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Abstract

We propose a framework for the visualization of directed networks relying on the eigenfunctions of the
magnetic Laplacian, called here Magnetic Eigenmaps. The magnetic Laplacian is a complex deformation
of the well-known combinatorial Laplacian. Features such as density of links and directionality patterns
are revealed by plotting the phases of the first magnetic eigenvectors. An interpretation of the magnetic
eigenvectors is given in connection with the angular synchronization problem. Illustrations of our method
are given for both artificial and real networks.
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1. Introduction

Many problems in neuroscience, biology, social or computer science are phrased in terms of networks and
graphs. The embedding of data points forming undirected graphs can be performed using manifold learning
methods, among which are the so-called Laplacian Eigenmaps [1] and Diffusion Maps [2]. In the same spirit,
the embedding of a directed graph originating from the sampling of a vector field on a manifold was studied
in [3]. A Laplacian for strongly connected and aperiodic directed networks was introduced by Chung [4] in
relation with a random walk process, which was used for visualization e.g. in [5]. Actually, Laplacians are
very useful tools for community detection and data visualization. A common feature of these approaches is
the relevance of the discrete or combinatorial Laplacian, and its normalized versions.

In this letter, no assumption on the origin of directed networks is needed, so we could deal, for example,
with networks of webpages which are not embedded in any vector space. In particular, we propose here the
use of another Laplacian which naturally exists for a general connected directed network, called the magnetic
Laplacian. This operator is actually a vector bundle Laplacian as described in [6, 7] and a Connection
Laplacian [8]. Interestingly, the magnetic Laplacian can be interpreted as a discrete quantum mechanical
Hamiltonian of a charged particle on a network, influenced by a magnetic flux [9–11]. The method that we
describe assigns a complex rotation, i.e., an element of U(1), to each directed link, and the orientation of
the link determines the direction of the rotation [12].

This letter is organized as follows. In Section 2 the magnetic Laplacian and its eigenvectors are intro-
duced. A method using the complex phase of these eigenvectors for visualizing directed graphs is proposed
in Section 3. Some examples are shown in Section 4, and the letter ends with some conclusions in Section 5.

2. Magnetic Laplacian and Eigenmaps

Consider a connected graph G = (V,E) with a set of N nodes V and a set of undirected edges E. In the

case of an undirected graph, a symmetric weight matrix W (s) is given with elements [W (s)]ij = w
(s)
ij ≥ 0 for all

i and j ∈ V . The Laplacian Eigenmaps are the eigenvectors of the combinatorial Laplacian L(0) = D−W (s),

where D is the diagonal degree matrix with matrix elements [D]ii = di =
∑
j∈V w

(s)
ij for all i ∈ V . The

volume of a subgraph SA of G with node set A is simply vol(SA) =
∑
i∈A di. In the case of directed networks,

the graph is given by an asymmetric weight matrix W with elements [W ]ij = wij ≥ 0. For simplicity, the
weights are chosen to be binary, i.e., wij = 1 if there is a link from i to j and wij = 0 otherwise. The weight
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matrix W can be decomposed into a symmetric term w
(s)
ij = (wij + wji) /2, indicating that {i, j} ∈ E, and

a skew-symmetric term, the edge flow aij = −aji encoding the direction of the link. For all {i, j} ∈ E, we
have aij = 1 if the link points from i to j, and aij = 0 if {i, j} is not directed.

In this letter, the magnetic Laplacian is defined as the self-adjoint, positive semi-definite operator L(g) =
D−T (g)�W (s), where D is the degree matrix associated with the symmetrized weight matrix, 0 ≤ g < 1/2

is an electric charge parameter, and [T (g) � W (s)]ij = exp (i2πgaji)w
(s)
ij (notice the Hadamard product

�). The solutions of the generalized eigenvalue problem L(g)φ = λDφ are the Magnetic Eigenmaps φ
(g)
k

associated with the eigenvalues λ
(g)
k ≥ 0 for k ∈ {0, . . . , N − 1} [13] (we assume λ

(g)
0 ≤ λ(g)

1 ≤ · · · ≤ λ(g)
N−1).

2.1. Interpretation of the first eigenvectors

While the calculation of the second eigenvector of the normalized combinatorial Laplacian is a relaxation
of the (normalized) cut problem, the calculation of the first eigenvector of the normalized magnetic Laplacian
is a relaxation of the angular synchronization problem [14]. Given a subgraph S of G (in general, one can
choose S = G), the angular synchronization problem consists in finding the angles θ? = (θ?1 , . . . , θ

?
N )ᵀ ∈

U(1)
N

given by θ? ∈ arg minθ ηS(θ) where the frustration [15] is defined by

ηS(θ) =
1

2

∑
i,j∈S w

(s)
ij

∣∣eiθi − eiθijeiθj
∣∣2∑

i∈V di
,

with θij = 2πgaji for all i, j ∈ S such that w
(s)
ij 6= 0. Notice that

∑
i∈V di = vol(G). The lowest eigenvector

of the normalized magnetic Laplacian φ
(g)
0 is the solution of the spectral problem relaxing minθ ηV (θ). Our

first conclusion is that computing the complex phase of φ
(g)
0 yields an approximation of θ? that we propose

to choose as the first visualization coordinate. In [12], the solution of the angular synchronization problem is
shown to provide a ranking of the nodes in directed graphs, although a slightly different eigenvector problem
is considered.

The performance of the spectral relaxation of the cut problem can be studied using a classical result of
spectral graph theory, the Cheeger inequality, which relates the Cheeger constant to the second smallest
eigenvalue of the combinatorial Laplacian, providing the worst case performance for the spectral clustering
method. Analogous results relate the first smallest eigenvalue of the Connection Laplacian [15] and the
magnetic Laplacian [16] to a frustration quantifying the amount of inconsistency in the connection graph.

In particular, the performance naturally depends on the inverse of the spectral gap 1/λ
(0)
1 of the undirected

measurement graph. Indeed, the quality of the synchronization will benefit from a good connectivity of

the nodes in the measurement graph. On the contrary, if λ
(0)
1 is small, it could be instructive to find the

subgraphs of G where the frustration is minimal by cutting edges where the angular synchronization is not
accurate. Suppose that A ⊂ V is the vertex set of a subgraph SA of G and let Ā be its complement in V .
A combinatorial graph partitioning problem is proposed, that is, minA EA,Ā(θ?) with

EA,Ā(θ?) =
vol(SĀ)

vol(G)
ηA(θ?) +

vol(SA)

vol(G)
ηĀ(θ?) +

(
cA,Ā

vol(SA)
+

cĀ,A
vol(SĀ)

)
+
γA,Ā(θ?)

vol(G)
, (1)

where vol(SA) =
∑
i∈A di is the volume of SA, whereas the cut is cA,Ā = cĀ,A =

∑
i∈A,j∈Ā w

(s)
ij . We have

defined the generalized cut

γA,Ā(θ?) = −4
∑

i∈A,j∈Ā

w
(s)
ij sin2

(
θ?i − θ?j − θij

2

)
. (2)

Notice that each term of (2) is minimized when |θ?i − θ?j − θij | = π, i.e., when the error made in the
synchronization of rotations along the link {i, j} is large. Problem (1) generalizes the normalized cut
problem aiming to find A and Ā so that a combination of the frustration of both subgraphs, the normalized

2



cut and the generalized cut (2) is minimal, while the partition is balanced. In order to construct a relaxation
of this problem, we define (

fA,Ā
)
i

=

{ √
vol(SĀ)/ vol(SA)eiθ?i if i ∈ A,

−
√

vol(SA)/ vol(SĀ)eiθ?i if i ∈ Ā.
(3)

Then, we have EA,Ā(θ?) = (f†
A,Ā

L(g)fA,Ā)/(f†
A,Ā

DfA,Ā) as well as the relations
∑
i∈V die

−iθ?i (fA,Ā)i = 0

and
∑
i∈V di|(fA,Ā)i|2 = vol(G). As a consequence, a spectral relaxation of the combinatorial problem is

given by

min
f∈CN

0

f†L(g)f

f†Df
s.t. f†Dφ

(g)
0 = 0, (4)

which corresponds to the generalized eigenvalue problem for the second least eigenvector φ
(g)
1 . In view of (3),

we conclude that phase(φ
(g)
0 ) will instruct us about the partition of the graph minimizing (1). Indeed, we

have phase(
(
fA,Ā

)
i
) = θ?i if i ∈ A and phase(

(
fA,Ā

)
i
) = θ?i + π if i ∈ Ā. The eigenvector φ

(g)
1 being the

relaxed version of
(
fA,Ā

)
i
, we expect that, by embedding the graph with phase(φ

(g)
0 ) as first coordinate and

phase(φ
(g)
1 ) as second coordinate, we obtain two parallel groups distant by π. By analogy with the Laplacian

eigenmaps, similar results are expected for the next eigenvalues.

2.2. Relation with the combinatorial Laplacian
When the edge flow of the network is given exactly by a certain potential h, i.e., aij = hj − hi for

all {i, j} ∈ E, the spectrum of the magnetic Laplacian corresponds to the spectrum of the combinatorial

Laplacian, and the eigenvectors are related by φ
(g)
k,i = exp(i2πghi)φ

(0)
k,i for all i ∈ V and all k ∈ {0, . . . , N − 1}.

This particular case is characterized by the first eigenvalue, as stated in the following proposition, which
can be seen as a consequence of [15, Theorem 2.6] and of [10, 11] in the context of mathematical physics.

Proposition 1. Consider a connected graph G. The magnetic Laplacian L(g) has a zero eigenvalue iff there
exists a function h satisfying, for any link {i, j} ∈ E, aij = hj − hi.

Nonetheless, since we assume here that aij ∈ {−1, 0, 1} for all {i, j} ∈ E, this situation only happens in
our context if the graph is a tree. The relation in the general case can be characterized by Lemma 1. First

let us define the parallel transporter t
(g)
P ∈ U(1) over a finite path P = {i1, i2, . . . , in} of length n > 1 in the

graph G as t
(g)
P = exp(i2πg(ai1i2+· · ·+ain−1in)). Moreover, following [17] we call a directed graph ε-consistent

if, for every simple cycle {i1, i2, . . . , in, in+1 = i1}, we have |t(g)C − 1| ≤ ε, with t
(g)
C = exp

(
i2πg

∮
C
a
)
, where

the magnetic flux is defined by the discrete line integral
∮
C
a , ai1i2 +· · ·+aini1 . We now state an elementary

result given in [11].

Lemma 1. Consider a connected directed graph G, and let T be any spanning tree of G, and T̄ = E \ T .
For all 0 ≤ g ≤ 1/2, the magnetic Laplacian L(g) is unitarily equivalent to the operator given by(

L̃
(g)
(T )f

)
i

=
∑

{j|{i,j}∈T}

w
(s)
ij (fi − fj) +

∑
{j|{i,j}∈T̄}

w
(s)
ij

(
fi − t(g)◦,ijfj

)
,

for all fi ∈ C and all i ∈ V . The operator t
(g)
◦,ij is defined as t

(g)
◦,ij = t

(g)
i0→it

(g)
ij t

(g)
j→i0 for any i0 ∈ V , and i0 → k

denotes the unique path in the tree T going from i0 ∈ T to k ∈ T . The unitary transformation, realizing

L̃
(g)
(T ) = U†(T )L

(g)U(T ), is given by the diagonal matrix U(T ), with elements [U(T )]ii = t
(g)
i0→i for all i ∈ T .

Notice that the accumulated complex phase t
(g)
◦,ij (holonomy or magnetic flux) in the contour integral does

not depend on the choice of i0. Its value is equal to the contour integral on the smallest loop including the link

{i, j}. Moreover, as a corollary, we have that the normalized magnetic Laplacian L
(g)
N = D−1/2L(g)D−1/2

is unitarily equivalent to D−1/2L̃
(g)
(T )D

−1/2. Hence, if the graph G is a tree, the spectrum of the magnetic

Laplacian is exactly the spectrum of the combinatorial Laplacian and their eigenvectors are in one to one
correspondence, thanks to diagonal unitary transformation.
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(a) Identification of the torus. (b) Example of the magnetic eigenmaps.

Figure 1: (a): Representation of the 2-torus as the square [0, 2π]× [0, 2π] with identified sides; the position
of the cuts is arbitrary and can be adapted to each particular dataset. (b): Example of the magnetic
eigenmaps plotted over the 3-dimensional 2-torus for a graph with two communities, corresponding to the
dataset “Political Blogosphere” explained in detail in Section 4.

3. Visualization of density and directionality

The eigenmaps can be calculated by computing the eigenvectors of the normalized magnetic Laplacian

L
(g)
N = D−1/2L(g)D−1/2 and, therefore, these eigenvectors are obtained by calculating the largest eigenvalues

of D−1/2T (g) �W (s)D−1/2. Once the Laplacian is normalized, we propose to embed the network by the

mapping i 7→ (phase(φ
(g)
0,i ),phase(φ

(g)
1,i ), . . . ,phase(φ

(g)
n,i))

ᵀ. Notice that the phase operator identifies the
angles that differ by 2π, which means that the geometrical representation, for the 1-dimensional case, is just
a circle, whereas for the general n-dimensional case is an n-torus. Hence, for visualization purposes, the
directed network will be embedded on a 2-torus represented as the square [0, 2π]× [0, 2π] with opposite sides
identified, as shown in Figure 1. Therefore, the visualization will be symmetric if an eigenvector undergoes

a global rotation in the complex plane. Notice that given an eigenvector φ
(g)
k of the magnetic Laplacian,

another eigenvector of the same eigenvalue is given by eiαφ
(g)
k . We will show empirically that this low

dimensional embedding is able to visualize at the same time dense regions of links, revealed by the y-axis,
and patterns determined by the link directions, given by the x-axis.

3.1. Consistency of the mapping

The visualization method relies only on the phases of the magnetic eigenmaps, which contain most of
the information if the magnetic Laplacian is unitarily equivalent to the combinatorial Laplacian. We will

characterize now the error made if this is not the case. A bound on the variance of |φ(g)
0 | is obtained from

[15, Lemma 3.3] that is adapted below to the setting of this paper. For all z ∈ CN , we define z̃ ∈ CN such
that z̃i = zi/|zi| if zi 6= 0 and z̃i = 0 if zi = 0.

Lemma 2 (Bandeira et al. [15, Lemma 3.3]). For all z ∈ CN , we have
∑
i di|zi−µz̃i|

2 ≤ η (z)
∑
i di|zi|

2
/λ

(0)
1 ,

with µ = (1/ vol(G))
∑
j dj |zj | and η(z) = z†L(g)z/(z†Dz).

Hence, by taking z = φ
(g)
0 , we have a bound on the variability of |φ(g)

0 |. More precisely, the variation

|φ(g)
0 | with respect to its mean value is constrained as follows:

∑
i di

∣∣∣|φ(g)
0,i | − µ0

∣∣∣2∑
i di|φ

(g)
0,i |

2
≤ λ

(g)
0

λ
(0)
1

, with µ0 =
1

vol(G)

∑
j

dj |φ(g)
0,j |. (5)

Therefore, since the spectral gap λ
(0)
1 is only determined by the density of the undirected graph, the previous

bound on the variability of the modulus |φ(g)
0 | can only be reduced if the eigenvalue λ

(g)
0 is made smaller.

In particular, Theorem 1 in [17] can be adapted to the case of the magnetic Laplacian, so that the smallest

eigenvalue of the magnetic Laplacian of an ε-consistent graph satisfies λ
(g)
0 ≤ ε2/2. In our particular case,
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this bound can be improved by relating the inconsistency to a topological property of the graph leading to
possible inconsistencies: the first Betti number β1 = |E| − |V | + 1, i.e., the number of simple cycles in the
graph. Notice that there are exactly β1 edges to remove to the graph in order to have a tree.

Lemma 3. Consider a connected directed graph G, and let T be any spanning tree of G, and T̄ = E \ T .
We have the following inequality

λ
(g)
0 ≤ ε2g

∑
{i,j}∈T̄ w

(s)
ij

vol(G)
, (6)

where the summation includes only β1 terms (associated with the number of simple cycles). In particular, if

the weights are binary λ
(g)
0 ≤ ε2gβ1

2|E| .

Proof. Fix a spanning tree T of G. Using Lemma 1, we can consider the smallest eigenvalue of the unitary

equivalent operator L̃
(g)
(T ), which is the minimum of the Rayleigh quotient R(f) =

∑
i f
†
i (L̃

(g)
(T )f)i/

∑
i di|fi|

2
.

Specifically, choosing fi = 1 for all i ∈ V , we have

λ
(g)
0 ≤ R(f) =

∑
{i,j}∈T̄ w

(s)
ij |fi − t

(g)
◦,ijfj |

2∑
i∈V di

=

∑
{i,j}∈T̄ w

(s)
ij |1− t

(g)
◦,ij |

2

vol(G)
≤ ε2g

∑
{i,j}∈T̄ w

(s)
ij

vol(G)
.

The bound given in (5) suggests to reduce the variability of the modulus (the information lost when

considering only the phases) by making λ
(g)
0 smaller. According to Lemma 3, this can be done looking for

the g that minimizes the inconsistency, which is a task dependent on each particular graph. Moreover, the
results above are only upper bounds, so there is no guarantee that such a value of g is the best possible choice.
Finally, notice that we are interested in maximizing the information included in the phase of the eigenvector,
not only in minimizing the information lost while ignoring the modulus. As a trivial counterexample, if we

take g → 0 then we will recover the combinatorial Laplacian, and hence λ
(g)
0 → 0. Although in that case

the eigenvector will be constant in modulus, and no information will be lost, its phase will also be constant,
and thus it will provide no information.

3.2. Selection of g

The choice of the electric charge parameter g influences the visualization method. As stated above, there
is not an established method to select it. In general, we propose to choose a quantized charge g = k/m
with k /∈ mZ. The particular value g = 1/3 is suited in the presence of directed triangles, while g = 1/4
is relevant in the presence of directed 4-cycles. For g = 2/5, the magnetic Laplacian becomes quite similar
with the signed Laplacian, while for g = 1/2 it is a signed Laplacian associated with the same graph where
undirected edges are labelled as (+) and directed edges as (−). For more details we refer to [13]. Notice
that choosing g > 1/2 would be equivalent to a flip of all link directions.

3.3. Connection with Vector Diffusion Maps

The computation of the eigenvectors of the normalized magnetic Laplacian can resemble the Vector
Diffusion Maps of Singer and Wu [8], although in our case we work with a complex and unitary transporter in
U(1), instead of with an orthogonal transporter. In particular, the main difference between both approaches,
apart from the working space (Rn and C, respectively), resides in the transport term. In the case of Vector
Diffusion Maps, it is an element of SO(n) determined by Local PCA, and for Magnetic Eigenmaps it is
an element of U(1) which can be tuned by the user through the parameter g in order to highlight certain
properties of the graph. Moreover, the methodology of both approaches differs in the way they map the
data. On the one hand, Vector Diffusion Maps follows a natural extension of Diffusion Maps [2], so that each
point is mapped to a matrix defined in terms of the eigenvalues and eigenvectors of the transition matrix. On
the other hand, the proposed magnetic eigenmaps map the points to the phases of the first eigenvectors of
the corresponding Laplacian. Therefore, although both methods share some similarities, they are essentially
different, and none of them can be seen as a particular case of each other.
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Algorithm 1 Magnetic Eigenmaps Visualization

procedure MEigenmaps(W, g)
W (s) ← (W +W ᵀ) /2 I Symmetric weights.

A←W −W ᵀ I Edge flow.

dii ←
∑
j w

(s)
ij I Degree matrix.

t
(g)
ij ← ei2πgaji I Transporter.

L(g) ← D −W (s) � T (g) I Magnetic Laplacian.

L
(g)
N ← D−1/2L(g)D−1/2 I Normalized Laplacian.

φ
(g)
0 , φ

(g)
1 , . . .← Eigs(L

(g)
N ) I Eigenvectors.

return
{

phase(φ
(g)
m )

}n
m=0

I Phases.

4. Applications

We will illustrate now how Magnetic Eigenmaps can be applied to the visualization of directed graphs on
two synthetic and two real networks. For completeness, we include the procedure to compute the magnetic
eigenmaps for a directed graph with binary weights in Algorithm 1. In all the examples we will depict the
aspect of the original network as a baseline, using for this purpose expert knowledge or a force-directed
layout (based on using attractive forces between adjacent nodes and repulsive forces between distant nodes).
We will also compare with Diffusion Maps for the real examples. In this context, the embedding is obtained
by computing the algorithm with g = 0, and plotting the first eigenvectors of the corresponding Laplacian
(instead of their phases). For the real networks we will also depict the spectrum.

4.1. Artificial networks

We propose to visualize first the artificial network with a running flow of Figure 2a, where the coordinates
of the nodes in the real plane have been chosen according to our knowledge about the underlying groups.
This network, constructed according to [18], consists of three groups of ten nodes (A, B and C). Two nodes
in the same group are linked with a probability 0.5. Any node has also a probability 0.5 to be connected to
a node from another group. Furthermore 90 percent of these interconnections are directed in the direction
of the flow, i.e., A→ B, B → C and C → A. Plotting the real and imaginary parts of the first eigenvector
of the magnetic Laplacian can indicate the presence of a running flow in the network, as illustrated in
Figure 2b. However there could also be dense clusters in the network that are not revealed using only the
phase of the first eigenfunction. In order to actually visualize the three groups and the density information,
we use our proposed method of plotting the complex phase of the first eigenfunction versus the phase of the
second eigenfunction of the magnetic Laplacian, as illustrated in Figure 2c. Notice that the phase of the
second eigenfunction does not distinguish specific dense clusters in the network, while the phase of the first
eigenfunction (corresponding to directionality) is able to separate the three groups.

We are going to consider now an example of a network with a small number of nodes playing a particular
role and then a clear structure with two dense clusters. In [19], an artificial network of 32 nodes is built
as follows: it consists of two dense groups of 14 nodes with a few interconnecting links and two pairs of
nodes are connected to the whole network. The first pair has only in-coming links, while the second pair
has only out-going links. An illustration using the force layout is given in Figure 3a. Plotting the real and
imaginary parts of the first eigenfunction allows to distinguish the two pairs from the rest of the network,
as showed in Figure 3b. However, it is more instructive to visualize the network using the phase of the
two first eigenfunctions of the magnetic Laplacian. Indeed, the two groups and the two pairs are easily
separated in Figure 3c, where the phase of the first eigenfunction (directionality) is able to separate the two
pairs of disconnected points from the rest of the set, defining three directionality-groups: green points, the
yellow points and the blue and red points together. On the other side, the phase of the second eigenfunction
(corresponding to density information) shows two groups: the blue and green points versus the red and
yellow points. Combining the information given by the two phases we are able to easily separate visually
the four groups that we were looking for.
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(a) Graph using the expert knowledge
positions.

(b) First magnetic eigenmap (Reφ
(g)
0

vs. Imφ
(g)
0 ).

p
h
a
s
e
(
φ
1
)

p
h
a
s
e
(
φ
1
)

phase(φ0)

phase(φ0)

(c) Graph over the phase of the mag-
netic eigenmaps.

Figure 2: Artificial network with a running flow. The colours indicate the three groups, and the magnetic
eigenmaps correspond to g = 1/4.

4.2. Directed networks from real data

In the previous section, we considered directed networks having known structures either in terms of
link directions or link density. Indeed, Magnetic Eigenmaps is able to provide simultaneously information
about direction and density, as we illustrate now also on real directed networks where these two aspects
are relevant. Let us emphasize that we do not pretend that Magnetic Eigenmaps will give the best possible
result on each dataset. Knowing the nature of the datasets, an ad hoc visualization method will certainly
give a better result. We will however assume that the origin of the dataset is unknown in order to show that
Magnetic Eigenmaps indeed reveals relevant features.

The network used represents the common adjective and noun adjacencies for the novel “David Cop-
perfield” by Charles Dickens [20]. This directed graph has 112 nodes that represent the most commonly
occurring adjectives and nouns in the book. Edges connect any pair of words that occur in adjacent position
in the text of the book. From the structure of English, a certain directional structure can be anticipated,
i.e., adjectives are expected to be found before nouns. The graph representation of this dataset, using a force
layout, is shown in Figure 4a, where the structure can hardly be guessed. However, considering the phase of
the two first magnetic eigenmaps (we have used g = 2/5 since the graph is almost bipartite), it is possible to
visualize the presence of two groups, as illustrated in Figure 4b (indeed, the information is provided mostly
by the first coordinate, corresponding to directionality). Finally, we show in Figure 4c the first embedding
coordinates in the Diffusion Maps case (using the normalized Laplacian), more concretely the second and
third eigenvectors (the first one is discarded because it is constant). In this case both classes appeared
mixed, so these two diffusion coordinates are not able to reveal the structure of the data. The reason is that
Diffusion Maps captures the density of the links but not the directionality, while Magnetic Eigenmaps relates
both. Additionally, Figure 5a represents the first eigenvalues of the combinatorial (g = 0) and magnetic
Laplacian (g = 2/5). The increase of these eigenvalues is smooth, presenting just an eigengap between the
first eigenvalue and the second one. This remark motivates the choice of the first and second eigenvectors
for this example as visualization coordinates. Moreover, the differences between the two spectra, and the
nonzero initial eigenvalue, show that the structure of the graph is not trivial (see Proposition 1).

The second real dataset used in these experiments represents the political blogosphere in February of
2005 [21]. This directed graph is composed of 1 222 nodes that indicate the political leaning, meaning
left or liberal and right or conservative (disconnected points were removed). The data on political leaning
comes from blog directories and some of the blogs were labelled manually, based on incoming and outgoing
links and posts around the time of the 2004 presidential election in the USA. The links between blogs were
automatically extracted from a crawl of the front page of the blog. ¿From Figure 6a, where the network
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(a) Graph using a force-directed lay-
out.

(b) First magnetic eigenmap (Reφ
(g)
0

vs. Imφ
(g)
0 ).

p
h
a
s
e
(
φ
1
)

p
h
a
s
e
(
φ
1
)

phase(φ0)

phase(φ0)

(c) Graph over the phase of the mag-
netic eigenmaps.

Figure 3: Artificial network with two dense clusters and two pairs of nodes with a specific role. The colours
indicate the dense clusters and the hub pairs, and the magnetic eigenmaps correspond to g = 1/4.

has been depicted using the force layout, it is already possible to guess the presence of two dense groups
of webpages. The first eigenvalues of the magnetic Laplacian in Figure 5b instruct us to consider the two
first pairs of eigenvalues in order to visualize two different structures. In Figures 6b and 6c, the magnetic
eigenmaps do not distinguish the two classes of nodes, however we observe that some webpages are less
connected to the rest of the network, whereas in Figure 6d we see the two classes clearly separated. The
latter mapping is also shown in R3 over the torus as an illustration in Figure 1b. For comparison purposes,
we show also in this case the first embedding diffusion coordinates in Figures 6e and 6f. In this example,
where the graph structure is clearer than in the previous dataset, Diffusion Maps is able to condense the two
classes separately just using the density of the graph. We would like to highlight that the distinction between
both classes is not very clear when we select the second and third eigenvectors (the first eigenvector is again
discarded), whereas a cleaner classification structure is obtained when the fourth and fifth eigenvectors are
depicted. Nevertheless, Magnetic Eigenmaps represents well both the connectivity and density structure.

5. Conclusions

In this letter, we have proposed the use of the eigenvectors of the magnetic Laplacian, called here Mag-
netic Eigenmaps, for the visualization of directed networks. Our work is a natural extension of the Laplacian
Eigenmaps. Computationally, the method reduces to the calculation of the eigenvectors of maximal eigen-
values of a Hermitian matrix, which can be conveniently performed thanks to e.g. the power method. The
advantages of this approach were illustrated on artificial and real datasets, showing that our method is able
to reveal both the directionality and connectivity patterns of the networks.
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Figure 4: Word adjacencies example. The colours indicate the class labels, nouns (•) and adjectives (•),
and the magnetic eigenmaps correspond to g = 2/5.
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Figure 5: First eigenvalues of the combinatorial and normalized magnetic Laplacian for the real networks.

References

[1] M. Belkin, P. Niyogi, Laplacian Eigenmaps for dimensionality reduction and data representation, Neural Comput. 15 (6)
(2003) 1373–1396.

[2] R. R. Coifman, S. Lafon, A. B. Lee, M. Maggioni, F. Warner, S. Zucker, Geometric diffusions as a tool for harmonic
analysis and structure definition of data: Diffusion maps, in: Proceedings of the National Academy of Sciences, 2005, pp.
7426–7431.

[3] D. C. Perrault-Joncas, M. Meila, Directed graph embedding: an algorithm based on continuous limits of Laplacian-type
operators, in: Advances in Neural Information Processing Systems, 2011, pp. 990–998.

[4] F. Chung, Laplacians and the Cheeger inequality for directed graphs, Annals of Combinatorics 9 (2005) 1–19.
[5] Q. Zheng, D. B. Skillicorn, Spectral embedding of directed networks, in: 2015 IEEE/ACM International Conference on

Advances in Social Networks Analysis and Mining (ASONAM), 2015, pp. 432–439.
[6] R. Kenyon, Spanning forests and the vector bundle Laplacian, The Annals of Probability 39 (5) (2011) 1983–2017.
[7] R. Forman, Determinants of Laplacians on graphs, Topology 32 (1) (1993) 35–46.
[8] A. Singer, H. Wu, Vector Diffusion Maps and the connection Laplacian, Commun Pure Appl Math. 65 (8) (2012) 1067–

1144.
[9] M. A. Shubin, Discrete magnetic Laplacian, Comm. Math. Phys. 164 (1994) 259–275.

[10] Y. Colin de Verdière, Magnetic interpretation of the nodal defect on graphs, Analysis and PDE 6 (5) (2013) 1235–1242.
[11] G. Berkolaiko, Nodal count of graph eigenfunctions via magnetic perturbations, Analysis and PDE 6 (5) (2013) 1213–1233.
[12] M. Cucuringu, Sync-Rank: Robust ranking, constrained ranking and rank aggregation via eigenvector and SDP synchro-

nization, IEEE Transactions on Network Science and Engineering 3 (1) (2016) 58–79. doi:10.1109/TNSE.2016.2523761.
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