
Appendix A

A.1 Spectral Decomposition and Euclidean Distances in Diffusion
Space

Here we describe some of the technical details for how a symmetric operator Ã, the stochastic

differential operator A and its adjoint (the Markov operator) A∗ are related, and how these

relations lead to different normalization schemes for the corresponding eigenvectors. (For

ease of notation, we have omitted the subindex ε, since we here consider a fixed ε > 0.)

We also show that the diffusion metric corresponds to a weighted Euclidean distance in the

embedding space induced by the diffusion map.

Suppose that P is a probability measure with a compact support X . Let k : X ×X be a

similarity function that is symmetric, continuous, and positivity-preserving, i.e. k(x, y) > 0

for all x, y ∈ X . For simplicity, we assume in addition that k is positive semi-definite, i.e. for

all bounded functions f on X ,
∫
X

∫
X k(x, y)f(x)f(y)dP (x)dP (y) ≥ 0. Consider two different

normalization schemes of k:

ã(x, y) = k(x,y)√
ρ(x)
√
p(y)

(symmetric)

a(x, y) = k(x,y)
ρ(x)

(stochastic)

where ρ(x) =
∫
k(x, y)dP (y).

Define the symmetric integral operator Ã by

Ãf(x) =

∫
X
ã(x, y)f(y)dP (y).

Under the stated conditions, k(x, y) is an L2-kernel. It follows that Ã is a self-adjoint

compact operator. The eigenvalues {λ`}`≥0 of Ã are real and the associated eigenfunctions

{v`}`≥0 form an orthonormal basis of L2(X ; dP ). According to Mercer’s theorem, we have

the spectral decomposition

ã(x, y) =
∑
`≥0

λ`v`(x)v`(y), (1)

where the series on the right converges uniformly and absolutely to ã(x, y).
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Now consider the integral operator A and its adjoint (the Markov operator) A∗:

Af(x) =
∫
X a(x, y)f(y)dP (y)

A∗f(x) =
∫
X f(y)a(y, x)dP (y),

where 〈Af, g〉L2(X ;dP ) = 〈f, A∗g〉L2(X ;dP ). Let s(x) = ρ(x)/
∫
ρ(y)dP (y). If Ãv` = λ`v`, then

we have the corresponding eigenvalue equations

Aψ` = λ`ψ`, where ψ`(x) = v`(x)/
√
s(x) (2)

A∗ϕ` = λ`ϕ`, where ϕ`(x) = v`(x)
√
s(x). (3)

Moreover, if {v`}`≥0 is an orthonormal basis of L2(X ; dP ), then the sets {ψ`}`≥0 and {ϕ`}`≥0

form orthonormal bases of the weighted L2-spaces L2(X ; sdP ) and L2(X ; dP/s), respectively.

The operator A preserves constant functions, i.e. A1 = 1. One can also show that the matrix

norm ‖Ã‖ = supf∈L2(X ;dP )
‖ eAf‖
‖f‖ = 1. Thus, the eigenvalue λ0 = 1 is the largest eigenvalue of

the operators A and A∗. The corresponding eigenvector of A is ψ0 = 1, and the corresponding

eigenvector of A∗ is ϕ0 = s.

From Eq. 1, it follows that a(x, y) =
∑

`≥0 λ`ψ`(x)ϕ`(y),where ‖ϕ`‖L2(X ;dP/s) = ‖ψ`‖L2(X ;sdP ) =

1 for all ` ≥ 0, and 〈ϕk, ψ`〉L2(X ;dP ) = 0 for k 6= `. More generally, if am(x, y) is the kernel of

the mth iterate Am, where m is a positive integer, then

am(x, y) =
∑
`≥0

λm` ψ`(x)ϕ`(y). (4)

We define a one-parametric family of diffusion distances between points x and z according

to

D2
m(x, z) ≡ ‖am(x, ·)− am(z, ·)‖2L2(X ;dP/s), (5)

where the parameter m determines the scale of the analysis. The diffusion metric measures

the rate of connectivity between points on a data set. It will be small if there are many

paths of lengths less than or equal to 2m between the two points, and it will be large if
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the number of connections is small. One can see this clearly by expanding the expression in

Eq. 5 so that

D2
m(x, z) =

a2m(x, x)

s(x)
+
a2m(z, z)

s(z)
−
(
a2m(x, z)

s(z)
+
a2m(z, x)

s(x)

)
. (6)

The quantity D2
m(x, z) is small when the transition probability densities a2m(x, z) and

a2m(z, x) are large.

Finally, we look for an embedding where Euclidean distances reflect the above diffusion

metric. The biorthogonal decomposition in Eq. 4 can be viewed as an orthogonal expansion

of the functions am(x, ·) with respect to the orthonormal basis {ϕ`}`≥0 of L2(X ; dP/s); the

expansion coefficients are given by {λm` ψ`(x)}`≥0. Hence,

D2
m(x, z) =

∑
`≥0

(λm` ψ`(x)− λm` ψ`(z))2 = ‖Ψm(x)−Ψm(z)‖2,

where Ψm : x 7→ (λm1 ψ1(x), λm2 ψ2(x), . . .) is the diffusion map of the data at time step m.

A.2 Proofs

Proof of Theorem 1. Recall that F is the set of uniformly bounded, three times differen-

tiable functions with uniformly bounded derivatives whose gradients vanish at the boundary.

From Theorem 2 below, we have that

‖At(εn, P̂n)−At‖ = (OP (γn) +O(εn)) · ρ(t)

where γn =
√

log(1/εn)

nε
(d+4)/2
n

. Hence,

‖At(εn, q, P̂n)−At‖ ≤ ‖At(εn, q, P̂n)− At(εn, P̂n)‖+ ‖At(εn, P̂n)−At‖

= ‖
∞∑

`=q+1

λ̂
t/εn
εn,`

Π̂εn,`‖+ (OP (γn) +O(εn)) · ρ(t)

≤
∞∑

`=q+1

λ̂
t/εn
εn,`

+ (OP (γn) +O(εn)) · ρ(t).
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Now we bound the first sum. Note that,

sup
`
|ν̂2
εn,` − ν

2
εn,`| = sup

`

|λ̂εn,` − λεn,`|
εn

≤ ‖Âεn − Aεn‖
εn

= OP (γn).

By a Taylor series expansion, Gεnf = Gf + O(εn) uniformly for f ∈ F . (This is the same

calculation used to compute the bias in kernel regression. See also, Giné and Koltchinskii

(2006) and Singer (2006)). So,

sup
`
|ν2
εn,` − ν

2
` | ≤ ‖Gεn −G‖ = O(εn).

Therefore,

∞∑
`=q+1

λ̂
t/εn
εn,`

=
∞∑

`=q+1

(1− εnν̂2
εn,`)

t/εn

=
∞∑
q+1

exp

{
t

εn
log(1− εnν̂2

εn,`)

}

=
∞∑

`=q+1

exp

{
t

εn
log(1− εn[OP (γn) +O(εn) + ν2

` ])

}

= (1 +OP (γn) +O(εn))
∞∑

`=q+1

e−ν
2
` t.

The result follows.

Proof of Theorem 2. Recall that At(εn, P̂n) = et(
bAεn−I)/εn . From Lemma 1 below,

‖Aε − Âε‖ = α(ε) where α(ε) = OP

(√
log(1/εn)

nε
d/2
n

)
. Hence,

Âε − I
ε

=
Âε − Aε

ε
+
Aε − I
ε

= G +O(ε) + Rem

where ||Rem|| = α(ε)/ε and so

At(ε, P̂n) = Ate
t( bAε−Aε+O(ε2))/ε = At

[
I + t(Âε − Aε +O(ε2))/ε+ o(t(Âε − Aε +O(ε2)))/ε)

]

4



Therefore,

‖At − At(ε, P̂n)‖ = ‖At‖ (OP (α/ε) +O(ε))

≤ (OP (γ) +O(ε))
∞∑
`=1

e−ν
2
` t �

Lemma 1 Let εn → 0 and nε
d/2
n / log(1/εn) → ∞. Then ‖Aε − Âε‖ = αn where αn =

OP

(√
log(1/εn)

nε
d/2
n

)
.

Proof. Uniformly, for all f ∈ F , and all x in the support of P ,

|Aεf(x)− Âεf(x)| ≤ |Aεf(x)− Ãεf(x)|+ |Ãεf(x)− Âεf(x)|

where Ãεf(x) =
∫
âε(x, y)f(y)dP (y). From Giné and Guillou (2002),

sup
x

|p̂ε(x)− pε(x)|
|p̂ε(x)pε(x)|

= OP (αn).

Hence,

|Aεf(x)− Ãεf(x)| ≤ |p̂ε(x)− pε(x)|
|p̂ε(x)pε(x)|

∫
|f(y)|kε(x, y)dP (y)

= OP (αn)

∫
|f(y)|kε(x, y)dP (y)

= OP (αn).

Next, we bound Ãεf(x)− Âεf(x). We have

Ãεf(x)− Âεf(x) =

∫
f(y)âε(x, y)(dP̂n(y)− dP (y))

=
1

p(x) + oP (1)

∫
f(y)kε(x, y)(dP̂n(y)− dP (y)).

Now, expand f(y) = f(x) + rn(y) where rn(y) = (y − x)T∇f(uy) and uy is between y and

x. So,∫
f(y)kε(x, y)(dP̂n(y)−dP (y)) = f(x)

∫
kε(x, y)(dP̂n(y)−dP (y))+

∫
rn(y)kε(x, y)(dP̂n(y)−dP (y)).
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By an application of Talagrand’s inequality to each term, as in Theorem 5.1 of Giné and

Koltchinskii (2006), we have∫
f(y)kε(x, y)(dP̂n(y)− dP (y)) = OP (αn).

Thus, supf∈F ‖Âεf − Aεf‖∞ = OP (αn). This also holds uniformly over {f ∈ F : ‖f‖ = 1}.

Moreover, ‖Âεf−Aεf‖2 ≤ C‖Âεf−Aεf‖∞ for some C since P has compact support. Hence,

sup
f∈F

‖Âεf − Aεf‖2
‖f‖

= sup
f∈F ,‖f‖=1

‖Âεf − Aεf‖2 = OP (αn)�

Proof of Theorem 3. Let An = {|ψ1(X)| ≤ δn}. Then

Acn
⋂{

Ĥ(X) 6= H(X)
}

implies that
{
|ψ̂ε,1(X)− ψ1(X)| > δn

}
.

Also, supx |ψ1(x)− ψε,1(x)| ≤ cεn for some c > 0. Hence,

P
(
Ĥ(X) 6= H(X)

)
= P

(
Ĥ(X) 6= H(X), An

)
+ P

(
Ĥ(X) 6= H(X), Acn

)
≤ P(An) + P

(
Ĥ(X) 6= H(X), Acn

)
≤ Cδαn + P

(
|ψ1(X)− ψ̂ε,1(X)| > δn

)
≤ Cδαn + P

(
(|ψ1(X)− ψε,1(X)|+ |ψε,1(X)− ψ̂ε,1(X)|) > δn

)
≤ Cδαn + P

(
|ψ̂ε,1(X)− ψε,1(X)| > δn − cεn

)
≤ Cδαn +

E‖ψ̂ε,1(X)− ψε,1(X)‖
δn − cεn

≤ Cδαn +OP

(√
log(1/εn)

nε
(d+4)/2
n

)
1

δn − cεn

Set δ = 2cεn and εn = n−2/(4α+d+8) and so P
(
Ĥ(X) 6= H(X)

)
≤ n−

2α
4α+8+d �
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