
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 4, APRIL 2005 1523

Clustering by Compression

Rudi Cilibrasi and Paul M. B. Vitányi

Abstract—Wepresent a newmethod for clustering based on compression.
The method does not use subject-specific features or background knowl-
edge, andworks as follows: First, we determine a parameter-free, universal,
similarity distance, the normalized compression distance or NCD, com-
puted from the lengths of compressed data files (singly and in pairwise con-
catenation). Second, we apply a hierarchical clustering method. The NCD
is not restricted to a specific application area, and works across applica-
tion area boundaries. A theoretical precursor, the normalized information
distance, co-developed by one of the authors, is provably optimal. How-
ever, the optimality comes at the price of using the noncomputable notion
of Kolmogorov complexity. We propose axioms to capture the real-world
setting, and show that the NCD approximates optimality. To extract a hi-
erarchy of clusters from the distance matrix, we determine a dendrogram
(ternary tree) by a new quartet method and a fast heuristic to implement it.
The method is implemented and available as public software, and is robust
under choice of different compressors. To substantiate our claims of univer-
sality and robustness, we report evidence of successful application in areas
as diverse as genomics, virology, languages, literature, music, handwritten
digits, astronomy, and combinations of objects from completely different
domains, using statistical, dictionary, and block sorting compressors. In
genomics, we presented new evidence for major questions in Mammalian
evolution, based on whole-mitochondrial genomic analysis: the Eutherian
orders and the Marsupionta hypothesis against the Theria hypothesis.

Index Terms—Heterogenous data analysis, hierarchical unsupervised
clustering, Kolmogorov complexity, normalized compression distance,
parameter-free data mining, quartet tree method, universal dissimilarity
distance.

I. INTRODUCTION

All data are created equal but some data are more alike than others.
We propose a method expressing this alikeness, using a new similarity
metric based on compression. It is parameter-free in that it does not
use any features or background knowledge about the data, and can
without changes be applied to different areas and across area bound-
aries. It is universal in that it approximates the parameter expressing
similarity of the dominant feature in all pairwise comparisons. It is ro-
bust in the sense that its success appears independent from the type
of compressor used. The clustering we use is hierarchical clustering
in dendrograms based on a new fast heuristic for the quartet method.
The method is available as an open-source software tool. Below we ex-
plain the method, the theory underpinning it, and present evidence for

Manuscript received March 31, 2003; revised December 29, 2004. The mate-
rial in this correspondence was presented in part at the IEEE International Sym-
posium on Information Theory, Yokohama, Japan, June/July 2003. The work of
R. Cilibrasi was supported in part by The Netherlands BSIK/BRICKS Project
and by the NWO Project 612.55.002. The work of P. M. B. Vitányi was sup-
ported in part by the EU Project RESQ, IST-2001-37559, the NoE QUIPRO-
CONE IST-1999-29064, the ESFQiT Programmme, and the EUNoE PASCAL,
TheNetherlands BSIK/BRICKS Project, and the KRR and SML&KAPrograms
of National ICT of Australia. Part of his work was performed while P. M. B.
Vitányi was on sabbatical leave at the National ICT of Australia, Sydney Labo-
ratory at the University of New South Wales.

R. Cilibrasi is with the Centre forMathematics and Computer Science (CWI),
P. O. Box 94079, NL-1090 GBAmsterdam, The Netherlands (e-mail: Rudi.Cili-
brasi@cwi.nl).

P. M. B. Vitányi is with the Centre for Mathematics and Computer Sci-
ence (CWI), P. O. Box 94079, NL-1090 GB Amsterdam, The Netherlands
(e-mail:Paul.Vitanyi@cwi.nl). He is also affiliated with the University of
Amsterdam and National ICT of Australia.

Communicated by J. C. Kieffer, W. Szpankowski, and E.-h. Yang, Guest Ed-
itors for the Special Issue on Problems on Sequences.

Digital Object Identifier 10.1109/TIT.2005.844059

its universality and robustness by experiments and results in a plethora
of different areas using different types of compressors.

Feature-Based Similarities: We are presented with unknown data
and the question is to determine the similarities among them and group
like with like together. Commonly, the data are of a certain type: music
files, transaction records of ATM machines, credit card applications,
genomic data. In these data, there are hidden relations that we would
like to get out into the open. For example, from genomic data one can
extract letter or block frequencies (the blocks are over the four-letter
alphabet); from music files one can extract various specific numerical
features, related to pitch, rhythm, harmony, etc. One can extract such
features using, for instance, Fourier transforms [43] or wavelet trans-
forms [17], to quantify parameters expressing similarity. The resulting
vectors corresponding to the various files are then classified or clus-
tered using existing classification software, based on various standard
statistical pattern recognition classifiers [43], Bayesian classifiers [15],
hidden Markov models [13], ensembles of nearest neighbor classifiers
[17], or neural networks [15], [39]. For example, in music, one fea-
ture would be to look for rhythm in the sense of beats per minute. One
can make a histogram where each histogram bin corresponds to a par-
ticular tempo in beats-per-minute and the associated peak shows how
frequent and strong that particular periodicity was over the entire piece.
In [43], we see a gradual change from a few high peaks to many low
and spread-out ones going from hip-hip, rock, jazz, to classical. One
can use this similarity type to try to cluster pieces in these categories.
However, such a method requires specific and detailed knowledge of
the problem area, since one needs to know what features to look for.

Non-Feature Similarities: Our aim is to capture, in a single simi-
larity metric, every effective distance: effective versions of Hamming
distance, Euclidean distance, edit distances, alignment distance,
Lempel–Ziv distance [11], and so on. This metric should be so general
that it works in every domain: music, text, literature, programs,
genomes, executables, natural language determination, equally and si-
multaneously. It would be able to simultaneously detect all similarities
between pieces that other effective distances can detect seperately.

Compression-Based Similarity: Such a “universal” metric was
co-developed by us in [29]–[31], as a normalized version of the “infor-
mation metric” of [4], [32]. Roughly speaking, two objects are deemed
close if we can significantly “compress” one given the information in
the other, the idea being that if two pieces are more similar, then we
can more succinctly describe one given the other. The mathematics
used is based on Kolmogorov complexity theory [32]. In [31], we
defined a new class of (possibly nonmetric) distances, taking values
in [0; 1] and appropriate for measuring effective similarity relations
between sequences, say one type of similarity per distance, and vice
versa. It was shown that an appropriately “normalized” information
distance minorizes every distance in the class. It discovers all effective
similarities in the sense that if two objects are close according to some
effective similarity, then they are also close according to the normal-
ized information distance. Put differently, the normalized information
distance represents similarity according to the dominating shared
feature between the two objects being compared. In comparisons of
more than two objects, different pairs may have different dominating
features. The normalized information distance is a metric and takes
values in [0; 1]; hence, it may be called the similarity metric. To
apply this ideal precise mathematical theory in real life, we have to
replace the use of the noncomputable Kolmogorov complexity by
an approximation using a standard real-world compressor. Earlier
approaches resulted in the first completely automatic construction of
the phylogeny tree based on whole mitochondrial genomes, [29]–[31],
a completely automatic construction of a language tree for over 50

0018-9448/$20.00 © 2005 IEEE

1524 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 4, APRIL 2005

Euro-Asian languages [31], detects plagiarism in student programming
assignments [8], gives phylogeny of chain letters [5], and clusters
music [10]. Moreover, the method turns out to be robust under change
of the underlying compressor-types: statistical (PPMZ), Lempel–Ziv
based dictionary (gzip), block based (bzip2), or special purpose
(Gencompress).

Related Work: In view of the simplicity and naturalness of our
proposal, it is perhaps surprising that compression-based clustering
and classification approaches did not arise before. But recently there
have been several partially independent proposals in that direction: [1],
[2] for author attribution and building language trees—while citing the
earlier work [4], [32]—does not develop a theory based on information
distance but proceeds by more ad hoc arguments related to the com-
pressibility of a target file after first compressing a reference file. The
better the target file compresses, the more we feel it is similar to the
reference file in question. See also the explanation in [31, Appendix I].
This approach is used also to cluster music MIDI (Musical Instrument
Digital Interface, a versatile digital music format available on the
World-Wide Web) files by Kohonen maps in [33]. Another recent
offshoot based on our work is hierarchical clustering based on mutual
information, [23]. In a related, but considerably simpler feature-based
approach, one can compare the word frequencies in text files to assess
similarity. In [42], the word frequencies of words common to a pair of
text files are used as entries in two vectors, and the similarity of the
two files is based on the distance between those vectors. The authors
attribute authorship to Shakespeare plays, the Federalist Papers, and
the Chinese classic “The Dream of the Red Chamber.” This approach
based on block occurrence statistics is standard in genomics, but in an
experiment reported in [31] gives inferior phylogeny trees compared
to our compression method (and wrong ones according to current
biological wisdom). A related, opposite, approach was taken in [22],
where literary texts are clustered by author gender or fact versus
fiction, essentially by first identifying distinguishing features, like
gender-dependent word usage, and then classifying according to those
features. Apart from the experiments reported here, the clustering
by compression method reported in this correspondence has recently
been used to analyze network traffic and cluster computer worms and
virusses [44]. Finally, recent work [20] reports experiments with our
method on all time sequence data used in all the major data-mining
conferences in the last decade. Comparing the compression method
with all major methods used in those conferences they established clear
superiority of the compression method for clustering heterogenous
data, and for anomaly detection. See also the explanation in [31,
Appendix II].

Outline:Here we propose a first comprehensive theory of real-world
compressor-based normalized compression distance, a novel hierar-
chical clustering heuristic, together with several applications. First, we
propose mathematical notions of “admissible distance” (using the term
for a wider class than we did in [31]), “normalized admissible distance”
or “similarity distance,” “normal compressor,” and “normalized com-
pression distance.”We then prove the normalized compression distance
based on a normal compressor to be a similarity distance satisfying the
metric (in)equalities. The normalized compression distance is shown
to be quasi-universal in the sense that it minorizes every computable
similarity distance up to an error that depends on the quality of the
compressor’s approximation of the true Kolmogorov complexities of
the files concerned. This means that the NCD captures the dominant
similarity over all possible features for every pair of objects compared,
up to the stated precision. Note that different pairs of objects may have
different dominant shared features. Next, we present a method of hi-
erarchical clustering based on a novel fast randomized hill-climbing
heuristic of a new quartet tree optimization criterion. Given a matrix
of the pairwise similarity distances between the objects, we score how

well the resulting tree represents the information in the distance ma-
trix on a scale of 0 to 1. Then, as proof of principle, we run the pro-
gram on three data sets, where we know what the final answer should
be: i) reconstruct a tree from a distance matrix obtained from a ran-
domly generated tree; ii) reconstruct a tree from files containing arti-
ficial similarities; and iii) reconstruct a tree from natural files of het-
erogenous data of vastly different types. To substantiate our claim of
parameter-freeness and universality, we apply the method to different
areas, not using any feature analysis at all. We first give an example
in whole-genome phylogeny using the whole mitochondrial DNA of
the species concerned. We compare the hierarchical clustering of our
method with a more standard method of two-dimensional clustering (to
show that our dendrogram method of depicting the clusters is more in-
formative). We give a whole-genome phylogeny of fungi and compare
this to results using alignment of selected proteins (alignment being
often too costly to perform on the whole-mitochondial genome, but the
disadvantage of protein selection being that different selections usually
result in different phylogenies—so which is right?). We identify the
virii that are closest to the sequenced SARS virus; we give an example
of clustering of language families; Russian authors in the original Rus-
sian, the same pieces in English translation (clustering partially follows
the translators); clustering ofmusic inMIDI format; clustering of hand-
written digits used for optical character recognition; and clustering of
radio observations of a mysterious astronomical object, a microquasar
of extremely complex variability. In all these cases, the method per-
forms very well in the following sense: The method yields the phy-
logeny of 24 species agreeingwith biological wisdom insofar as it is un-
controversial. The probability that it randomly would hit this outcome,
or anything reasonably close, is very small. In clustering 36 music
pieces taken equally from pop, jazz, and classic, so that 12–12–12 is
the grouping we understand is correct, we can identify convex clusters
so that only six errors are made. (That is, if three items get dislodged
without two of them being interchanged, then six items get misplaced.)
The probability that this happens by chance is extremely small. The
reason why we think the method does something remarkable is con-
cisely put by Laplace [28]:

“If we seek a cause wherever we perceive symmetry, it is not that
we regard the symmetrical event as less possible than the others,
but, since this event ought to be the effect of a regular cause or
that of chance, the first of these suppositions is more probable
than the second. On a table we see letters arranged in this order
Constantinople, and we judge that this arrangement is not
the result of chance, not because it is less possible than others,
for if this word were not employed in any language we would not
suspect it came from any particular cause, but this word being in
use among us, it is incomparably more probable that some person
has thus arranged the aforesaid letters than that this arrangement
is due to chance.”

Materials and Methods: The data samples we used were obtained
from standard databases accessible on the World-Wide Web, generated
by ourselves, or obtained from research groups in the field of inves-
tigation. We supply the details with each experiment. The method of
processing the data was the same in all experiments. First, we prepro-
cessed the data samples to bring them in appropriate format: the ge-
nomic material over the four-letter alphabet fA; T;G; Cg is recoded
in a four-letter alphabet; the music MIDI files are stripped of iden-
tifying information such as composer and name of the music piece.
Then, in all cases, the data samples were completely automatically pro-
cessed by our CompLearn Toolkit, rather than as is usual in phylogeny,
by using an ecclectic set of software tools per experiment. Oblivious
to the problem area concerned, simply using the distances according
to the NCD below, the method described in this correspondence fully

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 4, APRIL 2005 1525

automatically classifies the objects concerned. The method has been
released into the public domain as open-source software. The Com-
pLearn Toolkit [9] is a suite of simple utilities that one can use to apply
compression techniques to the process of discovering and learning pat-
terns in completely different domains. In fact, this method is so general
that it requires no background knowledge about any particular subject
area. There are no domain-specific parameters to set, and only a handful
of general settings.

The CompLearn Toolkit using NCD and not, say, alignment, can
cope with full genomes and other large data files and thus comes up
with a single distance matrix. The clustering heuristic generates a tree
with a certain confidence, called standardized benefit score or S(T)
value in the sequel. Generating trees from the same distance matrix
many times resulted in the same tree in case of high S(T) value, or
a similar tree in case of moderately high S(T) value, for all distance
matrices we used, even though the heuristic is randomized. That is,
there is only one way to be right, but increasingly many ways to be
increasingly wrong which can all be realized by different runs of the
randomized algorithm. This is a big difference compared to previous
phylogeny methods, where because of computational limitations one
uses only parts of the genome, or certain proteins that are viewed as
significant [21]. These are run through a tree reconstruction method
like neighbor joining [38], maximum likelihood, maximum evolution,
maximum parsimony as in [21], or quartet hypercleaning [6], many
times. The percentage-wise agreement on certain branches arising are
called “bootstrap values.” Trees are depicted with the best bootstrap
values on the branches that are viewed as supporting the theory tested.
Different choices of proteins result in different best trees. One way
to avoid this ambiguity is to use the full genome, [31], [36], leading
to whole-genome phylogeny. With our method we do whole-genome
phylogeny, and end up with a single overall best tree, not optimizing
selected parts of it.

The quality of the results depends on a) the NCD distance matrix,
and b) on how well the hierarchical tree represents the information in
the matrix. The quality of b) is measured by the S(T) value, and is
given with each experiment. In general, the S(T) value deteriorates
for large sets. We believe this to be partially an artifact of a low-
resolution NCD matrix due to limited compression power, and limited
file size. The main reason, however, is the fact that with increasing
size of a natural data set the projection of the information in the
NCD matrix into a binary tree unavoidably gets increasingly distorted.
Another aspect limiting the quality of the NCD matrix is more subtle.
Recall that the method knows nothing about any of the areas we apply
it to. It determines the dominant feature as seen through the NCD
filter. The dominant feature of alikeness between two files may not
correspond to our a priori assumption but may have an unexpected
cause. The results of our experiments suggest that this is not often
the case: In the natural data sets where we have preconceptions of the
outcome, for example, that works by the same authors should cluster
together, or music pieces by the same composers, musical genres,
or genomes, the outcomes conform largely to our expectations. For
example, in the music genre experiment, the method would fail
dramatically if genres were evenly mixed, or mixed with little bias.
However, to the contrary, the separation in clusters is almost perfect.
The few misplacements that are discernable are either errors (the
method was not powerful enough to discern the dominant feature),
the distortion due to mapping multidimensional distances into tree
distances, or the dominant feature between a pair of music pieces
is not the genre but some other aspect. The surprising news is
that we can generally confirm expectations with few misplacements,
indeed, that the data do not contain unknown rogue features that
dominate to cause spurious (in our preconceived idea) clustering.
This gives evidence that where the preconception is in doubt, like

with phylogeny hypotheses, the clustering can give true support of
one hypothesis against another one.
Figures: We use two styles to display the hierarchical clusters. In

the case of genomics of Eutherian orders and fungi, language trees,
it is convenient to follow the dendrograms that are customary in
that area (suggesting temporal evolution) for easy comparison with
the literature. Although there is no temporal relation intended, the
dendrogram representation looked also appropriate for the Russian
writers, and translations of Russian writers. In the other experiments
(even the genomic SARS experiment) it is more informative to
display an unrooted ternary tree (or binary tree if we think about
incoming and outgoing edges) with explicit internal nodes. This
facilitates identification of clusters in terms of subtrees rooted at
internal nodes or contiguous sets of subtrees rooted at branches of
internal nodes.

II. SIMILARITY DISTANCE

We give a precise formal meaning to the loose distance notion of
“degree of similarity” used in the pattern recognition literature.

A. Distance and Metric

Let
 be a nonempty set and R+ be the set of nonnegative real
numbers. A distance function on
 is a function D :
�
! R+. It
is a metric if it satisfies the following metric (in)equalities:

• D(x; y) = 0 iff x = y,
• D(x; y) = D(y; x) (symmetry), and
• D(x; y) � D(x; z) +D(z; y) (triangle inequality).

The value D(x; y) is called the distance between x; y 2
. A familiar
example of a distance that is also metric is the Euclidean metric,
the everyday distance e(a; b) between two geographical objects a, b
expressed in, say, meters. Clearly, this distance satisfies the properties
e(a; a) = 0, e(a; b) = e(b; a), and e(a; b) � e(a; c) + e(c; b) (for
instance, a = Amsterdam, b = Brussels, and c = Chicago). We are
interested in a particular type of distance, the “similarity distance,”
which we formally define in Definition 2.5. For example, if the
objects are classical music pieces then the function D defined by
D(a; b) = 0 if a and b are by the same composer and D(a; b) =

1 otherwise, is a similarity distance that is also a metric. This
metric captures only one similarity aspect (feature) of music pieces,
presumably an important one that subsumes a conglomerate of more
elementary features.

B. Admissible Distance

In defining a class of admissible distances (not necessarily metric
distances) we want to exclude unrealistic ones like f(x; y) = 1

2
for

every pair x 6= y. We do this by restricting the number of objects within
a given distance of an object. As in [4], we do this by only considering
effective distances, as follows: Fix a suitable, and for the remainder of
the paper, fixed, programming language. This is the reference program-
ming language.

Definition 2.1: Let
 = ��, with � a finite nonempty alphabet
and �� the set of finite strings over that alphabet. Since every finite
alphabet can be recoded in binary, we choose � = f0; 1g. In partic-
ular, “files” in computer memory are finite binary strings. A function
D :
�
! R+ is an admissible distance if for every pair of objects
x; y 2
 the distanceD(x; y) is the length of a binary prefix codeword
that is a program that computes x from y, and vice versa, in the refer-
ence programming language. This implies that an admissible distance
is symmetric.

1526 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 4, APRIL 2005

If D is an admissible distance, then for every x, the set fD(x; y) :
y 2 f0; 1g�g is the length set of a prefix code. Hence, it satisfies by
the Kraft inequality, see [12],

y

2�D(x;y) � 1: (II.1)

Example 2.2: In representing the Hamming distance d between
two strings of equal length n differing in positions i1; . . . ; id,
we can use a simple prefix-free encoding of (n; d; i1; . . . ; id) in
2 logn+4 log logn+2+d logn bits. We encode n and d prefix-free
in logn + 2 log logn + 1 bits each, see, e.g., [32], and then the
literal indexes of the actual flipped-bit positions. Adding an O(1)-bit
program to interpret these data, with the strings concerned being x
and y, we have defined

Hn(x; y) = 2 logn+ 4 log logn+ d logn+O(1)

as the length of a prefix code word (prefix program) to compute x from
y and vice versa. Then, by the Kraft inequality,

y

2�H (x;y) � 1:

It is easy to verify that Hn is a metric in the sense that it satisfies the
metric (in)equalities up to O(logn) additive precision.

C. Normalized Admissible Distance

Large objects (in the sense of long strings) that differ by a tiny part
are intuitively closer than tiny objects that differ by the same amount.
For example, two whole mitochondrial genomes of 18 000 bases that
differ by 9000 are very different, while two whole nuclear genomes of
3 � 109 bases that differ by only 9000 bases are very similar. Thus,
absolute difference between two objects does not govern similarity, but
relative difference appears to do so.

Definition 2.3: A compressor is a lossless encoder mapping
 into
f0; 1g� such that the resulting code is a prefix code. “Lossless” means
that there is a decompressor that reconstructs the source message
from the code message. For convenience of notation we identify
“compressor” with a “codeword length function” C :
 ! N , where
N is the set of nonnegative integers. That is, the compressed version
of a file x has length C(x). We only consider compressors such that
C(x) � jxj+O(log jxj). (The additive logarithmic term is due to our
requirement that the compressed file be a prefix codeword.) We fix a
compressorC , and call the fixed compressor the reference compressor.

Definition 2.4: LetD be an admissible distance. ThenD+(x; y) is
defined by

D+(x; y) = maxfmaxfD(x; z) : C(z) � C(y)g;

maxfD(z; y) : C(z) � C(x)gg:

Note that since D(x; y) = D(y; x), also D+(x; y) = D+(y; x). Fur-
thermore, define

D+(x) = maxfD+(x; y) : y 2
g:

Definition 2.5: Let D be an admissible distance. The normalized
admissible distance, also called a similarity distance, d(x; y), based on
D relative to a reference compressor C , is defined by

d(x; y) =
D(x; y)

D+(x; y)
:

It follows from the definitions that a normalized admissible distance
is a function d :
�
! [0; 1] that is symmetric: d(x; y) = d(y; x).

Lemma 2.6: For every x 2
, and constant e 2 [0; 1], a normalized
admissible distance satisfies the density constraint

jfy : d(x; y) � egj < 2eD (x)+1: (II.2)

Proof: Assume to the contrary that d does not satisfy (II.2). Then,
there is an e 2 [0; 1], such that (II.2) is false. We first note that, since
D(x; y) is an admissible distance that satisfies (II.1), d(x; y) satisfies
a “normalized” version of the Kraft inequality

y

2�d(x;y)D (x) �
y

2�d(x;y)D (x;y) � 1: (II.3)

Starting from (II.3), we obtain the required contradiction

1 �
y

2�d(x;y)D (x) �
y:d(x;y)�e

2�eD (x)

� 2eD (x)+12�eD (x) > 1:

If d(x; y) is the normalized version of an admissible distance
D(x; y) then (II.3) is equivalent to (II.1). We call a normalized
distance a “similarity” distance, because it gives a relative similarity
according to the distance (with distance 0 when objects are maximally
similar and distance 1 when they are maximally dissimilar) and,
conversely, for every well-defined computable notion of similarity
we can express it as normalized admissible distance according to our
definition. In the literature, a distance that expresses lack of similarity
(like ours) is often called a “dissimilarity” distance or a “disparity”
distance.

Remark 2.7: As far as the authors know, the idea of normalized
metric is, surprisingly, not well studied. An exception is [41], which
investigates normalized metrics to account for relative distances rather
than absolute ones, and it does so for much the same reasons as in
the present work. An example is the normalized Euclidean metric jx�
yj=(jxj+jyj), where x; y 2 Rn (R denotes the real numbers) and j�j is
the Euclidean metric—the L2 norm. Another example is a normalized
symmetric-set-difference metric. But these normalized metrics are not
necessarily effective in that the distance between two objects gives the
length of an effective description to go from either object to the other
one.

Remark 2.8: Our definition of normalized admissible distance is
more direct than in [31], and the density constraints (II.2) and (II.3)
follow from the definition. In [31], we put a stricter density condition
in the definition of “admissible” normalized distance, which is, how-
ever, harder to satisfy and may be too strict to be realistic. The purpose
of this stricter density condition was to obtain a stronger “universality”
property than the present Theorem 6.3, namely, one with � = 1 and
� = O(1=maxfC(x);C(y)g). Nonetheless, both definitions coincide
if we set the length of the compressed versionC(x) of x to the ultimate
compressed length K(x), the Kolmogorov complexity of x.

Example 2.9: To obtain a normalized version of the Hamming dis-
tance of Example 2.2, we define hn(x; y) = Hn(x; y)=H

+
n (x; y). We

can set

H+
n (x; y) = H+

n (x) = (n+ 2)dlog ne + 4dlog logne +O(1)

since every contemplated compressor C will satisfy C(x) = C(x),
where x is x with all bits flipped (so H+

n (x; y) � H+
n (z; z) for either

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 4, APRIL 2005 1527

z = x or z = y). By (II.2), for every x, the number of y in the Ham-
ming ball hn(x; y) � e is less than 2eH (x)+1. This upper bound is
an obvious overestimate for e � 1= logn. For lower values of e, the
upper bound is correct by the observation that the number of y’s equals

en

i=0

n

en
� 2nH(e)

whereH(e) = e log e+(1�e) log(1�e), Shannon’s entropy function.
Then, eH+

n (x) > en logn > enH(e) since e logn > H(e).

III. NORMAL COMPRESSOR

We give axioms determining a large family of compressors that both
include most (if not all) real-world compressors and ensure the desired
properties of the NCD to be defined later.

Definition 3.1: A compressor C is normal if it satisfies, up to an
additiveO(logn) term, withn themaximal binary length of an element
of
 involved in the (in)equality concerned, the following axioms.

1) Idempotency: C(xx) = C(x), and C(�) = 0, where � is the
empty string.

2) Monotonicity: C(xy) � C(x).
3) Symmetry: C(xy) = C(yx).
4) Distributivity: C(xy) + C(z) � C(xz) + C(yz).

Idempotency: A reasonable compressor will see exact repetitions
and obey idempotency up to the required precision. It will also com-
press the empty string to the empty string.

Monotonicity:A real compressor must have the monotonicity prop-
erty, at least up to the required precision. The property is evident for
stream-based compressors, and only slightly less evident for block-
coding compressors.

Symmetry: Stream-based compressors of the Lempel–Ziv family,
like gzip and pkzip, and the predictive PPM family, like PPMZ, are pos-
sibly not precisely symmetric. This is related to the stream-based prop-
erty: the initial file x may have regularities to which the compressor
adapts; after crossing the border to y it must unlearn those regularities
and adapt to the ones of y. This process may cause some imprecision
in symmetry that vanishes asymptotically with the length of x, y. A
compressor must be poor indeed (and will certainly not be used to any
extent) if it does not satisfy symmetry up to the required precision.
Apart from stream-based, the other major family of compressors is
block-coding based, like bzip2. They essentially analyze the full input
block by considering all rotations in obtaining the compressed version.
It is to a great extent symmetrical, and real experiments show no de-
parture from symmetry.

Distributivity: The distributivity property is not immediately in-
tuitive. In Kolmogorov complexity theory the stronger distributivity
property

C(xyz) + C(z) � C(xz) + C(yz) (III.1)

holds (withK = C). However, to prove the desired properties of NCD
below, only the weaker distributivity property

C(xy) + C(z) � C(xz) + C(yz) (III.2)

above is required, also for the boundary case were C = K . In prac-
tice, real-world compressors appear to satisfy this weaker distributivity
property up to the required precision.

Definition 3.2: Define

C(yjx) = C(xy)� C(x): (III.3)

This number C(yjx) of bits of information in y, relative to x, can be
viewed as the excess number of bits in the compressed version of xy
compared to the compressed version of x, and is called the amount of
conditional compressed information.

In the definition of compressor, the decompression algorithm is not
included (unlike the case of Kolmorogov complexity, where the decom-
pressing algorithm is given by definition), but it is easy to construct one.
Given the compressed version of x in C(x) bits, we can run the com-
pressor on all candidate strings z—for example, in length-increasing
lexicographical order, until we find the compressed version of string
z0 equals the compressed version of string x. Since this string decom-
presses to x we have found x = z0. Given the compressed version of
xy in C(xy) bits, we repeat this process using strings xz until we find
the string xz1 of which the compressed version equals the compressed
version of xy. Since the former compressed version decompresses to
xy, we have found y = z1. By the unique decompression property we
find that C(yjx) is the extra number of bits we require to describe y
apart from describing x. It is intuitively acceptable that the conditional
compressed information C(xjy) satisfies the triangle inequality

C(xjy) � C(xjz) + C(zjy): (III.4)

Lemma 3.3: Both (III.1) and (III.4) imply (III.2).
Proof: (Equation (III.1) implies (III.2):) By monotonicity.

(Equation (III.4) implies (III.2):) Rewrite the terms in (III.4) ac-
cording to (III.3), cancel C(y) in the left- and right-hand sides, use
symmetry, and rearrange.

Lemma 3.4: A normal compressor satisfies additionally subaddi-
tivity: C(xy) � C(x) + C(y).

Proof: Consider the special case of distributivity with z the
empty word so that xz = x, yz = y, and C(z) = 0.

Subadditivity: The subadditivity property is clearly also required
for every viable compressor, since a compressor may use information
acquired from x to compress y. Minor imprecision may arise from the
unlearning effect of crossing the border between x and y, mentioned
in relation to symmetry, but again this must vanish asymptotically with
increasing length of x, y.

IV. BACKGROUND IN KOLMOGOROV COMPLEXITY

Technically, the Kolmogorov complexity of x given y is the length of
the shortest binary program, for the reference universal prefix Turing
machine, that on input y outputs x; it is denoted asK(xjy). For precise
definitions, theory, and applications, see [32]. The Kolmogorov com-
plexity of x is the length of the shortest binary program with no input
that outputs x; it is denoted as K(x) = K(xj�), where � denotes the
empty input. Essentially, the Kolmogorov complexity of a file is the
length of the ultimate compressed version of the file. In [4], the infor-
mation distance E(x; y) was introduced, defined as the length of the
shortest binary program for the reference universal prefix Turing ma-
chine that, with input x, computes y, and with input y, computes x. It
was shown there that, up to an additive logarithmic term,

E(x; y) = maxfK(xjy);K(yjx)g:

It was shown also that E(x; y) is a metric, up to negligible violations
of the metric inequalties. Moreover, it is universal in the sense that
for every admissible distance D(x; y) as in Definition 2.1, E(x; y) �
D(x; y) up to an additive constant depending on D but not on x and
y. In [31], the normalized version of E(x; y), called the normalized
information distance (NID), is defined as

NID(x; y) =
maxfK(xjy);K(yjx)g

maxfK(x);K(y)g
: (IV.1)

1528 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 4, APRIL 2005

It too is a metric, and it is universal in the sense that this single metric
minorizes up to a negligible additive error term all normalized admis-
sible distances in the class considered in [31]. Thus, if twofiles (ofwhat-
ever type) are similar (that is, close) according to the particular feature
described by a particular normalized admissible distance (not neces-
sarily metric), then they are also similar (that is, close) in the sense of
the normalized information metric. This justifies calling the latter the
similarity metric. We stress once more that different pairs of objects
may have different dominating features. Yet every such dominant sim-
ilarity is detected by the NID. However, this metric is based on the no-
tion of Kolmogorov complexity. Unfortunately, the Kolmogorov com-
plexity is noncomputable in the Turing sense. Approximation of the de-
nominator of (IV.1) by a given compressor C is straightforward: it is
maxfC(x); C(y)g. The numerator is more tricky. It can be rewritten as

maxfK(x; y)�K(x);K(x; y)�K(y)g (IV.2)

within logarithmic additive precision, by the additive property of
Kolmogorov complexity [32]. The term K(x; y) represents the length
of the shortest program for the pair (x; y). In compression practice
it is easier to deal with the concatenation xy or yx. Again, within
logarithmic precision K(x; y) = K(xy) = K(yx). Following a
suggestion by Steven de Rooij, one can approximate (IV.2) best by
minfC(xy);C(yx)g � minfC(x);C(y)g. Here, and in the later
experiments using the CompLearn Toolkit [9], we simply use C(xy)
rather than minfC(xy); C(yx)g. This is justified by the observation
that block-coding-based compressors are symmetric almost by defini-
tion, and experiments with various stream-based compressors (gzip,
PPMZ) show only small deviations from symmetry.

The result of approximating the NID using a real compressor C is
called the normalized compression distance or NCD, formally defined
in (IV.1). The theory as developed for the Kolmogorov-complexity
based NID in [31], may not hold for the (possibly poorly) approxi-
mating NCD. It is nonetheless the case that experiments show that the
NCD apparently has (some) properties that make the NID so appealing.
To fill this gap between theory and practice, we develop the theory
of NCD from first principles, based on the axiomatics of Section III.
We show that the NCD is a quasi-universal similarity metric relative
to a normal reference compressor C . The theory developed in [31] is
the boundary case C = K , where the “quasi-universality” below has
become full “universality.”

V. COMPRESSION DISTANCE

We define a compression distance based on a normal compressor
and show it is an admissible distance. In applying the approach, we
have to make do with an approximation based on a far less powerful
real-world reference compressorC . A compressorC approximates the
information distance E(x; y), based on Kolmogorov complexity, by
the compression distance EC(x; y) defined as

EC(x; y) = C(xy)�minfC(x);C(y)g: (V.1)

Here, C(xy) denotes the compressed size of the concatenation of x
and y, C(x) denotes the compressed size of x, and C(y) denotes the
compressed size of y.

Lemma 5.1: If C is a normal compressor, then EC(x; y)+O(1) is
an admissible distance.

Proof: Case 1: Assume C(x) � C(y). Then EC(x; y) =
C(xy) � C(x). Then, given x and a prefix program of length
EC(x; y) consisting of the suffix of the C-compressed version of xy,
and the compressor C in O(1) bits, we can run the compressor C on
all xz’s, the candidate strings z in length-increasing lexicographical
order. When we find a z so that the suffix of the compressed version of
xz matches the given suffix, then z = y by the unique decompression
property.

Case 2: Assume C(y) � C(x). By symmetry C(xy) = C(yx).
Now follow the proof of Case 1.

Lemma 5.2: If C is a normal compressor, then EC(x; y) satisfies
the metric (in)equalities up to logarithmic additive precision.

Proof: Only the triangular inequality is nonobvious. By (III.2),
C(xy) + C(z) � C(xz) + C(yz) up to logarithmic additive preci-
sion. There are six possibilities, and we verify the correctness of the
triangular inequality in turn for each of them.
Assume C(x) � C(y) � C(z). Then

C(xy)� C(x) � C(xz)� C(x) + C(yz)� C(y):

Assume C(y) � C(x) � C(z). Then

C(xy)� C(y) � C(xz)� C(y) + C(yz)� C(x):

Assume C(x) � C(z) � C(y). Then

C(xy)� C(x) � C(xz)� C(x) + C(yz)� C(z):

Assume C(y) � C(z) � C(x). Then

C(xy)� C(y) � C(xz)� C(z) + C(yz)� C(y):

Assume C(z) � C(x) � C(y). Then

C(xy)� C(x) � C(xz)� C(z) + C(yz)� C(z):

Assume C(z) � C(y) � C(x). Then

C(xy)� C(y) � C(xz)� C(z) + C(yz)� C(z):

Lemma 5.3: If C is a normal compressor, then

E
+

C (x; y) = maxfC(x);C(y)g:

Proof: Consider a pair (x; y). The

maxfC(xz)� C(z) : C(z) � C(y)g

is C(x)which is achieved for z = �, the empty word, with C(�) = 0.
Similarly, the

maxfC(yz)� C(z) : C(z) � C(x)g

is C(y). Hence, the lemma.

VI. NORMALIZED COMPRESSION DISTANCE

The normalized version of the admissible distance EC(x; y), the
compressorC based approximation of the normalized information dis-
tance (IV.1), is called the normalized compression distance or NCD

NCD(x; y) =
C(xy)�minfC(x);C(y)g

maxfC(x);C(y)g
: (VI.1)

This NCD is the main concept of this work. It is the real-world version
of the ideal notion of normalized information distance NID in (IV.1).

Remark 6.1: In practice, the NCD is a nonnegative number 0 �
r � 1 + � representing the differences between the two files. Smaller

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 4, APRIL 2005 1529

numbers represent more similar files. The � in the upper bound is due
to imperfections in our compression techniques, but for most standard
compression algorithms one is unlikely to see an � above 0:1 (in our
experiments, gzip and bzip2 achievedNCDs above 1, but PPMZ always
had NCD at most 1).

There is a natural interpretation to NCD(x; y). If, say, C(y) �
C(x), then we can rewrite

NCD(x; y) =
C(xy)� C(x)

C(y)
:

That is, the distance NCD(x; y) between x and y is the improvement
due to compressing y using x as previously compressed “database,”
and compressing y from scratch, expressed as the ratio between the bit-
wise length of the two compressed versions. Relative to the reference
compressor, we can define the information in x about y as C(y) �
C(yjx). Then, using (III.3)

NCD(x; y) = 1�
C(y)� C(yjx)

C(y)
:

That is, theNCDbetweenx and y is 1minus the ratio of the information
in x about y and the information in y.

Theorem 6.2: If the compressor is normal, then the NCD is a nor-
malized admissible distance satsifying the metric (in)equalities, that is,
a similarity metric.

Proof: If the compressor is normal, then by Lemmas 5.1 and 5.3,
the NCD is a normalized admissible distance. It remains to show it
satisfies the three metric (in)equalities.

1) By idempotency, we have NCD(x; x) = 0. Bymonotonicity, we
have NCD(x; y) � 0 for every x, y, with inequality for y 6= x.

2) NCD(x; y) = NCD(y; x). The NCD is unchanged by inter-
changing x and y in (IV.1).

3) The difficult property is the triangle inequality. Without loss of
generality, we assume C(x) � C(y) � C(z). Since the NCD
is symmetrical, there are only three triangle inequalities that can
be expressed by NCD(x; y), NCD(x; z), NCD(y; z). We verify
them in turn.
a) NCD(x; y) � NCD(x; z) + NCD(z; y): By distributivity,

the compressor itself satisfies

C(xy) + C(z) � C(xz) + C(zy):

Subtracting C(x) from both sides and rewriting

C(xy)� C(x) � C(xz)� C(x) + C(zy)� C(z):

Dividing by C(y) on both sides we find

C(xy)� C(x)

C(y)
�

C(xz)� C(x) + C(zy)� C(z)

C(y)
:

The left-hand side is � 1.
i) Assume the right-hand side is � 1. Setting C(z) =

C(y)+�, and adding� to both the numerator and de-
nominator of the right-hand side, it can only increase
and draw closer to 1. Therefore,

C(xy)� C(x)

C(y)

�
C(xz)� C(x) + C(zy)� C(z) + �

C(y) + �

=
C(zx)� C(x)

C(z)
+

C(zy)� C(y)

C(z)

which was what we had to prove.
ii) Assume the right-hand side is > 1. We proceed like

in the previous case, and add � to both numerator

and denominator. Although now the right-hand side
decreases, it must still be greater than 1, and therefore,
the right-hand side remains at least as large as the left-
hand side.

b) NCD(x; z) � NCD(x; y) + NCD(y; z). By distributivity,
we have C(xz) + C(y) � C(xy) + C(yz). Subtracting
C(x) from both sides, rearranging, and dividing both sides
by C(z) we obtain

C(xz)� C(x)

C(z)
�

C(xy)� C(x)

C(z)
+

C(yz)� C(y)

C(z)
:

The right-hand side does not decrease when we substitute
C(y) for the denominator C(z) of the first term, since
C(y) � C(z). Therefore, the inequality stays valid under
this substitution, which was what we had to prove.

c) NCD(y; z) � NCD(y; x)+NCD(x; z). By distributivity, we
have C(yz) + C(x) � C(yx) + C(xz). Subtracting C(y)
from both sides, using symmetry, rearranging, and dividing
both sides by C(z) we obtain

C(yz)� C(y)

C(z)
�

C(xy)� C(x)

C(z)
+

C(yz)� C(y)

C(z)
:

The right-hand side does not decrease when we substitute
C(y) for the denominator C(z) of the first term, since
C(y) � C(z). Therefore, the inequality stays valid under
this substitution, which was what we had to prove.

Quasi-universality:We now digress to the theory developed in [31],
which formed the motivation for developing the NCD. If, instead of the
result of some real compressor, we substitute the Kolmogorov com-
plexity for the lengths of the compressed files in the NCD formula,
the result is the NID as in (IV.1). It is universal in the following sense:
Every admissible distance expressing similarity according to some fea-
ture, that can be computed from the objects concerned, is comprised
(in the sense of minorized) by the NID. Note that every feature of the
data gives rise to a similarity, and, conversely, every similarity can be
thought of as expressing some feature: being similar in that sense. Our
actual practice in using the NCD falls short of this ideal theory in at
least three respects.

i) The claimed universality of the NID holds only for indefinitely
long sequences x, y. Once we consider strings x, y of defi-
nite length n, it is only universal with respect to “simple” com-
putable normalized admissible distances, where “simple” means
that they are computable by programs of length, say, logarithmic
in n. This reflects the fact that, technically speaking, the univer-
sality is achieved by summing the weighted contribution of all
similarity distances in the class considered with respect to the
objects considered. Only similarity distances of which the com-
plexity is small (which means that the weight is large), with re-
spect to the size of the data concerned, kick in.

ii) The Kolmogorov complexity is not computable, and it is in prin-
ciple impossible to compute how far off the NCD is from the
NID. So we cannot in general know howwell we are doing using
the NCD.

iii) To approximate the NCD we use standard compression pro-
grams like gzip, PPMZ, and bzip2. While better compression
of a string will always approximate the Kolmogorov complexity
better, this may not be true for the NCD. Due to its arithmetic
form, subtraction, and division, it is theoretically possible that
while all items in the formula get better compressed, the im-
provement is not the same for all items, and the NCD value
moves away from the NID value. In our experiments, we have

1530 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 4, APRIL 2005

not observed this behavior in a noticable fashion. Formally, we
can state the following.

Theorem 6.3: Let d be a computable normalized admissible dis-
tance andC be a normal compressor. Then, NCD(x; y) � �d(x; y)+�,
where for C(x) � C(y), we have � = D+(x)=C(x) and
� = (C(xjy)�K(xjy))=C(x), with C(xjy) according to (III.3).

Proof: Fix d, C , x, y in the statement of the theorem. Since the
NCD is symmetrical, we can, without loss of generality, let C(x) �
C(y). By (III.3) and the symmetry property C(xy) = C(yx) we
have C(xjy) � C(yjx). Therefore, NCD(x; y) = C(xjy)=C(x). Let
d(x; y) be the normalized version of the admissible distance D(x; y);
that is, d(x; y) = D(x; y)=D+(x; y). Let d(x; y) = e. By (II.2),
there are <2eD (x)+1 many (x; v) pairs, such that d(x; v) � e. Since
d is computable, we can compute and enumerate all these pairs. The
initially fixed pair (x; y) is an element in the list and its index takes
� eD+(x) + 1 bits. Therefore, given x, the y can be described by at
most eD+(x) + O(1) bits—its index in the list and an O(1) term ac-
counting for the lengths of the programs involved in reconstructing y
given its index in the list, and algorithms to compute functions d andC .
Since the Kolmogorov complexity gives the length of the shortest ef-
fective description, we haveK(yjx) � eD+(x)+O(1). Substitution,
rewriting, and using K(xjy) � E(x; y) � D(x; y) up to ignorable
additive terms (Section IV), yields

NCD(x; y) = C(xjy)=C(x) � �e+ �

which was what we had to prove.

Remark 6.4: Clustering according to NCD will group sequences
together that are similar according to features that are not explicitly
known to us. Analysis of what the compressor actually does still may
not tell us which features that make sense to us can be expressed by
conglomerates of features analyzed by the compressor. This can be
exploited to track down unknown features implicitly in classification:
forming automatically clusters of data and see in which cluster (if any)
a new candidate is placed.

Another aspect that can be exploited is exploratory. Given that the
NCD is small for a pair x, y of specific sequences, what does this re-
ally say about the sense in which these two sequences are similar? The
above analysis suggests that close similarity will be due to a domi-
nating feature (that perhaps expresses a conglomerate of subfeatures).
Looking into these deeper causes may give feedback about the appro-
priateness of the realized NCD distances and may help extract more
intrinsic information about the objects, than the oblivious division into
clusters, by looking for the common features in the data clusters.

VII. CLUSTERING

Given a set of objects, the pairwise NCDs form the entries of a dis-
tance matrix. This distance matrix contains the pairwise relations in
raw form. But in this format that information is not easily usable. Just
as the distance matrix is a reduced form of information representing the
original data set, we now need to reduce the information even further
in order to achieve a cognitively acceptable format like data clusters.
To extract a hierarchy of clusters from the distance matrix, we deter-
mine a dendrogram (ternary tree) that agrees with the distance matrix
according to a cost measure. This allows us to extract more information
from the data than just flat clustering (determining disjoint clusters in
dimensional representation).

Clusters are groups of objects that are similar according to our
metric. There are various ways to cluster. Our aim is to analyze
data sets for which the number of clusters is not known a priori,
and the data are not labeled. As stated in [16], conceptually simple,
hierarchical clustering is among the best known unsupervised methods

Fig. 1. The three possible quarter topologies for the set of leaf labelsu, v,w, x.

in this setting, and the most natural way is to represent the relations
in the form of a dendrogram, which is customarily a directed binary
tree or undirected ternary tree. To construct the tree from a distance
matrix with entries consisting of the pairwise distances between
objects, we use a quartet method. This is a matter of choice only;
other methods may work equally well. The distances we compute in
our experiments are often within the range 0:85 to 1:1. That is, the
distinguishing features are small, and we need a sensitive method
to extract as much information contained in the distance matrix as
possible. For example, our experiments showed that reconstructing
a minimum spanning tree is not sensitive enough and gives poor
results. With increasing number of data items, the projection of the
NCD matrix information into the tree representation format gets
increasingly distorted. A similar situation arises in using alignment
cost in genomic comparisons. Experience shows that in both cases the
hierarchical clustering methods seem to work best for small sets of
data, up to 25 items, and to deteriorate for larger sets, say 40 items or
more. A standard solution to hierarchically cluster larger sets of data
is to first cluster nonhierarchically, by say multidimensional scaling
of k-means, available in standard packages, for instance, Matlab, and
then apply hierarchical clustering on the emerging clusters.
The quartet method: We consider every group of four elements

from our set of n elements; there are n

4
such groups. From each

group u, v, w, x we construct a tree of arity 3, which implies that the
tree consists of two subtrees of two leaves each. Let us call such a tree
a quartet topology. There are three possibilities denoted i) uvjwx, ii)
uwjvx, and iii) uxjvw, where a vertical bar divides the two pairs of
leaf nodes into two disjoint subtrees (Fig. 1).

For any given tree T and any group of four leaf labels u, v, w, x,
we say T is consistent with uvjwx if and only if the path from u to
v does not cross the path from w to x. Note that exactly one of the
three possible quartet topologies for any set of four labels is consis-
tent for any given tree. We may think of a large tree as having many

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 4, APRIL 2005 1531

Fig. 2. An example tree consistent with quartet topology uvjwx.

smaller quartet topologies embedded within its structure. Commonly,
the goal in the quartet method is to find (or approximate as closely as
possible) the tree that embeds the maximal number of consistent (pos-
sibly weighted) quartet topologies from a given setQ of quartet topolo-
gies [19] (Fig. 2). This is called the (weighted) maximum quartet con-
sistency (MQC) problem.

We propose a new optimization problem: the minimum quartet tree
cost (MQTC), as follows. The cost of a quartet topology is defined
as the sum of the distances between each pair of neighbors; that is,
Cuvjwx = d(u; v) + d(w; x). The total cost CT of a tree T with a set
N of leaves (external nodes of degree 1) is defined as

CT =
fu;v;w;xg�N

fCuvjwx : T is consistent with uvjwxg

the sum of the costs of all its consistent quartet topologies. First, we
generate a list of all possible quartet topologies for all four-tuples of
labels under consideration. For each group of three possible quartet
topologies for a given set of four labels u, v, w, x, calculate a best
(minimal) cost

m(u; v; w; x) = minfCuvjwx; Cuwjvx; Cuxjvwg

and a worst (maximal) cost

M(u; v; w; x) = maxfCuvjwx; Cuwjvx; Cuxjvwg:

Summing all best quartet topologies yields the best (minimal) cost

m =
fu;v;w;xg�N

m(u; v; w; x):

Conversely, summing all worst quartet topologies yields the worst
(maximal) cost

M =
fu;v;w;xg�N

M(u; v; w; x):

For some distance matrices, these minimal and maximal values cannot
be attained by actual trees; however, the score CT of every tree T will
lie between these two values. In order to be able to compare tree scores
in a more uniform way, we now rescale the score linearly such that the
worst score maps to 0, and the best score maps to 1, and term this the
normalized tree benefit score S(T) = (M�CT)=(M�m). Our goal

is to find a full tree with a maximum value of S(T), which is to say,
the lowest total cost.

To express the notion of computational difficulty one uses the notion
of “nondeterministic polynomial time (NP).” If a problem concerning
n objects is NP-hard this means that the best known algorithm for this
(and a wide class of significant problems) requires computation time
exponential in n. That is, it is infeasible in practice. The MQC deci-
sion problem is the following: Given n objects, let T be a tree of which
the n leaves are labeled by the objects, and letQT be the set of quartet
topologies embedded in T . Given a set of quartet topologies Q, and
an integer k, the problem is to decide whether there is a binary tree T
such that Q QT > k. In [19], it is shown that the MQC decision
problem is NP-hard. For every MQC decision problem one can define
an MQTC problem that has the same solution: give the quartet topolo-
gies inQ cost 0 and the other ones cost 1. This way the MQC decision
problem can be reduced to the MQTC decision problem, which shows
also the latter to be NP-hard. Hence, it is infeasible in practice, but we
can sometimes solve it, and always approximate it. (The reduction also
shows that the quartet problems reviewed in [19] are subsumed by our
problem.) Adapting current methods in [6] to our MQTC optimization
problem results in far too computationally intensive calculations; they
run many months or years on moderate-sized problems of 30 objects.
Therefore, we have designed a simple, feasible, heuristic method for
our problem based on randomization and hill-climbing. First, a random
tree with 2n � 2 nodes is created, consisting of n leaf nodes (with
one connecting edge) labeled with the names of the data items, and
n � 2 nonleaf or internal nodes labeled with the lowercase letter “n”
followed by a unique integer identifier. Each internal node has exactly
three connecting edges. For this tree T , we calculate the total cost of
all embedded quartet toplogies, and invert and scale this value to find
S(T). A tree is consistent with precisely 1

3
of all quartet topologies,

one for every quartet. A random tree may be consistent with about 1

3
of

the best quartet topologies—but because of dependencies, this figure
is not precise. The initial random tree is chosen as the currently best
known tree, and is used as the basis for further searching. We define a
simple mutation on a tree as one of the three possible transformations.

1) A leaf swap, which consists of randomly choosing two leaf
nodes and swapping them.

2) A subtree swap, which consists of randomly choosing two in-
ternal nodes and swapping the subtrees rooted at those nodes.

3) A subtree transfer, whereby a randomly chosen subtree (pos-
sibly a leaf) is detached and reattached in another place, main-
taining arity invariants.

Each of these simple mutations keeps the number of leaf nodes and
internal nodes in the tree invariant; only the structure and placements
change. Define a full mutation as a sequence of at least one but poten-
tially many simple mutations, picked according to the following distri-
bution. First we pick the number k of simplemutations, forming a block
that we will perform with probability 2�k . For each such simple mu-
tation, we choose one of the three types listed above with equal prob-
ability. Finally, for each of these simple mutations, we uniformly at
random select leaves or internal nodes, as appropriate. Notice that trees
which are close to the original tree (in terms of number of simple muta-
tion steps in between) are examined often, while trees that are far away
from the original tree will eventually be examined, but not very fre-
quently. In order to search for a better tree, we simply apply a full mu-
tation on T to arrive at T 0, and then calculateS(T 0). If S(T 0) > S(T),
then keep T 0 as the new best tree. Otherwise, repeat the procedure. If
S(T 0) ever reaches 1, then halt, outputting the best tree. Otherwise, run
until it seems no better trees are being found in a reasonable amount of
time, in which case the approximation is complete.

Note that if a tree is ever found such that S(T) = 1, then we can
stop because we can be certain that this tree is optimal, as no tree could

1532 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 4, APRIL 2005

Fig. 3. Progress of a 60-item data set experiment over time.

have a lower cost. In fact, this perfect tree result is achieved in our
artificial tree reconstruction experiment (Section VII-A) reliably in a
few minutes. For real-world data, S(T) reaches a maximum somewhat
less than 1, presumably reflecting distortion of the information in the
distance matrix data by the best possible tree representation, as noted
above, or indicating getting stuck in a local optimum or a search space
too large to find the global optimum. On many typical problems of up
to 40 objects, this tree search gives a tree with S(T) � 0:9 within half
an hour. For large numbers of objects, tree scoring itself can be slow
(as this takes order n4 computation steps), and the space of trees is also
large, so the algorithm may slow down substantially. For larger experi-
ments, we use a C++/Ruby implementationwithmessage passing inter-
face (MPI, a common standard used on massively parallel computers)
on a cluster of workstations in parallel to find trees more rapidly. We
can consider the graph mapping the achieved S(T) score as a function
of the number of trees examined. Progress occurs typically in a sig-
moidal fashion toward a maximal value � 1, Fig. 3.

A. Three Controlled Experiments

With the natural data sets we use, one may have the preconception
(or prejudice) that, say, music by Bach should be clustered together,
music by Chopin should be clustered together, and so should music by
rock stars. However, the preprocessed music files of a piece by Bach
and a piece by Chopin, or the Beatles, may resemble one another more
than two different pieces by Bach—by accident or indeed by design and
copying. Thus, natural data sets may have ambiguous, conflicting, or
counterintuitive outcomes. In other words, the experiments on natural
data sets have the drawback of not having an objective clear “correct”
answer that can function as a benchmark for assessing our experimental
outcomes, but only intuitive or traditional preconceptions. We discuss
three experiments that show that our program indeed does what it is
supposed to do—at least in artificial situations where we know in ad-
vance what the correct answer is.

Recall, that the “similarity machine” we have described consists of
two parts: i) extracting a distance matrix from the data, and ii) con-
structing a tree from the distance matrix using our novel quartet-based
heuristic.
Testing the quartet-based tree construction: We first test whether

the quartet-based tree construction heuristic is trustworthy. We gener-
ated a ternary tree T with 18 leaves, using the pseudorandom number
generator “rand” of the Ruby programming language, and derived a
metric from it by defining the distance between two nodes as follows:
given the length of the path from a to b, in an integer number of edges,
as L(a; b), let

d(a; b) =
L(a; b) + 1

18

except when a = b, in which case d(a; b) = 0. It is easy to verify
that this simple formula always gives a number between 0 and 1, and
is monotonic with path length. Given only the 18 � 18 matrix of
these normalized distances, our quartet method exactly reconstructed
the original tree T represented in Fig. 4, with S(T) = 1.
Testing on artificial data:Given that the tree reconstruction method

is accurate on clean consistent data, we tried whether the full proce-
dure works in an acceptable manner when we know what the outcome
should be like. We used the “rand” pseudorandom number generator
from the C programming language standard library under Linux. We
randomly generated 11 separate 1-kB blocks of data where each byte
was equally probable and called these tags. Each tag was associated
with a different lower case letter of the alphabet. Next, we generated
22 files of 80 kB each, by starting with a block of purely random bytes
and applying one, two, three, or four different tags on it. Applying a tag
consists of ten repetitions of picking a random location in the 80-kB
file, and overwriting that location with the globally consistent tag that
is indicated. So, for instance, to create the file referred to in the diagram
by “a,” we start with 80 kB of random data, then pick ten places to copy
over this random data with the arbitrary 1-kB sequence identified

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 4, APRIL 2005 1533

Fig. 4. The randomly generated tree that our algorithm reconstructed. S(T) = 1.

as tag a. Similarly, to create file “ab,” we start with 80 kB of random
data, then pick ten places to put copies of tag a, then pick ten more
places to put copies of tag b (perhaps overwriting some of the a tags).
Because we never use more than four different tags, and therefore never
place more than 40 copies of tags, we can expect that at least half of the
data in each file is random and uncorrelated with the rest of the files.
The rest of the file is correlated with other files that also contain tags in
common; the more tags in common, the more related the files are. The
compressor used to compute the NCD matrix was bzip2. The resulting
tree is given in Fig. 5; it can be seen that the clustering has occured
exactly as we would expect. The S(T) score is 0:905.

Testing on heterogenous natural data: We test gross classification
of files based on heterogenous data of markedly different file types:
i) Four mitochondrial gene sequences, from a black bear, polar bear,
fox, and rat obtained from the GenBank database on the World-Wide
Web; ii) Four excerpts from the novel The Zeppelin’s Passenger by
E. Phillips Oppenheim, obtained from the Project Gutenberg Edition on
the World-Wide Web; iii) Four MIDI files without further processing;
two from Jimi Hendrix and two movements from Debussy’s “Suite

Bergamasque,” downloaded from various repositories on the World-
Wide Web; iv) Two Linux x86 ELF executables (the cp and rm com-
mands), copied directly from the RedHat 9.0 Linux distribution; and
v) Two compiled Java class files, generated by ourselves. The com-
pressor used to compute the NCD matrix was bzip2. As expected, the
program correctly classifies each of the different types of files together
with like near like. The result is reported in Fig. 6 with S(T) equal
to the very high confidence value 0:984. This experiment shows the
power and universality of the method: no features of any specific do-
main of application are used. We believe that there is no other method
known that can cluster data that is so heterogenous this reliably. This
is borne out by the massive experiments with the method in [20].

VIII. EXPERIMENTAL VALIDATION

We developed the CompLearn Toolkit, Section I, and performed
experiments in vastly different application fields to test the quality
and universality of the method. The success of the method as reported
below depends strongly on the judicious use of encoding of the objects

1534 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 4, APRIL 2005

Fig. 5. Classification of artificial files with repeated 1-kB tags. Not all possiblities are included; for example, file “b” is missing. S(T) = 0:905.

compared. Here one should use common sense on what a real world
compressor can do. There are situations where our approach fails if
applied in a straightforward way. For example: comparing text files by
the same authors in different encodings (say, Unicode and 8-b version)
is bound to fail. For the ideal similarity metric based on Kolmogorov
complexity as defined in [31] this does not matter at all, but for practical
compressors used in the experiments it will be fatal. Similarly, in the
music experiments that follow we use the symbolic MIDI music file
format rather thanwave formatmusic files. The reason is that the strings
resulting from straightforward discretizing the wave form files may be
too sensitive to how we discretize. Further research may overcome this
problem.

A. Genomics and Phylogeny

In recent years, as the complete genomes of various species become
available, it has become possible to do whole genome phylogeny
(this overcomes the problem that using different targeted parts of the
genome, or proteins, may give different trees [36]). Traditional phylo-
genetic methods on individual genes depended on multiple alignment
of the related proteins and on the model of evolution of individual
amino acids. Neither of these is practically applicable to the genome
level. In absence of such models, a method which can compute the
shared information between two sequences is useful because biolog-
ical sequences encode information, and the occurrence of evolutionary

events (such as insertions, deletions, point mutations, rearrangements,
and inversions) separating two sequences sharing a common ancestor
will result in the loss of their shared information. Our method (in the
form of the CompLearn Toolkit) is a fully automated software tool
based on such a distance to compare two genomes.

1) Mammalian Evolution: In evolutionary biology, the timing and
origin of the major extant placental clades (groups of organisms that
have evolved from a common ancestor) continues to fuel debate and
research. Here, we provide evidence by whole mitochondrial genome
phylogeny for competing hypotheses in two main questions: the
grouping of the Eutherian orders, and the Therian hypothesis versus
the Marsupionta hypothesis.
Eutherian orders: We demonstrate (already in [31]) that a whole

mitochondrial genome phylogeny of the Eutherians (placental mam-
mals) can be reconstructed automatically from unaligned complete
mitochondrial genomes by use of an early form of our compression
method, using standard software packages. As more genomic material
has become available, the debate in biology has intensified concerning
which two of the three main groups of placental mammals are more
closely related: Primates, Ferungulates, and Rodents. In [7], the
maximum-likelihood method of phylogeny tree reconstruction gave
evidence for the (Ferungulates, (Primates, Rodents)) grouping for
half of the proteins in the mitochondrial genomes investigated, and
(Rodents, (Ferungulates, Primates)) for the other halves of the mt
genomes. In that experiment they aligned 12 concatenated mitochon-

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 4, APRIL 2005 1535

Fig. 6. Classification of different file types. Tree agrees exceptionally well with NCD distance matrix: S(T) = 0:984.

drial proteins, taken from 20 species: rat (Rattus norvegicus), house
mouse (Mus musculus), grey seal (Halichoerus grypus), harbor seal
(Phoca vitulina), cat (Felis catus), white rhino (Ceratotherium simum),
horse (Equus caballus), finback whale (Balaenoptera physalus), blue
whale (Balaenoptera musculus), cow (Bos taurus), gibbon (Hylobates
lar), gorilla (Gorilla gorilla), human (Homo sapiens), chimpanzee
(Pan troglodytes), pygmy chimpanzee (Pan paniscus), orangutan
(Pongo pygmaeus), Sumatran orangutan (Pongo pygmaeus abelii),
using opossum (Didelphis virginiana), wallaroo (Macropus robustus),
and the platypus (Ornithorhynchus anatinus) as outgroup. In [30], [31],
we used the whole mitochondrial genomes of the same 20 species,
computing the NCD distances (or a closely related distance in [30]),
using the GenCompress compressor, followed by tree reconstruction
using the neighbor joining program in the MOLPHY package [38]
to confirm the commonly believed morphology-supported hypothesis
(Rodents, (Primates, Ferungulates)). Repeating the experiment using
the hypercleaningmethod [6] of phylogeny tree reconstruction gave the
same result. Here, we repeated this experiment several times using the
CompLearn Toolkit using our new quartet method for reconstructing
trees, and computing the NCD with various compressors (gzip, bzip2,
PPMZ), again always with the same result. These experiments are not
reported since they are subsumed by the larger experiment of Fig. 7.
This is a far larger experiment than the one in [30], [31], and aimed
at testing two distinct hypotheses simultaneously: the one in the latter

references about the Eutherian orders, and the far more general one
about the main orders of the mammals (Eutheria, Metatheria, and
Prototheria). Note also that adding the extra species from 20 to 24 is an
addition that biologists are loath to do: both for computational reasons
and for fear of destabilizing a realistic phylogeny by adding even one
more species to the computation. Furthermore, in the last mentioned
references we used the special-purpose genome compressor GenCom-
press to determine the distance matrix, and the standard biological
software MOLPHY package to reconstruct the phylogeny tree from
the distance matrix. In contrast, in this paper, we conduct a larger ex-
periment than before, using just the general-purpose compressor bzip2
to obtain the distance matrix, and our new quartet tree reconstruction
method to obtain the phylogeny tree—that is, our own CompLearn
package [9], used without any change in all the other experiments.
Marsupionta and Theria: The extant monophyletic divisions

of the class Mammalia are the Prototheria (monotremes: mammals
that procreate using eggs), Metatheria (marsupials: mammals that
procreate using pouches), and Eutheria (placental mammals: mam-
mals that procreate using placentas). The sister relationships between
these groups is viewed as the most fundamental question in mam-
malian evolution [21]. Phylogenetic comparison by either anatomy
or mitochondrial genome has resulted in two conflicting hypotheses:
the gene-isolation-supported Marsupionta hypothesis ((Prototheria,
Metatheria), Eutheria) versus the morphology-supported Theria hy-

1536 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 4, APRIL 2005

Fig. 7. The evolutionary tree built from complete mammalian mtDNA sequences of 24 species, using the NCD matrix of Fig. 9. We have redrawn the tree from
our output to agree better with the customary phylogeny tree format. The tree agrees exceptionally well with the NCD distance matrix: S(T) = 0:996.

pothesis (Prototheria, (Methateria, Eutheria)), the third possibility
apparently not being held seriously by anyone. There has been a lot of
support for either hypothesis; recent support for the Theria hypothesis
was given in [21] by analyzing a large nuclear gene (M6P/IG2R),
viewed as important across the species concerned, and even more
recent support for the Marsupionta hypothesis was given in [18] by
phylogenetic analysis of another sequence from the nuclear gene (18S
rRNA) and by the whole mitochondrial genome.

Experimental evidence: To test the Eutherian orders simultane-
ously with the Marsupionta-versus Theria hypothesis, we added four
animals to the above 20: Australian echidna (Tachyglossus aculeatus),
brown bear (Ursus arctos), polar bear (Ursus maritimus), using the
common carp (Cyprinus carpio) as the outgroup. Interestingly, while
there are many species of Eutheria and Metatheria, there are only three
species of now living Prototheria known: platypus, and two types of
echidna (or spiny anteater). So our sample of the Prototheria is large.
The addition of the new species might be risky in that the addition of
new relations is known to distort the previous phylogeny in traditional
computational genomics practice. With our method, using the full
genome and obtaining a single tree with a very high confidence S(T)
value, that risk is not as great as in traditional methods obtaining
ambiguous trees with bootstrap (statistic support) values on the edges.
The mitochondrial genomes of the total of 24 species we used were
downloaded from the GenBank database on the World-Wide Web.
Each is around 17 000 bases. The NCD distance matrix was computed
using the compressor PPMZ. The resulting phylogeny, with an almost
maximal S(T) score of 0:996 supports anew the currently accepted
grouping (Rodents, (Primates, Ferungulates)) of the Eutherian or-
ders, and additionally the Marsupionta hypothesis ((Prototheria,
Metatheria), Eutheria), see Fig. 7. Overall, our whole-mitochondrial
NCD analysis supports the following hypothesis:

Mammalia

((primates, ferungulates)(rodents

Eutheria

; (Metatheria, Prototheria)))

which indicates that the rodents, and the branch leading to the
Metatheria and Prototheria, split off early from the branch that led
to the primates and ferungulates. Inspection of the distance matrix
shows that the primates are very close together, as are the rodents, the

Metatheria, and the Prototheria. These are tightly knit groups with
relatively close NCDs. The ferungulates are a much looser group
with generally distant NCDs. The intergroup distances show that
the Prototheria are furthest away from the other groups, followed by
the Metatheria and the rodents. Also the fine structure of the tree is
consistent with biological wisdom.
Hierarchical versus flat clustering: This is a good place to con-

trast the informativeness of hierarchical clustering with multidimen-
sional-scaling based clustering using the same NCD matrix, exhibited
in Fig. 9. The entries give a good example of typical NCD values; we
truncated the number of decimals from 15 to 3 significant digits to save
space. Note that the majority of distances bunch in the range [0:9; 1].
This is due to the regularities the compressor can perceive. The diag-
onal elements give the self-distance, which, for PPMZ, is not actually
0, but is off from 0 only in the third decimal. In Fig. 8, we clustered
the 24 animals using the NCD matrix by multidimensional scaling as
points in two-dimensional Euclidean space. In this method, the NCD
matrix of 24 animals can be viewed as a set of distances between points
in n-dimensional Euclidean space (n � 24), which we want to project
into a two-dimensional Euclidean space, trying to distort the distances
between the pairs as little as possible. This is akin to the problem of
projecting the surface of the earth globe on a flat two-dimensional map
with minimal distance distortion. The main feature is the choice of the
measure of distortion to be minimized, [16]. Let the original set of
distances be d1; . . . ; dk and the projected distances be d01; . . . ; d

0
k. In

Fig. 8, we used the distortion measure Kruskall’s stress-1, [24], which
minimizes

(
i�k

(di � d0
i
)2)=

i�k

d2
i
:

Kruskall’s stress-1 equal 0 means no distortion, and the worst value is
at most 1 (unless you have a really bad projection). In the projection of
the NCD matrix according to our quartet method, one minimizes the
more subtle distortion S(T)measure, where 1 means perfect represen-
tation of the relative relations between every 4-tuple, and 0means min-
imal representation. Therefore, we should compare distortion Kruskall
stress-1 with 1 � S(T). Fig. 7 has a very good 1 � S(T) = 0:04
and Fig. 8 has a poor Kruskal stress 0:389. Assuming that the compar-
ison is significant for small values (close to perfect projection), we find

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 4, APRIL 2005 1537

Fig. 8. Multidimensional clustering of same NCD matrix (Fig. 9) as used for Fig. 7. Kruskal’s stress-1 = 0:389.

Fig. 9. Distance matrix of pairwise NCD. For display purpose, we have truncated the original entries from 15- to 3-decimal precision.

that the multidimensional scaling of this experiment’s NCD matrix is
formally inferior to that of the quartet tree. This conclusion formally
justifies the impression conveyed by the figures on visual inspection.

2) SARS Virus: In another experiment, we clustered the SARS
virus after its sequenced genome was made publicly available, in rela-
tion to potential similar virii. The 15 virus genomes were downloaded

from The Universal Virus Database of the International Committee
on Taxonomy of Viruses, available on the World-Wide Web. The
SARS virus was downloaded from Canada’s Michael Smith Genome
Sciences Centre which had the first public SARS Coronavirus draft
whole genome assembly available for download (SARS TOR2 draft
genome assembly 120403). The NCD distance matrix was com-

1538 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 4, APRIL 2005

Fig. 10. SARS virus among other virii. Legend: AvianAdeno1CELO.inp: Fowl adenovirus 1; AvianIB1.inp: Avian infectious bronchitis virus (strain
Beaudette US); AvianIB2.inp: Avian infectious bronchitis virus (strain Beaudette CK); BovineAdeno3.inp: Bovine adenovirus 3; DuckAdeno1.inp: Duck
adenovirus 1; HumanAdeno40.inp: Human adenovirus type 40; HumanCorona1.inp: Human coronavirus 229E; MeaslesMora.inp: Measles virus strain Moraten;
MeaslesSch.inp: Measles virus strain Schwarz; MurineHep11.inp: Murine hepatitis virus strain ML-11; MurineHep2.inp: Murine hepatitis virus strain 2;
PRD1.inp: Enterobacteria phage PRD1; RatSialCorona.inp: Rat sialodacryoadenitis coronavirus; SARS.inp: SARS TOR2v120403; SIRV1.inp: Sulfolobus virus
SIRV-1; SIRV2.inp: Sulfolobus virus SIRV-2. S(T) = 0:988.

Fig. 11. Dendrogram of mitochondrial genomes of fungi using NCD. This represents the distance matrix precisely with S(T) = 0:999.

puted using the compressor bzip2. The relations in Fig. 10 are very
similar to the definitive tree based on medical-macrobio-genomics
analysis, appearing later in the New England Journal of Medicine,
[25]. We depicted the figure in the ternary tree style, rather than the
genomics-dendrogram style, since the former is more precise for
visual inspection of proximity relations.

3) Analysis of Mitochondrial Genomes of Fungi: As a pilot for ap-
plications of the CompLearn Toolkit in fungi genomics reasearch, the
group of T. Boekhout, E. Kuramae, V. Robert, of the Fungal Biodiver-
sity Center, Royal Netherlands Academy of Sciences, supplied us with
the mitochondrial genomes of Candida glabrata, Pichia canadensis,
Saccharomyces cerevisiae, S. castellii, S. servazzii, Yarrowia lipolytica

(all yeasts), and two filamentous ascomycetes Hypocrea jecorina and
Verticillium lecanii. The NCD distance matrix was computed using the
compressor PPMZ. The resulting tree is depicted in Fig. 11. The Inter-
pretation of the fungi researchers is “the tree clearly clustered the as-
comycetous yeasts versus the two filamentous ascomycetes, thus sup-
porting the current hypothesis on their classification (for example, see
[26]). Interestingly, in a recent treatment of the Saccharomycetaceae,
S. servazii, S. castellii, and C. glabrata were all proposed to belong
to genera different from Saccharomyces, and this is supported by the
topology of our tree as well ([27]).”

To compare the veracity of the NCD clustering with a more fea-
ture-based clustering, we also calculated the pairwise distances as fol-

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 4, APRIL 2005 1539

Fig. 12. Dendrogram of mitochondrial genomes of fungi using block frequencies. This represents the distance matrix precisely with S(T) = 0:999.

Fig. 13. Clustering of Native-American, Native-African, and Native-European languages. S(T) = 0:928.

lows. Each file is converted to a 4096-dimensional vector by consid-
ering the frequency of all (overlapping) 6-b contiguous blocks. The
l2-distance (Euclidean distance) is calculated between each pair of files
by taking the square root of the sum of the squares of the compo-
nent-wise differences. These distances are arranged into a distance ma-
trix and linearly scaled to fit the range [0; 1:0]. Finally, we ran the clus-
tering routine on this distance matrix. The results are in Fig. 12. As
seen by comparing with the NCD-based Fig. 11 there are apparent mis-
placements when using the Euclidean distance in this way. Thus, in this
simple experiment, the NCD performed better, that is, agreedmore pre-
cisely with accepted biological knowledge.

B. Language Trees

Our method improves the results of [1], using a linguistic corpus of
“The Universal Declaration of Human Rights (UDoHR)” [35] in 52
languages. Previously, [1] used an asymmetric measure based on rela-
tive entropy, and the full matrix of the pair-wise distances between all
52 languages, to build a language classification tree. This experiment
was repeated (resulting in a somewhat better tree) using the compres-
sion method in [31] using standard biological software packages to
construct the phylogeny. We have redone this experiment, and done
new experiments, using the CompLearn Toolkit. Here, we report on an
experiment to separate radically different language families. We down-
loaded the language versions of the UDoHR text in English, Spanish,
Dutch, German (Native-European), Pemba, Dendi, Ndbele, Kicongo,
Somali, Rundi, Ditammari, Dagaare (Native African), Chikasaw,
Perhupecha, Mazahua, Zapoteco (Native-American), and did not pre-
process them except for removing initial identifying information. We
used a Lempel–Ziv-type compressor gzip to compress text sequences
of sizes not exceeding the length of the sliding window gzip uses
(32 kB), and compute the NCD for each pair of language sequences.
Subsequently, we clustered the result. We show the outcome of one
of the experiments in Fig. 13. Note that three groups are correctly
clustered, and that even the subclusters of the European languages are
correct (English is grouped with the Romance languages because it
contains up to 40% admixture of words from Latin origin).

C. Literature

The texts used in this experiment were downloaded from the
World-Wide Web in original Cyrillic-lettered Russian and in Latin-let-
tered English by L. Avanasiev (Moldavian M.Sc. student at the
University of Amsterdam). The compressor used to compute the NCD
matrix was bzip2. We clustered Russian literature in the original
(Cyrillic) by Gogol, Dostojevski, Tolstoy, Bulgakov,Tsjechov, with
three or four different texts per author. Our purpose was to see whether
the clustering is sensitive enough, and the authors distinctive enough,
to result in clustering by author. In Fig. 14 we see a perfect clustering.
Considering the English translations of the same texts, in Fig. 15,
we see errors in the clustering. Inspection shows that the clustering
is now partially based on the translator. It appears that the translator
superimposes his characteristics on the texts, partially suppressing
the characteristics of the original authors. In other experiments, not
reported here, we separated authors by gender and by period.

D. Music

The amount of digitized music available on the internet has grown
dramatically in recent years, both in the public domain and on commer-
cial sites. Napster and its clones are prime examples. Websites offering
musical content in some form or other (MP3, MIDI,…) need a way to
organize their wealth of material; they need to somehow classify their
files according to musical genres and subgenres, putting similar pieces
together. The purpose of such organization is to enable users to nav-
igate to pieces of music they already know and like, but also to give
them advice and recommendations (“If you like this, you might also
like…”). Currently, such organization is mostly done manually by hu-
mans, but some recent research has been looking into the possibilities
of automating music classification.

Initially, we downloaded 36 separate MIDI files selected from a
range of classical composers, as well as some popular music. The
files were downloaded from several different MIDI databases on the
World-Wide Web. The identifying information, composer, title, and
so on, was stripped from the files (otherwise this may give a marginal
advantage to the compressor to identify composers). Each of these

1540 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 4, APRIL 2005

Fig. 14. Clustering of Russian writers. Legend: I.S. Turgenev, 1818–1883 [Father and Sons, Rudin, On the Eve, A House of Gentlefolk]; F. Dostoyevsky
1821–1881 [Crime and Punishment, The Gambler, The Idiot; Poor Folk]; L.N. Tolstoy 1828–1910 [Anna Karenina, The Cossacks, Youth, War and Piece]; N.V.
Gogol 1809–1852 [Dead Souls, Taras Bulba, The Mysterious Portrait, How the Two Ivans Quarrelled]; M. Bulgakov 1891–1940 [The Master and Margarita,
The Fatefull Eggs, The Heart of a Dog]. S(T) = 0:949.

Fig. 15. Clustering of Russianwriters translated in English. The translator is given in brackets after the titles of the texts. Legend: I.S. Turgenev, 1818–1883 [Father
and Sons (R. Hare), Rudin (Garnett, C. Black), On the Eve (Garnett, C. Black), A House of Gentlefolk (Garnett, C. Black)]; F. Dostoyevsky 1821–1881 [Crime and
Punishment (Garnett, C. Black), The Gambler (C.J. Hogarth), The Idiot (E. Martin); Poor Folk (C.J. Hogarth)]; L.N. Tolstoy 1828–1910 [Anna Karenina (Garnett,
C. Black), The Cossacks (L. and M. Aylmer), Youth (C.J. Hogarth), War and Piece (L. and M. Aylmer)]; N.V. Gogol 1809–1852 [Dead Souls (C.J. Hogarth), Taras
Bulba (�G. Tolstoy, 1860, B.C. Baskerville), The Mysterious Portrait andHow the Two Ivans Quarrelled (� I.F. Hapgood]; M. Bulgakov 1891–1940 [The Master
and Margarita (R. Pevear, L. Volokhonsky), The Fatefull Eggs (K. Gook-Horujy), The Heart of a Dog (M. Glenny)]. S(T) = 0:953.

files was run through a preprocessor to extract just MIDI Note-On and
Note-Off events. These events were then converted to a player-piano
style representation, with time quantized in 0.05-s intervals. All
instrument indicators, MIDI control signals, and tempo variations
were ignored. For each track in the MIDI file, we calculate two
quantities: An average volume and a modal note. The average volume
is calculated by averaging the volume (MIDI note velocity) of all notes
in the track. The modal note is defined to be the note pitch that sounds
most often in that track. If this is not unique, then the lowest such note
is chosen. The modal note is used as a key-invariant reference point
from which to represent all notes. It is denoted by 0, higher notes are
denoted by positive numbers, and lower notes are denoted by negative
numbers. A value of 1 indicates a half-step above the modal note,
and a value of �2 indicates a whole-step below the modal note. The
tracks are sorted according to decreasing average volume, and then
output in succession. For each track, we iterate through each time
sample in order, outputting a single signed 8-b value for each currently
sounding note. Two special values are reserved to represent the end of

a time step and the end of a track. This file is then used as input to the
compression stage for distance matrix calculation and subsequent tree
search. To check whether any important feature of the music was lost
during preprocessing, we played it back from the preprocessed files to
compare it with the original. To the authors the pieces sounded almost
unchanged. The compressor used to compute the NCD matrix of the
genres tree, Fig. 16, and that of 12-piece music set, Fig. 17 is bzip2.
For the full range of the music experiments see [10].

Before testing whether our program can see the distinctions between
various classical composers, we first show that it can distinguish be-
tween three broader musical genres: classical music, rock, and jazz.
This may be easier than making distinctions “within” classical music.
All musical pieces we used are listed in the tables in [10]. For the genre-
experiment we used, 12 classical pieces consisting of Bach, Chopin,
and Debussy, 12 jazz pieces, and 12 rock pieces. The tree (Fig. 16)
that our program came up with has S(T) = 0:858. The discrimi-
nation between the three genres is reasonable but not perfect. Since
S(T) = 0:858, a fairly low value, the resulting tree does not represent

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 4, APRIL 2005 1541

Fig. 16. Output for the 36 pieces from three music genres. Legend: 12 Jazz: John Coltrane [“Blue Trane,” “Giant Steps,” “Lazy Bird,” “Impressions”]; Miles
Davis [“Milestones,” “Seven Steps to Heaven,” “Solar,” “So What”]; George Gershwin [“Summertime”]; Dizzy Gillespie [“Night in Tunisia”]; Thelonious Monk
[“Round Midnight”]; Charlie Parker [“Yardbird Suite”]; 12 Rock and Pop: The Beatles [“Eleanor Rigby,” “Michelle”]; Eric Clapton [“Cocaine,” “Layla”]; Dire
Straits [“Money for Nothing”]; Led Zeppelin [“Stairway to Heaven”]; Metallica [“One”]; Jimi Hendrix [“Hey Joe,” ”Voodoo Chile”]; The Police [“Every Breath
You Take,” “Message in a Bottle”] Rush [“Yyz”]; 12 Classic: see caption for Fig. 17. S(T) = 0:858.

the NCD distance matrix very well. Presumably, the information in the
NCD distance matrix cannot be represented by a dendrogram of high
S(T) score. This appears to be a common problem with large (> 25
or so) natural data sets. Another reason may be that the program termi-
nated, while trapped in a local optimum. We repeated the experiment
many times with almost the same results, so that does not appear to
be the case. The 11-item subtree rooted at n4 contains 10 of the 12
jazz pieces, together with a piece of Bach’s “Wohltemporierte Klavier
(WTK).” The other two jazz pieces, Miles Davis’ “So What,” and John
Coltrane’s “Giant Steps” are placed elsewhere in the tree, perhaps ac-
cording to some kinship that now escapes us (but may be identified
by closer studying of the objects concerned). Of the 12 rock pieces,
10 are placed in the 12-item subtree rooted at n29, together with a
piece of Bach’s “WTK,” and Coltrane’s “Giant Steps,” while Hendrix’s
“Voodoo Chile” and Rush “Yyz” is further away. Of the 12 classical
pieces, 10 are in the 13-item subtrees rooted at the branch n8, n13, n6,
n2, n7, together with Hendrix’s “Voodoo Chile,” Rush’s “Yyz,” and
Miles Davis’ “So What.” Surprisingly, two of the four Bach “WTK”
pieces are placed elsewhere. Yet we perceive the four Bach pieces to
be very close, both structurally and melodically (as they all come from
the monothematic “Wohltemporierte Klavier”). But the program finds

a reason that at this point is hidden from us. In fact, running this ex-
periment with different compressors and termination conditions con-
sistently displayed this anomaly. The small set encompasses the four
movements from Debussy’s “Suite Bergamasque,” four movements of
book 2 of Bach’s “Wohltemperierte Klavier,” and four preludes from
Chopin’s “Opus 28.” As one can see in Fig. 17, our program does
a pretty good job at clustering these pieces. The S(T) score is also
high: 0:968. The four Debussy movements form one cluster, as do the
four Bach pieces. The only imperfection in the tree, judged by what
one would intuitively expect, is that Chopin’s Prélude no. 15 lies a bit
closer to Bach than to the other three Chopin pieces. This Prélude no
15, in fact, consistently forms an odd-one-out in our other experiments
as well. This is an example of pure data mining, since there is some
musical truth to this, as no. 15 is perceived as by far the most eccentric
among the 24 Préludes of Chopin’s opus 28.

E. Optical Character Recognition

Can we also cluster two-dimensional images? Because our method
appears focused on strings this is not straightforward. It turns out that
scanning a picture in raster row-major order retains enough regularityin

1542 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 4, APRIL 2005

Fig. 17. Output for the 12-piece set. Legend: J.S. Bach [“Wohltemperierte Klavier II: Preludes and Fugues 1,2”— BachWTK2{F,P}{1,2}]; Chopin [“Préludes
op. 28: 1, 15, 22, 24” —ChopPrel{1,15,22,24}]; Debussy [“Suite Bergamasque,” four movements—DebusBerg{1,2,3,4}]. S(T) = 0:968.

Fig. 18. Images of handwritten digits used for optical character recognition
(OCR}.

both dimensions for the compressor to grasp. A simple task along these
lines is to cluster handwritten characters. The handwritten characters in
Fig. 18 were downloaded from the NIST Special Data Base 19 (optical
character recognition (OCR) database) on the World-Wide Web (cur-
rently only available for purchase, at a recent check). Each file in the
data directory contains one digit image, either a four, five, or six. Each
pixel is a single character: “#” for a black pixel, “�” for white. New

lines are added at the end of each line. Each character is 128 � 128

pixels. The NCD matrix was computed using the compressor PPMZ.
Fig. 19 shows the clusters obtained. There are 10 of each digit “4,” “5,”
“6,” making a total of 30 items in this experiment. All but one of the
4’s are put in the subtree rooted at n1, all but one of the 5’s are put
in the subtree rooted at n4, and all 6’s are put in the subtree rooted at
n3. The remaining 4 and 5 are in the branch n23, n13 joining n6 and
n3. So 28 items out of 30 are clustered correctly, that is, 93%. In this
experiment, we used only three digits. Using the full set of decimal
digits means that too many objects are involved, resulting in a lower
clustering accuracy. However, we can use the NCD as an oblivious fea-
ture-extraction technique to convert generic objects into finite-dimen-
sional vectors. We have used this technique to train a support vector
machine (SVM) based OCR system to classify handwritten digits by
extracting 80 distinct, ordered NCD features from each input image.
In this initial stage of ongoing research, by our oblivious method of
computing the NCDs to use in the SVM classifier, we achieved a hand-
written single decimal digit recognition accuracy of 87%. The current
state-of-the-art for this problem, after half a century of interactive fea-
ture-driven classification research, is in the upper 90% level [34], [40].
All experiments are benchmarked on the standard NIST Special Data
Base 19. Using the NCD for general classification by compression is
the subject of a future paper.

F. Astronomy

As a proof of principle, we clustered data from unknown objects, for
example objects that are far away. In [3], observations of the micro-
quasar GRS 1915 + 105 made with the Rossi X-ray Timing Eplorer
were analyzed. The interest in this microquasar stems from the fact
that it was the first galactic object to show a certain behavior (super-
luminal expansion in radio observations). Photonometric observation

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 4, APRIL 2005 1543

Fig. 19. Clustering of the OCR images. S(T) = 0:901.

data from X-ray telescopes were divided into short time segments (usu-
ally in the order of 1 min), and these segments have been classified
into a bewildering array of 15 different modes after considerable ef-
fort. Briefly, spectrum hardness ratios (roughly, “color”) and photon
count sequences were used to classify a given interval into categories
of variability modes. From this analysis, the extremely complex vari-
ability of this source was reduced to transitions between three basic
states, which, interpreted in astronomical terms, gives rise to an expla-
nation of this peculiar source in standard black-hole theory. The data
we used in this experiment were made available to us by M. Klein Wolt
(coauthor of [3]) and T. Maccarone, both researchers at the Astronom-
ical Institute “Anton Pannekoek” at the University of Amsterdam. The

observations are essentially time series, and our aimwas experimenting
with our method as a pilot to more extensive joint research. Here, the
task was to see whether the clustering would agree with the classifi-
cation above. The NCD matrix was computed using the compressor
PPMZ. The results are in Fig. 20. We clustered 12 objects, consisting
of three intervals from four different categories denoted as �, , �, � in
[3, Table I]. In Fig. 20, we denote the categories by the corresponding
Roman letters D, G, P, and T, respectively. The resulting tree groups
these different modes together in a way that is consistent with the clas-
sification by experts for these observations. The oblivious compression
clustering corresponds precisely to the laborious feature-driven classi-
fication in [3]. Further work on clustering of (possibly heterogenous)

1544 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 4, APRIL 2005

Fig. 20. Sixteen observation intervals of GRS 1915+105 from four classes. The initial capital letter indicates the class corresponding to Greek lower case letters
in [3]. The remaining letters and digits identify the particular observation interval in terms of finer features and identity. The T -cluster is top left, the P -cluster is
bottom left, theG-cluster is to the right, and theD-cluster in the middle. This tree almost exactly represents the underlying NCD distance matrix: S(T) = 0:994.

time series and anomaly detection, using the new compression method,
was recently done on a massive scale in [20].

IX. CONCLUSION

To interpret what the NCD is doing, and to explain its remarkable
accuracy and robustness across application fields and compressors, the
intuition is that the NCD minorizes all similarity distances based on
features that are captured by the reference compressor involved. Such
features must be relatively simple in the sense that they are expressed
by an aspect that the compressor analyzes (for example, frequencies,
matches, repeats). Certain sophisticated features may well be express-
ible as combinations of such simple features, and are therefore them-
selves simple features in this sense. The extensive experimenting above
shows that even elusive features are captured.

A potential application of our nonfeature (or rather, many-unknown-
feature) approach is exploratory. Presented with data for which the fea-
tures are as yet unknown, certain dominant features governing simi-
larity are automatically discovered by the NCD. Examining the data un-
derlying the clusters may yield this hitherto unknown dominant feature.

Our experiments indicate that the NCD has application in two new
areas of support vector machine (SVM) based learning. First, we find
that the complemented NCD (1�NCD) is useful as a kernel for generic
objects in SVM learning. Secondly, we can use the normal NCD as a
feature-extraction technique to convert generic objects into finite-di-
mensional vectors, see the last paragraph of Section VIII-E. In effect,
our similarity engine aims at the ideal of a perfect data mining process,
discovering unknown features in which the data can be similar. This
is the subject of ongoing joint research in genomics of fungi, clinical
molecular genetics, and radio astronomy.

ACKNOWLEDGMENT

The authors wish to thank Loredana Afanasiev, Graduate School of
Logic, University of Amsterdam; Teun Boekhout, Eiko Kuramae, Vin-
cent Robert, Fungal Biodiversity Center, Royal Netherlands Academy
of Sciences;Marc KleinWolt, ThomasMaccarone, Astronomical Insti-
tute “Anton Pannekoek,” University of Amsterdam; EvgenyVerbitskiy,
Philips Research; Steven de Rooij, Ronald de Wolf, CWI; the referees
and the editors, for suggestions, comments, help with experiments, and
data; Jorma Rissanen and Boris Ryabko for discussions, John Lang-
ford for suggestions, Tzu-Kuo Huang for pointing out some typos and
simplifications, and Teemu Roos and Henry Tirri for implementing a
visualization of the clustering process.

REFERENCES

[1] D. Benedetto, E. Caglioti, and V. Loreto, “Language trees and zipping,”
Phys. Rev. Lett., vol. 88, no. 4, pp. 048702-1–048702-4, 2002.

[2] P. Ball, “Algorithm makes tongue tree,” Nature, Science update, Jan. 22,
2002.

[3] T. Belloni, M. Klein-Wolt, M. Méndez, M. van der Klis, and J. van
Paradijs, “A model-independent analysis of the variability of GRS
1915 + 105,” Astron. Astrophys., vol. 355, pp. 271–290, 2000.

[4] C. H. Bennett, P. Gács, M. Li, P. M. B. Vitányi, and W. Zurek, “Informa-
tion distance,” IEEE Trans. Inf. Theory, vol. 44, no. 4, pp. 1407–1423,
Jul. 1998.

[5] C. H. Bennett, M. Li, and B. Ma, “Chain letters and evolutionary histo-
ries,” Scient. Amer., pp. 76–81, Jun. 2003.

[6] D. Bryant, V. Berry, P. Kearney, M. Li, T. Jiang, T. Wareham, and H.
Zhang, “A practical algorithm for recovering the best supported edges
of an evolutionary tree,” in Proc. 11th ACM-SIAM Symp. Discrete Algo-
rithms, San Francisco, CA, Jan. 9–11, 2000, pp. 287–296.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 4, APRIL 2005 1545

[7] Y. Cao, A. Janke, P. J. Waddell, M. Westerman, O. Takenaka, S. Murata,
N. Okada, S. Pääbo, and M. Hasegawa, “Conflict among individual mi-
tochondrial proteins in resolving the phylogeny of eutherian orders,” J.
Mol. Evol., vol. 47, pp. 307–322, 1998.

[8] X. Chen, B. Francia, M. Li, B. McKinnon, and A. Seker, “Shared infor-
mation and program plagiarism detection,” IEEE Trans. Inf. Theory, vol.
50, no. 7, pp. 1545–1551, Jul. 2004.

[9] R. Cilibrasi. (2003) The CompLearn Toolkit. [Online]. Available:
http://complearn.sourceforge.net/

[10] R. Cilibrasi, P. M. B. Vitányi, and R. de Wolf, “Algorithmic clustering
of music based on string compression,” Comp. Music J., vol. 28, no. 4,
pp. 49–67, 2004.

[11] G. Cormode,M. Paterson, S. Sahinalp, andU.Vishkin, “Communication
complexity of document exchange,” in Proc. 11th ACM-SIAM Symp.
Discrete Algorithms, San Francisco, CA, Jan. 9–11, 2000, pp. 197–206.

[12] T. M. Cover and J. A. Thomas, Elements of Information Theory. New
York: Wiley, 1991.

[13] W. Chai and B. Vercoe, “Folk music classification using hidden Markov
model,” in Proc. Int. Conf. Artificial Intelligence, Las Vegas, NV, Jun.
2001.

[14] M. Cooper and J. Foote, “Automatic music summarization via similarity
analysis,” in Proc. IRCAM, Paris, France, 2002, pp. 81–85.

[15] R. Dannenberg, B. Thom, andD.Watson, “Amachine learning approach
to musical style recognition,” in Proc. Int. Computer Music Conf., Thes-
saloniki, Greece, Sep. 25–30, 1997, pp. 344–347.

[16] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2nd ed.
New York: Wiley Interscience, 2001.

[17] M. Grimaldi, A. Kokaram, and P. Cunningham. (2002) Classi-
fying Music by Genre Using the Wavelet Packet Transform and a
Round-Robin Ensemble. Trinity College, Dublin, U.K.. [Online]. Avail-
able: http://www.cs.tcd.ie/publications/tech-reports/reports.02/TCD-
CS-2002-64.pdf

[18] A. Janke, O. Magnell, G. Wieczorek, M. Westerman, and U. Arnason,
“Phylogenetic analysis of 18S rRNA and the mitochondrial genomes
of wombat, vombatus ursinus, and the spiny anteater, tachyglossus ace-
laetus: Increased support for the marsupionta hypothesis,” J. Mol. Evol.,
vol. 54, no. 1, pp. 71–80, 2002.

[19] T. Jiang, P. Kearney, and M. Li, “A polynomial time approximation
scheme for inferring evolutionary trees from quartet topologies and its
application,” SIAM J. Comput., vol. 30, no. 6, pp. 1942–1961, 2001.

[20] E. Keogh, S. Lonardi, and C. A. Rtanamahatana, “Toward parameter-
free data mining,” in Proc. 10th ACM SIGKDD Int. Conf. Knowledge
Discovery and Data Mining, Seattle, WA, Aug. 22–25, 2004, pp.
206–215.

[21] J. K. Killian, T. R. Buckley, N. Steward, B. L. Munday, and R. L. Jirtle,
“Marsupials and eutherians reunited: Genetic evidence for the theria hy-
pothesis of mammalian evolution,” Mammalian Genome, vol. 12, pp.
513–517, 2001.

[22] M. Koppel, S. Argamon, and A. R. Shimoni, “Automatically catago-
rizing written texts by author gender,” Literary and Linguistic Comput.,
vol. 17, no. 4, pp. 401–412, 2002.

[23] A. Kraskov, H. Stögbauer, R. G. Adrsejak, and P. Grassberger. (2003)
Hierarchical Clustering Based on Mutual Information. [Online]. Avail-
able: http://arxiv.org/abs/q-bio/0311039

[24] J. B. Kruskal, “Nonmetric multidimensional scaling: A numerical
method,” Psychometrika, vol. 29, pp. 115–129, 1964.

[25] T. G. Ksiazek et al., “A novel coronavirus associated with severe acute
respiratory syndrome,” New England J. Med., vol. 349, p. 709, Aug. 14,
2003.

[26] C. P. Kurtzman and J. Sugiyama, “Ascomycetous yeasts and yeast-like
taxa,” in The Mycota VII, Systemtics and Evolution. Berlin, Germany:
Springer-Verlag, 2001, pt. A, pp. 179–200.

[27] C. P. Kurtzman, “Phylogenetic circumscription of saccharomyces,
kluyveromyces and other members of the saccharomycetaceaea, and
the proposal of the new genera lachnacea, nakaseomyces, naumovia,
vanderwaltozyma and zygotorulaspora,” FEMS Yeast Res., vol. 4, pp.
233–245, 2003.

[28] P. S. Laplace, A Philosophical Essay on Probabilities. New York:
Dover, 1951. English translation of the 1918 French original version.

[29] M. Li, J. H. Badger, X. Chen, S. Kwong, P. Kearney, and H. Zhang,
“An information-based sequence distance and its application to whole
mitochondrial genome phylogeny,” Bioinformatics, vol. 17, no. 2, pp.
149–154, 2001.

[30] M. Li and P. M. B. Vitányi, “Algorithmic complexity,” in International
Encyclopedia of the Social & Behavioral Sciences, N. J. Smelser and P.
B. Baltes, Eds. Oxford, U.K.: Pergamon, 2001/2002, pp. 376–382.

[31] M. Li, X. Chen, X. Li, B. Ma, and P. M. B. Vitányi, “The similarity
metric,” IEEE Trans. Inf. Theory, vol. 50, no. 12, pp. 3250–3264, Dec.
2004.

[32] M. Li and P. M. B. Vitányi, An Introduction to Kolmogorov Complexity
and Its Applications, 2nd ed. New York: Springer-Verlag, 1997.

[33] A. Londei, V. Loreto, and M. O. Belardinelli, “Music style and author-
ship categorization by informative compressors,” in Proc. 5th Triannual
Conf. European Society for the Cognitive Sciences of Music (ESCOM),
Hannover, Germany, Sep. 8–13, 2003, pp. 200–203.

[34] L. S. Oliveira, R. Sabourin, F. Bortolozzi, and C. Y. Suen, “Automatic
recognition of handwritten numerical strings: A recognition and verifi-
cation strategy,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 11,
pp. 1438–1454, Nov. 2002.

[35] United Nations General Assembly Resolution 217 A (III) of 10 De-
cember 1948. Universal Declaration of Human Rights. [Online]. Avail-
able: http://www.un.org/Overview/rights.html

[36] A. Rokas, B. L. Williams, N. King, and S. B. Carroll, “Genome-scale
approaches to resolving incongruence in molecular phylogenies,” Na-
ture, vol. 425, pp. 798–804, Oct. 2003.

[37] D. Salomon, Data Compression. New York: Springer-Verlag, 1997.
[38] N. Saitou and M. Nei, “The neighbor-joining method: A new method for

reconstructing phylogenetic trees,”Mol. Biol. Evol., vol. 4, pp. 406–425,
1987.

[39] P. Scott. (2001) Music Classification Using Neural Networks. [Online].
Available: http://www.stanford.edu/class/ee373a/musicclassification.
pdf

[40] Ø. D. Trier, A. K. Jain, and T. Taxt, “Feature extractionmethods for char-
acter recognition—A survey,” Patt. Recogn., vol. 29, no. 4, pp. 641–662,
1996.

[41] P. N. Yianilos. (1991) Normalized Forms for Two Common Metrics.
NEC Res. Inst.. [Online]. Available: http://www.pnylab.com/pny/

[42] A. C.-C. Yang, C.-K. Peng, H.-W. Yien, and A. L. Goldberger, “Infor-
mation categorization approach to literary authorship disputes,” Physica
A, vol. 329, pp. 473–483, 2003.

[43] G. Tzanetakis and P. Cook, “Music genre classification of audio signals,”
IEEE Trans. Speech and Audio Process., vol. 10, no. 5, pp. 293–302, Jul.
2002.

[44] S. Wehner. (2004) Analyzing Network Traffic and Worms Using Com-
pression. CWI. [Online]. Available: http://homepages.cwi.nl/~wehner/
worms/

