottom of the tree), each observation or “signal” x is rep-
resented by the original variables x(0) = [s0,1, . . . , s0,p]T , where s0,k = xk . As-
sociate to these coordinates, the Dirac basis, B0 = [φ0,1, φ0,2, . . . , φ0,p], where
B0 is the p × p identity matrix. Compute the sample covariance and similarity
matrices �̂(0) and M̂(0). Initialize the set of “sum variables,” S = {1,2, . . . , p}.

• Repeat for � = 1, . . . ,L:

1. Find the two most similar sum variables according to the similarity ma-
trix M̂(�−1). Let

(α,β) = arg max
i,j∈S

M̂
(�−1)
ij ,(2)

where i < j , and maximization is only over pairs of sum variables that be-
long to the set S. As in standard wavelet analysis, difference variables (de-
fined in step 3) are not processed.

2. Perform a local PCA on this pair. Find a Jacobi rotation matrix

J (α,β, θ�) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · c · · · −s · · · 0
...

...
. . .

...
...

0 · · · s · · · c · · · 0
...

...
...

. . .
...

0 · · · 0 · · · 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,(3)

where c = cos(θ�) and s = sin(θ�), that decorrelates xα and xβ ; more specif-

ically, find a rotation angle θ� such that |θ�| ≤ π/4 and �̂
(�)
αβ = �̂

(�)
βα = 0,

where �̂(�) = JT �̂(�−1)J . This transformation corresponds to a change of
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basis B� = B�−1J , and new coordinates x(�) = JT x(�−1). Update the simi-
larity matrix M̂(�) accordingly.

3. Multi-resolution analysis. For ease of notation, assume that �̂
(�)
αα ≥ �̂

(�)
ββ

after the Jacobi rotation, where the indices α and β correspond to the first and
second principal components, respectively. Define the sum and difference
variables at level � as s� = x

(�)
α and d� = x

(�)
β . Similarly, define the scaling

and detail functions φ� and ψ� as columns α and β of the basis matrix B�.
Remove the difference variable from the set of sum variables, S = S \ {β}.
At level �, we have the orthonormal treelet decomposition

x =
p−�∑
i=1

s�,iφ�,i +
�∑

i=1

diψi,(4)

where the new set of scaling vectors {φ�,i}p−�
i=1 is the union of the vector

φ� and the scaling vectors {φ�−1,j }j 	=α,β from the previous level, and the

new coarse-grained sum variables {s�,i}p−�
i=1 are the projections of the original

data onto these vectors. As in standard multi-resolution analysis, the first
sum is the coarse-grained representation of the signal, while the second sum
captures the residuals at different scales.

The output of the algorithm can be summarized in terms of a hierarchical
tree with a height L ≤ p − 1 and an ordered set of rotations and pairs of in-
dices, {(θ�, α�, β�)}L�=1. Figure 1 (left) shows an example of a treelet construc-
tion for a “signal” of length p = 5, with the data representations x(�) at the
different levels of the tree shown on the right. The s-components (projections
in the main principal directions) represent coarse-grained “sums.” We associate

FIG. 1. (Left) A toy example of a hierarchical tree for data of dimension p = 5. At � = 0, the
signal is represented by the original p variables. At each successive level � = 1,2, . . . , p − 1, the
two most similar sum variables are combined and replaced by the sum and difference variables s�, d�

corresponding to the first and second local principal components. (Right) Signal representation x(�)

at different levels. The s- and d-coordinates represent projections along scaling and detail functions
in a multi-scale treelet decomposition. Each such representation is associated with an orthogonal
basis in R

p that captures the local eigenstructure of the data.
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these variables to the nodes in the cluster tree. Similarly, the d-components (pro-
jections in the orthogonal directions) represent “differences” between node rep-
resentations at two consecutive levels in the tree. For example, in the figure
d1ψ1 = (s0,1φ0,1 + s0,2φ0,2) − s1φ1,1.

We now briefly consider the complexity of the treelet algorithm on a general
data set with n observations and p variables. For a naive implementation with an
exhaustive search for the optimal pair (α,β) in Equation 2, the overall complexity
is m+O(Lp2) operations, where m = O(min(np2,pn2)) is the cost of computing
the sample covariance matrix by singular value decomposition, and L is the height
of the tree. However, by storing the similarity matrices �̂(0) and M̂(0) and keeping
track of their local changes, the complexity can be further reduced to m + O(Lp).
In other words, the computational cost is comparable to hierarchical clustering
algorithms.

2.2. Selecting the height L of the tree and a “best K-basis.” The default choice
of the treelet transform is a maximum height tree with L = p − 1; see examples
in Sections 5.1 and 5.3. This choice leads to a fully parameter-free decomposi-
tion of the data and is also faithful to the idea of a multi-resolution analysis. For
more complexity, one can alternatively also choose any of the orthonormal (ON)
bases at levels � < p − 1 of the tree. The data are then represented by coarse-
grained sum variables for a set of clusters in the tree, and difference variables that
describe the finer details. In principle, any of the standard techniques in hierar-
chical clustering can be used in deciding when to stop “merging” clusters (e.g.,
use a preset threshold value for the similarity measure, or use hypothesis test-
ing for homogeneity of clusters, etc.). In this work we propose a rather different
method that is inspired by the best basis paradigm [Coifman and Wickerhauser
(1992), Saito and Coifman (1995)] in wavelet signal processing. This approach
directly addresses the question of how well one can capture information in the
data.

Consider IID data x1, . . . ,xn, where xi ∈ R
p is a p-dimensional random vector.

Denote the candidate ON bases by B0, . . . ,Bp−1, where B� is the basis at level � in
the tree. Suppose now that we are interested in finding the “best” K-dimensional
treelet representation for data representation and compression, where the dimen-
sion K < p has been determined in advance. It then makes sense to use a scor-
ing criterion that measures the percentage of explained variance for the chosen
coordinates. Thus, we propose the following greedy scoring and selection ap-
proach:

For a given orthonormal basis B = (w1, . . . ,wp), assign a normalized energy
score E to each vector wi according to

E(wi) = E{|wi · x|2}
E{‖x‖2} .(5)
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The corresponding sample estimate is Ê(w) =
∑n

j=1 |wi ·xj |2∑n
j=1 ‖xj‖2 . Sort the vectors ac-

cording to decreasing energy, w(1), . . . ,w(p), and define the score �K of the basis
B by summing the K largest terms, that is, let �K(B) ≡∑K

i=1 E(wi). The best
K-basis is the treelet basis with the highest score

BL = arg max
B� : 0≤�≤p−1

�K(B�).(6)

It is the basis that best compresses the data with only K components. In case of
degeneracies, we choose the coordinate system with the smallest �. Furthermore,
to estimate the score �K for a particular data set, we use cross-validation (CV);
that is, the treelets are constructed using subsets of the original data set and the
score is computed on independent test sets to avoid overfitting. Both theoretical
calculations (Section 3.2) and simulations (Section 4.1) indicate that an energy-
based measure is useful for detecting natural groupings of variables in data. Many
alternative measures (e.g., Fisher’s discriminant score, classification error rates,
entropy, and other sparsity measures) can also be used. For the classification prob-
lem in Section 5.1, for example, we define a discriminant score that measures how
well a coordinate separates data from different classes.

3. Theory.

3.1. Large sample properties of the treelet transform. In this section we ex-
amine the large sample properties of treelets. We introduce a more general defini-
tion of consistency that takes into account the fact that the treelet operator (based
on correlation coefficients) is multi-valued, and study the method under the stated
conditions. We also describe a bootstrap algorithm for quantifying the stability of
the algorithm in practical applications. The details are as follows.

First some notation and definitions: Let T (�) = J T �J denote the covari-
ance matrix after one step of the treelet algorithm when starting with covariance
matrix �. Let T �(�) denote the covariance matrix after � steps of the treelet
algorithm. Thus, T � = T ◦ · · · ◦ T corresponds to T applied � times. Define
‖A‖∞ = maxj,k |Ajk| and let

Tn(�, δn) = ⋃
‖�−�‖∞≤δn

T (�).(7)

Define T 1
n (�, δn) = Tn(�, δn), and

T �
n (�, δn) = ⋃

�∈T �−1
n

T (�), � ≥ 2.(8)

Let �̂n denote the sample covariance matrix. We make the following assump-
tions:
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(A1) Assume that x has finite variance and satisfies one of the following three
assumptions: (a) each xj is bounded or (b) x is multivariate normal or (c) there
exist M and s such that E(|xjxk|q) ≤ q!Mq−2s/2 for all q ≥ 2.
(A2) The dimension pn satisfies pn ≤ nc for some c > 0.

THEOREM 1. Suppose that (A1) and (A2) hold. Let δn = K
√

logn/n, where
K > 2c. Then, as n,pn → ∞,

P
(
T �(�̂n) ∈ T �

n (�, δn), � = 1, . . . , pn

)→ 1.(9)

Some discussion is in order. The result says that T �(�̂n) is not too far from
T �(�) for some � close to �. It would perhaps be more satisfying to have a
result that says that ‖T �(�) − T �(�̂)‖∞ converges to 0. This would be possible
if one used covariances to measure similarity, but not in the case of correlation
coefficients.

For example, it is easy to construct a covariance matrix � with the following
properties:

1. ρ12 is the largest off-diagonal correlation,
2. ρ34 is nearly equal to ρ12,
3. the 2 × 2 submatrix of � corresponding to x1 and x2 is very different than the

2 × 2 submatrix of � corresponding to x3 and x4.

In this case there is a nontrivial probability that ρ̂34 > ρ̂12 due to sample fluctua-
tions. Therefore T (�) performs a rotation on the first two coordinates, while T (�̂)

performs a rotation on the third and fourth coordinates. Since the two correspond-
ing submatrices are quite different, the two rotations will be quite different. Hence,
T (�) can be quite different from T (�̂). This does not pose any problem since in-
ferring T (�) is not the goal. Under the stated conditions, we would consider both
T (�) and T (�̂) to be reasonable transformations. We examine the details and
include the proof of Theorem 1 in Appendix A.1.

Because T (�1) and T (�2) can be quite different even when the matrices �1
and �2 are close, it might be of interest to study the stability of T (�̂n). This can
be done using the bootstrap. Construct B bootstrap replications of the data and
corresponding sample covariance matrices �̂∗

n,1, . . . , �̂
∗
n,B . Let δn = J−1

n (1 − α),

where Jn is the empirical distribution function of {‖�̂∗
n,b − �̂n‖∞, b = 1, . . . ,B}

and α is the confidence level. If F has finite fourth moments and p is fixed, then it
follows from Corollary 1 of Beran and Srivastava (1985) that

lim
n→∞PF (� ∈ Cn) = 1 − α,

where Cn = {� :‖� − �̂n‖∞ ≤ δn}. Let

An = {T (�) :� ∈ Cn}.
It follows that P(T (�) ∈ An) → 1 −α. The set An can be approximated by apply-
ing T to all �̂∗

n,b for which ‖�̂∗
n,b − �̂n‖∞ < δn. In Section 4.1 (Figure 3) we use

the bootstrap method to estimate confidence sets for treelets.
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3.2. Treelets on covariance matrices with block structures.

3.2.1. An exact analysis in the limit n → ∞. Many real life data sets, includ-
ing gene arrays, consumer data sets, and word-documents, display covariance ma-
trices with approximate block structures. The treelet transform is especially well
suited for representing and analyzing such data—even for noisy data and small
sample sizes.

Here we show that treelets provide a sparse representation when covariance
matrices have inherent block structures, and that the loading functions themselves
contain information about the inherent groupings. We consider an ideal situation
where variables within the same group are collinear, and variables from differ-
ent groups are weakly correlated. All calculations are exact and computed in the
limit of the sample size n → ∞. An analysis of convergence rates later appears in
Section 3.2.2.

We begin by analyzing treelets on p random variables that are indistinguishable
with respect to their second-order statistics. We show that the treelet algorithm
returns scaling functions that are constant on groups of indistinguishable variables.
In particular, the scaling function on the full set of variables in a block is a constant
function. Effectively, this function serves as an indicator function of a (sometimes
hidden) set of similar variables in data. These results, as well as the follow-up main
results in Theorem 2 and Corollary 1, are due to the fully adaptive nature of the
treelet algorithm—a property that sets treelets apart from methods that use fixed
wavelets on a dendrogram [Murtagh (2007)], or adaptive basis functions on fixed
trees [Coifman and Saito (1996)]; see Remark 2 for a concrete example.

LEMMA 1. Assume that x = (x1, x2, . . . , xp)T is a random vector with dis-
tribution F , mean 0, and covariance matrix � = σ 2

1 1p×p , where 1p×p denotes a
p × p matrix with all entries equal to 1. Then, at any level 1 ≤ � ≤ p − 1 of the
tree, the treelet operator T � (defined in Section 3.1) returns (for the population
covariance matrix �) an orthogonal decomposition

T �(�) =
p−�∑
i=1

s�,iφ�,i +
�∑

i=1

diψi,(10)

with sum variables s�,i = 1√|A�,i |
∑

j∈A�,i
xj and scaling functions φ�,i = 1√|A�,i | ×

Is�,i , which are defined on disjoint index subsets A�,i ⊆ {1, . . . , p} (i = 1, . . . , p −
�) with lengths |A�,i | and

∑p−�
i=1 |A�,i | = p. The expansion coefficients have vari-

ances V{s�,i} = |A�,i |σ 2
1 , and V{di} = 0. In particular, for � = p − 1,

T p−1(�) = sφ +
p−1∑
i=1

diψi,(11)

where s = 1√
p
(x1 + · · · + xp) and φ = 1√

p
[1 . . .1]T .
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REMARK 1. Uncorrelated additive noise in (x1, x2, . . . , xp) adds a diagonal
perturbation to the 2 × 2 covariance matrices �(�), which are computed at each
level in the tree [see (35)]. Such noise may affect the order in which variables are
grouped, but the asymptotic results of the lemma remain the same.

REMARK 2. The treelet algorithm is robust to noise because it computes
data-driven rotations on variables. On the other hand, methods that use fixed
transformations on pre-computed trees are often highly sensitive to noise, yield-
ing inconsistent results. Consider, for example, a set of four statistically indis-
tinguishable variables {x1, x2, x3, x4}, and compare treelets to a Haar wavelet
transform on a data-driven dendrogram [Murtagh (2004)]. The two methods re-
turn the same results if the variables are merged in the order {{x1, x2}, {x3, x4}};
that is, s = 1

2(x1 + x2 + x3 + x4) and φ = 1
2 [1,1,1,1]T . Now, a different real-

ization of the noise may lead to the order {{{x1, x2}, x4}, x3}. A fixed rotation
angle of π/4 (as in Haar wavelets) would then return the sum variable sHaar =

1√
2
( 1√

2
( 1√

2
(x1 +x2)+x4)+x3) and scaling function φHaar = [ 1

2
√

2
, 1

2
√

2
, 1√

2
, 1

2 ]T .

Next we consider data where the covariance matrix is a K × K block matrix
with white noise added to the original variables. The following main result states
that, if variables from different blocks are weakly correlated and the noise level
is relatively small, then the K maximum variance scaling functions are constant
on each block (see Figure 2 in Section 4 for an example). We make this precise
by giving a sufficient condition [equation (13)] in terms of the noise level, and
within-block and between-block correlations of the original data. For illustrative
purposes, we have reordered the variables. A p × p identity matrix is denoted by
Ip , and a pi × pj matrix with all entries equal to 1 is denoted by 1pi×pj

.

THEOREM 2. Assume that x = (x1, x2, . . . , xp)T is a random vector with dis-
tribution F , mean 0 and covariance matrix � = C + σ 2Ip , where σ 2 represents
the variance of white noise in each variable and

C =

⎛
⎜⎜⎜⎝

C11 C12 . . . C1K

C12 C22 . . . C2K
...

...
. . .

...

C1K C2K . . . CKK

⎞
⎟⎟⎟⎠(12)

is a K ×K block matrix with “within-block” covariance matrices Ckk = σ 2
k 1pk×pk

(k = 1, . . . ,K) and “between-block” covariance matrices Cij = σij 1pi×pj
(i, j =

1, . . . ,K ; i 	= j ). If

max
1≤i,j≤K

(
σij

σiσj

)
<

1√
1 + 3 max(δ2, δ4)

,(13)
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where δ = σ
mink σk

, then the treelet decomposition at level � = p − K has the form

T p−K(�) =
K∑

k=1

skφk +
p−K∑
i=1

diψi,(14)

where sk = 1√
pk

∑
j∈Bk

xj , φk = 1√
pk

IBk
, and Bk represents the set of indices

of variables in block k (k = 1, . . . ,K). The expansion coefficients have means
E{sk} = E{di} = 0, and variances V{sk} = pkσ

2
k + σ 2 and V{di} = O(σ 2), for

i = 1, . . . , p − K .

Note that if the conditions of the theorem are satisfied, then all treelets (both
scaling and difference functions) associated with levels � > p −K are constant on
groups of similar variables. In particular, for a full decomposition at the maximum
level � = p −1 of the tree we have the following key result, which follows directly
from Theorem 2:

COROLLARY 1. Assume that the conditions in Theorem 2 are satisfied. A full
treelet decomposition then gives T p−1(�) = sφ +∑p−1

i=1 diψi, where the scaling
function φ and the K −1 detail functions ψp−K+1, . . . ,ψp−1 are constant on each
of the K blocks. The coefficients s and dp−K+1, . . . , dp−1 reflect between-block
structures, as opposed to the coefficients d1, . . . , dp−K which only reflect noise in
the data with variances V{di} = O(σ 2) for i = 1, . . . , p − K .

The last result is interesting. It indicates a parameter-free way of finding K ,
the number of blocks, namely, by studying the energy distribution of a full treelet
decomposition. Furthermore, the treelet transform can uncover the block structure
even if it is hidden amidst a large number of background noise variables (see Fig-
ure 3 for a simulation with finite sample size).

REMARK 3. Both Theorem 2 and Corollary 1 can be directly generalized to
include p0 uncorrelated noise variables, so that x = (x1, . . . , xp−p0, xp−p0+1, . . . ,

xp)T , where E(xi) = 0 and E(xixj ) = 0 for i > p − p0 and j 	= i. For example, if
equation (13) is satisfied, then the treelet decomposition at level � = p − p0 is

T p−p0(�) =
K∑

k=1

skφk +
p−p0−K∑

i=1

diψi + (0, . . . ,0, xp−p0+1, . . . , xp)T .

Furthermore, note that according to equation (41) in the Appendix A.3, within-
block correlations are smallest (“worst-case scenario”) when singletons are
merged. Thus, the treelet transform is a stabilizing algorithm; once a few cor-
rect coarse-grained variables have been computed, it has the effect of denoising
the data.
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3.2.2. Convergence rates. The aim of this section is to give a rough estimate
of the sample size required for treelets to discover the inherent structures of data.
For covariance matrices with block structures, we show that treelets find the correct
groupings of variables if the sample size n � O(logp), where p is the dimension
of the data. This is a significant result, as standard PCA—on the other hand—
is consistent if and only if p/n → 0 [Johnstone and Lu (2008)], that is, when
n � O(p). The result is also comparable to that in Bickel and Levina (2008) for
regularization of sparse nearly diagonal covariance matrices. One main difference
is that their paper assumes an a priori known ordered set of variables in which the
covariance matrix is sparse, whereas treelets find such an ordering and coordinate
system as part of the algorithm. The argument for treelets and a block covariance
model goes as follows.

Assume that there are K blocks in the population covariance matrix �. Define
AL,n as the event that the K maximum variance treelets, constructed at level L =
p−K of the tree, for a data set with n observations, are supported only on variables
from the same block. In other words, let AL,n represent the ideal case where the
treelet transform finds the exact groupings of variables. Let E� denote the event
that at level � of the tree, the largest between-block sample correlation is less than
the smallest within-block sample correlation,

E� = {max ρ̂
(�)
B < min ρ̂

(�)
W

}
.

According to equations (31)–(32), the corresponding population correlations

maxρ
(�)
B < ρ1 ≡ max

1≤i,j≤K

(
σij

σiσj

)
, minρ

(�)
W > ρ2 ≡ 1√

1 + 3 max(δ2, δ4)
,

where δ = σ
mink σk

, for all �. Thus, a sufficient condition for E� is that {max |ρ̂(�)
B −

ρ
(�)
B | < t} ∩ {max |ρ̂(�)

W − ρ
(�)
W | < t} , where t = (ρ2 − ρ1)/2 > 0. We have that

P(AL,n) ≥ P

( ⋂
0≤�<L

E�

)

≥ P

( ⋂
0≤�<L

{
max

∣∣ρ̂(�)
B − ρ

(�)
B

∣∣< t
}∩ {max

∣∣ρ̂(�)
W − ρ

(�)
W

∣∣< t
})

.

If (A1) holds, then it follows from Lemma 3 that

P(AC
L,n) ≤ ∑

0≤�<L

(
P
(
max

∣∣ρ̂(�)
B − ρ

(�)
B

∣∣> t
)+ P

(
max

∣∣ρ̂(�)
W − ρ

(�)
W

∣∣> t
))

≤ Lc1p
2e−nc2t

2

for positive constants c1, c2. Thus, the requirement P(AC
L,n) < α is satisfied if the

sample size

n ≥ 1

c2t2 log
(

Lc1p
2

α

)
.
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From the large-sample properties of treelets (Section 3.1), it follows that treelets
are consistent if n � O(logp).

4. Treelets and a linear error-in-variables mixture model. In this section
we study a simple error-in-variables linear mixture model (factor model) which,
under some conditions, gives rise to covariance matrices with block structures.
Under this model, we compare treelets with PCA and variable selection methods.
An advantage of introducing a concrete generative model is that we can easily
relate our results to the underlying structures or components of real data; for ex-
ample, different chemical substances in spectroscopy data, genes from the same
pathway in microarray data, etc.

In light of this, consider a linear mixture model with K components and additive
noise. Each multivariate observation x ∈ R

p has the form

x =
K∑

j=1

uj vj + σz.(15)

The components or “factors” uj are random (but not necessarily independent) vari-
ables with variances σ 2

j . The “loading vectors” vj are fixed, but typically unknown
linearly independent vectors. In the last term, σ represents the noise level, and
z ∼ Np(0, I ) is a p-dimensional random vector.

In the unsupervised setting, we are given a training set {xi}ni=1 sampled from
equation (15). Unsupervised learning tasks include, for example, inference on the
number of components K , and on the underlying vectors vj . In the supervised
setting, we consider a data set {xi , yi}ni=1, where the response value y of an obser-
vation x is a linear combination of the variables uj with a random noise term ε,

y =
K∑

j=1

αjuj + ε.(16)

The standard supervised learning task in regression and classification is prediction
of y for new data x, given a training set {xi , yi}ni=1.

Linear mixture models are common in many fields, including spectroscopy and
gene expression analysis. In spectroscopy equation (15) is known as Beer’s law,
where x is the logarithmic absorbance spectrum of a chemical substance measured
at p wavelengths, uj are the concentrations of constituents with pure absorbance
spectra vj , and the response y is typically one of the components, y = ui . In gene
data x is the measured expression level of p genes, uj are intrinsic activities of
various pathways, and each vector vj represents the set of genes in a pathway.
The quantity y is typically some measure of severity of a disease, such as time
until recurrence of cancer. A linear relation between y and the values of uj , as in
equation (16), is commonly assumed.
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4.1. Treelets and a linear mixture model in the unsupervised setting. Consider
data {xi}ni=1 from the model in equation (15). Here we analyze an illustrative ex-
ample with K = 3 components and loading vectors vk = I (Bk), where I is the in-
dicator function, and Bk ⊂ {1,2, . . . , p} are sets of variables with sizes pk = |Bk|
(k = 1,2,3). A more general analysis is possible but may not provide more insight.

The unsupervised task is to uncover the internal structure of the linear mix-
ture model from data, for example, to infer the unknown structure of the vec-
tors vk , including the sizes pk of the sets Bk . The difficulty of this problem de-
pends, among other things, on possible correlations between the random variables
uj , the variances of the components uj , and interferences (overlap) between the
loading vectors vk . We present three examples with increasing difficulty. Standard
methods, such as principal component analysis, succeed only in the simplest case
(Example 1), whereas more sophisticated methods, such as sparse PCA (elastic
nets), sometimes require oracle information to correctly fit tuning parameters in
the model. The treelet transform seems to perform well in all three cases. More-
over, the results are easy to explain by computing the covariance matrix of the
data.

EXAMPLE 1 (Uncorrelated factors and nonoverlapping loading vectors). The
simplest case is when the random variables uj are all uncorrelated for j = 1,2,3,
and the loading vectors vj are nonoverlapping. The population covariance matrix
of x is then given by � = C + σ 2Ip , where the noise-free matrix

C =

⎛
⎜⎜⎝

C11 0 0 0
0 C22 0 0
0 0 C33 0
0 0 0 0

⎞
⎟⎟⎠(17)

is a 4 × 4 block matrix with the first three blocks Ckk = σ 2
k 1pk×pk

(k = 1,2,3),
and the last diagonal block having all entries equal to zero.

Assume that σk � σ for k = 1,2,3. This is a specific example of a spiked co-
variance model [Johnstone (2001)] the three components corresponding to distinct
large eigenvalues or “spikes” of a model with background noise. As n → ∞ with
p fixed, PCA recovers the hidden vectors v1, v2, and v3, since these three vectors
exactly coincide with the principal eigenvectors of �. A treelet transform with a
height L determined by cross-validation and a normalized energy criterion returns
the same results—which is consistent with Section 3.2 (Theorem 2 and Corol-
lary 1).

The difference between PCA and treelets becomes obvious in the “small n,
large p regime.” In the joint limit p,n → ∞, standard PCA computes consistent
estimators of the vectors vj (in the presence of noise) if and only if p(n)/n →
0 [Johnstone and Lu (2008)]. For an analysis of PCA for finite p,n, see, for exam-
ple, Nadler (2007). As described in Section 3.2.2, treelets require asymptotically
far fewer observations with the condition for consistency being logp(n)/n → 0.
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EXAMPLE 2 (Correlated factors and nonoverlapping loading vectors). If the
random variables uj are correlated, treelets are far better than PCA at inferring the
underlying localized structure of the data—even asymptotically. Again, this is easy
to explain and quantify by studying the data covariance structure. For example,
assume that the loading vectors v1, v2, and v3 are nonoverlapping, but that the
corresponding factors are dependent according to

u1 ∼ N(0, σ 2
1 ), u2 ∼ N(0, σ 2

2 ), u3 = c1u1 + c2u2.(18)

The covariance matrix is then given by � = C + σ 2Ip , where

C =

⎛
⎜⎜⎝

C11 0 C13 0
0 C22 C23 0

C13 C23 C33 0
0 0 0 0

⎞
⎟⎟⎠(19)

with Ckk = σ 2
k 1pk×pk

(note that σ 2
3 = c2

1σ
2
1 + c2

2σ
2
2 ), C13 = c1σ

2
1 1p1×p3 , and

C23 = c2σ
2
2 1p2×p3 . Due to the correlations between uj , the loading vectors of the

block model no longer coincide with the principal eigenvectors, and it is difficult
to extract them with PCA.

We illustrate this problem by the example in Zou, Hastie and Tibshirani (2006).
Specifically, let

v1 = [
B1︷ ︸︸ ︷

1 1 1 1

B2︷ ︸︸ ︷
0 0 0 0

B3︷︸︸︷
0 0 ]T ,

v2 = [0 0 0 0 1 1 1 1 0 0 ]T ,(20)

v3 = [0 0 0 0 0 0 0 0 1 1 ]T ,

where there are p = 10 variables total, and the sets Bj are disjoint with p1 = p2 =
4,p3 = 2 variables, respectively. Let σ 2

1 = 290, σ 2
2 = 300, c1 = −0.3, c2 = 0.925,

and σ = 1. The corresponding variance σ 2
3 of u3 is 282.8, and the covariances of

the off-diagonal blocks are σ13 = −87 and σ23 = 277.5.
The first three PCA vectors for a training set of 1000 samples are shown in

Figure 2 (left). It is difficult to infer the underlying vectors vi from these results,
as ideally, we would detect that, for example, the variables (x5, x6, x7, x8) are all
related and extract the latent vector v2 from only these variables. Simply thresh-
olding the loadings and discarding small values also fails to achieve this goal [Zou,
Hastie and Tibshirani (2006)]. The example illustrates the limitations of a global
approach even with an infinite number of observations. In Zou, Hastie and Tibshi-
rani (2006) the authors show by simulation that a combined L1 and L2-penalized
least squares method, which they call sparse PCA or elastic nets, correctly identi-
fies the sets of important variables if given “oracle information” on the number of
variables p1,p2,p3 in the different blocks. Treelets are similar in spirit to elastic
nets as both methods tend to group highly correlated variables together. In this ex-
ample the treelet algorithm is able to find both K , the number of components in
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FIG. 2. In Example 2 PCA fails to find the important variables in the three-component mixture
model, as the computed eigenvectors (left) are sensitive to correlations between different components.
On the other hand, the three maximum energy treelets (right) uncover the underlying data structures.

the mixture model, and the hidden loading vectors vi—without any a priori knowl-
edge or parameter tuning. Figure 2 (right) shows results from a treelet simulation
with a large sample size (n = 1000) and a height L = 7 of the tree, determined by
cross-validation (CV) and an energy criterion. The three maximum energy basis
vectors correspond exactly to the hidden loading vectors in equation (20).

EXAMPLE 3 (Uncorrelated factors and overlapping loading vectors). Finally,
we study a challenging example where the first two loading vectors v1 and v2 are
overlapping, the sample size n is small, and the background noise level is high. Let
{B1, . . . ,B4} be disjoint subsets of {1, . . . , p}, and let

v1 = I (B1) + I (B2), v2 = I (B2) + I (B3), v3 = I (B4),(21)

where I (Bk) as before represents the indicator function for subset k (k = 1, . . . ,4).
The population covariance matrix is then given by � = C +σ 2Ip , where the noise-
less matrix has the general form

C =

⎛
⎜⎜⎜⎜⎝

C11 C12 0 0 0
C12 C22 C23 0 0
0 C23 C33 0 0
0 0 0 C44 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠ ,(22)

with diagonal blocks C11 = σ 2
1 1p1×p1 , C22 = (σ 2

1 + σ 2
2 )1p2×p2 , C33 = σ 2

2 1p3×p3 ,
C44 = σ 2

3 1p4×p4 , and off-diagonal blocks C12 = σ 2
1 1p1×p2 and C23 = σ 2

2 1p2×p3 .
Consider a numerical example with n = 100 observations, p = 500 variables, and
noise level σ = 0.5. We choose the same form for the components u1, u2, u3 as
in [Bair et al. (2006)], but associate the first two components with overlapping
loading vectors v1 and v2. Specifically, the components are given by u1 = ±0.5
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with equal probability, u2 = I (U2 < 0.4), and u3 = I (U3 < 0.3), where I (x)

is the indicator of x, and Uj are all independent uniform random variables in
[0,1]. The corresponding variances are σ 2

1 = 0.25, σ 2
2 = 0.24, and σ 2

3 = 0.21.
As for the blocks Bk , we consider B1 = {1, . . . ,10},B2 = {11, . . . ,50},B3 =
{51, . . . ,100}, and B4 = {201, . . . ,400}.

Inference in this case is challenging for several different reasons. The sam-
ple size n < p, the loading vectors v1 and v2 are overlapping in the region
B2 = {11, . . . ,50}, and the signal-to-noise ratio is low with the variance σ 2 of the
noise essentially being of the same size as the variances σ 2

j of uj . Furthermore, the
condition in equation (13) is not satisfied even for the population covariance ma-
trix. Despite these difficulties, the treelet algorithm is remarkably stable, returning
results that by and large correctly identify the internal structures of the data. The
details are summarized below.

Figure 3 (top center) shows the energy score of the best K-basis at different
levels of the tree. We used 5-fold cross-validation; that is, we generated a single
data set of n = 100 observations, but in each of the 5 computations the treelets
were constructed on a subset of 80 observations, with 20 observations left out
for the energy score computation. The five curves as well as their average clearly

FIG. 3. Top left: The vectors v1 (blue), v2 (green), v3 (red) in Example 3. Top center: The “score”
or total energy of K = 3 maximum variance treelets computed at different levels of the tree with
5-fold cross-validation; dotted lines represent the five different simulations and the solid line the
average score. Top right: Energy distribution of the treelet basis for the full data set at an “optimal”
height L = 300. Bottom left: The four treelets with highest energy. Bottom right: 95% confidence
bands by bootstrap for the two dominant treelets.
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indicate a “knee” at the level L = 300. This is consistent with our expectations
that the treelet algorithm mainly merges noise variables at levels L ≥ |⋃k Bk|.
For a tree with “optimum” height L = 300, as indicated by the CV results, we
then constructed a treelet basis on the full data set. Figure 3 (top right) shows the
energy of these treelets sorted according to descending energy score. The results
indicate that we have two dominant treelets, while the remaining treelets have an
energy that is either slightly higher or of the same order as the variance of the
noise. In Figure 3 (bottom left) we plot the loadings of the four highest energy
treelets. “Treelet 1” (red) is approximately constant on the set B4 (the support of
v3), “Treelet 2” (blue) is approximately piecewise constant on blocks B1, B2, and
B3 (the support of v1 and v2), while the low-energy degenerate treelets 3 (green)
and 4 (magenta) seem to take differences between variables in the sets B1, B2,
and B3. Finally, we computed 95% confidence bands of the treelets using 1000
bootstrap samples and the method described in Section 3.1. Figure 3 (bottom right)
indicate, that the treelet results for the two maximum energy treelets are rather
stable despite the small sample size and the low signal-to-noise ratio. Most of the
time the first treelet selects variables from B4, and most of the time the second
treelet selects variables from B2 and either B1 or B3 or both sets. The low-energy
treelets seem to pick up differences between blocks B1, B2, and B3, but the exact
order in which they select the variables vary from simulation to simulation. As
described in the next section, for the purpose of regression, the main point is that
the linear span of the first few highest energy treelets is a good approximation of
the span of the unknown loading vectors, Span{v1, . . . ,vK}.

4.2. The treelet transform as a feature selection scheme prior to regression.
Knowing some of the basic properties of treelets, we now examine a typical re-
gression or classification problem with data {xi , yi}ni=1 given by equations (15)
and (16). As the data x are noisy, this is an error-in-variables type problem. Given
a training set, the goal is to construct a linear function f : Rp → R to predict
ŷ = f (x) = r · x + b for a new observation x.

Before considering the performance of treelets and other algorithms in this set-
ting, we review some of the properties of the optimal mean-squared error (MSE)
predictor. For simplicity, we consider the case y = u1 in equation (16), and denote
by P1 : Rp → R

p the projection operator onto the space spanned by the vectors
{v2, . . . ,vK}. In this setting the unbiased MSE-optimal estimator has a regression
vector r = vy/‖vy‖2, where vy = v1 − P1v1. The vector vy is the part of the load-
ing vector v1 that is unique to the response variable y = u1, since the projection of
v1 onto the span of the loading vectors of the other components (u2, . . . , uK ) has
been subtracted. For example, in the case of only two components, we have that

vy = v1 − v1 · v2

‖v2‖2 v2.(23)
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The vector vy plays a central role in chemometrics, where it is known as the net
analyte signal [Lorber, Faber and Kowalski (1997), Nadler and Coifman (2005a)].
Using this vector for regression yields a mean squared error of prediction

E{(ŷ − y)2} = σ 2

‖vy‖2 .(24)

We remark that, similar to shrinkage in point estimation, there exist biased esti-
mators with smaller MSE [Gruber (1998), Nadler and Coifman (2005b)], but for
large signal to noise ratios (σ/‖vy‖ � 1), such shrinkage is negligible.

Many regression methods [including multivariate least squares, partial least
squares (PLS), principal component regression (PCR), etc.] attempt to compute
the optimal regression vector or net analyte signal (NAS). It can be shown that in
the limit n → ∞, both PLS and PCR are MSE-optimal. However, in some appli-
cations, the number of variables is much larger than the number of observations
(p � n). The question at hand is then, what the effect of small sample size is
on these methods, when combined with noisy high-dimensional data. Both PLS
and PCR first perform a global dimensionality reduction from p to k variables,
and then apply least squares linear regression on these k features. As described in
Nadler and Coifman (2005b), their main limitation is that in the presence of noisy
high dimensional data, the computed projections are noisy themselves. For fixed
p and n, a Taylor expansion of the regression coefficient as a function of the noise
level σ shows that these methods have an averaged prediction error

E{(ŷ − y)2} � σ 2

‖vy‖2

[
1 + c1

n
+ c2 σ 2

μ‖vy‖2

p2

n2

(
1 + o(1)

)]
.(25)

In equation (25) the coefficients c1 and c2 are both O(1) constants, independent of
σ , p, and n. The quantity μ depends on the specific algorithm used, and is a mea-
sure of the variances and covariances of the different components uj , and of the
amount of interferences of their loading vectors vj . The key point of this analysis
is that when p � n, the last term in (25) can dominate and lead to large prediction
errors. This emphasizes the limitations of global dimensionality reduction meth-
ods, and the need for robust feature selection and dimensionality reduction of the
data prior to application of learning algorithms such as PCR and PLS.

Other common approaches to dimensionality reduction in this setting are vari-
able selection schemes, specifically those that choose a small subset of variables
based on their individual correlation with the response y. To analyze their per-
formance, we consider a more general dimensionality reduction transformation
T : Rp → R

k defined by k orthonormal projections wi ∈ R
p ,

T x = (x · w1,x · w2, . . . ,x · wk).(26)

This family of transformations includes variable subset selection methods, where
each projection wj selects one of the original variables. It also includes wavelet
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methods and our proposed treelet transform. Since an orthonormal projection of
a Gaussian noise vector in R

p is a Gaussian vector in R
k , and a relation similar

to equation (15) holds between T x and y, formula (25) still holds, but with the
original dimension p replaced by k, and with vy replaced by its projection T vy ,

E{(ŷ − y)2} � σ 2

‖T vy‖2

[
1 + c1

n
+ c2 σ 2

μ‖T vy‖2

k2

n2

(
1 + o(1)

)]
.(27)

Equation (27) indicates that a dimensionality reduction scheme should ideally pre-
serve the net analyte signal of y (‖T vy‖ � ‖vy‖), while at the same time represent
the data by as few features as possible (k � p).

The main problem of PCA is that it optimally fits the noisy data, yielding for the
noise-free response ‖T vy‖/‖vy‖ � (1 − cσ 2p2/n2). The main limitation of vari-
able subset selection schemes is that in complex settings with overlapping vectors
vj , such schemes may at best yield ‖T vy‖/‖vy‖ < 1. Due to high dimension-
ality, the latter methods may still achieve better prediction errors than methods
that use all the original variables. However, with a more general variable transfor-
mation/compression method, one could potentially better capture the NAS. If the
data x are a priori known to be smooth continuous signals, a reasonable choice is
wavelet compression, which is known to be asymptotically optimal. In the case of
unstructured data, we propose to use treelets.

To illustrate these points, we revisit Example 3 in Section 4.1, and compare
treelets to the variable subset selection scheme of Bair et al. (2006) for PLS, as well
as global PLS on all variables. As before, we consider a relatively small training
set of size n = 100 but here we include 1500 additional noise variables, so that
p = 2000 � n. We furthermore assume that the response is given by y = 2u1. The
vectors vj are shown in Figure 3 (top left). The two vectors v1 and v2 overlap, but
v1 (associated with the response) and v3 are orthogonal. Therefore, the response
vector unique to y (the net analyte signal) is given by equation (23); see Figure 4
(left).

To compute vy , all the 100 first coordinates (the set B1 ∪ B2 ∪ B3) are needed.
However, a feature selection scheme that chooses variables based on their cor-
relation to the response will pick the first 10 coordinates and then the next 40,
that is, only variables in the set B1 ∪ B2 (the support of the loading vector v1).
Variables numbered 51 to 100 (set B3), although critical for prediction of the re-
sponse y = 2u1, are uncorrelated with it (as u1 and u2 are uncorrelated) and are
thus not chosen, even in the limit n → ∞. In contrast, even in the presence of
moderate noise and a relatively small sample size of n = 100, the treelet algorithm
correctly joins together the subsets of variables 1–10, 11–50, 51–100 and 201–400
(i.e., variables in the sets B1,B2,B3,B4). The rest of the variables, which con-
tain only noise, are combined only at much higher levels in the treelet algorithm,
as they are asymptotically uncorrelated. Because of this, using only coarse-grained
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FIG. 4. Left: The vector vy (only the first 150 coordinates are shown as the rest are zero). Right:
Averaged prediction errors of 20 simulation results for the methods, from top to bottom: PLS on all
variables (blue), supervised PLS with variable selection (purple), PLS on treelet features (green),
and PLS on projections onto the true vectors vi (red).

sum variables in the treelet transform yields near optimal prediction errors. In Fig-
ure 4 (right) we plot the mean squared error of prediction (MSEP) for 20 differ-
ent simulations with prediction error computed on an independent test set of 500
observations. The different methods are PLS on all variables (MSEP = 0.17), su-
pervised PLS with variable selection as in Bair et al. (2006) (MSEP = 0.09), PLS
on the 50 treelet features with highest variance, with the level of the treelet deter-
mined by leave-one-out cross validation (MSEP = 0.035), and finally PLS on the
projection of the noisy data onto the true vectors vi , assuming they were known
(MSEP = 0.030). In all cases, the optimal number of PLS projections (latent vari-
ables) is also determined by leave-one-out cross validation. Due to the high dimen-
sionality of the data, choosing a subset of the original variables performs better
than full-variable methods. However, choosing a subset of treelet features per-
forms even better, yielding an almost optimal prediction error (σ 2/‖vy‖2 ≈ 0.03);
compare the green and red curves in the figure.

5. Examples.

5.1. Hyperspectral analysis and classification of biomedical tissue. To illus-
trate how our method works for data with highly complex dependencies between
variables, we use an example from hyperspectral imaging of biomedical tissue.
Here we analyze a hyperspectral image of an H&E stained microarray section of
normal human colon tissue [see Angeletti et al. (2005) for details on the data col-
lection method]. This is an ordered data set of moderate to high dimension. One
scan of the tissue specimen returns a 1024 × 1280 data cube or “hyperspectral im-
age,” where each pixel location contains spectral measurements at 28 known fre-
quencies between 420 nm and 690 nm. These spectra give information about the
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chemical structure of the tissue. There is, however, redundancy as well as noise in
the spectra. The challenge is to find the right coordinate system for this relatively
high-dimensional space, and extract coordinates (features) that contain the most
useful information about the chemicals and substances of interest.

We consider the problem of tissue discrimination using only spectral informa-
tion. With the help of a pathologist, we manually label about 60000 pixels of the
image as belonging to three different tissue types (colon cell nuclei, cytoplasm of
colon cells, cytoplasm of goblet cells). Figure 5 shows the locations of the labeled
pixels, and their tissue-specific transmission spectra. Figure 6 shows an example of
how treelets can learn the covariance structure for colon cell nuclei (Tissue type 3).
The method learns both the tree structure and a basis through a series of Jacobi ro-
tations (see top right panel). By construction, the basis vectors are localized and
supported on nested clusters in the tree (see the bottom left and top left panels).
As a comparison, we have also computed the PCA eigenvectors. The latter vectors
are global and involve all the original variables (see bottom right panel).

In a similar way, we apply the treelet transform to the training data in a 5-fold
cross-validation test on the full data set with labeled spectra: Using a (maximum
height) treelet decomposition, we construct a basis for the training set in each fold.
To each basis vector, we assign a discriminant score that quantifies how well it
distinguishes spectra from two different tissue types. The total score for vector wi

FIG. 5. Left: Microscopic image of a cross-section of colon tissue. At each pixel position, the spec-
tral characteristics of the tissue is measured at 28 different wavelengths (λ = 420,430, . . . ,690 nm).
For our analysis, we manually label about 60000 individual spectra: Red marks the locations of
spectra of “Tissue type 1” (nuclei), green “Tissue type 2” (cytoplasm of colon cells), and blue
corresponds to samples of “Tissue type 3” (cytoplasm of goblet cells). Right: Spectral signatures
of the 3 different tissue types. Each plot shows the sample mean and standard deviation of the
log-transmission spectra.
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FIG. 6. Top left: Learned tree structure for nuclei (Tissue Type 1). In the dendrogram the height of
each U-shaped line represents the distance dij = (1−ρij )/2, where ρij is the correlation coefficient
for the two variables combined. The leaf nodes represent the p = 28 original spectral bands. Top
right: 2D scatter plots of the data at levels � = 1, . . . , p − 1. Each plot shows 500 randomly chosen
data points; the lines indicate the first principal directions and rotations relative to the variables that
are combined. (Note that a Haar wavelet corresponds to a fixed π/4 rotation.) Bottom left: Learned
orthonormal basis. Each row represents a localized vector, supported on a cluster in the hierarchical
tree. Bottom right: Basis computed by a global eigenvector analysis (PCA).

is defined as

Ê(wi ) =
K∑

j=1

K∑
k=1;k 	=j

H
(
p̂

(j)
i ||p̂(k)

i

)
,(28)

where K = 3 is the number of classes, and H(p̂
(j)
i ||p̂(k)

i ) is the Kullback–Leibler

distance between the estimated marginal density functions p̂
(j)
i and p̂

(k)
i of class-j

and class-k signals, respectively, in the direction of wi . We project our training
data onto the K (< 28) most discriminant directions, and build a Gaussian classi-
fier in this reduced feature space. This classifier is finally used to label the test data
and to estimate the misclassification error rate. The left panel in Figure 7 shows the
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FIG. 7. Left: Average misclassification rate (in a 5-fold cross-validation test) as a function of the
number of top discriminant features retained, for a treelet decomposition (rings), and for Haar-Walsh
wavelet packets (crosses). The constant level around 2.5% indicates the performance of a classifier
directly applied to the 28 components in the original coordinate system. Right: The top 3 local
discriminant basis (LDB) vectors in a treelet decomposition of the full data set.

average CV error rate as a function of the number of local discriminant features.
(As a comparison, we show similar results for Haar–Walsh wavelet packets and
a local discriminant basis [Saito, Coifman, Geshwind and Warner (2002)] which
use the same discriminant score to search through a library of orthonormal wavelet
bases.) The straight line represents the error rate if we apply a Gaussian classifier
directly to the 28 components in the original coordinate system. The key point is
that, with 3 treelet features, we get the same performance as if we used all the orig-
inal data. Using more treelet features yields an even lower misclassification rate.
(Because of the large sample size, the curse of dimensionality is not noticeable
for < 15 features.) These results indicate that a treelet representation has advan-
tages beyond the obvious benefits of a dimensionality reduction. We are effectively
“denoising” the data by changing our coordinate system and discarding irrelevant
coordinates. The right panel in Figure 7 shows the three most discriminant treelet
vectors for the full data set. These vectors resemble continuous-valued versions
of the indicator functions in Section 3.2. Projecting onto one of these vectors has
the effect of first taking a weighted average of adjacent spectral bands, and then
computing a difference between averages of bands in different regions of the spec-
trum. (In Section 5.3, Figure 10, we will see another example that the loadings
themselves contain information about structure in data.)

5.2. A classification example with an internet advertisement data set. Here we
study an internet advertisement data set from the UCI ML repository [Kushmerick
(1999)]. This is an example of an unordered data set of high dimension where
many variables are collinear. After removal of the first three continuous variables,
this set contains 1555 binary variables and 3279 observations, labeled as belonging
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TABLE 1
Classification test errors for an internet advertisement data set

Classifier Full data set Reduced data set Final representation with
(1555 variables) (760 variables) coarse-grained treelet features

LDA 5.5% 5.1% 4.5%
1-NN 4.0% 4.0% 3.7%

to one of two classes. The goal is to predict whether a new observation (an image
in an internet page) is an internet advertisement or not, given values of its 1555
variables (various features of the image).

With standard classification algorithms, one can easily obtain a generalization
error of about 5%. The first column in Table 1, labeled “full data set,” shows the
misclassification rate for linear discriminant analysis (LDA) (with the additional
assumption of a diagonal covariance matrix), and for 1-nearest neighbor (1-NN)
classification. The average is taken over 25 randomly selected training and test
sets, with 3100 and 179 observations each.

The internet-ad data set has several distinctive properties that are clearly re-
vealed by an analysis with treelets: First of all, several of the original variables
are exactly linearly related. As the data are binary (−1 or 1), these variables are
either identical or of opposite values. In fact, one can reduce the dimensionality of
the data from 1555 to 760 without loss of information. The second column in the
table labeled “reduced data set” shows the decrease in error rate after a lossless
compression where we have simply removed redundant variables. Furthermore,
of these remaining 760 variables, many are highly related, with subsets of sim-
ilar variables. The treelet algorithm automatically identifies these groups, as the
algorithm reorders the variables during the basis computation, encoding the infor-
mation in such a group with a coarse-grained sum variable and difference variables
for the residuals. Figure 8, left, shows the correlation matrix of the first 200 out of
760 variables in the order they are given. To the right, we see the corresponding
matrix, after sorting all variables according to the order in which they are com-
bined by the treelet algorithm. Note how the (previously hidden) block structures
“pop out.”

A more detailed analysis of the reduced data set with 760 variables shows that
there are more than 200 distinct pairs of variables with a correlation coefficient
larger than 0.95. Not surprisingly, as shown in the right column of Table 1, treelets
can further increase the predictive performance on this data set, yielding results
competitive with other feature selection methods in the literature [Zhao and Liu
(2007)]. All results in Table 1 are averaged over 25 different simulations. As in
Section 4.2, the results are achieved at a level L < p − 1, by projecting the data
onto the treelet scaling functions, that is, by only using coarse-grained sum vari-
ables. The height L of the tree is found by 10-fold cross-validation and a minimum
prediction error criterion.
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FIG. 8. Left: The correlation matrix of the first 200 out of 760 variables in the order they were
originally given. Right: The corresponding matrix, after sorting all variables according to the order
in which they are combined by the treelet algorithm.

5.3. Classification and analysis of DNA microarray data. We conclude with
an application to DNA microarray data. In the analysis of gene expression, many
methods first identify groups of highly correlated variables and then choose a
few representative genes for each group (a so-called gene signature). The treelet
method also identifies subsets of genes that exhibit similar expression patterns, but
in contrast, replaces each such localized group by a linear combination that en-
codes the information from all variables in that group. As illustrated in previous
examples in the paper, such a representation typically regularizes the data which
improves the performance of regression and classification algorithms.

Another advantage is that the treelet method yields a multi-scale data repre-
sentation well-suited for the application. The benefits of hierarchical clustering in
exploring and visualizing microarray data are well recognized in the field [Eisen
et al. (1998), Tibshirani et al. (1999)]. It is, for example, known that a hierarchical
clustering (or dendrogram) of genes can sometimes reveal interesting clusters of
genes worth further investigation. Similarly, a dendrogram of samples may identify
cases with similar medical conditions. The treelet algorithm automatically yields
such a re-arrangement and interpretation of the data. It also provides an orthogonal
basis for data representation and compression.

We illustrate our method on the leukemia data set of Golub et al. (1999). This
data monitor expression levels for 7129 genes and 72 patients, suffering from acute
lymphoblastic leukemia (ALL, 47 cases) or acute myeloid leukemia (AML, 25
cases). The data are known to have a low intrinsic dimensionality, with groups of
genes having similar expression patterns across samples (cell lines). The full data
set is available at http://www.genome.wi.mit.edu/MPR, and includes a training set
of 38 samples and a test set of 34 samples.

Prior to analysis, we use a standard two-sample t-test to select genes that are
differentially expressed in the two leukemia types. Using the training data, we

http://www.genome.wi.mit.edu/MPR
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perform a full (i.e., maximum height) treelet decomposition of the p = 1000 most
“significant” genes. We sort the treelets according to their energy content [equation
(5)] on the training samples, and project the test data onto the K treelets with the
highest energy score. The reduced data representation of each sample (from p

genes to K features) is finally used to classify the samples into the two leukemia
types, ALL or AML. We examine two different classification schemes:

In the first case, we apply a linear Gaussian classifier (LDA). As in Section 5.2,
the treelet transform serves as a feature extraction and dimensionality reduction
tool prior to classification. The appropriate value of the dimension K is chosen
by 10-fold cross-validation (CV). We divide the training set at random into 10
approximately equal-size parts, perform a separate t-test in each fold, and choose
the K-value that leads to the smallest CV classification error (Figure 9, left).

In the second case, we classify the data using a novel two-way treelet decompo-
sition scheme: we first compute treelets on the genes, then we compute treelets on
the samples. As before, each sample (patient) is represented by K treelet features
instead of the p original genes. The dimension K is chosen by cross-validation on
the training set. However, instead of applying a standard classifier, we construct
treelets on the samples using the new patient profiles. The two main branches of
the associated dendrogram divide the samples into two classes, which are labeled
using the training data and a majority vote. Such a two-way decomposition—of
both genes and samples—leads to classification results competitive with other al-
gorithms; see Figure 9, right, and Table 2 for a comparison with benchmark re-
sults in Zou and Hastie (2005). Moreover, the proposed method returns orthogonal
functions with continuous-valued information on hierarchical groupings of genes
or samples.

FIG. 9. Number of misclassified cases as a function of the number of treelet features. Left: LDA
on treelet features; ten-fold cross-validation gives the lowest misclassification rate (2/38) for K = 3
treelets; the test error rate is then 3/34. Right: Two-way decomposition of both genes and samples;
the lowest CV misclassification rate (0/38) is for K = 4; the test error rate is then 1/34.
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TABLE 2
Leukemia misclassification rates; courtesy of Zou and Hastie (2005)

Method Ten-fold CV error Test error

Golub et al. (1999) 3/38 4/34
Support vector machines (Guyon et al., 2002) 2/38 1/34
Nearest shrunken centroids (Tibshirani et al., 2002) 2/38 2/34
Penalized logistic regression (Zhu and Hastie, 2004) 2/38 1/34
Elastic nets (Zou and Hastie, 2005) 3/38 0/34
LDA on treelet features 2/38 3/34
Two-way treelet decomposition 0/38 1/34

Figure 10 (left) displays the original microarray data, with rows (genes) and
columns (samples) ordered according to a hierarchical two-way clustering with
treelets. The graph to the right shows the three maximum energy treelets on ordered
samples. Note that the loadings are small for the two cases that are misclassified.
In particular, “Treelet 2” is a good “continuous-valued” indicator function of the
true classes. The results for the treelets on genes are similar. The key point is that
whenever there is a group of highly correlated variables (genes or samples), the
algorithm tends to choose a coarse-grained variable for that whole group (see, e.g.,
“Treelet 3” in the figure). The weighting is adaptive, with loadings that reflect the
complex internal data structure.

FIG. 10. Left, the gene expression data with rows (genes) and columns (samples) ordered accord-
ing to a hierarchical two-way clustering with treelets. (For display purposes, the expression levels for
each gene are here normalized across the samples to zero mean and unit standard deviation.) Right,
the three maximum energy treelets on ordered samples. The loadings of the highest-energy treelet
(red) is a good predictor of the true labels (blue circles).
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6. Conclusions. In the paper we described a variety of situations where the
treelet transform outperforms PCA and some common variable selection methods.
The method is especially useful as a feature extraction and regularization method
in situations where variables are collinear and/or the data is noisy with the number
of variables, p, far exceeding the number of observations, n. The algorithm is fully
adaptive, and returns both a hierarchical tree and loading functions that reflect the
internal localized structure of the data. We showed that, for a covariance model
with block structure, the maximum energy treelets converge to a solution where
they are constant on each set of indistinguishable variables. Furthermore, the con-
vergence rate of treelets is considerably faster than PCA, with the required sample
size for consistency being n � O(logp) instead of n � O(p). Finally, we demon-
strated the applicability of treelets on several real data sets with highly complex
dependencies of variables.

APPENDIX

A.1. Proof of Theorem 1. Let x = (x1, . . . , xp)T be a random vector with dis-
tribution F and covariance matrix � = �F . Let ρij denote the correlation between
xi and xj . Let x1, . . . ,xn be a sample from F , and denote the sample covariance
matrix and sample correlations by �̂ and ρ̂ij . Let Sp denote all p × p covariance
matrices. Let

Fn(b) =
{
F :�F is positive definite, min

1≤j≤pn

σj ≥ b

}
.

Any of the assumptions (A1a), (A1b), or (A1c) are sufficient to guarantee cer-
tain exponential inequalities.

LEMMA A.1. There exist positive constants c1, c2 such that, for every ε > 0,

P(‖�̂jk − �jk‖∞ > ε) ≤ c1p
2
ne

−nc2ε
2
.(29)

Hence,

‖�̂jk − �jk‖∞ = OP

(√
logn

n

)
.

PROOF. Under (A1), (29) is an immediate consequence of standard expo-
nential inequalities and the union bound. The last statement follows by setting
εn = K

√
logn/n for sufficiently large K and applying (A2). �

LEMMA A.2. Assume either that (i) x is multivariate normal or that (ii)
max1≤j≤p |xj | ≤ B for some finite B and minj σj ≥ b > 0. Then, there exist posi-
tive constants c3, c4 such that, for every ε > 0,

P

(
max
jk

|ρ̂jk − ρjk| > ε

)
≤ c3p

2e−nc4ε
2
.(30)
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PROOF. Under normality, this follows from Kalisch and Bühlmann (2007).
Under (ii) note that h(σ1, σ2, σ12) = σ12/(σ1σ2) satisfies

|h(σ1, σ2, σ12) − h(σ ′
1, σ

′
2, σ

′
12)| ≤

3 max{|σ1 − σ ′
1|, |σ2 − σ ′

2|, |σ12 − σ ′
12|}

b2 .

The result then follows from the previous lemma. �

Let Jθ denote the 2 × 2 rotation matrix of angle θ . Let

J� =
(

cos(θ(�)) − sin(θ(�))

sin(θ(�)) cos(θ(�))

)
(31)

denote the Jacobi rotation where

θ(�) = 1

2
tan−1

(
2�12

�11 − �22

)
.(32)

LEMMA A.3. Let F be a bivariate distribution with 2 × 2 covariance ma-
trix �. Let J = J� and Ĵ = J

�̂
. Then,

P(‖Ĵ T �̂Ĵ − J T �J‖∞ > ε) ≤ c5p
2e−nc6ε

2
.(33)

PROOF. Note that θ(�) a bounded, uniformly continuous function of �. Sim-
ilarly, the entries of Jθ are also bounded, uniformly continuous functions of �.
The result then follows from (29). �

For any pair (α,β), let θ(α,β) denote the angle of the principal component
rotation and let J (α,β, θ) denote the Jacobi rotation on (α,β). Define the selection
operator

� :Sp → {(j, k) : 1 ≤ j < k ≤ p}
by �(�) = (α,β) where ρα,β = arg maxij ρij . In case of ties, define �(�) to be
the set of pairs (α,β) at which the maximum occurs. Hence, � is multivalued on a
subset S∗

p ⊂ Sp of measure 0. The one-step treelet operator T :Sp → Sp is defined
by

T (�) = {J T �J :J = J (α,β, θ(α,β)), (α,β) ∈ �(�)}.(34)

Formally, T is a multivalued map because of potential ties.

PROOF OF THEOREM 1. The proof is immediate from the lemmas. For the
matrices �̂n, we have that ‖�̂n − �‖∞ < δn except on a set Ac

n of probability
tending to 0 at rate O(n−(K−2c)). Hence, on the set An = {�̂n :‖�̂∗

n,b − �̂n‖∞ <

δn}, we have that T (�̂n) ∈ Tn(�). The same holds at each step. �
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A.2. Proof of Lemma 1. Consider first the case where at each level in the
tree the treelet operator combines a coarse-grained variable with a singleton ac-
cording to {{x1, x2}, x3}, . . . . Let s0 = x1. For � = 1, the 2 × 2 covariance sub-
matrix �(0) ≡ V{(s0, x2)} = σ 2

1

(
1 1
1 1

)
. A principal component analysis of �(0)

gives θ1 = π/4 and s1 = 1√
2
(x1 + x2). By induction, for 1 ≤ � ≤ p − 1, �(�−1) ≡

V{(s�−1, x�+1)} = σ 2
1

(
�

√
�√

� 1

)
. PCA on �(�−1) gives the (unconstrained) rotation

angle θ� = arctan
√

�, and the new sum variable s� = 1√
�+1

∑�+1
i=1 xi .

More generally, at level � of the tree, the treelet operator combines two sum
variables u = 1√

m

∑
i∈Au

xi and v = 1√
n

∑
j∈Av

xj , where Au,Av ⊆ {1, . . . , p}
denote two disjoint index subsets with m = |Au| and n = |Av| number of terms,
respectively. The 2 × 2 covariance submatrix

�(�−1) ≡ V{(u, v)} = σ 2
1

(
m

√
mn√

mn n

)
.(35)

The correlation coefficient ρuv = 1 for any pair (u, v); thus, the treelet operator T�

is a multivariate function of �. A principal component analysis of �(�−1) gives the
eigenvalues λ1 = m + n,λ2 = 0, and eigenvectors e1 = 1√

m+n
(
√

m,
√

n)T , e2 =
1√

m+n
(−√

n,
√

m)T . The rotation angle

θ� = arctan
√

n

m
.(36)

The new sum and difference variables at level � are given by

s� = 1√
m + n

(+√
mu + √

nv
)

= 1√
m + n

∑
i∈{Au,Av}

xi,

(37)

d� = 1√
m + n

(−√
nu + √

mv
)

= 1√
m + n

(
−
√

n

m

∑
i∈Au

xi +
√

m

n

∑
j∈Av

xj

)
.

The results of the lemma follow.

A.3. Proof of Theorem 2. Assume that variables from different blocks have
not been merged for levels �′ < �, where 1 ≤ � ≤ p. From Lemma 1, we then
know that any two sum variables at the preceding level �−1 have the general form
u = 1√

m

∑
i∈Au

xi and v = 1√
n

∑
j∈Av

xj , where Au and Av are two disjoint index
subsets with m = |Au| and n = |Av| number of terms, respectively. Let δk = σ/σk .
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If Au ⊆ Bi and Av ⊆ Bj , where i 	= j , that is, the subsets belong to different
blocks, then

�(�−1) = V{(u, v)} =
(

mσ 2
i

√
mnσij√

mnσij nσ 2
j

)
+ σ 2I.(38)

The corresponding “between-block” correlation coefficient

ρ
(�−1)
B = σij

σiσj

√
mn√

m + δ2
i

√
n + δ2

j

≤ σij

σiσj

(39)

with equality (“worst-case scenario”) if and only if σ = 0.
If Au,Av ⊂ Bk , that is, the subsets belong to the same block, then

�(�−1) = V{(u, v)} = σ 2
k

(
m

√
mn√

mn n

)
+ σ 2I.(40)

The corresponding “within-block” correlation coefficient

ρ
(�−1)
W = 1√

1 + (m + n)/(mn)δ2
k + (1/(mn))δ4

k
(41)

≥ 1√
1 + 3 max(δ2

k , δ
4
k )

,

with the “worst-case scenario” occurring when m = n = 1, that is, when singletons
are combined. Finally, the main result of the theorem follows from the bounds in
Equations (39) and (41), and the fact that

maxρ
(�−1)
B < minρ

(�−1)
W(42)

for � = 1,2, . . . , p − K is a sufficient condition for not combining variables from
different blocks. If the inequality equation (13) is satisfied, then the coefficients in
the treelet expansion have the general form in equation (37) at any level � of the
tree. With white noise added, the expansion coefficients have variances V{s�} =
(m + n)σ 2

k + σ 2 and V{d�} = σ 2 m2+n2

mn(m+n)
. Furthermore, E{s�} = E{d�} = 0.
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