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Spectral Connectivity Analysis
Ann B. LEE and Larry WASSERMAN

Spectral kernel methods are techniques for mapping data into a coordinate system that efficiently reveals the geometric structure—in
particular, the “connectivity”—of the data. These methods depend on tuning parameters. We analyze the dependence of the method on
these tuning parameters. We focus on one particular technique—diffusion maps—but our analysis can be used for other spectral methods
as well. We identify the key population quantities, we define an appropriate risk function for analyzing the estimators, and we explain how
these methods relate to classical kernel smoothing. We also show that, in some cases, fast rates of convergence are possible even in high
dimensions. The Appendix of the article is available online as supplementary materials.
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1. INTRODUCTION

There has been growing interest in spectral kernel meth-
ods such as spectral clustering (Ng, Jordan, and Weiss 2001,
von Luxburg 2007), Laplacian maps (Belkin and Niyogi 2003),
Hessian maps (Donoho and Grimes 2003), and locally linear
embeddings (Roweis and Saul 2000). The main idea behind
these methods is that the geometry of a dataset can be ana-
lyzed using certain operators and their corresponding eigen-
functions. These eigenfunctions provide a new coordinate sys-
tem that show the data more clearly. In Figure 1, for example,
we have applied spectral kernel methods to text data. In the new
coordinate system, different words from Science News articles
are roughly organized according to their semantic meaning.

Figure 2 shows an application to astronomy data. To the
left, we see an example of a galaxy spectrum (a function that
measures photon flux at more than 3000 different wavelengths)
from the Sloan Digital Sky Survey. To the right, we have com-
puted a low-dimensional embedding of a sample of 2793 such
spectra. The results indicate that by analyzing only a few dom-
inant eigenfunctions of this highly complex dataset, one can
capture the main variability in redshift (a quantity related to the
distance of a galaxy from the observer), although redshift was
not taken into account in the construction of the embedding.

More generally, the central goal of spectral kernel methods
can be described as follows:
Find a transformation Z = �(X) such that the structure of the distribution PZ is
simpler than the structure of the distribution PX while preserving key geometric
properties of PX .

“Simpler” can mean lower dimensional but can be interpreted
much more broadly as we shall see.

These new methods of data transformation are more flexible
than traditional methods such as principal component analysis,
clustering, and kernel smoothing. Applications of these meth-
ods include: manifold learning (Levina and Bickel 2005), fast
internet web searches (Page et al. 1998), semi-supervised learn-
ing for regression and classification (Belkin and Niyogi 2005a),
inference of arbitrarily shaped clusters, etc. The added flexibil-
ity, however, comes at a price: there are tuning parameters, such
as a kernel bandwidth ε, and the dimension q of the embedding
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that need to be chosen and these parameters often interact in a
complicated way. The first step in understanding these tuning
parameters is to identify the population quantity these methods
are effectively estimating, then define an appropriate loss func-
tion.

We restrict our discussion to Laplacian-based methods,
though the analysis generalizes to other spectral kernel meth-
ods. Several authors, including Coifman and Lafon (2006),
Belkin and Niyogi (2005b), Hein, Audibert, and von Luxburg
(2005b), Singer (2006), and Giné and Koltchinskii (2006) have
studied the convergence of the empirical graph Laplacian to the
Laplace–Beltrami operator of a smooth manifold as the sam-
ple size n → ∞ and the kernel bandwidth ε → 0. In all these
studies, the data are assumed to lie exactly on a Riemannian
submanifold in the ambient space R

d .
Here we drop the submanifold assumption and instead con-

sider data that are drawn from some general underlying distrib-
ution P. For the dimension reduction methods to be useful, it is
implicitly assumed that the measure P places most of its prob-
ability on a subset of R

d of small Lebesgue measure. Hence,
our analysis includes but is not restricted to low-dimensional
Riemannian submanifolds and sets of clusters. Recently, von
Luxburg, Belkin, and Bousquet (2008) has taken a similar ap-
proach when studying the consistency of spectral clustering.
For a fixed kernel bandwidth ε and in the limit of the sam-
ple size n → ∞, the authors show that the eigenvectors of the
graph Laplacian converge to the eigenvectors of certain limit
operators. In this paper, we allow ε to go to 0.

The goals of the paper are to:

1. explain how spectral kernel methods relate to classical
kernel smoothing methods

2. identify the key population quantities (At and Dt in Sec-
tions 3 and 4) in Laplacian-based spectral methods and
describe their relation to the Laplace–Beltrami operator
commonly discussed in other work

3. find the appropriate risk in estimation of these quantities
and discuss the problem of choosing the tuning parame-
ters (Section 5).

We analyze a metric formulation of Laplacian-based spec-
tral methods, called diffusion maps. Diffusion maps capture the
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Figure 1. Low-dimensional embedding and grouping of words from Science News articles. The labels denote the representative centers of
each group of words. See Section 6.2 for details. The online version of this figure is in color.

multiscale structure of the data by propagating local neighbor-
hood information through a Markov process. Spectral geome-
try and higher-order connectivity are two new concepts in data
analysis. In the paper, we show how these ideas can be incorpo-
rated into a traditional statistical framework (see, e.g., Interpre-
tation in Section 3), and how this connection extends classical
techniques to a whole range of new applications. We refer to

the family of approaches based on spectral analysis and higher-
order connectivity as Spectral Connectivity Analysis (SCA).

2. REVIEW OF SPECTRAL DIMENSION
REDUCTION METHODS

The goal of dimensionality reduction is to find a function �

that maps our data X from a space X to a new space Z where

Figure 2. Left: Flux versus wavelength for a typical Sloan Digital Sky Survey (SDSS) galaxy spectrum. Right: Embedding of a sample of
2793 SDSS galaxy spectra using the first 3 diffusion map coordinates. The gray scale codes for redshift. (Reproduced from Richards et al.
2009b).
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their description is considered to be simpler. Some of the meth-
ods naturally lead to an eigen-problem. Below we give some
examples.

2.1 Principal Component Analysis and
Multidimensional Scaling

Principal component mapping is a simple and popular
method for data reduction. In principal component analysis
(PCA), one attempts to fit a globally linear model to the
data. If S is a set, define the projection risk R(S) = E‖X −
πSX‖2 where πSX is the projection of X onto S. Finding
arg minS∈C R(S), where C is the set of all q-dimensional planes,
gives a solution that corresponds to the first q eigenvectors of
the covariance matrix of X.

In “principal coordinate analysis” (PCO), the projections
πSx = (z1, . . . , zq) on these eigenvectors are used as coordi-
nates of the data. This method of data transformation is also
known as classical or metric multidimensional scaling (MDS).
The goal here is to find a lower-dimensional embedding of the
data that best preserves pairwise Euclidean distances. Assume
that X and Y are covariates in R

p. One way to measure the dis-
crepancy between the original configuration and its embedding
is to compute

R(�) = E
(
d(X,Y)2 − ‖�(X) − �(Y)‖2)

=
∫ (

d(x, y)2 − ‖�(x) − �(y)‖2)dP(x)dP(y),

where d(x, y)2 = ‖x−y‖2. One can show that amongst all linear
projections � = πS onto q-dimensional subspaces of R

p, this
quantity is minimized when the data are projected onto their
first q principal components (Mardia, Kent, and Bibby 1980).

2.2 Nonlinear Methods

For complex data, a linear approximation may not be ade-
quate. There are a large number of nonlinear data reduction
methods; some of these are direct generalizations of the PCA
projection method. For example, local PCA (Kambhatla and
Leen 1997) partitions the data space into different regions and
fits a hyperplane to the data in each partition. In principal curves
(Hastie and Stuetzle 1989), the goal is to minimize a risk of the
same form as the projection risk R(S) but with S representing
some class of smooth curves or surfaces.

Among nonlinear extensions of PCA and MDS, we also have
kernel PCA (Schölkopf, Smola, and Müller 1998) which ap-
plies PCA to data �(X) in a higher (possibly infinite) dimen-
sional “feature space.” The kernel PCA method never explic-
itly computes the map �, but instead expresses all calcula-
tions in terms of inner products k(x, y) = 〈�(x),�(y)〉 where
the “kernel” k is a symmetric and positive semi-definite func-
tion. Common choices include the Gaussian kernel k(x, y) =
exp(−‖x−y‖2

4ε
) and the polynomial kernel k(x, y) = 〈x, y〉r ,

where r = 1 corresponds to the linear case in Section 2.1. As
shown in Bengio et al. (2004), the low-dimensional embeddings
�(x) used by the eigenmap and spectral clustering methods in
Section 2.2.1 are equivalent to the projections [of �(x) on the
principal axes in feature space] computed by the kernel PCA
method.

In this paper, we study diffusion maps, a particular spectral
embedding technique. Because of the close connection between
MDS, kernel PCA, and eigenmap techniques, our analysis can
be used for other methods a well. Below we start by provid-
ing some background on spectral dimension reduction meth-
ods from a more traditional graph-theoretic perspective. In Sec-
tion 3 we begin our main analysis.

2.2.1 Laplacian Eigenmaps and Other Locality-Preserving
Spectral Methods. The usual strategy in spectral methods is
to construct an adjacency graph on a given dataset and then
find the optimal clustering or encoding of the data that mini-
mizes some empirical locality-preserving objective function on
the graph. We define a graph G = (V,E), where the vertex
set V = {1, . . . ,n} denotes the observations, and the edge set
E represents connections between pairs of observations. Typi-
cally, the graph is associated with a weight matrix K that re-
flects the “edge masses” or strengths of the edge connections.
A common starting point is the Gaussian kernel: Let, for ex-

ample, K(u, v) = exp(−‖xu−xv‖2

4ε
) for all data pairs (xu, xv) with

(u, v) ∈ E, and only include cases where the weights K(u, v) are
above some threshold δ in the definition of the edge set E.

Consider now a one-dimensional map f : V → R that as-
signs a real value to each vertex; we will later generalize
to the multidimensional case. Many spectral embedding tech-
niques are locality preserving; for example, locally linear em-
bedding, Laplacian eigenmaps, Hessian eigenmaps, local tan-
gent space alignment, etc. These methods are special cases of
kernel PCA, and all aim at minimizing distortions of the form
Q(f ) = ∑

v∈V Qv(f ) under the constraints that QM(f ) = 1. Typ-
ically, Qv(f ) is a symmetric positive semi-definite quadratic
form that measures local variations of f around vertex v, and
QM(f ) is a quadratic form that acts as a normalization for f .
For Laplacian eigenmaps, for example, the neighborhood struc-
ture of G is described in terms of the graph Laplacian matrix
L = M − K, where M = diag(ρ1, . . . , ρn) is a diagonal matrix
with ρu = ∑

v K(u, v) for the “node mass” or degree of vertex u.
The goal is to find the map f that minimizes the weighted local
distortion

Q(f ) = f T
Lf =

∑
(u,v)∈E

K(u, v)(f (u) − f (v))2 ≥ 0, (1)

under the constraints that QM(f ) = f t
Mf = ∑

v∈V ρvf (v)2 = 1
and (to avoid the trivial solution of a constant function)
f T

M1 = 0. Minimizing the distortion in (1) forces f (u) and f (v)
to be close if K(u, v) is large. From standard linear algebra it
follows that the optimal embedding is given by the eigenvector
of the generalized eigenvalue problem

Lf = μMf (2)

with the smallest nonzero eigenvalue.
We can easily extend the discussion to higher dimensions.

Let f1, . . . , fq be the q first nontrivial eigenvectors of (2), nor-
malized so that f T

i Mfj = δij, where δij is Kronecker’s delta func-
tion. The map f : V → R

q, where f = (f1, . . . , fq) is the Lapla-
cian eigenmap (Belkin and Niyogi 2003) of G in q dimensions.
It is optimal in the sense that it provides the q-dimensional em-
bedding that minimizes∑

(u,v)∈E

K(u, v)‖f (u) − f (v)‖2 =
q∑

i=1

f T
i Lfi (3)
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in the subspace orthogonal to M1, under the constraints that
f T
i Mfj = δij for i, j = 1, . . . ,q.

If the data points xu lie on a Riemannian manifold M,
and f : M → R is a twice differentiable function, then the
expression in Eq. (1) is the discrete analogue on graphs of∫

M ‖∇Mf ‖2 = − ∫
M(
Mf )f , where ∇M and 
M, respec-

tively, are the gradient and Laplace–Beltrami operators on the
manifold. The solution of arg min‖f‖=1

∫
M ‖∇Mf ‖2 is given by

the eigenvectors of the Laplace–Beltrami operator 
M. To give
a theoretical justification for Laplacian-based spectral methods,
several authors have derived results for the convergence of the
graph Laplacian of a point cloud to the Laplace–Beltrami op-
erator under the manifold assumption; see Belkin and Niyogi
(2005b); Coifman and Lafon (2006); Singer (2006); Giné and
Koltchinskii (2006).

2.2.2 Laplacian-Based Methods With an Explicit Metric.
Diffusion mapping is an MDS technique that belongs to
the family of Laplacian-based spectral methods. The original
scheme was introduced in the thesis work by Lafon (2004) and
in Coifman et al. (2005a, 2005b). See also independent work
by Fouss, Pirotte, and Saerens (2005) for a similar technique
called Euclidean commute time (ECT) maps. In this paper, we
will describe a slightly modified version of diffusion maps that
appeared in (Coifman and Lafon 2006; Lafon and Lee 2006)
(see http://www.stat.cmu.edu/~annlee/software.htm for exam-
ple code in Matlab and R).

The starting point of the diffusion framework is to introduce
a distance metric that reflects the higher-order connectivity of
the data. This is done by defining a diffusion process or random
walk on the data. In a graph approach, nodes of the graph rep-
resent the observations in the data set. Assuming nonnegative
weights K and a degree matrix M, we define a row-stochastic
matrix A = M

−1
K. We then imagine a random walk on the

graph G = (V,E) where A is the transition matrix, and ele-
ment A(u, v) corresponds to the probability of reaching node v
from u in one step. Now if A

m is the mth matrix power of A,
then element A

m(u, v) can be interpreted as the probability of
transition from u to v in m steps. By increasing m, we are
running the Markov chain forward in time, thereby describing
larger scale structures in the data set. Under certain conditions
on K, the Markov chain has a unique stationary distribution
s(v) = ρv/

∑
u∈V ρu.

As in multidimensional scaling, the ultimate goal is to find an
embedding of the data where Euclidean distances reflect simi-
larities between points. In classical MDS, one attempts to pre-
serve the original Euclidean distances d2(u, v) = ‖xu − xv‖2 be-
tween points. In diffusion maps, the goal is to approximate dif-
fusion distances defined by

D2
m(u, v) =

∑
k∈V

(Am(u, k) − A
m(v, k))2

s(k)
.

This quantity captures the higher-order connectivity of the data
at a scale m and is very robust to noise since it integrates
multiple-step, multiple-path connections between points. The
distance D2

m(u, v) is small when A
m(u, v) is large, or when there

are many paths between nodes u and v in the graph. Further-
more, one can show (see Appendix A.1) that the optimal em-
bedding in q dimensions is given by the eigenvectors of the

Markov matrix A. In fact, assuming the kernel matrix K is pos-
itive semi-definite, we have the “diffusion map”

v ∈ V �→
�m(v) = (λm

1 ψ1(v), λ
m
2 ψ2(v), . . . , λ

m
q ψq(v)) ∈ R

q,

where {ψ
}
≥0 are the principal eigenvectors of A and the
eigenvalues λ0 = 1 ≥ λ1 ≥ · · · ≥ 0. This solution is, up to a
rescaling of eigenvectors, the same as the solution of Lapla-
cian eigenmaps and spectral clustering, since Lψ = μMψ if
and only if Aψ = λψ for λ = 1 − μ and L = M − K. The
diffusion framework provides a link between Laplacian-based
spectral methods, MDS and kernel PCA. It can be generalized
to multiscale geometries (Coifman and Maggioni 2006), and
other locality-preserving methods (Coifman and Lafon 2006).

3. DIFFUSION MAPS

Here we study the diffusion map under the assumption that
the data are drawn from a general underlying distribution. By
introducing a Markov chain, the method creates a distribution-
sensitive data transformation.

3.1 A Discrete-Time Markov Chain

Definitions. Suppose that the data X1, . . . ,Xn are drawn
from a distribution P with compact support X ⊂ R

d . We as-
sume P has a density p with respect to Lebesgue measure μ.

Let kε(x, y) = 1
(4πε)d/2 exp(−‖x−y‖2

4ε
) denote the Gaussian ker-

nel (Other kernels can be used. For simplicity, we will focus
on the Gaussian kernel which is also the Green’s function of
the heat equation in R

d .) with bandwidth h = √
2ε. We write

the bandwidth in terms of ε instead of h because ε is more nat-
ural for our purposes. Consider the Markov chain with transi-
tion kernel �ε(x, ·) defined by

�ε(x,A) = P(x → A) =
∫

A kε(x, y)dP(y)

pε(x)
, (4)

where pε(x) = ∫
kε(x, y)dP(y).

Starting at x, this chain moves to points y close to x, giv-
ing preference to points with high density p(y). In a sense, this
chain measures the connectivity of the sample space relative
to p. The stationary distribution Sε is given by

Sε(A) =
∫

A pε(x)dP(x)∫
pε(x)dP(x)

and Sε(A) →
∫

A p(x)dP(x)∫
p(x)dP(x)

as ε → 0.

Define the densities ωε(x, y) = d�ε

dμ
(x, y) = kε(x,y)p(y)

pε(x)
and

aε(x, y) = d�ε

dP
(x, y) = kε(x, y)

pε(x)
.

The diffusion operator Aε—which maps a function f to a new
function Aεf —is defined by

Aεf (x) =
∫

aε(x, y)f (y)dP(y) =
∫

kε(x, y)f (y)dP(y)∫
kε(x, y)dP(y)

. (5)

We normalize the eigenfunctions {ψε,0,ψε,1, . . .} of Aε by∫
ψ2

ε,
(x)sε(x)dP(x) = 1, where sε(x) = pε(x)∫
pε(y)dP(y)

is the den-

sity of the stationary distribution with respect to P. The first

http://www.stat.cmu.edu/~annlee/software.htm
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eigenfunction of the operator Aε is ψε,0(x) = 1 with eigenvalue
λε,0 = 1. In general, the eigenfunctions have the following in-
terpretation: ψε,j is the smoothest function relative to p, sub-
ject to being orthogonal to ψε,i, i < j. The eigenfunctions form
an efficient basis for expressing smoothness, relative to p. If a
distribution has a few well-defined clusters then the first few
eigenfunctions tend to behave like indicator functions (or com-
binations of indicator functions) for those clusters. The rest of
the eigenfunctions provide smooth basis functions within each
cluster. These smooth functions are Fourier-like. Indeed, the
uniform distribution on the circle yields the usual Fourier basis.
Figure 3 shows a density which is a mixture of two Gaussians.
Also shown are the eigenvalues and the first 4 eigenfunctions
which illustrate these features.

Denote the m-step transition measure by �ε,m(x, ·). Let Aε,m
be the corresponding diffusion operator which can be writ-
ten as Aε,mf (x) = ∫

aε,m(x, y)f (y)dP(y) where aε,m(x, y) =
d�ε,m/dP.

Define the empirical operator Âε by

Âεf (x) =
∑n

i=1 kε(x,Xi)f (Xi)∑n
i=1 kε(x,Xi)

=
∫

âε(x, y)f (y)dP̂n(y), (6)

where P̂n denotes the empirical distribution, âε(x, y) = kε(x, y)/
p̂ε(x) and

p̂ε(x) =
∫

kε(x, y)dP̂n(y) = 1

n

n∑
i=1

kε(x,Xi) (7)

is the kernel density estimator. Let Âε,m be the corresponding
m-step operator. Let ψ̂ε,
 denote the eigenvectors of the matrix
Aε where Aε(j, k) = kε(Xj,Xk)/̂pε(Xj). These eigenvectors are
estimates of ψ
 at the observed values X1, . . . ,Xn. The function
ψ
(x) can be estimated at values of x not corresponding to one

Figure 3. A mixture of two Gaussians. Density, eigenvalues, and
first four eigenfunctions. The online version of this figure is in color.

of the Xi’s by kernel smoothing as follows. The eigenfunction-
eigenvalue equation λε,
ψε,
 = Aεψε,
 can be rearranged as

ψε,
(x) = Aεψε,


λε,


=
∫

kε(x, y)ψε,
(y)dP(y)

λε,


∫
kε(x, y)dP(y)

(8)

suggesting the estimate

ψ̂ε,
(x) =
∑

i kε(x,Xi)ψ̂ε,
(Xi)

λ̂ε,


∑
i kε(x,Xi)

(9)

which is known in the applied mathematics literature as the
Nyström approximation.

Interpretation. The diffusion operators are averaging oper-
ators. Equation (5) arises in nonparametric regression. If we are
given regression data Yi = f (Xi) + εi, i = 1, . . . ,n, then the ker-
nel regression estimator of f is

f̂ (x) = (1/n)
∑n

i=1 Yikε(x,Xi)

(1/n)
∑n

i=1 kε(x,Xi)
. (10)

Replacing the sample averages in (10) with their population av-
erages yields (5). One may then wonder: in what way is spectral
smoothing different from traditional nonparametric smoothing?
There are at least three differences:

1. Estimating Aε is an unsupervised problem, that is, there
are no responses Yi.

2. In spectral smoothing, we are interested in Âε,m for m ≥ 1.
The value m = 1 leads to a local analysis of the nearest-
neighbor structure—this part is equivalent to classical
smoothing. Powers m > 1, however, take higher-order
structure into account. See Section 3.3 for the difference
between smoothing by diffusion and smoothing by ε.

3. In spectral methods, smoothing is often not the end goal.
The eigenvalues and eigenvectors of Âε provide informa-
tion on the intrinsic geometry of the data and can be used
to define a new coordinate system for the data.

The concept of connectivity is new in nonparametric sta-
tistics and is perhaps best explained in terms of stochastic
processes. Introduce the forward Markov operator Mεg(x) =∫

X aε(y, x)g(y)dP(y) and its m-step version Mε,m. The first
eigenfunction of Mε is ϕε,0(x) = sε(x), the density of the sta-
tionary distribution. In general, ϕε,
 = sε(x)ψε,
(x). The av-
eraging operator Aε and the Markov operator Mε and (and
hence also the iterates Aε,m and Mε,m) are adjoint under the
inner product 〈f ,g〉 = ∫

X f (x)g(x)dP(x), that is, 〈Aεf ,g〉 =
〈f ,Mεg〉. By comparing the Gaussian kernel and the heat ker-
nel of a continuous-time diffusion process [see equation (3.28)
in Grigor’yan 2006], we identify the time step of the discrete
system as t = mε for small ε.

The Markov operator Mε = A∗
ε maps measures into mea-

sures. That is, let L1
P(X ) = {g : g(y) ≥ 0,

∫
g(y)dP(y) = 1}.

Then g ∈ L1
P(X ) implies that Mε,mg ∈ L1

P(X ). In particular, if ϕ

is the probability density at time t = 0, then Mε,mϕ is the proba-
bility density after m steps. The averaging operator Aε maps ob-
servables into observables. Its action is to compute conditional
expectations. If f ∈ L∞

P (X ) is the test function (observable) at
t = 0, then Aε,mf ∈ L∞

P (X ) is the average of the function after m
steps, that is, at a time comparable to t = mε for a continuous
time system.
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3.2 Continuous Time

Under appropriate regularity conditions, the eigenfunctions
{ψε,
} converge to a set of functions {ψ
} as ε → 0. These limit-
ing eigenfunctions correspond to some operator. In this section
we identify this operator. The key is to consider the Markov
chain with infinitesimal transitions. In physics, local infinitesi-
mal transitions of a system lead to global macroscopic descrip-
tions by integration. Here we use the same tools (infinitesimal
operators, generators, exponential maps, etc.) to extend short-
time transitions to larger times.

Define the operator

Gεf (x) = 1

ε

(∫
X

aε(x, y)f (y)dP(y) − f (x)

)
. (11)

Assume that the limit

Gf = lim
ε→0

Gεf = lim
ε→0

Aεf − f

ε
(12)

exists for all functions f in some appropriately defined space
of functions F . The operator G is known as the infinitesimal
generator. A Taylor expansion shows that

G = −
 + ∇p

p
(13)

for smooth functions where 
 is the Laplacian and ∇ is the
gradient. Indeed, Gεf = −
f + ∇p

p + O(ε) which is precisely
the bias for kernel regression.

Remark 1. In kernel regression smoothing, the term ∇p/p
is considered an undesirable extra bias, called design bias
(Fan 1993). In regression it is removed by using local linear
smoothing which is asymptotically equivalent to replacing the
Gaussian kernel kε with a bias-reducing kernel k∗

ε . In this case,
G = −�.

For 
 > 0 define ν2
ε,
 = 1−λε,


ε
and ν2


 = limε→0 ν2
ε,
. The

eigenvalues and eigenvectors of Gε are −ν2
ε,
 and ψε,
 while

the eigenvalues and eigenvectors of the generator G are −ν2



and ψ
.
Let At = limε→0 Aε,t/ε . From (11) and (12), it follows that

At ≡ lim
ε→0

Aε,t/ε = lim
ε→0

(I + εGε)
t/ε

= lim
ε→0

(I + εG)t/ε = eGt. (14)

The family {At}t≥0 defines a continuous semigroup of opera-
tors (Lasota and Mackey 1994). The notation is summarized in
Table 1.

Table 1. Summary of notation

Operator Eigenfunctions Eigenvalues

Aεf (·) =
∫

kε(·,y)f (y)dP(y)∫
kε(·,y)dP(y)

ψε,
 λε,


G = lim
ε→0

Aε − I

ε
ψ
 −ν2



= lim

ε→0

λε,
 − 1

ε

At = etG =
∞∑


=0

e−ν2

 t�
 ψ
 e−tν2


 = lim
ε→0

λ
t/ε
ε,


= lim
ε→0

Aε,t/ε

One of our goals is to find the bandwidth ε so that Âε,t/ε is a
good estimate of At. We show that this is a well-defined prob-
lem. Related work on manifold learning, on the other hand, only
discusses the convergence properties of the graph Laplacian to
the Laplace–Beltrami operator, that is, the generators of the dif-
fusion. Estimating the generator G, however, does not answer
questions regarding the the number of eigenvectors, the number
of groups in spectral clustering, etc.

We can express the diffusion in terms of its eigenfunc-
tions. Mercer’s theorem gives the biorthogonal decomposition
aε(x, y) = ∑


≥0 λε,
ψε,
(x)ϕε,
(y) and

aε,t/ε(x, y) =
∑

≥0

λ
t/ε
ε,
ψε,
(x)ϕε,
(y), (15)

where ψε,
 are the eigenvectors of Aε , and ϕε,
 are the eigen-
vectors of its adjoint Mε . The details are given in Appendix A.1.
Note that {ψ
} is an orthonormal basis with respect to the inner
product 〈f ,g〉ε , while {ϕ
} is an orthonormal basis with respect
to 〈f ,g〉1/ε = ∫

f (x)g(x)/sε(x)dP(x).
From (11), it follows that the eigenvalues λε,
 = 1 − εν2

ε,
.
The averaging operator Aε and its generator Gε have the same
eigenvectors. Inserting (15) into (5) and recalling that ϕε,
(x) =
sε(x)ψε,
(x), gives

Aεf (x) =
∑

≥0

λε,
ψε,
(x)
∫

X
ϕε,
(y)f (y)dP(y)

=
∑

≥0

λε,
ψε,
(x)〈ψε,
, f 〉ε =
∑

≥0

λε,
�ε,
f (x),

where 〈f ,g〉ε ≡ ∫
X f (y)g(y)sε(y)dP(y) and �ε,
 is the weight-

ed orthogonal projector on the eigenspace spanned by ψε,
.
Thus, Aε,t/ε = ∑


≥0 λ
t/ε
ε,
�ε,
. Similarly, assuming the limit

in (14) exists, At = ∑

≥0 e−ν2


 t�
 where �
 is the weighted
orthogonal projector on the eigenspace corresponding to the
eigenfunction ψ
 of G. Weyl’s theorem (Stewart 1991) gives

sup



∣∣e−ν2

 t − λ

t/ε
ε,


∣∣ ≤ ∥∥Aε,t/ε − eGt
∥∥ = tε + O(ε2),

lim
ε→0

λ
t/ε
ε,
 = e−ν2


 t, lim
ε→0

�ε,
 = �
. (16)

To estimate the action of the limiting operator At at a given
time t > 0, we need the dominant eigenvalues and eigenvectors
of the generator G. Finally, we also define the limiting tran-
sition density at(x, y) = limε→0 aε,t/ε(x, y). As t → 0, at(x, y)
converges to a point mass at x; as t → ∞, at(x, y) converges to
s(y).

Remark 2. There is an important difference between estimat-
ing At and G: the diffusion operator At is a compact operator,
while the generator G is not even a bounded operator.

We will consider some examples in Section 6 but let us first
illustrate the definitions for a one-dimensional distribution with
multiscale structure.

Example 1. Suppose that P is a mixture of three Gaussians.
Figure 4 shows the density p. The left column of Figure 5
shows At for increasing t. The right column shows at(x, ·) for
a fixed x indicated by the horizontal line. The density at(x, ·)
starts out concentrated near x. As t increases, it begins to spread
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Figure 4. The density p for Example 1.

out. It becomes bimodal at t = 1 indicating that the two closer
clusters have merged. Eventually, the density has three modes
(indicating a single cluster) at t = 10, and then resembles p
when t = 1000 since at(x, ·) → p(·)/ ∫

p2(u)du as t → ∞.

3.3 Comparing ε and t

The parameters t and ε are both related to smoothing but they
are quite different. The parameter t is part of the population
quantity being estimated and controls the scale of the analysis.
Hence, the choice of t is often determined by the problem at
hand. The parameter ε is a smoothing parameter for estimating
the population quantity from data. As n → ∞, we let εn → 0
for more accurate estimates. The following example illustrates
the differences of smoothing in data when using ε versus t.

Example 2. Assume that the distribution is supported along
two parallel lines of length π at v = 0 and v = 1, respectively,
in a (u, v)-plane. The probability measure is P = 1

2 U0 + 1
2 U1

where U0 is uniform on {(u,0) : 0 ≤ u ≤ π} and U1 is uniform

Figure 5. Example 1. Left column: at(x, y) for t = 0.1,1,10,1000.
Right column, at(x, y) for a fixed x.

on {(u,1) : 0 ≤ u ≤ π}. Consider a fixed test function f and an
arbitrary point x. We have that

Aεf (x) =
∫

ωε(x, y)f (y)dy,

Atf (x) =
∫

ωt(x, y)f (y)dy,

where the smoothing kernel ωε(x, y) = kε(x,y)p(y)
pε(x)

and ωt(x, y) =
at(x, y)p(y) = limε→0 aε,t/ε(x, y)p(y).

Let x = (0,0) and y = (u, v). Figure 6(a) shows how ωε(x, y)
changes with the parameter ε. When ε is small, Aεf (x) only in-
volves values of f close to the origin along the line at v = 0.
However, with increasing ε, smoothing will also depend on
function values further from the origin, including values along
the parallel line at v = 1, as indicated by the dashed curves in
the figure.

In contrast, for x = (0,0), Atf (x) only involves values of f in
the same connected set as x, that is, function values along the
line at v = 0, regardless of t. Figure 6(b) illustrates how ωt(x, y)
changes as the parameter t increases. Smoothing by t reflects
the connectivity of the data. In particular, there is no mixing of
values of f from disconnected sets.

4. DIFFUSION DISTANCE

The diffusion distance is another key quantity that captures
the underlying geometry of the data distribution. Unlike the
geodesic distance, it is extremely robust to noise.

4.1 Definition

For an m-step Markov chain, the diffusion distances are de-
fined by

D2
ε,m(x, z) =

∫
(aε,m(x,u) − aε,m(z,u))2

sε(u)
dP(u)

for m = 1,2, . . . . It can be shown (see Appendix A.1) that
D2

ε,m(x, z) = ∑

≥0 λ2m

ε,
(ψε,
(x) − ψε,
(z))2. Following the

same arguments as for Âε,m and At, we deduce that the cor-

responding population quantity is D2
t (x, z) = ∑


≥0 e−2ν2

 t ×

(ψ
(x) − ψ
(z))2.

4.2 Comparison to Geodesic Distance

The geodesic distance, or the shortest path, is an intuitive
way of measuring the distance between two points in a set but,
as shown here, it has several shortcomings for noisy data. Some
manifold learning algorithms, such as Isomap (Tenenbaum,
de Silva, and Langford 2000), rely on being able to estimate
the geodesic distance on a manifold given data in R

p. The idea
is to construct a graph G on pairs of points at a distance less
than a given threshold δ, and define a graph distance

dG(A,B) = min
π

(‖A − x1‖ + ‖x1 − x2‖ + · · · + ‖xm − B‖),
where π = (A, x1, x2, . . . , xm,B) varies over all paths along the
edges of G connecting A and B. Multidimensional scaling is
then used to find a low-dimensional embedding of the data that
best preserves these distances.

Under the assumption that the data lie exactly on a smooth
manifold M, Bernstein et al. (2000) have shown that the graph
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(a) (b)

Figure 6. Smoothing for data along two parallel lines v = 0 (solid) and v = 1 (dashed). (a) ωε(x, y) for x = (0,0), y = (u, v) and
ε = 0.01,0.1,1,10. (b) ωt(x, y) for x = (0,0), y = (u, v) and t = 0.01,0.1,1,10.

distance dG(A,B) converges to the geodesic manifold metric
dM(A,B) = inf{length(γ )}, where γ varies over the set of
smooth arcs connecting A and B in M. Beyond this ideal situa-
tion, little is known about the statistical properties of the graph
distance. Here we compare the graph distance and the diffu-
sion metric for a data set where the support of the distribution
is not exactly on a manifold. More specifically, consider a one-
dimensional spiral in a plane:{

x = ta cos(bt)

y = ta sin(bt),

where a = 0.8 and b = 10. The geodesic manifold distance
dM(A,B) between two reference points A and B with t = π/2b
and t = 5π/2b, respectively, is 3.46. The corresponding Euclid-
ean distance is 0.60.

Example 3 (Sensitivity to noise). We first generate 1000 in-
stances of the spiral without noise (i.e., the data fall exactly on

the spiral) and then 1000 instances of the spiral with exponen-
tial noise with mean parameter β = 0.09 added to both x and y.
For each realization of the spiral, we construct a graph by con-
necting all pairs of points at a distance less than a threshold τ .
The associated adjacency matrix has only zeros or ones, corre-
sponding to the absence or presence of an edge, respectively.

Figure 7(a) shows histograms of the relative change in the
geodesic graph distance (top) and the diffusion distance (bot-
tom) when the data are perturbed. (The value 0 corresponds to
no change from the average distance in the noiseless cases.)
The sample size n = 800 and the neighborhood size τ = 0.15.
For the geodesic distance, we have a bimodal distribution with
a large variance. The mode near −0.15 corresponds to cases
where the shortest path between A and B approximately follows
the branch of the spiral; see Figure 8 (left) for an example. The
second mode around −0.75 occurs because some realizations of
the noise give rise to shortcuts, which can dramatically reduce
the length of the shortest path; see Figure 8 (right) for an exam-
ple. The diffusion distance, on the other hand, is not sensitive to

(a) (b)

Figure 7. Sensitivity to noise. (a) Distribution of the geodesic, top, and diffusion distances, bottom, for a noisy spiral for n = 800 and
τ = 0.15. (b) Results for n = 1600 and τ = 0.15. Each histogram has been shifted and rescaled so as to show the relative change from the
noiseless case. The online version of this figure is in color.
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Figure 8. Two realizations of a noisy spiral. The solid line represents the shortest path between two reference points A and B in a graph
constructed on the data.

small random perturbations of the data, because unlike the geo-
desic distance, it represents an average quantity. Shortcuts due
to noise have little weight in the computation, as the number of
such paths is much smaller than the number of paths following
the shape of the spiral. This is also what our experiment con-
firms: Figure 7(a) (bottom) shows a unimodal distribution with
about half the variance as for the geodesic distance.

Example 4 (Increasing sample size). A larger sample size in-
creases the chance of shortcuts in the presence of noise for the
geodesic distance. The diffusion distance, on the other hand, be-
comes more robust to noise with increasing sample sizes. This
is illustrated in Figure 7(b) where n = 1600 but the other para-
meters (including the neighborhood size τ ) are the same as in
Example 3 and Figure 7(a). Choosing the right tuning parame-
ters for a given dataset is in general a hard problem. The lack
of robustness of the geodesic distance can lead to inconsistent
results while this is of a lesser problem for the diffusion metric.

5. ESTIMATION

In Section 3, we identified At as the key population quantity
in Laplacian-based spectral methods. Now we study the prop-
erties of Âε,t/ε as an estimator of At. Let �ε,
 be the orthogonal
projector onto the subspace spanned by ψε,
 and let �
 be the
projector onto the subspace spanned by ψ
. Consider the fol-
lowing operators:

At(ε,P) ≡ Aε,t/ε =
∞∑


=0

λ
t/ε
ε,
�ε,
,

At(ε,q,P) =
q∑


=0

λ
t/ε
ε,
�ε,
, At(ε,q, P̂n) =

q∑

=0

λ̂
t/ε
ε,
�̂ε,
,

At =
∑

≥0

e−ν2

 t�
,

where ψε,
 and λε,
 denote the eigenfunctions and eigenvalues
of Aε , and ψ̂ε,
 and λ̂ε,
 are the eigenfunctions and eigenval-
ues of the data-based operator Âε . Two estimators of At are
the truncated estimator At(ε,q, P̂n) and the nontruncated esti-
mator At(ε, P̂n) ≡ et(̂Aε−I)/ε . In practice, truncation is impor-

tant since it corresponds to choosing a dimension for the trans-
formed data.

5.1 Estimating the Diffusion Operator At

Given data with a sample size n, we estimate At using a finite
number q of eigenfunctions and a kernel bandwidth ε > 0. We
define the loss function as

Ln(εn,q, t) = ‖At − At(εn,q, P̂n)‖, (17)

where ‖B‖ = supf∈F ‖Bf ‖2/‖f ‖2 and ‖f ‖2 =
√∫

X f 2(x)dP(x)

where F is the set of uniformly bounded, three times differ-
entiable functions with uniformly bounded derivatives whose
gradients vanish at the boundary. By decomposing Ln into a
bias-like and variance-like term, we derive the following result
for the estimate based on truncation. Define ρ(t) = ∑∞


=1 e−ν2

 t.

Theorem 1. Suppose that P has compact support, and has
bounded density p such that infx p(x) > 0 and supx p(x) < ∞.

Let εn → 0 and nε
d/2
n / log(1/εn) → ∞. Then

Ln(εn,q, t) = ρ(t)(OP(γn) + O(εn)) + Cn

∞∑
q+1

e−ν2

 t, (18)

where Cn = O(1) and γn =
√

log(1/εn)

nε
(d+4)/2
n

.

The optimal choice of εn is εn � (log n/n)2/(d+8) in which
case

Ln(εn,q, t) = ρ(t) · OP

(
log n

n

)2/(d+8)

+ Cn

∞∑
q+1

e−ν2

 t. (19)

We also have the following result which does not use trunca-
tion.

Theorem 2. Define At(εn, P̂n) = et(̂Aεn−I)/εn . Then, under the
same assumptions on P as in Theorem 1,

‖At − At(εn, P̂n)‖ = (OP(γn) + O(εn)) · ρ(t). (20)

The optimal εn is εn � (log n/n)2/(d+8). With this choice,

‖At − At(εn, P̂n)‖ = OP

(
log n

n

)2/(d+8)

· ρ(t).
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See Appendix A.2 for proofs.
Let us now make some remarks on the interpretation of these

results.

1. The terms O(εn) and
∑∞

q+1 e−ν2

 t correspond to bias. The

term OP(γn) corresponds to the square root of the vari-
ance.

2. The rate n−2/(d+8) is slow. Indeed, the variance term
1/(nε

(d+4)/2
n ) is the usual rate for estimating the second

derivative of a regression function which is a notoriously
difficult problem. This suggests that estimating At accu-
rately is quite difficult.

3. We also have that ‖Gε − G‖ = OP(γn) + O(εn), and the

first term is slower than the rate 1/

√
nε

(d+2)/2
n in Giné and

Koltchinskii (2006) and Singer (2006) where d, in their
case, is the intrinsic dimension of X . The difference in
rates is because they assume a uniform distribution. The
slower rate comes from the term pε(x)− p̂ε(x) which can-
not be ignored when p is unknown.

4. If the distribution is supported on a manifold of dimen-
sion r < d then ε(d+4)/2 becomes ε(r+4)/2. In between
full support and manifold support, one can create distri-
butions that are concentrated near manifolds. That is, one
first draws Xi from a distribution supported on a lower-
dimensional manifold, then adds noise to Xi. This corre-
sponds to full support again unless one lets the variance
of the noise decrease with n. In that case, the exponent of
ε can be between r and d.

5. Combining the above results with the result from Zwald
and Blanchard (2006), we have that

‖ψ
 − ψ̂εn,
‖ = (OP(γn)+ O(εn)) · 1

min0≤j≤
(ν
2
j − ν2

j−1)
.

6. The function ρ(t) is decreasing in t. Hence for large t,
the rate of convergence can be arbitrarily fast, even for
large d. In particular, for t ≥ ρ−1(n−(d+4)/(2(d+8))) the
loss has the parametric rate OP(

√
log n/n).

7. An estimate of the diffusion distance is

D̂2
t (x, y) =

q∑

=0

λ̂
2t/ε
ε,
 (ψ̂ε,
(x) − ψ̂ε,
(y))

2.

The approximation properties are similar to those of Ât.
8. The parameter q = qn should be chosen as small as pos-

sible for dimension reduction, while keeping the last term
in (18) no bigger than the first term so as to minimize the
loss function Ln. As illustrated below, the optimal q will
depend on the smoothing parameter t, the decay rate of
the eigenvalues ν
 and the sample size n.

Example 5. Suppose that ν
 = 
β for some β > 1/2. Then

Ln(εn,q, t) = C1

t1/(2β)
OP

(
log n

n2/(d+8)

)
+ C2e−tq2β

.

The smallest qn such that the last term in (18) does not dominate
is

qn �
((

1

2β
log t + 2

d + 8
log n

)/
t

)1/(2β)

and we get

Ln(εn,q, t) = OP

(
1

t1/(2β)

log n

n2/(d+8)

)
.

5.2 Nodal Domains and Low Noise

An eigenfunction ψ
 partitions the sample space into regions
where ψ
 has constant sign. This partition is called the nodal
domain of ψ
. In some sense, the nodal domain represents the
basic structural information in the eigenfuction. In many appli-
cations, such as spectral clustering, it is sufficient to estimate
the nodal domain rather than ψ
. We will show that fast rates
are sometimes available for estimating the nodal domain even
when the eigenfunctions are hard to estimate. This explains why
spectral methods can be very successful despite the slow rates
of convergence that we and others have obtained.

Formally, the nodal domain of ψ
 is N
 = {C1, . . . ,Ck}
where the sets C1, . . . ,Ck partition the sample space and the
sign of ψ
 is constant over each partition element Cj. Thus, es-
timating the nodal domain corresponds to estimating H
(x) =
sign(ψ
(x)). (If ψ is an eigenfunction then so is −ψ . We im-
plicitly assume that the sign ambiguity of the eigenfunction has
been removed.)

Recently, in the literature on classification, there has been a
surge of research on the so-called “low noise” case. If the data
have a low probability of being close to the decision bound-
ary, then very fast rates of convergence are possible even in
high dimensions. This theory explains the success of classifi-
cation techniques in high-dimensional problems. In this section
we show that a similar phenomema applies to spectral smooth-
ing when estimating the nodal domain.

Inspired by the definition of low noise in Mammen and Tsy-
bakov (1999), Audibert and Tsybakov (2007), and Kohler and
Krzyzak (2007), we say that P has noise exponent α if there
exists C > 0 such that

P
(|ψ1(X)| ≤ δ

) ≤ Cδα. (21)

We are focusing here on ψ1 although extensions to other eigen-
functions are immediate. Generally, as two clusters become
well separated, ψ1 behaves like a step function and P(0 <

|ψ1(X)| ≤ δ) puts less and less mass near 0 which corresponds
to α being large.

Theorem 3. Let H(x) = sign(ψ1(x)) and Ĥ(x) =
sign(ψ̂1(x)). Suppose that (21) holds. Set εn = n−2/(4α+d+8).
Then,

P(H(X) �= Ĥ(X)) ≤ n−2α/(4α+8+d), (22)

where X ∼ P.

See Appendix A.2 for proof. Note that, as α → ∞ the rate
tends to the parametric rate n−1/2.

5.3 Choosing a Bandwidth

The theory we have developed gives insight into the behav-
ior of the methods. But we are still left with the need for a
practical method for choosing the smoothing parameter ε. The
most common approach in the machine learning literature is
to choose the smallest ε that makes the resulting graph well
connected. More specifically, von Luxburg (2007) suggests to
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“. . . choose ε [in an ε-neighborhood graph] as the length of the
longest edge in a minimal spanning tree of the fully connected
graph on the data points.” Other methods for selecting ε in-
clude Hein, Audibert, and von Luxburg (2005a), Coifman et al.
(2008), and Shi, Belkin, and Yu (2009). Instead of using a sin-
gle global parameter ε, one can also vary ε over the dataset; see,
for example, Zelnik-Manor and Perona (2004). The properties
of the above approaches for bandwidth selection are however
not fully understood.

Given the similarity between SCA and kernel smoothing,
one may wonder if one can use methods for density esti-
mation to choose ε. This turns out to be a nontrivial prob-
lem. In density estimation it is common to use the loss func-
tion

∫
(p(x) − p̂ε(x))2 dx which is equivalent, up to a constant,

to L(ε) = ∫
p̂2
ε(x)dx − 2

∫
p̂ε(x)p(x)dx. A common method

to approximate this loss is the cross-validation score L̂(ε) =∫
p̂2
ε(x)dx − 2

n

∑n
i=1 p̂ε,i(Xi) where p̂ε,i is the same as p̂ε except

that Xi is omitted. It is well known that L̂(ε) is a nearly unbi-
ased estimate of L(ε). One then chooses ε̃n to minimize L̂(ε).
The optimal ε∗

n from our earlier result, however, is (up to log
factors) O(n−2/(d+8)) while the optimal bandwidth ε0

n for mini-
mizing L is O(n−2/(d+4)). Hence, ε∗

n/ε0
n � n8/((d+4)(d+8)). This

suggests that density cross-validation is not appropriate for our
purposes.

Estimating the risk is difficult in most problems that are not
prediction problems. As usual in nonparametric inference, the
problem is that estimating bias is harder than the original esti-
mation problem. Hence, we take a more modest view of simply
trying to find the smallest ε such that the resulting variability
is tolerable. In other words, we choose the smallest ε that leads
to stable estimates of the eigenstructure (similar to the approach
for choosing the number of clusters in Lange et al. 2004). There
are several ways to do this. Here are some examples.

Eigen-Stability. Define ψε,
(x) = E(ψ̂ε,
(x)). Although
ψε,
 �= ψ
, they do have a similar shape. We propose to choose
ε by finding the smallest ε for which ψε,
 can be estimated with
a tolerable variance. To this end we define

SNR(ε) =
√

‖ψε,
‖2
2

E‖ψ̂ε,
 − ψε,
‖2
2

(23)

which we will refer to as the signal-to-noise ratio. When ε is
small, the denominator will dominate and SNR(ε) ≈ 0. Con-
versely, when ε is large, the denominator tends to 0 so that
SNR(ε) gets very large. We want to find ε0 such that

ε0 = inf{ε : SNR(ε) ≥ Kn}
for some Kn ≥ 1.

We can estimate SNR as follows. We compute B bootstrap
replications ψ̂

(1)
ε,
 , . . . , ψ̂

(B)
ε,
 . We then take

ŜNR(ε) =
√

(‖ψ∗
ε,
‖2

2 − ξ2)+
ξ2

, (24)

where c+ = max{c,0}, ξ2 = 1
B

∑B
b=1 ‖ψ̂(b)

ε,
 − ψ∗
ε,
‖2

2, and

ψ∗
ε,
 = B−1 ∑B

b=1 ψ̂
(b)
ε,
 . Note that we subtract ξ2 from the nu-

merator to make the numerator approximately an unbiased es-
timator of ‖ψε,
‖2. Then we use

ε̂ = min{ε : ŜNR(ε) ≥ Kn}.

See the longer technical report (Lee and Wasserman 2008) for
illustrations of the method. For Kn = Cn2/(d+8), where C is
a constant, the optimal ε is O(n−2/(d+8)). To see this, write
ψ̂ε,
(x) = ψ
(x) + b(x) + ξ(x) where b(x) denotes the bias and
ξ(x) = ψ̂ε,
(x) − ψ
(x) − b(x) is the random component. Then

SNR2(ε) = ‖ψ
(x)+b(x)‖2

E‖ξ‖2 = O(1)

OP(1/(nε(d+4)/2))
. Setting this equal

to K2
n yields ε0 = O(n−2/(d+8)).

The same bootstrap idea can be applied to estimating the
nodal domain. In this case we define

ŜNR(ε) =
√

(‖H∗
ε,
‖2

2 − ξ2)+
ξ2

, (25)

where ξ2 = 1
B

∑B
b=1 ‖Ĥ(b)

ε,
 − H∗
ε,
‖2

2, and H∗
ε,
 = B−1 ×∑B

b=1 Ĥ(b)
ε,
 .

Neighborhood Size Stability. Another intuitive way to con-
trol the variability is to ensure that the number of points in-
volved in the local averages does not get too small. For a given
ε let N = {N1, . . . ,Nn} where Ni = #{Xj :‖Xi − Xj‖ ≤ √

2ε}.
One can informally examine the histogram of N for various ε.
A rule for selecting ε is ε̂ = min{ε : median{N1, . . . ,Nn} ≥ k}.

6. EXAMPLES

6.1 Mixture of Gaussians

We begin with a simple one-dimensional example to illus-
trate the different errors in the estimation of eigenvectors. Let

p(x) = 1
2φ(x;0,1) + 1

4φ(x;3.3,0.5) + 1
4φ(x;4.7,0.5),

where φ(x;μ,σ) denotes a Normal density with mean μ and
variance σ 2. Figure 4 shows the density. Figure 9 shows the er-
ror ‖ψ1 −ψ̂ε,1‖ as a function of ε for a sample of size n = 1500.
The results are averaged over approximately (we discard sim-
ulations where λ̂1 = λ̂0 = 1 for ε = 0.02) 200 independent
draws. A minimal error occurs for a range of different val-
ues of ε between 0.02 and 0.06. The variance dominates the
error in the small ε region (ε < 0.02), while the bias domi-
nates in the large ε region (ε > 0.06). These results are con-
sistent with Figure 10, which shows the estimated mean and
variance of the first eigenvector ψ̂ε,1 for a few selected values
of ε (ε = 0.01,0.02,0.06,1), marked with blue circles in Fig-
ure 9. Figure 11 shows similar results for the second eigenvec-
tor ψ2. Note that even in cases where the error in the estimates
of the eigenvectors is large, the variance around the cross-over
points (where the eigenvectors switch signs) can be small. The
results also agree with the conclusion in Section 5.2 that esti-
mating the nodal domain of eigenvectors is a simpler problem
than estimating the eigenvectors themselves.

6.2 Words

The next example is an application of SCA to text data min-
ing (reproduced from Lafon and Lee 2006). The example shows
how one can capture the semantic association of words with dif-
fusion distances, and how one can organize and form represen-
tative “meta-words” by eigenanalysis and quantization of the
diffusion operator.
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Figure 9. The error ‖ψ1 − ψ̂ε,1‖ in the estimate of the first eigen-
vector as a function of ε. For each ε (red dots), an average is taken
over approximately 200 independent simulations with n = 1500 points
from a mixture distribution with two Gaussians. Figure 10 shows the
estimated mean and variance of ψ̂ε,1 for ε = 0.01,0.02,0.06,1 (cir-
cles). The online version of this figure is in color.

The data consist of p = 1161 Science News articles. To en-
code the text, we extract n = 1004 words and form a document-
word information matrix. The mutual information between doc-
ument x and word y is defined as Ix,y = log(

ncx,y∑
ξ cξ,y

∑
η cx,η

),

where cx,y is the number of times word y appears in document
x. Let ey = [I1,y, I2,y, . . . , Ip,y] be a p-dimensional feature vec-
tor for word y.

Our goal is to reduce both the dimension p and the number
of words n, while preserving the main connectivity structure of

Figure 10. The first eigenvector ψ̂ε,1 for ε = 0.01,0.02,0.06,1,
and n = 1500. The red dashed curves with shaded regions indicate the
mean value ± two standard deviations for approximately 200 indepen-
dent simulations. The black solid curves show ψε,1 as ε → 0.

Figure 11. The second eigenvector ψ̂ε,2 for ε = 0.01,0.02,0.06,1,
and n = 1500. The red dashed curves with shaded regions indicate the
mean value ± two standard deviations for approximately 200 indepen-
dent simulations. The black solid curves show ψε,2 as ε → 0.

the data. In addition, we seek a coordinate system for the words
that reflect how similar they are in meaning. Diffusion maps
and quantization of the diffusion operator (diffusion coarse-
graining) by k-means offer a natural framework for achieving
these objectives.

We construct a graph where each node is a word and define
the weight matrix by K(i, j) = exp(−‖ei−ej‖2

4ε
). Let Aε,m be the

corresponding m-step transition matrix with eigenvalues λm

 and

eigenvectors ψ
. Using the bootstrap, we estimate the SNR of
ψ1 as a function of ε. A SNR cut-off at 2, gives the bandwidth
ε = 150. For m = 3, q = 12 and this choice of bandwidth, we
have a spectral fall-off (λq/λ1)

m < 0.1, that is, we can obtain
a dimensionality reduction of a factor of about 1/100 by the
eigenmap ey ∈ R

p �→ (λm
1 ψ1(y), λm

2 ψ2(y), . . . , λm
q ψq(y)) ∈ R

q

without losing much accuracy. Further, to reduce the size of the
dataset, we form a quantized matrix Ãε,m for a coarse-grained
random walk on a graph with k < n nodes. It can be shown
(Lafon and Lee 2006), that the spectral properties of Aε,m and
Ãε,m are similar when the coarse-graining (quantization) corre-
sponds to k-means clustering in diffusion space.

Figure 1 shows the first two diffusion coordinates of the clus-
ter centers (the “meta-words”) for k = 100. These representa-
tive words have roughly been rearranged according to their se-
mantics and can be used as conceptual indices for document
representation and text retrieval. Starting to the left, moving
counter clockwise, we here have words that express concepts
in medicine, biology, earth sciences, physics, astronomy, com-
puter science, and social sciences. Table 2 gives examples of
words in a cluster and the corresponding word centers.

7. DISCUSSION

Spectral methods are rapidly gaining popularity. Their abil-
ity to reveal nonlinear structure makes them ideal for complex,
high-dimensional problems. We have attempted to provide in-
sight into these techniques by identifying the key population
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Table 2. Examples of word groupings

Word center Remaining words in group

Virus aids, allergy, hiv, vaccine, viral
Reproductive fruit, male, offspring, reproductive, sex, sperm
Vitamin calory, drinking, fda, sugar, supplement, vegetable
Fever epidemic, lethal, outbreak, toxin
Ecosystem ecologist, fish, forest, marine, river, soil, tropical
Warming climate, el, nino, forecast, pacific, rain, weather, winter
Geologic beneath, crust, depth, earthquake, plate, seismic, trapped, volcanic
Laser atomic, beam, crystal, nanometer, optical, photon, pulse, quantum, semiconductor
Hubble dust, gravitational, gravity, infrared
Galaxy cosmic, universe
Finalist award, competition, intel, prize, scholarship, student, talent, winner

quantities (namely the operators At and Dt), and studying the
large sample properties of their estimates.

Our analysis shows that spectral kernel methods in most
cases have a convergence rate similar to classical nonparamet-
ric smoothing. Laplacian-based kernel methods, for example,
use the same smoothing operators as in traditional nonparamet-
ric regression. The end goal however is not smoothing, but data
transformation and structure definition of data. Spectral meth-
ods exploit the fact that the eigenvectors of local smoothing
operators provide a coordinate system and information on the
underlying geometry and connectivity of the data.

We close by giving examples of how SCA can be a pow-
erful tool in high-dimensional “geometry-based” data analy-
sis. Some of these applications (such as spectral clustering)
are well known while others (such as sparse coding and high-
dimensional density estimation via SCA) are new. The full de-
tails are reported in separate papers.

7.1 Clustering and Sparse Coding

One approach to clustering is spectral clustering (Ng, Jordan,
and Weiss 2001; von Luxburg 2007). The idea is to transform
the data using the first few nontrivial eigenvectors ψ1, . . . ,ψm

and then apply a standard clustering algorithm such as k-means
clustering. This approach can be quite effective for finding non-
spherical clusters.

On a related note, the output from spectral clustering can be
used for encoding of massive datasets. Consider a training set of
signals X1, . . . ,Xn in R

p. In classical sparse coding (Olshausen
and Field 1997), one seeks a dictionary, that is, a set of basis
vectors, D and vectors βi to minimize an empirical cost func-
tion, typically of the form R(D, {βi}) = ∑n

i=1(‖Xi − Dβi‖2 +
λ‖βi‖1), where λ is a regularization parameter. For complex
data, however, the sparsity constraint on the coefficients βi’s
and the assumption that Xi ≈ Dβi can be overly restrictive. Non-
linear geometries are also not taken into account.

An alternative approach to basis learning is to first transform
the data via SCA, and then further quantize the data structure by
a weighted k-means algorithm in the embedding space (Lafon
and Lee 2006); see Section 6.2 for an application to words. The
k centroids c1, . . . , cn form “prototypes” of the data. By con-
struction, they capture the underlying geometry of the distrib-
ution PX and form a more efficient covering of the data space.
Richards et al. (2009a) use geometric prototyping to construct a

basis of simple stellar population (SSP) spectra. For simulated
galaxy spectra, such an approach to basis learning leads to more
accurate estimation of star formation history than a hand-picked
subset of SSP’s (Cid Fernandes 2005; Asari et al. 2007) or bases
derived from PCA or sparse methods.

7.2 Density Estimation

If Q is a quantization map then the quantized density estima-
tor (Meinicke and Ritter 2002) is p̂(x) = (1/n)

∑n
i=1(1/hd) ×

K(
‖x−Q(Xi)‖

h ). For highly clustered data, the quantized density
estimator can have smaller mean squared error than the usual
kernel density estimator. Similarly, we can define the quantized
diffusion density estimator as

p̂(x) = 1

n

n∑
i=1

1

hd
K

(
D̂t(x,Xi)

h

)
(26)

which can potentially have small mean squared error for appro-
priately chosen t.

SCA can be a powerful tool for high-dimensional density es-
timation problems where standard statistical methods are inad-
equate. Buchman, Lee, and Schafer (2010), for example, use
the density estimator in Eq. (26) for modeling and simulation
of hurricane tracks. In the analysis, a datum represents an en-
tire hurricane trajectory (see Figure 12); densities are estimated
from observed tracks in a lower-dimensional diffusion space;
a random sample is drawn from the estimated diffusion den-
sity; the sample is finally mapped back into the original track
space to simulate as-yet-unobserved tracks.

7.3 Regression

Incorporating data geometry can also radically improve re-
gression and classification (Belkin and Niyogi 2005a; Lafferty
and Wasserman 2007; Singh, Nowak, and Zhu 2008). A com-
mon method for nonparametric regression is to expand the re-
gression function m(x) = E(Y|X = x) in a basis and then es-
timate the coefficients of the expansion from the data. Usu-
ally, the basis is chosen beforehand. The diffusion map basis
provides a data-adaptive basis for doing nonparametric regres-
sion. We expand m(x) = E(Y|X = x) as m(x) = ∑

j βjψj(x).

Let m̂(x) = ∑q
j=1 β̂jψ̂ε,j(x) where q and ε are chosen by cross-

validation. See (Richards et al. 2009b) and Freeman et al.
(2009) for applications to redshift prediction of Sloan Digital
Sky Survey (SDSS) data, and performance comparisons to PCA
and template matching.
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Figure 12. Left: Diffusion map of a set of 1000 Atlantic storm tracks. Right: Tracks of storms which are close to (0.39,0.086,−0.0098) in
diffusion space. Reproduced from Buchman, Lee, and Schafer (2010). The online version of this figure is in color.

SUPPLEMENTAL MATERIALS

Appendix: Two subsections in one pdf containing technical
details and proofs. (appendix_rev.pdf)

[Received December 2009. Revised April 2010.]
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