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a b s t r a c t

We propose a novel distributed algorithm to cluster graphs. The algorithm recovers the solution obtained
from spectral clustering without the need for expensive eigenvalue/eigenvector computations. We prove
that, by propagating waves through the graph, a local fast Fourier transform yields the local component
of every eigenvector of the Laplacian matrix, thus providing clustering information. For large graphs,
the proposed algorithm is orders of magnitude faster than random walk based approaches. We prove
the equivalence of the proposed algorithm to spectral clustering and derive convergence rates. We
demonstrate the benefit of using this decentralized clustering algorithm for community detection in social
graphs, accelerating distributed estimation in sensor networks and efficient computation of distributed
multi-agent search strategies.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, there has been great interest in the analysis
of large interconnected systems, such as sensors networks, social
networks, the Internet, biochemical networks, power networks,
etc. These systems are characterized by complex behavior that
arises due to interacting subsystems. Graph theoretic methods
have recently been applied and extended to study these systems.
In particular, spectral properties of the Laplacianmatrix associated
with such graphs provide useful information for the analysis
and design of interconnected systems. The computation of
eigenvectors of the graph Laplacian is the cornerstone of spectral
graph theory (Chung, 1997; von Luxburg, 2007), and it is well
known that the sign of the second (and successive) eigenvectors
can be used to cluster graphs (Fiedler, 1973, 1975).

The problem of graph (or data, in general) clustering arises
naturally in applications ranging from social anthropology (Kottak,
1991), gene networks (Speer, Fröhlich, Spieth, & Zell, 2005), protein
sequences (Paccanaro, Casbon, & Saqi, 2006), sensor networks
(Akyildiz, Su, Sankarasubramaniam, & Cayirci, 2002; Ghiasi,
Srivastava, Yang, & Sarrafzadeh, 2002; Muhammad & Jadbabaie,
2007), computer graphics (Herman, Melançon, & Marshall, 2000)
and Internet routing algorithms (Kempe & McSherry, 2008).

✩ The material in this paper was partially presented at the 49th IEEE Conference
on Decision and Control, December 15–17, 2010, Atlanta, Georgia, USA. This paper
was recommended for publication in revised form by Associate Editor Andrea
Serrani under the direction of Editor Miroslav Krstic.

E-mail addresses: SahaiT@utrc.utc.com (T. Sahai), SperanA@utrc.utc.com
(A. Speranzon), BansaszA@utrc.utc.com (A. Banaszuk).
1 Tel.: +1 860 610 7763; fax: +1 860 622 0666.

The basic idea behind graph decomposition is to cluster
nodes into groups with strong intra-connections but weak inter-
connections. If one poses the clustering problem as aminimization
of the inter-connection strength (sum of edge weights between
clusters), it can be solved exactly and quickly (Stoer & Wagner,
1997). However, the decomposition obtained is often unbalanced
(some clusters are large and others small) (von Luxburg, 2007).
To avoid unbalanced cuts, size restrictions are typically placed on
the clusters, i.e., instead of minimizing inter-connection strength,
we minimize the ratio of the inter-connection strength to the
size of individual clusters. This, however, makes the problem NP-
complete (Wagner &Wagner, 1993). Several heuristics to partition
graphs have been developed over the past few decades (Porter,
Onnela, & Mucha, 2009) including the Kernighan–Lin algorithm
(Kernighan & Lin, 1970), Potts method (Reichardt & Burnholdt,
2004), percolation basedmethods (Palla, Derényi, Farkas, & Vicsek,
2005), horizontal–vertical decomposition (Varigonda, Kalmar-
Nagy, Labarre, & Mezic, 2004) and spectral clustering (Fiedler,
1973, 1975).

1.1. Spectral clustering

Spectral clustering has emerged as a powerful tool of choice
for graph decomposition purposes (see von Luxburg, 2007 and
references therein). The method assigns nodes to clusters based
on the signs of the elements of the eigenvectors of the Laplacian
corresponding to increasing eigenvalues (Chung, 1997; Fiedler,
1973, 1975). In Spielman and Teng (2004), the authors have
developed a distributed algorithm for spectral clustering of graphs.
The algorithm involves performing random walks, and at every
step neglecting probabilities below a threshold value. The nodes
are then ordered by the ratio of probabilities to node degree and
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grouped into clusters. Since this algorithm is based on random
walks, it suffers, in general, from slow convergence.

Since the clustering assignment is computed using the eigen-
vectors/eigenvalues of the Laplacian matrix, one can use standard
matrix algorithms for such computation (Golub & Loan, 1996).
However, as the size of the matrix (and thus the corresponding
network) increases, the execution of these standard algorithms be-
comes infeasible onmonolithic computing devices. To address this
issue, algorithms for distributed eigenvector computations have
been proposed (Kempe&McSherry, 2008). These algorithms, how-
ever, are also (like the algorithm in Spielman & Teng, 2004) based
on the slow process of performing random walks on graphs.

1.2. Wave equation method

In a theme similar to Mark Kac’s question ‘‘Can one hear the
shape of a drum?’’ (Kac, 1966), we demonstrate that by evolving
the wave equation in the graph, nodes can ‘‘hear’’ the eigenvectors
of the graph Laplacian using only local information. Moreover,
we demonstrate, both theoretically and on examples, that the
wave equation based algorithm is orders of magnitude faster
than random walk based approaches for graphs with large mixing
times. The overall idea of the wave equation based approach is
to simulate, in a distributed fashion, the propagation of a wave
through the graph and capture the frequencies at which the graph
‘‘resonates’’. In this paper, we show that by using these frequencies
one can compute the eigenvectors of the Laplacian, thus clustering
the graph. We also derive conditions that the wave must satisfy in
order to cluster graphs using the proposed method.

The paper is organized as follows: in Section 2 we describe cur-
rent methodologies for distributed eigenvector/clustering compu-
tation based on the heat equation. In Section 3 the new proposed
wave equation method is presented. In Section 4 we determine
bounds on the convergence time of thewave equation. In Section 5
we show some numerical clustering results for a few graphs, in-
cluding a large social network comprising of thousands of nodes
and edges. We then show, in Section 6, how the wave equation can
be used to accelerate distributed estimation in a large-scale envi-
ronment such as a building. In Section 7 we show how the pro-
posed distributed clustering algorithm enables one to efficiently
transform a centralized search algorithm into a decentralized one.
Finally, conclusions are drawn in Section 8.

2. From heat to wave equation: related work

Let G = (V , E) be a graph with vertex set V = {1, . . . ,N} and
edge set E ⊆ V×V , where aweightWij ≥ 0 is associatedwith each
edge (i, j) ∈ E, andW is theN×N weighted adjacencymatrix of G.
We assume that Wij = 0 if and only if (i, j) ∉ E. The (normalized)
graph Laplacian is defined as,

Lij =


1 if i = j

−Wij

 N
ℓ=1

Wiℓ if (i, j) ∈ E

0 otherwise,

(1)

or equivalently, L = I−D−1WwhereD is the diagonal matrix with
the row sums ofW.

Note that in this work we only consider undirected graphs. The
smallest eigenvalue of the Laplacian matrix is λ1 = 0, with an
associated eigenvector v(1)

= 1 = [1, 1, . . . , 1]T . Eigenvalues
of L can be ordered as, 0 = λ1 ≤ λ2 ≤ λ3 ≤ · · · ≤ λN
with associated eigenvectors 1, v(2), v(3), . . . , v(N) (von Luxburg,
2007). It is well known that the multiplicity of λ1 is the number of
connected components in the graph (Mohar, 1991). We assume in
the following that λ1 < λ2 (the graph does not have disconnected
clusters). We also assume that there exist unique cuts that divide

Fig. 1. Spectral clustering: The sign of the i-th element of eigenvector v2
determines the cluster assignment of the i-th vertex, demonstrated on a simple line
graph example (shown in the center). With+we plot the value of the components
of v2 .

the graph into k clusters. In otherwords,we assume that there exist
k distinct eigenvalues close to zero (Luxburg, Bousquet, & Belkin,
2004).

Given the Laplacian matrix L, associated with a graph G =
(V , E), spectral clustering dividesG into two clusters by computing
the sign of theN elements of the second eigenvector v(2), or Fiedler
vector (Fiedler, 1975; von Luxburg, 2007). This process is depicted
in Fig. 1 for a line graph where one edge (the edge (5, 6)) has lower
weight than other edges.

More than two clusters can be computed from signs of the
elements of higher eigenvectors, i.e. v(3), v(4), etc. von Luxburg
(2007). Alternatively, once the graph is divided into two clusters,
the spectral clustering algorithm can be run independently on both
clusters to compute further clusters. This process is repeated until
either a desired number of clusters is found or no further clusters
can be computed. This method can also be used to compute a
hierarchy of clusters.

There are many algorithms to compute eigenvectors, such as
the Lanczos method or orthogonal iteration (Golub & Loan, 1996).
Although some of these methods are distributable, convergence is
slow (Golub & Loan, 1996) and the algorithms do not consider/take
advantage of the fact that the matrix for which the eigenvalues
and eigenvectors need to be computed is the adjacency matrix of
the underlying graph. In Kempe and McSherry (2008), the authors
propose an algorithm to compute the first k largest eigenvectors
(associated with the first k eigenvalues with greatest absolute
value)2of a symmetric matrix. The algorithm in Kempe and
McSherry (2008) emulates the behavior of orthogonal iteration.
To compute the first k eigenvectors of a given matrix J, at each
node in the network, matrix Vi =


j∈N (i) JijQj is computed, where

Qj ∈ RN×k is initialized to a random matrix and N (i) is the set of
neighbors of node i (including node i itself). Orthonormalization
is achieved by the computation of matrix Ki = VT

i Vi at every
node, followed by computation of matrix K, which is the sum of
all the Ki matrices in the network. Once matrix K is computed,
Qi = ViR−1 is updated at each node, where R is a unique matrix
such that K = RTR (Cholesky decomposition). The above iteration
is repeated untilQi converges to the i-th eigenvector. The sumof all
the matrices Ki is done in a decentralized way, using gossip (Shah,
2009), which is a deterministic simulation of a randomwalk on the
network. In particular, at each node one computes the matrix K as

2 Note that in the case of spectral clustering we desire to compute the smallest k
eigenvectors of L. The algorithm is still applicable if we consider the matrix I− L.
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follows,

Si(t + 1) =

j∈N (i)

BjiSj(t), (2)

πi(t + 1) =

j∈N (i)

Bjiπj(t), (3)

for t ≥ τ steps, where τ is themixing time for the randomwalk on
the graph (Kempe & McSherry, 2008). Here K = Si/πi, Si(0) = Ki
and πi(0) = 1 for only one index i and zero for other indices.
The values Bij are transition probabilities of the Markov chain
associated with the graph. A natural choice is Bij = 1/ deg(i),
where deg(i) is the degree of node i. Note that matrix B = [Bij] is
the normalized adjacency matrix (given by D−1W). This algorithm
converges after O(τ log2 N) iterations (Kempe & McSherry, 2008).

The slowest step in the distributed computation of eigenvec-
tors is the simulation of a random walk on the graph (defined by
Eqs. (2) and (3)). It is clear from Eq. (1) that successive multiplica-
tions by the adjacencymatrix B in Eqs. (2) and (3) are equivalent to
successivemultiplications bymatrix I−L. This procedure is equiv-
alent to evolving the discretized heat equation on the graph and
can be demonstrated as follows. The heat equation is given by

∂u
∂t
= 1u,

where u is a function of time and space, ∂u/∂t is the partial deriva-
tive of uwith respect to time, and∆ is the Laplace operator (Evans,
1998).When the above equation is discretized (see Belkin &Niyogi,
2008, Chung, 1997, Hein, 2006, and Hein, Audibert, & von Luxburg,
2005 for details) on a graph G = (V , E) one gets the following
equation:

ui(t + 1) = ui(t)−

j∈N (i)

Lijuj(t),

for i, j ∈ V . Here ui(t) is the scalar value of u on node i at time
t . The graph Laplacian L = [Lij] appears due to the discretiza-
tion of the ∆ operator (Hein et al., 2005). The above iteration can
be re-written, in matrix form, u(t + 1) = (I − L)u(t) where
u(t) = (u1(t), . . . ,uN(t))T . The solution of this iteration is,

u(t) = C01+ C1(1− λ2)
tv(2)
+ · · · + CN(1− λN)tv(N), (4)

where constants Cj depend on the initial condition u(0). It is in-
teresting to note that in Eq. (4), the dependence of the solution on
higher eigenvectors and eigenvalues of the Laplacian decays with
increasing iteration count. Thus, it is difficult to devise a fast and
distributed method for clustering graphs based on the heat equa-
tion. Next, we derive a novel algorithm based on the idea of per-
manent excitation of the eigenvectors of I − L. We note that the
above connection between spectral clustering and the heat equa-
tion is not new and was pointed out in Nadler, Lafon, Coifman, and
Kevrekidis (2006a,b).

Before discussing the details of wave-equation based eigenvec-
tor computation, we remark that in Franceschelli, Gasparri, and
Seatzu (2009) the authors have independently developed a de-
centralized algorithm to compute the eigenvalues of the Lapla-
cian. Compared to our approach, their algorithm involves solving
a fourth order partial differential equation on the graph. This im-
poses twice the cost of communication, computation and memory
on every node in the graph.

3. Wave equation based computation

Consider the wave equation,

∂2u
∂t2
= c21u. (5)

Analogous to the heat equation case (Eq. (4)), the solution of the
wave equation can be expanded in terms of the eigenvectors of the
Laplacian. However, unlike the heat equation where the solution
eventually converges to the first eigenvector of the Laplacian, in
the wave equation all the eigenvectors remain eternally excited
(Evans, 1998) (a consequence of the second derivative of u with
respect to time). Here we use this observation to develop a simple,
yet powerful, distributed eigenvector computation algorithm. The
algorithm involves evolving the wave equation on the graph
and then computing the eigenvectors using local FFTs. Note that
some properties of the wave equation on graphs have been
studied in Friedman and Tillich (2004). Here we construct a graph
decomposition/partitioning algorithm based on the discretized
wave equation on the graph, given by

ui(t) = 2ui(t − 1)− ui(t − 2)− c2

j∈N (i)

Lijuj(t − 1), (6)

where


j∈N (i) Lijuj(t − 1) originates from the discretization of
1u in Eq. (5), see Hein et al., 2005 for details. The rest of the
terms originate from discretization of ∂2u/∂t2. To update ui using
Eq. (6), one needs only the value of uj at neighboring nodes and the
connecting edge weights (along with previous values of ui).

The main steps of the algorithm are shown as Algorithm 3.1.
Note that at each node (node i in the algorithm) one only needs
nearest neighbor weights Lij and the scalar quantities uj(t − 1)
also at nearest neighbors. We emphasize, again, that ui(t) is a
scalar quantity and Random ([0, 1]) is a random initial condi-
tion on the interval [0, 1]. The vector v(j)

i is the i-th compo-
nent of the j-th eigenvector, Tmax is a positive integer derived in
Section 4, FrequencyPeak(Y, j) returns the frequency at which
the j-th peak occurs and Coefficient(ωj) return the correspond-
ing Fourier coefficient.

Algorithm 3.1 Wave equation based eigenvector computation
algorithm for node i. At node i one computes the sign of the i-th
component of the first k eigenvectors. The cluster assignment is
obtained by interpreting the vector of k signs as a binary number.
1: ui(0)← Random ([0, 1])
2: ui(−1)← ui(0)
3: t ← 1
4: while t < Tmax do

5:
ui(t)← 2ui(t − 1)− ui(t − 2)−

c2


j∈N (i) Lijuj(t − 1)
6: t ← t + 1
7: end while
8: Y ← FFT ([ui(1), . . . . . . ,ui(Tmax)])
9: for j ∈ {1, . . . , k} do

10: ωj ← FrequencyPeak (Y , j)
11: v(j)

i ← Coefficient(ωj)

12: if v(j)
i > 0 then

13: Aj ← 1
14: else
15: Aj ← 0
16: end if
17: end for
18: ClusterNumber←

k
j=1 Aj2j−1

Proposition 3.1. The wave equation iteration (6) is stable on any
graph if the wave speed satisfies the following inequality,

0 < c <
√
2,

with an initial condition of u(−1) = u(0).
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Proof. For analysis of the algorithm, we consider Eq. (6) in vector
form,

u(t) = −u(t − 2)+ (2I− c2L)u(t − 1). (7)

We stress again that, in practice, the algorithm is distributed
and at every node one updates the state based on Eq. (6).
The update equations given by Eq. (6) (and Eq. (7)) correspond
to discretization of Eq. (5) with Neumann boundary conditions
(Coifman, Shkolnisky, Sigworth, & Singer, 2008).

One can write iteration Eq. (7) in matrix form,
u(t)

u(t − 1)


  

z(t)

=


2I− c2L −I

I 0


  

M


u(t − 1)
u(t − 2)


  

z(t−1)

. (8)

This implies that,

z(t) = Mtz(0), (9)

where z(0) = (u(0),u(−1))T . We now analyze the solution to
Eq. (9) in terms of the eigenvalues and eigenvectors of the graph
Laplacian L.

We can compute the eigenvectors of M by solving for a generic
vector (aj, bj)

T ,

M

aj
bj


= αj


aj
bj


.

This implies that the eigenvectors ofM are given by

m(j)
=


αj v

(j)

v(j)


, (10)

with eigenvalues

αj1,2 =
2− c2λj

2
±

c
2


c2λ2

j − 4λj. (11)

It is evident from Eq. (11) that stability is obtained if and only if,2− c2λj

2
±


(2− c2λj)2 − 4

2

 ≤ 1.

The absolute value from the above equation is plotted for
various values of θj = 2 − c2λi, in Fig. 2. The above stability
condition is satisfied for −2 ≤ θj ≤ 2, which yields the following
bound on c:

0 ≤ c ≤
2
√

λi
.

The above equation must hold true for all eigenvalues of L. The
most restrictive of which is c ≤ 2/

√
λN . Since λN ≤ 2 for all

graphs,

0 ≤ c ≤
√
2,

guarantees that all the eigenvalues of M have absolute value
equal to one. However, Eq. (6) will be unstable if any of the
eigenvalues of M have geometric multiplicity strictly less than
the algebraic multiplicity with an initial condition that has non-
zero projection on the unstable generalized eigenvectors. We now
derive conditions so that these instabilities do not arise.

From Eq. (11) it is evident that there are three cases to analyze.

Case (i): Since L always has an eigenvalue at 0, this implies thatM
always has an eigenvalue at 1with algebraicmultiplicity
two. It can be shown that the geometric multiplicity
of this eigenvalue is equal to one. The corresponding
eigenvector is 12N×1, with a generalized eigenvector
(1,−1)T . To avoid instability, the initial conditionsmust

0 42– 4 –2
0
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2.5
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4

Fig. 2. Plot of functions |θj/2± 1/2


(θj)2 − 4|. Blue (dashed) line is the function
with a negative second term. Red (solid) line is the function with a positive second
term. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

be of the form (u(0),u(0))T . In other words, we set
u(−1) = u(0) to ensure that the initial condition is
orthogonal to (1,−1)T .

Case (ii): If L has k repeated eigenvalues, it implies that M
has k repeated eigenvalues. In this case, however, the
geometric and algebraic multiplicities are equal. One
can show that the matrix L is similar to the symmetric
matrix,

Lsym = D−1/2(D−W)D−1/2,

(in particular, L = D−1/2LsymD1/2), implying that L is
diagonalizable. Thus, the eigenvectors of L associated
with the repeated eigenvalues are linearly independent.
Since matrix M has eigenvectors of the form shown in
Eq. (10), the repeated eigenvalues of M have eigenvec-
tors that are linearly independent.

Case (iii): The matrix M has a repeated eigenvalue at−1 if c2 = 2
and λN = 2. This repeated eigenvalue has an associated
eigenvector (−vN , vN)T and a generalized eigenvector
(vN , vN)T . Clearly, in this case the initial conditionwould
need to be orthogonal to both the vector (1,−1)T and
the vector (vN , vN)T . This can be achieved if and only
if u(0)⊥vN and u(−1) = u(0). This is an undesirable
condition, as it requires prior knowledge of vN . We avoid
this situation by setting c <

√
2.

Thus, we can guarantee stability of the wave equation iteration
on any graph (given by Eq. (6)), as long as 0 < c <

√
2 and the

initial condition has the form u(−1) = u(0).
Notice that the condition u(−1) ≠ u(0) is analogous to a non-

zero initial derivative condition on u for the continuous PDE, which
is known to give a solution that grows in time (Evans, 1998). �

Remark 3.2. Although we call c the wave speed, it only controls
the extent to which neighbors influence each other and not the
speed of information propagation in the graph.

Proposition 3.3. The clusters of graph G, determined by the signs
of the elements of the eigenvectors of L, can be computed using the
frequencies and coefficients obtained from the Fast Fourier Transform
of (ui(1), . . . ,ui(Tmax)), for all i and some Tmax > 0. Here ui is
governed by the wave equation on the graph with the initial condition
u(−1) = u(0) and 0 < c <

√
2.

Proof. We can write the eigenvectorsm(j) ofM as,

m(j)
= p(j)

± iq(j),
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where,

p(j)
=


Real(αj)v(j)

v(j)


, q(j)

=


Imag(αj)v(j)

0


.

Using αj = eiωj , we can represent the solution of the update
equation (Eq. (6)), or equivalently,

z(t) = Mtz(0), (12)

by expanding z(0) in terms of p(j) and q(j). Recall, that z(0) =
(u(0),u(0))T is orthogonal to the generalized eigenvector (1,−1)T .
Thus, z(0) is represented as a linear combination of (1, 1)T andm(j)

for j ≥ 2. This implies that the solution to Eqs. (8) and (9) is given
by

z(t) =
N
j=1

Cj1


p(j) cos(tωj)− q(j) sin(tωj)


+ Cj2


p(j) sin(tωj)+ q(j) cos(tωj)


, (13)

where

Cj1 = z(0)Tp(j), Cj2 = z(0)Tq(j). (14)

It is easy to see that at every node, say the i-th node, one can locally
perform an FFT on (ui(1), . . . ,ui(Tmax)) (where each value is com-
puted using the update law in Eq. (6)) to obtain the eigenvectors.
At the i-th node of the graph, one computes the i-th component
of every eigenvector from the coefficients of the FFT. More pre-
cisely, for node i, the coefficient of cos(tωj) is given (Cj1 + Cj2)v

(j)
i .

The sign of the coefficients of the eigenvector(s) provide the cluster
assignment(s). �

Remark 3.4. The above algorithm assumes that one excites every
frequency (or depending on the number of clusters, at least the first
k frequencies). This is achieved if z(0) is not orthogonal to p(j) and
q(j) (Cj1 and Cj2 must be non-zero). As mentioned before, an initial
condition of the form z(0) = (u(0),u(0))T prevents linear growth
of the solution, however, u(0) should also not be orthogonal to
v(2), v(3)

· · · v(k). This is easy to guarantee (with probability one) by
picking a random initial condition at each node.

Remark 3.5. Note that the wave equation can also be used as a
distributed algorithm for eigenvector and eigenvalue computation
of L. From the FFT we can compute ωj which in turn allows
us to compute the eigenvalues λj. The eigenvector components
are computed using the coefficients of cos(tωj) (or equivalently
sin(tωj)).

Remark 3.6. The algorithm is also attractive from a communica-
tion point of view. In Kempe and McSherry (2008) entire matrices
need to be passed from one node to another. In our algorithm only
scalar quantities uj need to be communicated.

Remark 3.7. Peak detection algorithms based on the FFT are
typically not very robust because of spectral leakage. Aswe are only
interested in the frequencies corresponding to peaks, algorithms
like multiple signal classification (Schmidt, 1986) can overcome
these difficulties. The investigation of such algorithms, as well as
windowing methods, is the subject of future work.

4. Performance analysis

An important quantity related to the wave equation based
algorithm is the time needed to compute the eigenvalues and
eigenvectors components. The distributed eigenvector algorithm
proposed in Kempe and McSherry (2008) converges at a rate of
O(τ log2(N)), where τ is the mixing time of the Markov chain

associatedwith the randomwalk on the graph.We derive a similar
convergence bound for the wave equation based algorithm.

It is evident from Eq. (13) that one needs to resolve the lowest
frequency to cluster the graph. Let us assume that one needs to
wait for η cycles of the lowest frequency to resolve it successfully
(i.e. the number of cycles needed for a peak to appear in the FFT).3
The time needed to cluster the graph based on the wave equation
is,

Tmax =
η

ω2
. (15)

From Eq. (11) it is easy to see that cos(ω2) = Real(α2) = (2 −
c2λ2)/2. Note that in Boyd, Diaconis, and Xiao (2004) it was shown
that τ = −(log |1− λ2|)

−1. Thus, it follows that,

ω2 = arccos

2+ c2(e−1/τ − 1)

2


.

Hence, the convergence of the wave equation based eigenvector
computation depends on the mixing time of the underlying
Markov chain on the graph, and is given by

Tmax = O


arccos


2+ c2(e−1/τ − 1)

2

−1
. (16)

In the wave equation based clustering computation, one can at
the i-th node, compute the i-th component of every eigenvector
(along with all the eigenvalues) of the graph Laplacian, thus
assigning every node to a cluster.

If one uses the wave equation to compute eigenvectors, to
ensure that at every node one has entire eigenvectors, an extra
communication step needs to be added. As a final step, locally
computed eigenvectors components are transmitted to all other
nodes. The cost of this step is O(N) (worst case). Thus, convergence
of the distributed eigenvectors computation scales as,

Tmax = O


arccos


2+ c2(e−1/τ − 1)

2

−1
+ O(N). (17)

Note that simple analysis shows that for large τ our algorithm
has a convergence rate of

√
τ/c (as O(N) gets dominated by τ ). It

is interesting to note that in the discretized wave equation, though
the constant c loses the meaning of wave speed (that it has in the
continuous case) it does impact the speed of convergence.

The convergence of wave equation based clustering is com-
pared to convergence of distributed spectral clustering in Fig. 3,
for c2 = 1.99. In particular, the figure shows that wave equation
based clustering has, in general, better scaling, with respect to τ ,
than (Kempe & McSherry, 2008).

Note that the proximity of ω3 to ω2 (or the proximity of λ3 to
λ2) will influence the constant in Eq. (16). The resolution of the
FFT is O(1/K), where K is the number of samples. Thus, K has to
exceed 1/|ω3 −ω2|, to enable computation of two separate peaks.
The closer λ3 is to λ2, the greater are the number of samples that
each node needs to store in order to obtain a good estimate of ω2
using the FFT. A similar constant depending on the ratio of λ2 and
λ3 arises in distributed spectral clustering (Kempe & McSherry,
2008) and any power iteration based scheme for eigenvector
computation (Golub & Loan, 1996).

Practically, if the lowest frequency of the FFT does not change
for a pre-defined length of time, we assume that convergence has
been achieved.

3 The constant η is related to the FFT algorithm and independent of the graph.
Typically 6–7 cycles of the lowest frequency are necessary to discriminate it.
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Fig. 3. Comparison of convergence rates between the distributed algorithm in
Kempe and McSherry (2008) and our proposed wave equation algorithm for c2 =
1.99. Thewave equation based algorithm has better scalingwith τ for graphs of any
size (given by N). The plots are upper bounds on the convergence speed.

Fig. 4. The ring graph CN with N nodes. Every edge has a weight of 1.

From Eq. (16) it seems that the proposed clustering algorithm is
independent of the size of the graph (since

√
τ/c dominatesO(N)).

This, however, is not true. Larger graphswith low connectivity tend
to have higher mixing times. Take for example, a cyclic graph CN
shown in Fig. 4. We use the cyclic graph as a benchmark as one can
explicitly compute the mixing time as a function of N and make a
comparison with (Kempe & McSherry, 2008). Of course, no unique
spectral cut exists for such a graph. The second eigenvalue of the
Laplacian for CN is given by

λ2 = 1− cos

2π
N


. (18)

Thus, the mixing time of the Markov chain is given by

τ = −
1

ln (cos (2π/N))
≈


N
2π

2

. (19)

From Eq. (16), one can show that the time for convergence of
the wave equation is,

Tmax =
η

arccos(1+ 0.5c2(cos(2π/N)− 1))
≈ η

N
2π

. (20)

As expected, Eq. (20) predicts that as the graph becomes larger,
the convergence time for the wave equation based algorithm
increases. We numerically compute and compare the convergence
times for randomwalks and wave equation on the cyclic graph (by
explicitly running the iterations for both processes and checking
for convergence). The results are shown in Fig. 5.

Fig. 5. Convergence of random walk and wave equation on the cyclic graph CN as
a function of number of nodes, N .

Fig. 6. A line graphwith nearest neighbor coupling. The edge between 100 and 101
is a weak connection with weight 0.1, all other edges have weight 1.0. Vertical line
shows the predicted cut.

Fig. 7. FFT of [ui(1) · · ·ui(T )] for any node i of the line graph. Red circle marks
the lowest frequency. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

5. Numerical results

Since our algorithm should predict the same partitions as
spectral clustering, we demonstrate the algorithm on illustrative
examples. Our first example, is the simple line graph shown in
Fig. 6. Nodes 1–100 and 101–200 are connected to their nearest
neighbors with edge weight 1. The edge between nodes 100 and
101 has weight 0.1. As expected, spectral clustering predicts a cut
between nodes 100 and 101. We propagate the wave on the graph
using update Eq. (6) at every node. At each node, one then performs
an FFT on the local history ofu. The FFT frequencies are the same for
all nodes (evident fromEq. (13)) and shown in Fig. 7. The sign of the
coefficients of the lowest frequency in the FFT are shown in Fig. 8.
It is evident from this figure that the sign of the coefficients change
sign exactly at the location of theweak connection, predicting a cut
between nodes 100 and 101 (consistent with spectral clustering).

We now demonstrate our distributed wave equation based
clustering algorithm on the Zachary Karate club graph (Zachary,
1977) and on a Fortunato benchmark example (Lancichinetti,
Fortunato, & Radicchi, 2008). These social networks are defined by
the adjacency matrix that is determined by social interactions. We
assume that all the edges have weight 1.



T. Sahai et al. / Automatica ( ) – 7

Fig. 8. Signs of the coefficients of the lowest frequency for the line graph.

Fig. 9. Graph decompositions predicted by spectral and wave equation based
clustering algorithms. Both methods predict the same graph cut.

Zachary, a sociologist, was studying friendships at a Karate club
when it split into two. As expected, members picked the club with
more friends. This example serves as an ideal test bed for clustering
algorithms. Any effective clustering algorithm is expected to
predict the observed schism. Community detection and graph
clustering algorithms are routinely tested on this example, see
Girvan and Newman (2002), Newman (2006), Porter et al. (2009)
and Rosvall and Bergstrom (2007) for a few such demonstrations.

We first apply spectral clustering on this example, then run our
wave equation based clustering algorithm, and compare the results
in Fig. 9. As expected, we find that both algorithms partition the
graph into exactly the same clusters.

We also demonstrate our algorithm on a large Fortunato
benchmark with 1000 nodes and 99084 edges. The graph has
two natural clusters with 680 and 320 nodes respectively. These
clusters are shown in Fig. 10. The wave equation based clustering
computes the graph cut exactly.

Thus, wave equation based eigenvector computation can be
used to partition both abstract graphs on parallel computers, or
physical networks such as swarms of unmanned vehicles, sensor
networks, embedded networks or the Internet. This clustering can
aid communication, routing, estimation and task allocation.

We now show how clustering can be effectively used to
accelerate distributed estimation and search algorithms.

6. Distributed estimation over clusters

Distributed estimation has recently received significant at-
tention see Alrikson and Rantzer (2007), Carli, Chiuso, Schen-
ato, and Zampieri (2008), Olfati-Saber (2007) and Speranzon,
Fischione, Johansson, and Sangiovanni-Vincentelli (2008) and
references therein. Distributed estimation algorithms require the

Fig. 10. A Fortunato community detection benchmarkwith 1000 nodes and 99084
edges. Wave equation based clustering computes the graph cut exactly.

Fig. 11. A two floor building subdivided into 64 cells/rooms for each floor. In each
room there is a sensor node capable of communicating with neighbors within a
radius of 10 m. The thick black line, depicts walls that degrade communication
strength.

entire network of sensors to exchange (through nearest neighbor
communication) data about themeasured variables in order to ob-
tain an overall estimate, which is asymptotically (in the number of
iterations) optimal. This results in estimators with error dynamics
that converge to zero very slowly. It is well known that these type
of algorithm can be accelerated using multi-scale approaches, see
for example Kim, West, Lall, Scholte, and Banaszuk (2008b); Kim,
West, Scholte, and Narayanan (2008a) and Selle and West (2009).
The key idea in thesemulti-scale approaches is to partition the sen-
sor network into clusters, solve the distributed problem in each
cluster and fuse the information between clusters.

As the overall estimation process is distributed, it is desirable
that the multi-scale speedup is achieved through a distributed
process as well. This means that the clustering must be computed,
in a bottom-up fashion, from the structure of the network. We
show in the following a simple yet illustrative example, where the
wave equationbased clustering algorithmcanbeused to accelerate
distributed estimation computation by exploiting properties of the
overall sensor network.

We consider the contaminant transport problem in a building
(Kimet al., 2008a)with two floors, each divided into 64 cells/rooms
(see Fig. 11). A sensor, to detect the contaminant, is present
in each cell. Sensors can communicate if their relative distance
is less than 10 m. However, we assume that only four sensors
can communicate between floors, namely those placed within
common staircases connecting the two floors. On the first floor,
sensors can communicate across the empty space in between (we
assume thatwindows are present), whereas on the second floorwe
assume that there are walls that reduce the communication range.
We further assume that walls marked with a thick black line, see
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(a) Two clusters. (b) Five clusters.

Fig. 12. Concentration estimates for room 49. Concentration estimates (solid line) are compared to the true value (dash–dot line). The dashed lines give the ±3σ curves
around the estimate. As it is clear from the plots, the strategy in which the consensus step is run using five clusters (b) is much better than using two clusters (a).

Fig. 11, degrade communication between the nodes that are inside
the area to those outside.

As in Kim et al. (2008a), we assume that the contaminant is
produced in four rooms, two on the first floor and two on the
second. Under the simplifying assumption of perfectmixingwithin
each cell/room volume, the contaminant propagates within the
building (see Kim et al., 2008a for details) according to:

ρiVi
dCi

dt
=


i∼j

FjiCj −

i∼j

FijCi + Gi − RiCi,

ρ : Density C : Contaminant concentration
V : Volume Fji : Mass flow rate from node j to i
G : Contaminant generation rate
R : Mass removal rate.

A constant inward flow of air is introduced at a corner of the
second floor, and outflow openings exist wherever windows are
open to the outside. We consider a distributed Kalman filter as
one that uses consensus to average the estimates and covariance
matrices between Kalman filter updates, see Kim et al. (2008a) for
details.

The idea of using the wave equation for distributed clustering
is to ‘‘discover’’ in a bottom-up fashion, the presence of clusters
and exploit strong inter-cluster connectivity to accelerate com-
putation. In particular, we demonstrate the benefit of using the
‘‘bottom-up’’ approach. In the building example there are twomain
clusters (first and second floors), which a filter and network de-
signer can a-priori assume to know. The four clusters on the second
floor, however, would not be known to the designer unless exten-
sive communication measurements are carried out.

In order to determine the four clusters based on SNR, on the
second floor, the wave equation based clustering was run for 600
steps. The clustering clearly needs to be run only once, unless there
is very strong variation of SNR or the network. In this particular
example we assume that the SNR and the network do not vary.

6.1. Numerical results

Numerical results are obtained by running the Kalman filter
interleaved with the consensus step, see Kim et al. (2008a). We fix
10 iterations for the consensus step in each cluster. Fig. 12 shows
the estimation result for 100 updates of the Kalman filter4 for both

4 We assume that the consensus step is fast compared to the contaminant
spreading so that no compensation of delay is required at the nodes while running
the Kalman filter. It is clear that for estimation, shortening the consensus step is
crucial in order to have a consistent estimate.

clustering strategies described previously. In particular, Fig. 12(a),
and (b) show the estimate (solid line) of the concentration (the
true value is shown with dash–dot line) in room 49 made by all
the sensors in the building. It can be clearly seen that the estimate
in Fig. 12(a) is not as accurate as the one in Fig. 12(b). The reason is
that the consensus step for the case of four clusters on the second
floor converges much faster to the true covariance compared to
the case of two clusters. In comparison, if consensus is run for the
case of two clusters, it requires more than 500 iterations in each
consensus step to converge to the accuracy of Fig. 12(b).

In the 5 cluster case, all the nodes in the building have accurate
estimates of the contaminant concentration for rooms located
on the first floor. This is because sensors on the first floor are
strongly connected to one another and 10 iterations are enough
to converge to the true covariance (with only slight corruption by
the ‘‘unconverged’’ averaging on the second floor).

These simulations show that the wave equation based cluster-
ing provides an efficient distributed bottom-up methodology for
partitioning sensor networks and accelerating distributed estima-
tion algorithms.

7. Mobile sensor networks

We demonstrate the utility of distributed partitioning for com-
puting the trajectories of mobile sensors/vehicles for the purpose
of efficiently searching a large area. In Mathew and Mezic (2009)
the authors have developed an algorithm to optimally search a re-
gion, given a prior distribution thatmodels the likelihood of finding
the target in any given location (see for example Fig. 13). The trajec-
tories are computed using a set of ordinary differential equations
given by

ẋj(t) = uj(t). (21)

The above equation describes the dynamics of the j-th vehicle,
where xj(t) and uj(t) are the position and the control input of the j-
th vehicle at time t respectively. The authors prove that the control
law

uj(t) = −umax
Bj(t)
∥Bj(t)∥

, (22)

efficiently samples the prior distribution for search. Here,

Bj(t) =

k

ΛkSk(t)∇fk(xj(t))
⟨fk, fk⟩

, (23)

where fk are the Fourier basis functions that satisfy the Neumann
boundary conditions on the domain to be searched and k is the
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Fig. 13. Prior belief map (distribution) for targets.
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Fig. 14. Trajectories generated using distributing spectral search algorithm that
uses wave equation based clustering.

corresponding basis vector number. The quantities Sk(t) are gov-
erned by the following differential equation,

dSk(t)
dt
=

N
j=1

fk(xj(t))

⟨fk, fk⟩
− Nµk, (24)

where N is the number of vehicles.
In Mathew and Mezic (2009) the trajectories are computed

a-priori for a given distribution (belief map), using Eqs. (21)–(24).
Here we perform online computations for trajectories generation
in a distributed setting. The sum

N
j=1 fk(xj(t)) over all vehicles

in Eq. (24) is the centralized quantity that needs to be computed
in a distributed manner. At every time instant (every time step of
the Runge Kutta scheme), the vehicles are partitioned into groups
using the wave equation based clustering algorithm and the sum
in Eq. (24) is computed over the clusters and the solutions added.
All the vehicles then compute a piece of their trajectory for a
predetermined horizon of time (for a single Runge Kutta time step).
These pieces of trajectories for each agent are merged together to
give Fig. 14. In this way, the mobile sensors group themselves into
clusters and compute their trajectories in a distributed manner.

8. Conclusions

In this work, we have constructed a wave equation based
algorithm for computing the clusters in a graph. The algorithm
is completely distributed and at every node one can compute
cluster assignments based solely on local information. In addition,
this algorithm is orders of magnitude faster than state-of-the-
art distributed eigenvector computation algorithms. Starting from
a random initial condition at every node, one evolves the wave
equation and updates the state based solely on the scalar states of
neighbors. One then performs an FFT at each node and computes
the sign of the components of the eigenvectors of the graph
Laplacian. Complete eigenvector information can be transmitted
to each node using multi-hop communication. This process is
equivalent to spectral clustering.

The algorithm is also attractive from a distributed computing
point of view, where parallel simulations of large dynamical

systems (Klus, Sahai, Liu, & Dellnitz, 2011) can be coupled to the
distributed clustering approach presented here, to provide scalable
solutions for problems that are computationally and theoretically
intractable. This application is the subject of current research.

Wave equation based clustering is demonstrated on community
detection examples. Applications to multi-scale distributed esti-
mation and distributed search are also demonstrated.

Current work includes the extension of the wave equation
based algorithm for dynamic networks. This is clearly very
important in situations where the weights on the edges of the
graph are time varying. Examples of systems where dynamic
graphs arise include UAV swarms, nonlinear dynamical systems
and evolving social graphs.
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