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Abstract

Convolutional neural networks (CNNs) have greatly improved state-of-the-art performances
in a number of fields, notably computer vision and natural language processing. In this work, we
are interested in generalizing the formulation of CNNs from low-dimensional regular Euclidean
domains, where images (2D), videos (3D) and audios (1D) are represented, to high-dimensional
irregular domains such as social networks or biological networks represented by graphs. This paper
introduces a formulation of CNNs on graphs in the context of spectral graph theory. We borrow
the fundamental tools from the emerging field of signal processing on graphs, which provides
the necessary mathematical background and efficient numerical schemes to design localized graph
filters efficient to learn and evaluate. As a matter of fact, we introduce the first technique that
offers the same computational complexity than standard CNNs, while being universal to any
graph structure. Numerical experiments on MNIST and 20NEWS demonstrate the ability of this
novel deep learning system to learn local, stationary, and compositional features on graphs, as
long as the graph is well-constructed.

1 Introduction
Convolutional neural networks [20] offer an efficient architecture to extract highly meaningful statis-
tical patterns in large-scale and high-dimensional datasets. The key success of CNNs is its advanced
ability to learn local stationary structures and compose them to form multi-scale hierarchical patterns.
Precisely, CNNs extract the local stationarity property of the input data or signals by revealing local
features that are shared across the data domain. These similar features are identified with localized
convolutional filters or kernels, which are learned from the data. Convolutional filters are shift- or
translation-invariant filters, meaning they are able to recognize identical features independently of
their spatial locations. Localized kernels or compactly supported filters refer to filters that extract
local features independently of the input data size, with a support size that can be much smaller than
the input size.

The compositional local stationarity property of CNNs can be efficiently implemented on regu-
lar grids, like image and sound domains, as convolutional, downsampling and pooling operators are
mathematically well-defined on such discretized Euclidean spaces. This has led to the breakthrough
of CNNs in image, video, and sound recognition tasks [19] as these data lie on low-dimensional regular
lattices. But not all data lie on regular grids. User data on social networks, gene data on biological
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Figure 1: Architecture of the proposed CNNs on graphs. Notation: l is the coarsening level, xl are the
downsampled signals at layer l, Gl is the coarser graph, gθKl are the spectral filters at layer l, xlg are
the filtered signals, pl is the coarsening exponent, nc is the number of classes, y is the output signal,
and θl is the number of parameters to learn at l.

regulatory networks, log data on telecommunication networks, or text documents on words’ embed-
ding are important examples of data lying on irregular or non-Euclidean domains. Unfortunately,
CNNs cannot be directly applied to such complex domains.

A generalization to irregular grids is not straightforward as the standard operators of convolution,
downsampling, and pooling, are only defined for regular grids. This makes this extension challenging,
both theoretically and implementation-wise. This work leverages the recent works of [12, 8, 4, 15, 14,
32] to introduce an efficient implementation of CNNs on irregular domains represented here as graphs.
Graphs are universal representations of heterogeneous pairwise relationships between possibly high-
dimensional data. Graphs can encode complex geometric structures, and can be studied with strong
mathematical tools such as spectral graph theory [7], a blend between graph theory and harmonic
analysis.

The major bottleneck of generalizing CNNs to graphs, and one of the primary goals of this work,
is the definition of graph localized filters which are efficient to evaluate and learn. We will make use
of recent tools developed in the context of graph signal processing (GSP) [32] to achieve such goals.
Precisely, the main contributions of this work are summarized below:

1. Spectral formulation. A graph spectral theoretical formulation of CNNs on graphs built on
established tools in GSP.

2. Strictly localized filters. Enhancing [4, 15], the proposed spectral filters are provable to be
strictly localized in a ball of radius K, i.e. K hops from the central vertex.

3. Low computational complexity. The evaluation complexity of our filters is linear w.r.t. the
filters support’s size K and the number of edges |E|. Importantly, as most real-world graphs
are highly sparse, we have |E| � n2 and |E| = kn for the widespread k-nearest neighbor (NN)
graphs, leading to a linear complexity w.r.t the input data size. Moreover, this method avoids
the Fourier basis altogether, thus the expensive eigenvalue decomposition (EVD) necessary to
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compute it as well as the need to store the basis, a matrix of size n2. That is especially relevant
when working with limited GPU memory. Besides the data, our method only requires to store
the Laplacian, a sparse matrix of |E| non-zero values.

4. Efficient pooling. We propose an efficient pooling strategy on graphs which, after a rearrange-
ment of the vertices as a binary tree structure, is analog to pooling of 1D signals.

5. Experimental results. We present many experiments that ultimately show that our formula-
tion is (1) a useful model, (2) computationally efficient and (3) superior both in accuracy and
complexity to the pioneer spectral graph CNNs introduced in [4, 15]. We also show that our
graph formulation performs similarly as a classical CNNs on MNIST and study the impact of
various graph constructions on classification performance.

Eventually, generic and efficient implementations of CNNs on graphs, as proposed here and related
works [12, 8, 24, 23, 4, 15], is essential to pave the way to the development of a new class of deep
learning techniques for graph-based data.

2 Related Works

2.1 Graph Signal Processing
GSP is an emerging field that aims at bridging the gap between signal processing techniques like
wavelet analysis [22] and graph theory such as spectral graph analysis [3, 21]. A goal is to generalize
fundamental analysis operations for signals from regular grids to irregular structures embodied by
graphs. We refer the reader to [32] for an introduction of the field. Standard operations on grids such
as convolution, translation, filtering, dilatation, modulation or downsampling do not extend directly
to graphs and thus require new mathematical definitions while keeping the original intuitive concepts.
In this context, the authors of [14, 9, 11] revisited the construction of wavelet operators on graphs. In
[33, 28], the authors designed a technique to perform mutli-scale pyramid transforms on graphs. The
works of [36, 26, 27] redefined uncertainty principles on graphs, and showed that intuitive concepts
may be lost, but can also produce enhanced localization principles for signals on graphs. In [13], it
was shown how to carry out lasso-based signal regularization on graphs, and studied the intertwined
relationships between smoothness and sparsity on graphs. In [35], the authors investigated compressed
sensing recovery conditions for graph spectral signal analysis.

In the future, we expect to further benefit from newly developed tools in GSP to enhance our
mathematical formulation of CNNs on graphs. This paper introduces the mathematical and compu-
tational foundations of such models, while future developments may consider to enhance the building
blocks, namely graph filtering and coarsening.

2.2 CNNs on Non-Euclidean Domains
Extending CNNs to non-Euclidean domains has been a recent line of work. A preliminary work was
proposed with the so-called local reception fields [12, 8], successfully applied to image recognition.
The main idea is to group together features based upon a measure of similarity such as to select a
limited number of connections between two successive layers. While this model reduced the number
of parameters by exploiting the locality assumption, it did not attempt to exploit any stationarity
property of data, i.e. no weight-sharing strategy.

A first attempt to design CNNs on graphs was introduced in [4] by adopting a spatial approach.
The idea was to construct a multiresolution graph by exploiting graph neighbourhood structures, and
learned a deep neural network. However, such approach did not consider convolution operations, and
thus no stationarity property.

ShapeNet in [24, 23] is a generalization of CNNs to 3D-meshes, a class of smooth low-dimensional
non-Euclidean spaces. The authors used geodesic polar coordinates to define convolution operations
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on mesh patches, and formulated a deep learning architecture which allows comparison across different
manifolds. They obtained state-of-the-art results for 3D shape recognition tasks.

In [6] and [30], the authors investigated the construction of Haar wavelet transforms on graphs
using a deep hierarchical architecture. They applied the method to object recognition on sphere, and
to sparse reconstruction of faces.

Finally, [4] and [15] introduced a generalization of CNNs on graphs using graph counterparts of
grid convolution and downsampling. They were able to learn convolutional filters on graphs using
the convolution theorem [22] that defines convolutions as linear operators that diagonalize in the
Fourier basis (represented by the eigenvectors of the Laplacian operator). They were thus the first to
introduce a spectral formulation to extend CNNs on graphs. They also introduced a strategy to learn
the graph structure from the data, and applied their model on image recognition, text categorization
and bioinformatics. This approach does however not scale up due to the necessary multiplications by
the graph Fourier basis, a matrix of n2 coefficients, where n is the data dimensionality. Despite the
cost of computing this matrix, which requires an EVD on the graph Laplacian, the dominant cost is
the need to multiply the data by this matrix twice (forward and inverse Fourier transforms) at a cost
of O(n2) operations per forward and backward pass, a computational bottleneck already identified by
the authors. Besides, as they rely on smoothness (via a spline parametrization) in the Fourier domain
to bring localization in the vertex domain, their model does not provide a precise control over the
local support of their kernels, which is essential to learn localized filters. Our technique leverages on
this work, and we will show how to overcome these limitations and beyond.

3 Proposed Technique
Generalizing CNNs to graphs requires three fundamental steps. First step is the design of localized
convolutional filters on graphs. Second step is a graph coarsening procedure that groups together
similar features on graphs. And the last step is the graph pooling operation that trades spatial
resolution for higher filter resolution.

3.1 Learning Fast Localized Spectral Filters
The goal of this section is to define fast convolutional localized filters on graphs. There are two
strategies to define convolutional localized filters; either from a spatial approach or from a spectral
approach. By construction, spatial approaches provide filter localization via the finite size of the
kernel. However, although graph convolution directly in the spatial domain is conceivable, it also
faces the challenge of matching local neighbourhoods, as pointed out in [4]. Consequently, there is no
unique mathematical definition of spatial translations on graphs from a spatial perspective. On the
other side, a spectral approach provides a well-defined translation operator on graphs via convolutions
with a Kronecker delta function implemented in the spectral domain [32]. However, a filter defined
in the spectral domain is not naturally localized and translations are costly with O(n2) operations
due to multiplications with the graph Fourier basis. Both limitations can be overcome with a special
choice of filter parametrization, as explained below.

Graph Fourier Transform. We are interested in processing signals defined on undirected and
connected graphs G = (V, E ,W ), where V is a finite set of vertices with |V| = n, E is a set of edges
and W is a weighted adjacency matrix encoding the connection weight between two vertices. A signal
x : V → R defined on the nodes of the graph may be regarded as a vector x ∈ Rn where xi is the
value of x at the ith node. An essential operator in spectral graph analysis is the graph Laplacian
[7], which combinatorial definition is L = D −W ∈ Rn×n where D ∈ Rn×n is the diagonal degree
matrix with Dii =

∑
jWij , and its normalized definition is L = In − D−1/2WD−1/2 where In is

the identity matrix. As L is a real symmetric positive semidefinite matrix, it has a complete set
of orthonormal eigenvectors {ul}n−1l=0 ∈ Rn, known as the graph Fourier modes, and their associated
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ordered real nonnegative eigenvalues {λl}n−1l=0 , identified as the frequencies of the graph. The Laplacian
is indeed diagonalized by the Fourier basis U = [u0, . . . , un−1] ∈ Rn×n such that L = UΛUT where
Λ = diag([λ0, . . . , λn−1]) ∈ Rn×n. We can now define the graph Fourier transform (GFT) of a spatial
signal x ∈ Rn as x̂ = UTx ∈ Rn, and its inverse as x = Ux̂ [32]. Similarly to the Fourier transform
on Euclidean spaces, the GFT enables the formulation of fundamental operations such as filtering.

Spectral filtering of graph signals. As we cannot express a meaningful translation operator in
the vertex domain, the convolution operator on graph ∗G is defined in the Fourier domain such that
x ∗G y = U((UTx)� (UT y)), where � is the element-wise Hadamard product. It follows that a signal
x is filtered by gθ as

y = gθ(L)x = gθ(UΛUT )x = Ugθ(Λ)UTx. (1)

A non-parametric filter, i.e. a filter whose parameters are all free, would be defined as

gθ(Λ) = diag(θ), (2)

where the parameter θ ∈ Rn is a vector of Fourier coefficients.

Polynomial parametrization for localized filters. There are however two limitations with non-
parametric filters: (1) they are not localized in space and (2) their learning complexity is in O(n), the
dimensionality of the data. These issues can be overcome with the use of Laplacian-based polynomial
spectral filters:

gθ(Λ) =

K−1∑
k=0

θkΛk, (3)

where the parameter θ ∈ RK is a vector of polynomial coefficients. The value at vertex j of the filter gθ
centered at vertex i is given by (gθ(L)δi)j = (gθ(L))i,j =

∑
k θk(Lk)i,j , where the kernel is translated

via a convolution with a Kronecker delta function δi ∈ Rn. By [14, Lemma 5.2], dG(i, j) > K implies
(LK)i,j = 0, where dG is the shortest path distance, i.e. the minimum number of edges connecting
two vertices on the graph. Consequently, spectral filters represented by Kth-order polynomials of the
Laplacian are exactly K-localized. Besides, their learning complexity is O(K), the support size of the
filter, and thus the same complexity as in standard CNNs.

Recursive formulation for fast filtering. While we have shown how to learn localized filters
with K parameters, the cost to filter a signal x as y = Ugθ(Λ)UTx is still high with O(n2) operations
because of the multiplications with the Fourier basis U . A solution of this problem is to parametrize
gθ(L) as a polynomial function that can be computed recursively from L, as K multiplications by a
sparse L costs O(K|E|) � O(n2). One such polynomial, traditionally used in GSP to approximate
kernels (like wavelets), is the Chebyshev expansion [14]. Another option, the Lanczos algorithm [34],
which constructs an orthonormal basis of the Krylov subspace KK(L, x) = span{x, Lx, . . . , LK−1x},
seems attractive because of the coefficients’ independence. It is however more convoluted and thus
left as a future work.

Recall that the Chebyshev polynomial Tk(x) of order k may be generated by the stable recurrence
relation Tk(x) = 2xTk−1(x)−Tk−2(x) with T0 = 1 and T1 = x. These polynomials form an orthogonal
basis for L2([−1, 1], dy/

√
1− y2), the Hilbert space of square integrable functions with respect to the

measure dy/
√

1− y2. A filter can thus be parametrized as a truncated expansion of order K− 1 such
that

gθ(Λ) =

K−1∑
k=0

θkTk(Λ̃), (4)

where the parameter θ ∈ RK is a vector of Chebyshev coefficients and Tk(Λ̃) ∈ Rn×n is the Chebyshev
polynomial of order k evaluated at Λ̃ = 2Λ/λmax − In, a diagonal matrix of scaled eigenvalues that
lie in [−1, 1].
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The filtering operation can then be written as y = gθ(L)x =
∑K−1
k=0 θkTk(L̃)x, where Tk(L̃) ∈ Rn×n

is the Chebyshev polynomial of order k evaluated at the scaled Laplacian L̃ = 2L/λmax−In. Denoting
x̄k = Tk(L̃)x ∈ Rn, we can use the recurrence relation to compute x̄k = 2L̃x̄k−1 − x̄k−2 with x̄0 = x
and x̄1 = L̃x. The entire filtering operation

y = gθ(L)x = [x̄0, . . . , x̄K−1]θ (5)

then costs O(K|E|) operations.

Learning filters. The jth output feature map of the sample s is given by

ys,j =

Fin∑
i=1

gθi,j (L)xs,i ∈ Rn, (6)

where the xs,i are the input feature maps and the Fin×Fout vectors of Chebyshev coefficients θi,j ∈ RK
are the layer’s trainable parameters. When training multiple convolutional layers with the backprop-
agation algorithm, one needs the two gradients:

∂E

∂θi,j
=

S∑
s=1

[x̄s,i,0, . . . , x̄s,i,K−1]T
∂E

∂ys,j
and

∂E

∂xs,i
=

Fout∑
j=1

gθi,j (L)
∂E

∂ys,j
, (7)

where E is the loss energy over a mini-batch of S samples. Each of the above three computations
boils down to K sparse matrix-vector multiplications and one dense matrix-vector multiplication for
a cost of O(K|E|FinFoutS) operations. These can be efficiently computed on parallel architectures by
leveraging tensor operations. Eventually, [x̄s,i,0, . . . , x̄s,i,K−1] only need to be computed once.

3.2 Graph Coarsening
Local stationarity property of data is extracted via localized convolutional kernels. We are now
interested to extract the multi-scale hierarchical composition property of data. In standard CNNs,
this is efficiently achieved via grid subsampling and pooling, which trades spatial resolution with
feature resolution reducing the learning complexity without compromising the system performances.
In contrast with regular domains, the subsampling operation on graphs or graph coarsening is not
mathematically sound. It requires to construct meaningful neighborhoods on graphs where similar
vertices are clustered together. Doing this for multiple layers is equivalent to construct a multi-scale
clustering of the graph that preserves local geometric structures. It is however well-known that graph
clustering is a NP-hard problem [5] and that approximations must be used. While there exist many
clustering techniques (e.g. the popular spectral clustering [21]), we are most interested in multilevel
clustering algorithms, where each level produces a coarser graph which corresponds to the data domain
seen at a different resolution. Moreover, clustering techniques that reduce the size of the graph by a
factor two at each level offers a precise control on the coarsening and pooling size. In this work, we
make use of the coarsening phase of the Graclus multilevel clustering algorithm [10], which has been
shown to be extremely efficient at clustering a large variety of graphs. We briefly review it below.
Algebraic multigrid techniques on graphs [29] and the Kron reduction [33] are two methods worth
exploring in future works.

Graclus [10], built on Metis [17], uses a greedy algorithm to compute successive coarser versions
of a given graph and is able to minimize several popular spectral clustering objectives. We chose
the normalized cut [31], which is an excellent clustering energy. Graclus’ greedy rule consists, at any
given coarsening level, in picking an unmarked vertex i and matching it with one of its unmarked
neighbors j that maximizes the local normalized cut Wij(1/di + 1/dj). The two matched vertices are
then marked and the coarsened weights are set as the sum of their weights. The matching is repeated
until all nodes have been explored. This is an extremely fast coarsening scheme which divides the
number of nodes by approximately two (there may exist a few singletons, non-matched nodes) from
one level to the next coarser level.
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3.3 Fast Pooling of Graph Signals
As standard CNNs, pooling operations reduce the spatial resolution allowing higher filter resolution.
Pooling operations, such as max pooling or average pooling, are carried out many times during the
optimization, and thus must be as efficient as possible. After the graph coarsening operation in the
previous section, the graph and its coarsened versions have an unstructured arrangement of the ver-
tices. Hence, if the pooling is directly applied then it would need a table to store all matched vertices,
which would result in memory consuming, slow, and not (easily) parallelizable pooling operations.

It is however possible to structure the arrangement of the vertices, and achieve a graph pooling
operation as efficient as a 1D grid pooling. We proceed as follows. After coarsening, each node has
either two parents, if it was matched at the finer level, or one, if it was not, i.e the node was a
singleton. From the coarsest to finest level, fake nodes, i.e. disconnected nodes, are added to pair
with the singletons such that each node has two children. This structure is a balanced binary tree: (1)
regular nodes (and singletons) either have two regular nodes (e.g. level 1 vertex 0 in Figure 2) or (2)
one singleton and a fake node as children (e.g. level 2 vertex 0 in Figure 2), and (3) fake nodes always
have two fake nodes as children (e.g. level 1 vertex 1 in Figure 2). Input signals are initialized with a
neutral value at the fake nodes, e.g. 0 when using a ReLU activation with max pooling. Because these
nodes are disconnected, filtering does not impact the initial neutral value. While those fake nodes do
artificially increase the dimensionality thus the computational cost, we found that, in practice, the
number of singletons left by Graclus is quite low compared to the number of vertices.

Arbitrarily ordering the nodes at the coarsest level, then propagating this ordering to the finest
levels, i.e. node k has nodes 2k and 2k+ 1 as children, produces a regular ordering in the finest level.
Regular in the sense that adjacent nodes are hierarchically merged at coarser levels. Pooling such a
rearranged graph signal is analog to pooling a regular 1D signal. Figure 2 shows an example of the
whole coarsening and pooling process. This regular arrangement makes the pooling operation very
efficient and satisfies parallel architectures such as GPUs as memory accesses are local, i.e. matched
nodes do not have to be fetched.
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Figure 2: Example of Graph Coarsening and Pooling. Let us carry out a max pooling of size 4
(or two poolings of size 2) on a signal x ∈ R8 living on G0, the finest graph given as input. Note that it
originally possesses n0 = |V0| = 8 vertices, arbitrarily ordered. For a pooling of size 4, two coarsenings
of size 2 are needed: Graclus first gives G1 of size n1 = |V1| = 5, then G2 of size n2 = |V2| = 3, the
coarsest graph. Sizes are thus set to n2 = 3, n1 = 6, n0 = 12 and fake nodes (in blue) are added to V1
(1 node) and V0 (4 nodes) to pair with the singeltons (in orange), such that each node has exactly two
children. Nodes in V2 are then arbitrarily ordered and nodes in V1 and V0 are ordered consequently.
At that point the arrangement of vertices in V0 permits a regular 1D pooling on x ∈ R12 such that
z = [max(x0, x1),max(x4, x5, x6),max(x8, x9, x10)] ∈ R3, where the signal components x2, x3, x7, x11
are set to a neutral value.
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4 Numerical Experiments
All experiments were performed with TensorFlow, an open-source library for numerical computation
using data flow graphs, especially suited for deep learning [1]. It features various backends, notably
CUDA to compute on Nvidia GPUs. All computations are carried on an Nvidia Tesla K40c GPU.

In the sequel, we refer to filters defined by (2) as Non-Param, i.e. the spatially non-localized filters,
and the proposed filters defined by (4) as Chebyshev. Filters referred to as Spline are defined by

gθ(Λ) = Bθ, (8)

where B ∈ Rn×K is the cubic B-spline basis and the parameter θ ∈ RK is a vector of control points, as
proposed in [4, 15]. We use for all techniques the advanced Graclus coarsening algorithm introduced
in Section 3.2 rather than the simple agglomerative method of [4, 15]. The motivation is to compare
the quality of learned filters, not the coarsening algorithms.

We use the following notation when describing network architectures: FCk denotes a fully con-
nected layer with k hidden units, Pk denotes a (graph or classical) pooling layer of size and stride k,
Ck denotes a convolutional layer with k feature maps and GCk denotes a graph convolutional layer
with Fout = k feature maps (with Chebyshev filters if not specified otherwise). All FCk, Ck and GCk
layers are followed by a ReLU activation max(x, 0). The final layer is always a softmax regression and
the loss energy E is the cross-entropy loss with an `2 regularization on the weights of all FCk layers.
Mini-batches are of size S = 100.

4.1 Revisiting Standard CNNs on MNIST
To validate our model, we first apply it to the Euclidean case with the benchmark MNIST classification
problem [20]. In this situation, the graph is simply a k-NN graph of the Euclidean 2D grid. This is an
important sanity check for our model, which must be able to extract features on any graph, including
the regular 2D grid on which images reside.

Model Architecture Accuracy

Classical CNN C32-P4-C64-P4-FC512 99.33
Proposed graph CNN GC32-P4-GC64-P4-FC512 99.14

Table 1: Classification accuracies for the proposed model and a classical CNN on MNIST.

We recall that MNIST is a dataset of 70,000 digit numbers represented on a 2D grid of size 28×28,
such that data points lie on a space of 784 dimensions. For our graph model, we construct a 8-NN
graph of the 2D Euclidean grid, which produces a graph of n = |V| = 976 nodes (784 pixels and 192
fake nodes as explained in Section 3.3) and |E| = 3198 edges.

Table 1 confirms the ability of our model to learn localized filters as it achieves a performance
very close to the classical CNNs with the same LeNet-5-like architecture. The LeNet-5-like network
architecture and the following hyper-parameters are borrowed from the TensorFlow MNIST tutorial1:
dropout probability of 0.5, regularization weight of 5×10−4, initial learning rate of 0.03, learning rate
decay of 0.95, momentum of 0.9. Convolutional layer have filters of size 5× 5 while graph convolution
layers have the same support of K = 52 = 25. All models were trained for 20 epochs.

4.2 Text Categorization with 20NEWS
To demonstrate the versatility of our model to work with graphs generated from unstructured data,
we applied our technique to the text categorization problem with the 20NEWS dataset.

1https://www.tensorflow.org/versions/r0.8/tutorials/mnist/pros
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Model Accuracy

Linear SVM 65.90
Multinomial Naive Bayes 68.51
Softmax 66.28

FC2500 64.64
FC2500-FC500 65.76

GC32 68.26

Table 2: Classification accuracies for the proposed model and a other algorithms on 20NEWS.

20NEWS consists of 18,846 (11,314 for training and 7,532 for testing) text documents associated
with 20 classes [16]. We extracted the 10,000 most common words from the 93,953 unique words in
this corpus. Each document is represented using the bag-of-words model, normalized across words.
To test our model, we constructed a 16-NN graph of the word2vec [25] embedding of those words,
which produced a graph of n = |V| = 10, 000 nodes and |E| = 132, 834 edges. All CNN models were
trained for 20 epochs by the Adam optimizer [18] with a learning rate of 0.1, without regularization
nor dropout. The filter support was set to K = 5.

Table 2 shows that CNNs on graphs provide decent performances. While it does not outperform
the kernel-based method of multinomial naive Bayes classifier on this small dataset, it does defeat
fully connected networks, which require much more parameters to be learned. More importantly,
these results verify the validity of the statistical assumptions made for the data, that are locality and
stationarity, and which are at the core of the design of any CNN technique. While we know that these
data properties are true for low-dimensional Euclidean data like audios, images and videos, we also
show experimentally that they are also satisfied for text documents as long as the graph is properly
constructed. Section 4.5 will study the influence of the graph quality.

4.3 Numerical Comparison between Spectral Filters
In this section, we compare the proposed spectral filters to the non-parametric filters, and those
proposed in [4, 15] on the MNIST and 20NEWS datasets. Table 3 reports that the proposed kernel
parametrization outperforms [4, 15] as well as the non-parametric filters, which are not localized and
require O(n) parameters to learn.

Accuracy

Dataset Architecture Non-Param (2) Spline (8) [4, 15] Chebyshev (4)

MNIST GC10 95.75 97.26 97.48
MNIST GC32-P4-GC64-P4-FC512 96.28 97.15 99.14

Table 3: Comparison of accuracy results for different types of spectral filters. Spline and Chebyshev
filters use K = 25.

4.4 Computational Efficiency
Figure 3 validates the low computational complexity of the proposed CNN technique on graphs. The
training time of our model scales as O(n), while [4, 15] scales as O(n2). Moreover, Figure 4 gives
a sense of how the validation accuracy as well as the loss energy converges w.r.t. the three filter
definitions. Finally, Table 4 compares training time on CPU and GPU. The fact that we observe the
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same order of speedup as classical CNNs exemplifies the natural parallelization opportunity offered
by our model. That is possible because our method relies solely on matrix multiplications which are
efficiently implemented by cuBLAS, the linear algebra routines provided by NVIDIA.

Time (ms)
Model Architecture CPU GPU Speedup

Classical CNN C32-P4-C64-P4-FC512 210 31 6.77x
Proposed graph CNN GC32-P4-GC64-P4-FC512 200 25 8.00x

Table 4: Time to process a mini-batch of 100 MNIST images. That is the total training time divided
by the number of gradient steps.
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Figure 3: Training time over a mini-batch of 100 20NEWS documents w.r.t. n, the number of selected
words, for the three considered filters. The architecture is GC32 withK = 5 for Spline and Chebyshev.

(a) (b)

Figure 4: Plots of accuracy (a) and energy loss (b) for the first 2000 iterations.
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4.5 Influence of Graph Quality
For the proposed method to be successful, the statistical assumptions of locality, stationarity, and
compositionality regarding the data must be fulfilled on the graph where the data resides. Therefore,
the classification performance, the quality of learned filters, all critically depends on the quality of
the graph. For data lying on Euclidean space, experiments in Section 4.1 show that a simple k-NN
graph of the grid is good enough to recover almost exactly the performance of standard CNNs. We
also noticed that the value of k does not have a strong influence on the results. We can witness the
importance of a graph satisfying the data assumptions by comparing its performance with a random
graph. Table 5 reports a large drop of accuracy when using a random graph, that is when the data
structure is lost and the convolutional layers are not useful anymore to extract meaningful features.

Architecture 8-NN on 2D Euclidean grid random

GC32 97.40 96.88
GC32-P4-GC64-P4-FC512 99.14 95.39

Table 5: Classification accuracies with different graph constructions on MNIST.

While images naturally lie on Euclidean 2D spaces, represented by graphs of regular grids, this is
not the case for text documents. For our method to be applied to this class of data, a feature graph
does have to be built. We investigate here 5 16-NN similarity graphs of words. The simplest option
is to represent each word as its corresponding column in the bag-of-words matrix. Another approach
is to learn embeddings on the corpus with word2vec [25] or to use pre-trained embeddings on Google
News (given by the authors). As the dataset gets larger (in number of samples and dimensionality), it
is often not an option to compute the distance between all features, such that an approximate nearest
neighbors algorithm shall be used. We used the LSHForest [2] on the learned word2vec embedding.
Table 6 reports the classification results. It shows that the graph built on the learned word2vec
embedding is the best at capturing the local and stationarity properties of text documents. It is
worth noticing that the approximate k-NN graph constructed from it is almost as bad as the random
graph, meaning that it may be a better strategy to learn a good low-dimensional embedding first and
then construct an exact k-NN graph from this embedding.

word2vec
bag-of-words pre-trained learned approximate random

67.50 66.98 68.26 67.86 67.75

Table 6: Classification accuracies of GC32 with different graph constructions on 20NEWS.

5 Conclusion and Future Work
We have introduced an efficient implementation of CNNs on non-Euclidean manifolds represented by
graphs using tools from GSP. Experiments have shown the ability of the model to extract local and
stationary features through the graph convolutional layers.

Compared with the first works of spectral graph CNNs introduced in [4, 15], our model provides a
strict control over the local support of filters, is computationally more efficient by avoiding an explicit
use of the Graph Fourier basis, and experimentally shows a better test accuracy. Besides, we addressed
the three concerns raised by [15]. First, we introduced a model whose computational complexity is
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linear with the dimensionality of the data. Second, we confirmed that the quality of the input graph
is of paramount importance. Along this line, the idea of [15] to learn the input graph from data is
highly meaningful. And a natural and future approach would be to alternate the learning of the CNN
parameters and the graph, as a virtuous circle. Third, we showed that the statistical assumptions of
local stationarity and compositionality made by the model are verified for text documents as long as
the graph is well constructed.

Future works will investigate two directions. On one hand, we will explore applications of this
generic model to important fields where the data naturally lie on non-artificially constructed graphs
such as social networks, biological networks, or telecommunication networks. It makes actually more
sense to apply this generalized CNN framework to natural network-based data, rather than artificially
created networks which quality may vary as seen in the experiments. On the other hand, we will also
improve this framework with tools developed in GSP, including graph wavelet operators [14, 9, 11, 6,
30], spectral graph coarsening techniques [33], and improved localization properties [36, 26, 27].
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