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University of London

The work of Lee et al. is theoretically well founded and thoroughly motivated
by practical data analysis. The algorithm presented has the following important
properties:

1. Hierarchical clustering using a novel, adaptive, eigenvector-related, agglomer-
ative criterion.

2. Principal components analysis carried out locally, leading to the required sam-
ple size for consistency being logarithmic rather than linear; and computational
time being quadratic rather than cubic.

3. Multiresolution transform with interesting characteristics: data-adaptive at each
node of the tree, orthonormal, and the tree decomposition itself is data-adaptive.

4. Integration of all of the following: hierarchical clustering, dimensionality re-
duction, and multiresolution transform.

5. Range of data patterns explored, in particular, block patterns in the covariances,
and “model” or pattern contexts.

While I admire the work of the authors, nonetheless I have a different point of
view on key aspects of this work:

1. The highest dimensionality analyzed seems to be 760 in the Internet advertise-
ments case study. In fact, the quadratic computational time requirements (Sec-
tion 2.1 of Lee et al.) preclude scalability. My approach in Murtagh (2007a) to
wavelet transforming a dendrogram is of linear computational complexity (for
both observations, and attributes) in the multiresolution transform. The hierar-
chical clustering, to begin with, is typically quadratic for the n observations,
and linear in the p attributes. These computational requirements are necessary
for the “small n, large p” problem which motivates this work (Section 1). In
particular, linearity in p is a sine qua non for very high dimensionality data
exploration.
Since L = O(p) in Section 2.1, this cubic time requirement has to be alleviated,
in practice, through limiting L to a user-specified value.

2. The local principal components analysis (Section 2.1) inherently helps with
data normalization, but it only goes some distance. For qualitative, mixed quan-
titative and qualitative, or other forms of messy data, I would use a correspon-
dence analysis to furnish a Euclidean data embedding. This, then, can be the
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basis for classification or discrimination, benefiting from the Euclidean frame-
work. See Murtagh (2005).

3. My final point is in relation to the following (Section 1): “The key property that
allows successful inference and prediction in high-dimensional settings is the
notion of sparsity.” I disagree, in that sparsity of course can be exploited, but
what is far more rewarding is that high dimensions are of particular topology,
and not just data morphology.
This is shown in the work of Hall et al. (2005), Ahn et al. (2007), Donoho and
Tanner (2005) and Breuel (2007), as well as Murtagh (2004). What this leads
to, potentially, is the exploitation of the remarkable simplicity that is concomi-
tant with very high dimensionality: Murtagh (2007b). Applications include text
analysis, in many varied applications, and high frequency financial and other
signal analysis.

In conclusion, I thank the authors for their thought-provoking and motivating
work.
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We divide our comments on this very interesting paper into two parts following
its own structure:

1. The use of treelets in connection with the correlation matrix of X = (X1, . . . ,

Xp)T for which we have n i.i.d. copies, or as the authors refer to it, “unsuper-
vised learning.”

2. The use of treelets as a step in best fitting the linear regression of X1 on
(X2, . . . ,Xp)T.

1. Unsupervised learning. The authors’ emphasis is on the method as a use-
ful way of representing data analogous to a wavelet representation where X = X(t)

with t genuinely identified with a point on the line and observation at p time points,
but where the time points have been permuted.

As such, this can be viewed as a clustering method which, from their examples,
gives very reasonable answers. However, to make more general theoretical state-
ments and to permit comparison to other methods, they necessarily introduce the
model

X =
K∑

j=i

Ujvj + σZj ,(1)

where U = (U1, . . . ,UK)T is an unobservable vector, the vj are fixed unknown
vectors, and Z ∼ Np(0, Jp), where Jp is the identity, Np is the p dimensional
Gaussian distribution, and U,Z are independent.

At this point, we are a bit troubled by the authors’ analysis. We believe a key
point, that is only stressed implicitly by the authors, is that the population tree
structure, as defined, is only a function of the population covariance matrix. This
is clear at Step 1, and follows since the Jacobi transformations depend only on the
covariance and variances of the coordinates involved. This raises a problematic is-
sue. If U, and hence X, has a Gaussian distribution, then the structure as postulated
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in (1) is not identifiable, as in known in factor analysis. Consider, for instance, Ex-
ample 2. If we redefine U∗

j = Uj , j = 1,2, v∗
3 = c1v1 + c2v2, and U∗

3 = 0, we are
at the same covariance matrix as in (19) with only two nonoverlapping blocks.

The treelets transform evidently gives a decomposition attuned to the authors’
beliefs of a block diagonal population structure with high intrablock correlation.
But the theoretical burden of exhibiting classes of covariance matrices, other than
ones whose eigenvectors are not only orthogonal but have disjoint support, and for
which some version of sparse PCA cannot be utilized just as well, remains.

This is an insurmountable problem for any population parameter which is a
function only of the covariance matrix.

A second difficulty, special to the treelets parameter T (�), is that it is not de-
fined uniquely for � for which the maximal off diagonal correlation is not uniquely
assumed. This is reflected in the authors’ discussion in Section 3.1 of the possible
instability of the empirical tree. In this context, we don’t understand their statement
that inferring T (�) is not the goal. If not, what is?

This issue makes comparison to the other methods difficult. As they state any
of the several methods for sparse PCA, for example, d’Aspremont et al. (2007),
Johnstone and Lu (2008), would yield the same answer as theirs for their Exam-
ple 1.

But is there a way of proceeding which teases out explicitly structures such as
in (19) without limiting oneself to the covariance matrix? Suppose that we can
write U = Be, where e = (e1, . . . , eK)T is a vector of independent not necessarily
identically distributed variables, such that at most one of them is Gaussian. That
is, we assume the factor loading themselves are obtained structurally. Then we can
write for i = 1, . . . , n, j = 1, . . . , p, Xij = ∑K

l=1 cjleil +σZij , where C = [Cjl] is
a p×K matrix, the Zij are i.i.d. N(0,1), and ei = (ei1, . . . , eiK)T are independent
as above. Here, C = V B , where V = (v1, . . . , vk). We conjecture that if p,n → ∞
with K fixed, and the columns of C are sparse, we can recover C up to a scale
multiple of each row, and a permutation of the columns. Work on this conjecture
is in progress.

2. Supervised learning. Can we select variables based on the X, the predictor
variables, themselves? The tempting answer is yes (e.g., using PCA). The theoret-
ical answer is no (Y can be a function of each component). The practical answer
is at most a cautious yes; cf. Cook (2007) for a recent discussion. However, one
should be careful to justify working with the predictions without the Y , since cur-
rent regression methods permit one to handle models with almost exponentially
many variables.

The LASSO type of estimator can handle sparse models. However, sparsity is
an elusive property, since the LASSO can deal with sparsity in a given basis, while
a sparse representation may exist only in some other basis. Treelets are proposed
as a method which enriches the description of the model, and gives the user an
over-rich collection of vectors which span the Euclidean space. Hopefully the tree
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cluster features are rich enough so the model can be approximated by the linear
span of relatively few, say, no more than o(n/ logn) terms.

The suggested algorithm deals with complexity by serial optimization in a fash-
ion similar to standard model selection methods (e.g., forward selection), boosting,
etc. It is not clear to us why the authors select the variables from one level and not
from their union, since again modern methods can deal with any polynomial num-
ber of regressors.

To asses performance of the algorithm, we considered a simple version of the
authors’ supervised errors-in-variables model, but in an asymptotic setting. Sup-
pose we observe n i.i.d. replicates from the distribution of (Y,X1, . . . ,Xp), where
p = pn and

Y = γZ + ε,

Xi = cpZ + ηi, i = 1, . . . , p,

where ε,Z ∼ N(0,1), ηi ∼ N(0, σ 2
i ), all independent. This is a classical error in

variables model, where the Xi are independent observations on Zi and the best
predictor is given by

ŷ(X) = γ cp

1 + c2
p

∑p
i=1 σ−2

i

p∑

i=1

σ−2
i Xi.

Consider first cp = p−1/2, with all σi = 1, γ �= 0 and, in particular, c2
p ×

∑p
i=1 σ−2

i = 1. In this case all variables are interesting, and have the same weight
for prediction. However, the covariance matrix of X has all diagonal terms greater
than 1, and all off diagonal terms are p−1. This model is not sparse—for instance,
in the sense of El Karoui (2008), and is also inaccessible to regularized covariance
estimation. The Treelet Algorithm will not be able to find this term. This model is
significantly different from the null, and a consistent predictor exists given known
parameter values. However, no standard general purpose algorithm will be able to
deal with this model. A small set of simulations show that, in fact, there is a range
of values of cp for which PCA works better than treelets. However, for larger val-
ues of cp , treelets work surprisingly well.

The restriction to a basis of a relatively small collection of transform variables
is a limitation. In Bickel, Ritov and Tsybakov (2008) a general methodology was
suggested for construction of a rich collection of basis functions. Formally, we con-
sider the following hierarchical model selection method. For a set of functions F
with cardinality |F | ≥ K , let MSK be some procedure to select K functions out
of F . We denote by MSK(F ) the selected subset of F , |MSK(F )| = K , K = nγ

for some γ < ∞. Define f ⊕ g to be the operator combining two base variables,
for instance, multiplication. The procedure is defined as follows:

(i) Set F0 = {X1, . . . ,Xp}.
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(ii) For m = 1,2, . . ., let

Fm = Fm−1 ∪ {f ⊕ g :f,g ∈ MSK(Fm−1)}.
(iii) Continue until convergence is declared. The output of the algorithm is the

set of functions MSK(Fm) for some m.

Bickel, Ritov and Tsybakov consider f ⊕g = fg, since they consider models with
interaction. The treelets construction is similar to this one, with each step yielding
two new functions, which result from PCA applied to a pair of variables. There is
one essential difference between our approach and the treelets algorithm. We also
keep at each step the complexity of the over-determined collection in check, but
let the complexity increase with the increase with levels.
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We congratulate Lee, Nadler and Wasserman (henceforth LNW) on a
very interesting paper on new methodology and supporting theory. Treelets
seem to tackle two important problems of modern data analysis at once. For
datasets with many variables, treelets give powerful predictions even if vari-
ables are highly correlated and redundant. Maybe more importantly, inter-
pretation of the results is intuitive. Useful insights about relevant groups of
variables can be gained.

Our comments and questions include: (i) Could the success of treelets be
replicated by a combination of hierarchical clustering and PCA? (ii) When
choosing a suitable basis, treelets seem to be largely an unsupervised method.
Could the results be even more interpretable and powerful if treelets would
take into account some supervised response variable? (iii) Interpretability of
the result hinges on the sparsity of the final basis. Do we expect that the
selected groups of variables will always be sufficiently small to be amenable
for interpretation?

1. Treelets or hierarchical clustering combined with PCA. A main part of
the treelet algorithm achieves two main objectives:

(1) Variables are ordered in a hierarchical scheme. Highly correlated variables are
typically “close” in the hierarchy.

(2) A basis on the tree is chosen. Each node of the tree is associated with a “sum”
(and also a “difference” variable).

Clearly, treelets are more elegant than any method trying to achieve these two
goals separately. As LNW write in Section 1: “The novelty and contribution of our
approach is the simultaneous construction of a data-driven multi-scale orthogonal
basis and a hierarchical cluster tree.” We are left wondering, though, how different
treelets are to the following scheme. First, variables are ordered in a hierarchical
clustering scheme—for concreteness, under complete linkage and using similar-
ities derived from absolute correlations as in (1). Second, a basis on the tree is
found. For each node in the hierarchical clustering tree, the “sum” variable of the
treelet algorithm would be replaced by the first PCA component of the variables
represented by this node. Computationally, this scheme is clearly less efficient than
the treelet algorithm, at least if implemented naively. Are there other benefits of
taking steps (1) and (2) in one step as in the proposed treelet algorithm? It would
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be nice to see whether the tree structure of treelets differs substantially from a hi-
erarchical cluster tree, and whether the treelets bases are very different from local
PCA. Unfortunately, we did not obtain the treelet software from LNW, and that is
the main reason why we did not pursue our own numerical experiments.

2. Supervised and unsupervised basis selection. In addition to contribu-
tions (1) and (2), treelets involve an additional step:

(3) Cut the hierarchical tree at some height, and work with the resulting basis. The
chosen height is based on a clever score function; see formula (6).

The choice of the cut-point influences the “resolution” at which one is looking at
the data. At one extreme (the leaves of the tree, “high resolution”), all variables
are individual basis vectors. At the other extreme (the root of the tree, “low reso-
lution”), basis vectors contain contributions from all variables, just like in global
PCA. We understand the motivation behind the approach and the reported results
seem to be very favorable. For supervised problems with a response, we are won-
dering if information in the response variable could be used more extensively to
construct the treelet basis.

It is clear that a response variable should influence the choice of the basis. Take
an example. If the signal-to-noise ratio (SNR) is very low, then one might be more
inclined to work with “low resolution,” as there is no hope of recovering the re-
gression coefficients of individual variables. On the other hand, for high SNRs, it
might very well be possible to single out individual variables as important. Infor-
mation in the response variable could be used in various ways. Ranging from weak
use of the response to stronger involvement:

(a) Supervised choice of the cutoff height. The cutoff of the tree can be influenced
by the response. In fact, LNW used some supervised score function in Sec-
tion 5.1 and also some cross-validation (and hence, supervised) approach in
Section 5.3 to choose the best value for K , which in turn determines the cutoff
value for the tree through criterion (6). Another possibility for finding the best
cutoff in a supervised fashion would be to choose, instead of (6),

BL = arg min
B�:0≤�≤p−1

CV (B�),

where CV (B�) is the cross-validated loss of a favorite prediction method, us-
ing the orthogonal basis B� as predictor variables. Is it better to choose a value
of K , and having then an associated best K-basis, or should we rather choose a
best basis directly? Note that with the latter, we would also select features from
the basis if the prediction method would do variable selection, for example, the
Lasso or tree-based methods including boosting or random forests.

(b) Nonuniform cutoff height. For a given tree, it is not obvious why cutting at a
single height is necessarily optimal. As an example, take 2 predictor variables
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xi and xj with i �= j who are quite correlated and both of them are strongly
relevant for prediction. They will tend to be merged quite early in the tree,
but we would like to keep them separate for interpretation and best predictive
performance (while we would like to merge as early as possible less correlated
clusters of variables that only have a weak influence on the response).
Instead of cutting the tree at a single height, it might be more advantageous to
start toward the root node of the tree. If a given cluster of variables turns out
to be important, one could try to add—in a forward selection manner—basis
elements from its sub-clusters. If descending deeper into the tree at a partic-
ular node improves prediction considerably, one would keep descending and
stop otherwise. The selected tree height would not be uniformly the same. The
resolution would be high in directions of strong signal and low in directions of
weak signal. For related procedures, see also Meinshausen (2008) or Goeman
and Mansmann (2008). And also “supervised harvesting” [Hastie, Tibshirani,
Botstein and Brown (2001)] has the property that features at different levels of
a hierarchical cluster tree are selected.

(c) Supervised tree growth. Take again the example in (b) of two rather corre-
lated predictor variables, who are merged quite early in the tree but contribute
both strongly to the response. A more principled way of dealing with the issue
would be to make the construction of treelets, that is, the tree and the bases,
supervised. Is it possible? [Besides doing the obvious, viz., to include the re-
sponse y as another variable, i.e., considering new data x̃ = (y, x).] To our
knowledge, there are not many methods for “supervised grouping.” It seems
to us that among the references in LNW, only the method in Dettling and
Bühlmann (2004) remains as “truly supervised,” while the elastic net approach
in Zou and Hastie (2005), which is supervised, is not extracting a group struc-
ture.

We think that it would be worthwhile to extend treelets in the direction of a
truly supervised algorithm both for improved prediction performance and better
interpretability.

3. Interpretability. One attractive property of treelets is the sparsity of the
solution (sparsity is here to be understood as few variables entering a basis vector).
Compared with global PCA, which includes contributions from all variables into
every basis vector, treelet basis vectors contain in general only a few variables in
each basis vector. This increases the interpretability of results dramatically.

There is clearly a tradeoff, though: increasing the sparsity increases inter-
pretability by performing variable selection among the treelet features. Increasing
sparsity increases at the same time, however, the variance of the solution. Mak-
ing the results very sparse carries, in general, the risk that the results are unstable.
We might see a completely different result on repeated measurements (or on re-
peated bootstrap samples). We would thus like to make the results “as sparse as
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possible, but not any sparser.” A very sparse yet unstable result is not suitable for
interpretation either.

What should we do if the selected groups of variables will be too large for
interpretation? For example, groups of genes of size more than 20 are often an
idea attractive to statisticians or computer scientists, but it is very likely that such
large groups will never be validated by biological experiments. Is the solution as
simple as cutting the tree at a level such that the group size is bounded by a value
which is desired for a specific application?

Bounding the maximal group size can potentially render the algorithm unstable.
As a possible solution to the sparsity–stability tradeoff, we can cut the tree at a
height that gives maximal sparsity of results under the condition that the obtained
groups of variables are—in some sense—stable under permutations of the data.
LNW show in Figure 3 some bootstrap confidence bands which are supported by
some asymptotic theory in Section 3.1. It would be interesting to have a more
complete way of visualizing the stability of the treelet procedure.

4. Conclusions. We think that treelets are a very interesting and promising
proposal for high-dimensional modern data analysis. Open-source high quality
software would be desirable: it would help promoting the method to a large com-
munity of users and researchers and it would allow reproducibility of results.
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This is a very interesting paper on an important topic—the problem of extract-
ing features in an unsupervised way from a dataset. There is growing evidence that
unsupervised feature extraction can provide an effective set of features for super-
vised learning: see, for example, the interesting recent work on learning algorithms
for Boltzmann machines [Hinton, Osindero and Teh (2006)].

The ideas in this paper are exciting—treelets are a neat construction that com-
bine clustering and wavelets, and are simple enough to be theoretically tractible.
The connection to the latent variable model is also interesting: this kind of model
is also the basis of supervised principal components, a method that I co-developed
recently [Bair et al. (2006)] for regression and survival analysis in the p > N set-
ting.

I have no practical experience with treelets, so my remaining comments will be
brief and mostly in the form of questions for the authors. A much simpler approach
to this problem would be to hierarchically cluster the predictors, and then take
the average at every internal node of the dendrogram. Let’s call this the “simple
averaging” method. As noted by the authors, this has already been proposed in the
literature, for example, in the “Tree-harvesting” procedure. In this approach we
keep all of the original predictors and all of the internal node averages and so end
up with an over-complete basis of 2p basis functions.

How are treelets different from simple averaging? Treelets do an orthogonaliza-
tion after each node merge, but does this change the clustering in a material way?
What advantage is there to the orthogonal basis delivered by treelets? After all, it
looks like the resulting linear combinations of variables are not uncorrelated. Does
the simple averaging method perform as well as treelets in the kind of examples
of the paper? Do the authors’ theorems apply to the simple averaging method as
well, or are treelets uniquely good in their estimation of the components of a latent
variable model?

The contrast between treelets and simple averaging is analogous to the contrast
between wavelets and basis pursuit [Chen, Donoho and Saunders (1998)]. The
former is an orthogonal basis while the latter is over-complete; when fitting is
done with an L1 (lasso) penalty, the over complete basis, can provide a very good
predictive model.
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One small point—hierarchical clustering is usually done with average linkage
between pairs of predictors. A variation, commonly used in genomics and some-
times called Eisen clustering (since it’s implemented in Eisen’s Cluster program),
uses instead the distance (or correlation) between centroids. The Treelet construc-
tion looks more like Eisen clustering. The point is that one could apply Eisen
clustering, and then simply average the predictors in every internal node.
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This is a discussion of paper “Treelets—An adaptive multi-scale basis for
sparse unordered data” by Ann B. Lee, Boaz Nadler and Larry Wasserman. In
this paper the authors defined a new type of dimension reduction algorithm,
namely, the treelet algorithm. The treelet method has the merit of being com-
pletely data driven, and its decomposition is easier to interpret as compared
to PCR. It is suitable in some certain situations, but it also has its own limita-
tions. I will discuss both the strength and the weakness of this method when
applied to microarray data analysis.

1. The design of the treelet algorithm. A lot of modern technologies re-
quire analyzing noisy, high-dimensional and unordered data. As an example, in
the field of microarray analysis, researchers are often interested in analyzing gene
expessions sampled from n different subjects. These expression data can be seen
as n independent realizatons of a p-dimensional random vector �x = (x1, . . . , xp)T ,
each xi represents (usually log tranformed) an expression level of a given gene. In
practice, p (number of genes) is measured in thousands or tens of thousands, and n

(sample size) is more than often less than a dozen. Due to this “large p, small n”
nature, dimension reduction such as hierarchical clustering (denoted as HC henth-
forth) is often conducted prior to regression or classification analysis.

The treelet algorithm can be best described as a data driven local PCA (Principal
Component Analysis). It can be summarized in the following steps:

1. Find the two most similar variables (genes) by a well-defined metric of similar-
ity such as covariance. Denote this pair of genes as xα , xβ .

2. Perform a local PCA on this pair to decorrelate them. More specifically,
find a Jacobi rotation matrix J such that x(2) = J T (x) has this property:
cov(x

(2)
α , x

(2)
β ) = 0. Then drop the less important one of them (the one with

smaller variance) and update the similar matrix.
In other words, after this step, a summary variable will be chosen to replace

the two most similar variables from the original data.
3. Update the similarity matrix with this new summary variable and then find the

next most similar pair of variables.
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4. Build up a multi-resolution analysis accordingly. At each step, we have a repre-
sentation of x as the sum of the coarse-grained representation of the signal and
the sum of the residuals.

2. Comparisons to other methods. Dimension reduction is not a new tech-
nique in data analysis. Principal component analysis [Jolliffe (2002)] and hierar-
chical clustering methods [Eisen et al. (1998), Tibshirani et al. (1999)] are among
the most used methods in this arena.

PCA As pointed out by the authors, PCA computes a global representation of
data. The principal components are linear combinations of all variables.
This poses an obstacle for interpreting the results. On the other hand, the
treelet method is a local method by design. For example, when the under-
lying dependence structure of data can be modeled as disjoint groups of
variables which are uncorrelated to each other groupwise, in principle, local
dimension reduction methods should perform better than their global coun-
terpart.

HC In a sense, the treelet can be viewed as yet another way of constructing
the dendrogram from the bottom up. So the treelet method is a legitimate
member of the family of agglomerative hierarchical clustering algorithms.
However, there is a novelty in the treelet method approach. By construc-
tion, at each step only the sum variable (the variable which contributes more
variance) remains as the representative of the pair of closely related vari-
ables. At the end of the day, the dendrogram will reflect the “skeleton” of
the given data rather than the dependence structure of the data themselves.
If in a specific application we have evidence that the unused residual terms
reflect nothing but noise, then the treelet method provides us invaluable in-
formation about hierarchical dependence of the data which is noise resis-
tant.

3. Applicability in the field of microarray data analysis. As mentioned in
Section 1, microarray data analysis is a good example where the treelet method
may shine. It is a well-known biological fact that genes work together instead of
independently. As a consequence, their expressions are highly correlated.

Storey and Tibshirani (2003) hypothesized that most likely the form of inter-
gene dependence is weak dependence, which can be “. . . loosely described as any
form of dependence whose effect becomes negligible as the number of features
increases to infinity.” And their argument is that genes can be grouped into essen-
tially independent pathways.

If this hypothesis is true, then the treelet method would work beautifully, as
illustrated in Chapter 3.2 of Lee, Nadler and Wasserman (2008).

However, a series of study conducted by Qiu et al. (2005a, 2005b, 2006) on
St. Jude Children’s Research Hospital Database (see sjcrh database on childhood
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leukemia) showed that, on average, the intergene correlation level is too high to
be explained by the within pathway dependence (weak dependence) alone. There
is strong long ranged global dependence between pathways. Whether this global
dependence is due to technical noise or not is up to debate [Klebanov and Yakovlev
(2007)]. If the observed high intergene correlation is due to biological reasons
rather than noise, then the treelet method may be harmful since it will reduce and
distort useful information contained in the dependence structure.

It is also interesting to compare the treelet method with various normalization
methods, such as the global normalization [Yang et al. (2002)]. Apparently, global
normalization (or any other normalization method) is not a dimension reduction
procedure, nor does it give us a dendrogram. However, one similarity can be found
between the global normalization and the treelet method: they both replace data
variables with surrogate variables which are linear combinations of the original
variables. In the case of global normalization (assuming expression levels are log
transformed), the ith variable (gene) xi is replaced by xi − x̄, where x̄ is the sample
average of x over all genes for a given slide. From this point of view, global nor-
malization is a global basis transformation. A hidden assumption in doing global
normalization is that x̄ represents slide-specific noise thus needs to be removed
from the observed signal. While I personally think that technical noise cannot be
removed in such an overly simplistic way, it provides an example where a global
method may better capture the most useful information at a much faster rate.

Another dangerous behavior of the treelet method is that it uses variance as a
means to evaluate which variable should be retained (sum variable), and which one
should be disregarded (difference variable). This approach may look very plausible
mathematically, yet it ignores the possibility that genes with lesser variability may
actually be the important ones. It may very well be the case that in evolution genes
that are responsible for essential functionalities are more likely to have smaller
variation than those less important ones.

One of the major advantage of the treelet method is that the sum variables it
produces use only a subset of variables. This makes it easier to interpret than PCR,
which gives linear combinations of all variables as outcome. However, the sum
variables of the treelet method can also be linear combinations of many variables.
It is a huge leap forward in the right direction, yet it is still hard to find its way into
another important field of microarray analysis: testing differential expressions. Be-
ing hard to interpret is just an apparent disadvantage. A more subtle disadvantage
is that there is no guarantee that the multiple testing procedures designed to work
with original expressions still control the same false positive level when we replace
them with some “noise-free” surrogate variables. Much future work can be done
in this direction.

4. Discussion. Overall, I think the treelet method has the merit of being com-
pletely data driven and being local. I am very impressed by its performance when
data variables are divided into uncorrelated groups.
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However, when talking about its applicability to gene expression data, I think
a lot of careful investigation still needs to be done. This is due to the complexity of
the dependence structure exhibits in this type of data. This complexity is probably
the reason why the treelet method (in its original form) did not outperform other
classification methods on the leukemia data set of Golub et al.

In the future more attention should be paid to the nature of inter-pathway de-
pendence. Should we model pathways as disjoint, uncorrelated “super variables”?
Or should we also model some long range, inter-pathway correlation? I think this
question can be answered only through joint efforts from both statisticians and
biologists.

I also want to point out that I disagree with the authors in that PCA cannot reveal
the underlying noiseless structure of the data while the treelet method can. As
pointed out by numerous researchers [Storey et al. (2007), Barbujani et al. (1997),
Akey et al. (2002), Rosenberg et al. (2002)], most human genetic variation is due
to variation among individuals within a population rather than among populations.
This implies that the majority of “noise” in the data is actually true biological
information. So being too good at removing “noise” may not always be a merit.

In short, I believe there is no one-size-fits-all solution for noisy, high-dimension-
al data. The treelet method provides us a very good solution in some situations, and
it opens many research possibilities in the future.

Possible future improvements:

• The leukemia data set of Golub et al. used for classification of DNA microar-
ray data is not the largest data available. The authors may want to try St. Jude
Children’s Research Hospital Database on childhood leukemia too.

• In the same chapter, the authors claim that they use a novel “two-way treelet
decomposition scheme.” They first compute treelets on the genes, then com-
pute treelets on the samples. It looks very suspicious. I have a feeling that the
gained performance is due to some subtle violation of the principle of external
cross-validation. The authors should definitely provide more details about this
approach.

• A recent paper by Klebanov, Jordan and Yakovlev (2006) proposed a new model
of the long range intergene correlation structure. In a loose way, they hypoth-
esize that there exist “gene drivers” and “gene modulators,” such that the ex-
pression of a “gene-modulator” is stochastically proportional to that of a “gene-
driver” (without log transformation). It would be nice to see if the treelet method
works in this situation.
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We would like to congratulate Lee, Nadler and Wasserman on their con-
tribution to clustering and data reduction methods for high p and low n situa-
tions. A composite of clustering and traditional principal components analy-
sis, treelets is an innovative method for multi-resolution analysis of unordered
data. It is an improvement over traditional PCA and an important contribution
to clustering methodology. Their paper presents theory and supporting appli-
cations addressing the two main goals of the treelet method: (1) Uncover
the underlying structure of the data and (2) Data reduction prior to statistical
learning methods. We will organize our discussion into two main parts to ad-
dress their methodology in terms of each of these two goals. We will present
and discuss treelets in terms of a clustering algorithm and an improvement
over traditional PCA. We will also discuss the applicability of treelets to more
general data, in particular, the application of treelets to microarray data.

1. Uncover the underlying structure of the data. In order to determine the
underlying structure of a given data set, the statistician will often employ various
clustering algorithms, or projection-based methods such as principal components
analysis in an effort to tease apart the data which is often highly correlated and very
noisy. The authors, Lee, Nadler and Wasserman, propose a new method targeted
at detecting the multi-resolution internal structure of the data. In wavelet-fashion,
the results are presented on multiple scales, providing detail only when necessary.
However, unlike wavelet-analysis, their technique is applicable to unordered data.
Though presented initially as an extension of wavelets, treelets are built upon a
hierarchical clustering framework and can be illustrated as such.

As outlined in the overview van der Laan, Pollard and Bryan (2003), cluster-
ing methods are described by three major components: the distance measure, the
grouping criteria, and the algorithm. The authors in this paper present treelets in
terms of a correlation distance matrix, while we have argued for algorithms which
allow arbitrary distance metrics since different applications can require different
uses of the notion of proximity. Though they elude that other distance measures can
be applied, all theory and simulation is presented and proven using a covariance
or correlation measure of similarity. When alternate distance measures are used
the benefit of using this method over other clustering methods seems questionable,
and the final interpretation of the multi-resolution basis is unclear.
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When the underlying structure of the data does not reflect a sparse diagonal
correlation matrix, using more adaptable clustering methods such as Hierarchical
Partitioning and Collapsing Hybrid (HOPACH) [Pollard and van der Laan (2005),
van der Laan and Pollard (2003)] would be more appropriate and seem to provide
more flexibility and more interpretable results. HOPACH takes as input an arbi-
trary distance or dissimilarity matrix, combines top-down and agglomerative clus-
tering into a hybrid algorithm, allows for data adaptively deciding on the number
of children cluster in each node, orders the clusters in each layer of the hierarchi-
cal tree based on the distance so that neighboring clusters are close to each other
w.r.t. the specified dissimilarity, and it allows the use of a data adaptive as well as
visual criteria (including output of bootstrap) to decide on the depth and number
of clusters in the tree.

The treelet algorithm is a binary agglomerative hierarchical clustering algo-
rithm. In terms of a hierarchical graph only, the two most correlated nodes are
combined at a given step. For an n by p data matrix, there are total p − 1 layers
for a graph combined to completion. The binary combination allows for the multi-
resolution interpretability of the resulting basis. At each node a principal compo-
nents analysis is applied to the pair of variables. The node is then represented by
the two components, the first component becoming a “sum” variable, and the sec-
ond the “difference” variable. Since only the sum variable is allowed to combine
in higher levels of the graph, the difference variable remains behind as a residual
measure of the combination. Each treelet, comprised of one node (sum variable)
and its associated difference variables can be represented by a orthonormal basis.

The treelet method is applicable given any agglomerative hierarchical algo-
rithm. However, the graph is solely built on the similarity between two variables.
This does not take advantage of all information present in the data. Clustering al-
gorithms have advanced beyond simple similarity measures and use informative
measures such as the Mean Silhouette [Kaufman and Rousseeuw (1990)], the Me-
dian Silhouette, or the Split Mean/Median Silhouette [van der Laan, Pollard and
Bryan (2003)]. Each of these grouping criteria reflects how similar variables are in
relation to how dissimilar they are from others.

The authors do present a measure to determine the optional height of the tree,
a normalized energy score reflecting the percent variance explained on a given ba-
sis conditional on the number of variables chosen to represent the treelet—the best
K-dimensional basis. According to the authors, the best height and dimension K
can be chosen using cross-validation - though the exact method of cross validation
is not presented clearly in terms of choosing K . If the goal is to use treelets for the
purpose of prediction, then this is easily defined, but it becomes unclear what is
meant otherwise.

In terms of a clustering algorithm, we applaud the authors for having a well
defined goal: estimation of the true correlation matrix. Generally cluster analysis,
though built from localized structure, does not identify that as its far-reaching goal
leaving consistency theory nonexistent. We would like to point out that in terms
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of clustering, a particular consistency theory for the estimation of the mean and
covariance matrix based on Bernstein’s inequality, as well as the sensitivity and
reproducibility of the estimate based on bootstrap resampling, was presented in
van der Laan and Bryan (2001) and subsequent articles.

Beyond a clustering interpretation, treelets can also be viewed as an improved
robust version of PCA. Traditional PCA is a global method, highly sensitive to
noise in the data. Treelets focus on detecting localized structure and by performing
binary data-driven rotations, are much more robust to noise. The authors show the
improved finite sample properties of treelets over traditional PCA, and we believe
this is a fundamental contribution to the field. Treelets will be able to perform well
in many practical settings, while PCA will often rely on too large sample sizes.
Treelets also incorporate hierarchical clustering giving the method a wavelet-like
property, preserving detailed structure in only the necessary region, unlike PCA
which splits the data into orthogonal projections, each with a linear basis relating
to the entire data set.

In terms of detecting the underlying structure of data given a sparse correlation
matrix, treelets are a great contribution providing a new summary metric for binary
clustering algorithms, and providing a localized PCA. In application, however,
the method is potentially limited to only data where the underlying correlation
structure is assumed to be sparse, such as many image and spatial analyses. Given
a more complex correlation structure, which is often seen in biological data such
as microarray data, treelets do not necessarily perform better than clustering or
standard PCA. The improvement in convergence rate over PCA is contingent on
the sparsity of the correlation matrix.

2. Data reduction. In terms of data reduction, treelets are a data-driven
method which provides a more concise representation of a data matrix with sparse
correlation. Reducing the dimension of the initial data set before applying a learn-
ing algorithm can improve the accuracy of the predictor. In the spirit of the super-
learning approach [van der Laan, Polley and Hubbard (2007)], involving an ag-
gressive approach for data adaptively selecting among a continuum of different
strategies for construction of a prediction, for the purposes of dimension reduction
in prediction, we recommend in practice that the height of the tree (L) and the di-
mension of the basis (K) should be chosen with respect to the cross-validated risk
of the prediction in all applications. The authors elude to this.

The practical application of treelets as a dimension reduction technique for
high-dimensional microarray data is unclear. Microarray data is generally not
sparsely correlated with a nice diagonal block structure. In fact, the correlation
structure is often very complex and noisy. Though the treelets may provide a set of
summary measures for the data set, the benefit of using these summary measures
over those obtained using a traditional PCA for this type of data is not demon-
strated. Also, we note that though they present the benefits of using their method
as data reduction prior to prediction in Sections 5.1 and 5.3, in the case of the Glob
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DNA microarray data in Section 5.3 the authors chose to reduce the data prior to
the application of treelets using univariate regression. They restrict their data to the
1000 most “significant” genes. The reasons for this initial reduction are not stated,
nor are the reasons for the arbitrary cut-off of 1000.

Often the truncation of a data set using a p-value cut-off is used to improve com-
putational speed or improve accuracy. Regardless of the reasoning, the use of sim-
ple linear regression may not achieve an accurate ranking of “significant” genes.
Univariate regression is notorious for detecting false positive genes. Constraining
the data to the more “significant” genes may decrease the noise of the data, but it
will not decrease the complexity of the correlation structure. We argue the use of
targeted variable importance using targeted Maximum Likelihood or comparable
double robust locally efficient estimation method would provide a more accurate
ranking of the potentially causal genes [Bembom et al. (2007), Tuglus and van der
Laan (2008)] than univariate regression. We also argue that if the initial reduction
was completed to improve accuracy for the sake of prediction, the cut-off should be
chosen with respect to the overall prediction performance. The Golub data, though
commonly used to demonstrate prediction methods, is also commonly easy to ob-
tain accurate results. The improvement accuracy of the treelet method over others
is difficult to see when in general methods seem to perform so well.

3. Final comments. In general we believe treelets to be a great contribution
to the field. With respect to clustering methodology, it provides a framework which
actively searches for the correct underlying correlation structure. Its improvement
over PCA when the correlation matrix is believed to be sparse is also impressive.
Given the appropriate data and application, treelets will be a very useful and prac-
tical tool for statistical analysis.
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We are grateful to all of the discussants for their thoughtful comments. Their
remarks have added significant insight and perspective on the work. As a variety
of issues have been raised, we have organized our rejoinder according to main
topics that have been brought up by the discussants.

1. A multiresolution transform guided by the second-order statistics of the
data. The treelet transform is a multiresolution transform that allows one to rep-
resent the original data in an alternative form. Rather than describe the data in
terms of the original set of covariates, we perform a series of rotations which
gradually reveal the hierarchical grouping structure of the covariates. The idea is
very similar to the Grand Tour by Asimov (1985). The treelet transform is a tour
“guided” by the covariance structure of the data.

Once the treelet transform has been completed, there are multiple ways of
choosing an orthogonal basis (see Section 2.2). We never directly discard residual
terms as noise. These terms are in fact an integral part of the final representation. In
the simulated example of Section 4.2, most of the detail variables represent noise
with small expansion coefficients; consequently, only certain coarse-grained vari-
ables are chosen for regression. In general, however, detail variables may convey
crucial information. The latter point is illustrated in Sections 5.1 and 5.3, where
we use the standard choice of one scaling term and p − 1 difference terms; that is,
an observation x is decomposed according to

x = sφ +
p−1∑

i=1

diψi,

where the first term is a coarse-grained representation of the signal and the d-terms
represent “differences” between node representations at two consecutive levels in
the tree.

2. Orthogonal versus overcomplete bases. Tibshirani and Bickel/Ritov cor-
rectly point out that one need not restrict attention to one treelet level. An over-
complete dictionary of treelets can certainly be used for prediction. The “tree
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harvesting” scheme by Hastie et al. (2001), for example, takes node averages of all
2p − 1 nodes in a hierarchical tree and uses these averages as new predictors for
regression. The same scheme could be applied to treelets, but one would then also
lose some of the strengths of treelets: Regression/classification is just one applica-
tion of the treelet transform. More generally, the method yields a multiresolution
analysis and a coordinate system of the data: we have a multi-scale basis function
expansion of the data X = (x1, . . . ,xn) and the covariance matrix S = 1

n
X

T
X. An

orthonormal basis also has many advantages compared to an overcomplete basis:
(i) The representation is easy to interpret and computationally simple, (ii) the so-
lution is stable in the sense that adding or omitting a covariate does not change the
fit of the other covariates, (iii) the theoretical analysis is much simpler and (iv) the
expansion coefficients sometimes carry information on the effective dimension of
the data set and the relative importance of the coordinates; removing terms with
small coefficients then has the effect of regularizing and denoising the data.

3. Treelets versus averaging predictors on preclustered trees. Mein-
shausen and Bühlmann ask how treelets are different from the following scheme:
First order variables in a hierarchical cluster tree (under, e.g., complete linkage)
and then find a basis on the tree by Principal Component Analysis (PCA). Tibshi-
rani suggests a related scheme where one first builds a hierarchical cluster tree and
then simply averages predictors in each cluster. Tuglus and van der Laan suggest
other more sophisticated clustering techniques. We have not completed a full com-
parison of treelets and the schemes proposed by the discussants but would like to
mention a few theoretical and practical advantages of treelets.

First, there are relatively few theoretical results on hierarchical clustering al-
gorithms. Many popular procedures are not stable to noise, or even consistent.
In Hartigan (1981), Hartigan writes that “standard hierarchical techniques, such
as average and complete linkage, are hopelessly inconsistent [for density estima-
tion]”; he then shows that single-linkage clustering is only weakly consistent or
“fractionally consistent.” Unfortunately, even less is known about the statistical
properties of more complex methods that combine hierarchical clustering, averag-
ing of predictors and regression. The treelet method has the advantage of being
simple. The construction of an orthogonal basis and a tree in one step, using the
covariance structure of the data, makes the algorithm computationally efficient and
the method amenable to theoretical analysis. In our paper, we examine the large
sample properties of treelets. We also show, for a block covariance model, that the
required sample size for detecting the underlying population tree structure is log-
arithmic rather than linear in p. It is not clear if the same results apply to PCA on
pre-clustered trees. It would be interesting to see more theoretical results on the
many promising hierarchical clustering algorithms that have been suggested in the
literature.

Compared to “simple averaging” of predictors in clusters, treelets also have
other advantages: (i) The method yields an orthonormal basis; see item 2 above. (ii)
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There is information in the basis functions themselves. Simple averaging does not
provide such information and can also not adapt to the data. Treelets are constant
on groups of indistinguishable variables (see Section 3.2.1, Corollary 1); this is not
the case for simple averaging where the loadings are sensitive to the exact order in
which one merges the variables. Moreover, if the groupings are less well defined
and more “fuzzy,” the loadings in treelets will also adapt accordingly. The latter
point is illustrated by the waveforms in Figures 6, 7 and 10.

4. Identifiability and uniqueness. Sparse PCA. Bickel and Ritov (BR) raise
two theoretical issues: identifiability and uniqueness of treelets. As BR point out,
the treelet transform T (�) viewed as a population parameter is a function of the
population covariance matrix � only. The underlying structure in linear mixture
models is indeed nonidentifiable, as there exist more than one solution for the load-
ing vectors. The treelet transform chooses a representation that reflects groupings
of highly correlated variables. These groups of variables, however, do not have
to be disjoint for an approximate block covariance structure (as Example 3 in the
paper also shows).

Why do we need treelets and what is the advantage of a treelet transform com-
pared to other sparse methods? A notorious difficulty of least squares and vari-
able selection methods lies in the collinearity between covariates; see Fan and Lv
(2008), Section 4.1.2, on the need of a transform that takes advantage of the joint
information among the predictors. Sparse PCA [Zou, Hastie and Tibshirani (2006)]
with a combined l1- and l2-penalization scheme does find groupings of correlated
variables but the results depend on the particular choice of tuning parameters. The
latter choice defines the scale of the analysis. Real data sets, however, are often
rather complex and groupings can occur on multiple scales. One of the strengths
of the treelet method is that it captures hierarchical groupings by construction. The
series of transformations in the method helps weaken correlation among the co-
variates. We do not think that treelet transform is a replacement of other sparse
methods. On the other hand, it can be a useful tool if combined with other sparse
methods as suggested by Fan and Lv.

Bickel and Ritov also raise the issue of uniqueness. We would like to point out
that if we use covariances as a similarity measure, the treelet transform is unique
up to a permutation of second-order statistically exchangeable variables. In most
applications, correlations seem to be a better measure of similarity. The treelet
transform T with a correlation measure is, however, multivalued: formally, T (P )

is a set of transforms rather than a single transform. If treelets are viewed as an
exploratory tool, then we do not find this fact troubling. An analogy with mixture
models might be helpful. Mixture models are famous for suffering numerous irreg-
ularities: local nonidentifiability, intractable limiting distributions of test statistics,
nonunique maxima of the likelihood function, infinite likelihood values and slow
convergence rates, to name a few. For theoretical analysis, they can be a nightmare.
Nonetheless, they are used in many applications with great practical success. Like
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BR, we find the nonidenitifability and multivalued properties of treelets disquiet-
ing but, like mixture models, they nonetheless do seem to be useful. Ultimately,
the effectiveness of treelets in real problems will determine their utility. On the
other hand, any theoretical ideas that provide insight are welcome. Thus, we are
intrigued by BR’s conjecture at the end of their Section 1. We look forward to
hearing about future progress on this idea.

5. Supervised learning. We agree with Meinshausen and Bühlmann (MB)
that constructing predictors without using the response Y does fail in some cases.
The advantage of treelets is the intepretability of the derived features. Some-
times constructing predictors without reference to Y is a necessity. An example
is the problem of semi-supervised inference. In this case we observe labeled data
(X1, Y1), . . . , (Xn,Yn) but we also have access to unlabeled data Xn+1, . . . ,XN ,
where N is much larger than n. Evidence that the unlabeled data alone can be
used to construct effective predictors abounds in the machine learning literature.
As Tibshirani writes in his discussion, there is also growing empirical evidence
that unsupervised feature extraction can provide an effective set of features for su-
pervised learning. Tibshirani cites the recent work by Hinton, Osindero and Teh
(2006) on learning algorithms for Boltzmann machines as an example.

MB point out that information in the response variable can be used in various
ways “ranging from weak use of the response to stronger involvement.” They give
some innovative suggestions on how the response could potentially be incorpo-
rated into a treelet framework. As MB writes, the current supervised choice of
basis functions by cross-validation represents one use of the response, but perhaps
a weaker one. In their discussion, they mention “fully supervised” schemes where
Y is used to construct the groupings themselves. We plan to look into various such
extensions of treelets in the future.

Regarding supervised learning of predictors, we are intrigued by Bickel and
Ritov’s suggested method for iteratively growing a class of basis functions. Inde-
pendently, we have been experimenting with a similar algorithm in the context of
modeling phenotypes on interactions of SNPs. Like BR, we start with main ef-
fects and gradually add interaction terms in an adaptive fashion. We have recently
begun a theoretical analysis of this idea and we look forward to comparing our
results with those of BR.

6. Scalability and other computational issues. Murtagh raises questions
about the scalability of the treelet algorithm. Our current implementation of the
treelets uses an exhaustive search at each level of the tree. This is typical of
bottom-up hierarchical algorithms and corresponds to a computational cost of
O(Lp2) + m, where L is the level of the tree, p is the number of variables (or
leaves in the tree) and m is the initial cost of computing the data covariance ma-
trix. However, by keeping track of local changes in the covariance matrix (see
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Section 2.1), the complexity of the treelet algorithm can further be reduced to
O(Lp) + m.

We do not believe our method has any computational disadvantage compared
to Murtagh’s method with fixed Haar wavelets on precomputed dendrograms
[Murtagh (2007)]. The cost in computing an adaptive basis is neglible compared
to the cost of computing the dendrogram itself. The experimental evaluations in
the paper are on p = 1000 variables because of the nature of the problems and, in
the case of the analysis of the Golub microarray data, because of the availability of
benchmark results for this choice of p. One can run the computations efficiently in
higher dimensions, such as p � 10000. While we disagree with Murtagh regard-
ing scalability, we agree that treelets may not be appropriate for “ultra-high” di-
mensional settings (e.g., p � 100000), where certain topological phenomena may
dominate the data.

We plan to post open-source code in both C + + and R at http://www.stat.cmu.
edu/~annlee/software.htm by the end of the summer of 2008. Until then, we have
made available some Matlab test code at the same URL. This code, however, has
not been optimized for speed or efficiency in memory use.

7. Applicability to microarray data. Finally, Qiu and Tuglus/van der Laan
(TV) comment on the applicability of treelets to microarray data. We are not ex-
perts on the analysis of such data, but would like to bring up a few potentially
important points.

TV correctly state that treelets are built upon a hierarchical scheme of grouping
variables and that the graph structure is solely based on correlations. They suggest
that other similarity or distance measures may be more appropriate for clustering.
We agree on this point but would like to emphasize that the goal of treelets is not
clustering per-se. It is the construction of a multi-resolution representation of data.
Should other distance measures be used, one needs to define how to aggregate the
resulting sets of variables. In principle, one can also think of graph-theoretic mea-
sures of similarity between variables, and nonlinear treelet-inspired local transfor-
mations between them (for example, for data lying on nonlinear manifolds). The
theoretical analysis becomes increasingly difficult once one goes beyond second-
order statistics.

Qiu remarks that a possible pitfall of the treelet methods is its preference for
sum variables with higher variance than the corresponding detail variables. He
argues that genes with smaller variability may be the ones responsible for essential
biological functionalities. In our framework, detail variables are not discarded.
They are only removed from further merging in the tree. These detail variables can
certainly be included in a regression or classification model, as is also shown in the
paper. Furthermore, correlation-based treelets can actually be useful in unraveling
groups of genes with low variance. Consider, for example, data with sets of genes
with very different variances and different intrinsic noise levels. Global variance-
based methods such as PCA or sparse PCA would not pick up groups of genes with
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individual low variances. However, if these variables are highly correlated, they
will be among the first ones to be identified and merged with the treelet algorithm.

In our paper (Section 5.3) we describe a “two-way” classification scheme for the
Golub leukemia data set. Qiu asks for a clarification of this method. Our main goal
here was to show that treelets can be built on both variables (genes) and samples
(patients). We are not claiming that the method is superior—only that a general
method such as treelets can be competitive with state-of-the-art algorithms that are
especially tuned for the analysis of microarray data. The proposed scheme is as
follows: First compute treelets on the genes using the training data. This part is
the same as for “LDA on treelet features.” The second step, however, is different.
Here we express all 72 samples (patients) in terms of their new profiles over the
K maximum variance treelets. We build treelets on the new patient profiles and
find the two main branches of the tree. The two groups represent the two cancer
classes (ALL or AML); these groups are labeled using the training data and a
majority vote. The error is evaluated on the test set (see Figure 9, right). Note
that the second step, the labeling of samples, is an example of semi-supervised
learning (see item 5). It is not a violation of cross-validation. On the contrary,
semi-supervised learning (SSL) is a powerful method that is often used to improve
classification; see, for example, Belkin and Niyogi (2005). The key idea behind
SSL is that unlabeled data can be used to uncover the underlying structure of the
data (e.g., low-dimensional manifolds, groupings etc.) and that this knowledge can
lead to better prediction than if only labeled data had been used.

To summarize, we do not claim that the treelets are the optimal method to model
microarray data. They might miss important effects in certain settings. However,
treelets or some of their possible generalizations may turn out to be useful in the
analysis of such data. Further research is required in this direction.
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