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ABSTRACT

We perform adaptive joint space and frequency tilings including all levels in the Haar-Walsh wavelet packet tree for
two-dimensional signals. The method gives surprisingly good results in terms of nonlinear approximation. The visual
quality of the compressed images with this method is the same as the quality using twice the number of coeÆcients for
wavelets and standard wavelet packets when Haar �lters are used. When all levels are allowed the cost for description
of the location of the winning coeÆcients is not negligible. A tiling information vector is introduced for description
of the chosen basis and the original image can be easily and quickly reconstructed using this information. For image
compression this tiling information vector is compressed to only those nodes which correspond to kept coeÆcients,
and this makes the adaptive scheme competitive.

Keywords: Anisotropic wavelet packets, best basis, space-frequency transform, Haar �lter, Walsh functions, Image
coding.

1. INTRODUCTION

Although the multiscale wavelet analysis is a powerful tool for image compression, it is well known that oscillatory
or repetitive patterns are poorly represented and therefore lost at low bit rates. Adapted orthogonal bases such as
wavelet packets, local cosines, and brushlets have been invented to address this issue.845 In these schemes a partition
of either the direct domain or the frequency domain is performed adapting to the given image. As the operations of
windowing and �ltering do not commute in general, former studies of joint space-frequency methods employ a very
limited number of levels, for reasons of complexity.

We study complete space-frequency adaptability in the case of Haar-Walsh �lters, because then the global best
basis search is tractable. In each step of the transform, subimages are split in halves or Haar-transformed either
horizontally or vertically. Complete adaptability signi�es that we allow any of the four choices for any of the subimages
at each level and that the process is continued through all levels until the subimages are of size one.

The goal of this research was to answer the following two questions.

1. Does full adaptability make a di�erence compared to restricted adaptability of wavelet packet type ?

2. Is the advantage lost in the additional price of coding the chosen transform ?

The surprising answer to (1) in terms of nonlinear approximation is that approximately the same visual quality
and PSNR is obtained with half the number of kept coeÆcients compared to any of the before-mentioned restricted
adaptability methods. For (2), we develop a new scheme for coding only the tree of �lterings necessary to reconstruct
the image. The result is that the joint space-frequency method still wins in terms of overall bitrates. The developed
scheme for coding the tree of �lterings could even be useful for more general joint space-frequency transforms.

Several gray scale images have been compressed using four di�erent methods. The methods used are: Haar
wavelets, adaptive anisotropic Haar-Walsh wavelet packets, local Walsh bases, and the method of adaptive joint
space and frequency tilings. Only Haar-Walsh �lters have been used. These �lters have poor frequency resolution
but they are easy to use and are free from the problems at edges. Joint space and frequency tilings are possible for
these �lters because of the disjoint supports of the corresponding wavelet functions. In these experiments the adaptive
joint space and frequency segmentation method gave the best results for all test images at di�erent compression ratios.
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The adapted joint space and frequency tiling method is based on the search algorithm for computing optimal
Walsh packet basis of Thiele and Villemoes6 and Herley et al.2 The method gives the best segmentation of a given
signal when the tilings are made in both space and frequency. In the studied Haar-Walsh setting, the anisotropic
wavelet packet bases of Bennett1 are described by a tiling with rectangles of the frequency plane only. In Herley et
al.,2 the wavelet packet tree was not allowed to grow to levels greater than 4. When the best basis choice is made
among the levels less than 4 the cost of sending the location information is negligible.

The number of possible bases grows considerably when we allow tilings in space as well as in frequency. We
have to choose a best basis among all these possibilities and one should think of the resulting basis as a tiling of a
4-dimensional space-frequency hypercube by boxes of unit volume and dyadic sides. We compare the cost of all pairs
of space-neighbors with the cost for their frequency domain versions, and choose the tiling which gives the minimum
cost for each of the pairs and keep track of the choices. The algorithm yields the best possible tiling that can be
obtained by successive splitting. At each node we can split a two-dimensional signal in two halves by tiling in space
in x- or y-direction or in frequency in x- or y-direction. We use four di�erent marks to keep track of the type of
split. For an image of size N �N the search will give a tiling information vector of length N2 � 1, where each entry
is one of the four marks used.

In practice we save only the largest coeÆcients and their locations. Then the tiling information vector can be
compressed to only those nodes which have information about the kept coeÆcients. After this compression the
location of the chosen basis can be given using two tiling information vectors and the signi�cance map for the kept
coeÆcients. All these vectors consist of ones and zeros and can be run-length encoded. For real images like Lena,
this gives the total need of memory in bits per kept coeÆcient for the description of the location of about twice the
amount needed for the signi�cance map for wavelets when the same method of run-length encoding is used. See
Figures 5, 6 and Table 1.

The total computational complexity of the method is of Of(N logN)2g: The best basis search is expensive
both in terms of time and memory consumption, but when we know the best basis tilings the computation of the
coeÆcients can be made easily and quickly. Even reconstructions are easy to compute using the tiling information
and the signi�cance map. We just join the coeÆcients in space or in frequency depending on the marks in the tiling
information vector and with each other or with zeros depending on the marks in the signi�cance map. The freedom
of choosing among all levels in the wavelet packet tree is really used as it can be seen on Figure 1.

The result of this paper is that we in the joint space and frequency segmentation method when it is combined
with the new method for location information have an image compression method which clearly outperforms wavelet
and other wavelet packet methods for gray scale images when Haar-Walsh �lters are used.

2. HAAR-WALSH WAVELET PACKETS

Let W0(x) = 1 for 0 � x < 1 and zero elsewhere. De�ne W1;W2; : : : by the recursion

W2n(x) =Wn(2x) +Wn(2x� 1);

W2n+1(x) =Wn(2x)�Wn(2x� 1):
(1)

This sequence of functions is equal to the Walsh system7 on [0; 1[ and zero outside. From this system we then form
a larger collection by dyadic rescaling. A Walsh atom is de�ned by

wp(x) = wj;k;n(x) = 2�j=2Wn(2
�jx� k);

where j; k; n are integers with n � 0. The corresponding tile p is the following dyadic rectangle of area one in the
closed upper half plane,

p = Ip � !p = [ 2jk; 2j(k + 1) [�[ 2�jn; 2�j(n+ 1) [: (2)

Then wp vanishes outside Ip and !p is the frequency support of wp in the Walsh sense. The most important property
of Walsh atoms is that wp and wq are orthogonal functions on the line if and only if the tiles p and q are disjoint.6

By a change of variable in the de�ning recursion (1), we get that if two pairs of tiles (l; r) and (d; u) cover the same
dyadic rectangle of area two l[r = d[u, such that l is the left half, r the right half, d the lower half, and u the upper
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half, then the corresponding Walsh atoms are related by the Haar transform, involving the �lters h = (1; 1)=
p
2 and

g = (1;�1)=p2. �
wd

wu

�
=

1p
2

�
1 1
1 �1

��
wl

wr

�
: (3)

We identify discrete signals of lengthN = 2L with functions on [0; N [ which are piecewise constant on the intervals
[0; 1[; [1; 2[; : : : ; [N � 1; N [. Then an orthonormal basis of Walsh atoms is obtained corresponding to each tiling of
the space-"frequency" plane

SN = [0; N [�[0; 1[
with pairwise disjoint tiles of the form (2). For each scale parameter j = 0; 1; : : : ; L there are N tiles inside S, so
there are (L+ 1)N basis vectors to choose from.

In the same manner we can identify an image of size N � N with a function f(x; y) on [0; N [�[0; N [ which is
piecewise constant on squares of size one. We consider orthonormal bases for the space of such functions consisting
of tensor products of Walsh atoms,

w(p;q)(x; y) = wp(x)wq(y); p� q � SN � SN :

There are (L+1)2N2 such two-dimensional Walsh atoms. The corresponding inner products c(p;q) = hf; w(p;q)i with
the given image are arranged in a (L+1)N�(L+1)N wavelet packet coeÆcient matrix P , using lexicographic ordering
of the (j; k; n)-indices of tiles in each space coordinate. Observe that w(p;q) is a local Walsh function vanishing outside
the rectangle Ip � Iq .

Two Walsh atoms w(p;q) and w(ep;eq) are orthogonal if and only if either p\ ep = ; or q \ eq = ;. This rule leads to a
huge number of di�erent tilings T of SN � SN , each corresponding to an orthonormal basis in which the image can
be expanded

f(x; y) =
X

(p;q)2T

c(p;q)w(p;q)(x; y):

We wish to �nd the best basis in the sense that an additive cost Cost(c) =
P

(p;q)2T Cost(c(p;q)) is minimized. In
order to be able to do this with reasonable computational complexity the class of tilings is restricted. We consider
only tilings produced by successive splits of SN � SN in halves in space or frequency directions in either the x- or
y-component. In the �rst step, we have the four choices

SN � SN =

8>>><
>>>:

([0; N=2[�[0; 1[)� ([0; N [�[0; 1[) [ ([N=2; N [�[0; 1[)� ([0; N [�[0; 1[);
([0; N [�[0; 1=2[)� ([0; N [�[0; 1[) [ ([0; N [�[1=2; 1[)� ([0; N [�[0; 1[);
([0; N [�[0; 1[)� ([0; N=2[�[0; 1[)[ ([0; N [�[0; 1[)� ([N=2; N [�[0; 1[);
([0; N [�[0; 1[)� ([0; N [�[0; 1=2[)[ ([0; N [�[0; 1[)� ([0; N [�[0; 1=2[):

Each of the resulting dyadic hyper-rectangles R = Rx � Ry correspond to a subspace spanned by the Walsh atoms
w(p;q) with (p; q) � R. The best basis problem inside a hyper-rectangle with given size parameters (l;m), de�ned

by (Area(Rx);Area(Ry)) = (2l; 2m), can be solved assuming it is already solved for all hyper-rectangles with size
parameters (l�1;m) and (l;m�1). This is the basic recursive observation. The algorithmic organization is described
in the following sections.

By restriction to frequency splits only we obtain as special cases all anisotropic Haar-Walsh wavelet packet bases
including the usual Haar basis. By restriction to space splits only we recover all anisotropic local Walsh bases.

3. BEST BASIS SEARCH FOR THE JOINT SPACE-FREQUENCY METHOD

The best basis selection is made among all levels in the wavelet packet tree. The number of possible bases grows
considerably when we allow tilings in space as well as in frequency. At each node we have to choose one of four
possible tilings as the most eÆcient tiling. We can split the signal in two halves by tiling in space in x- or y-direction
or in frequency in x- or y-direction. We have to choose a set of best basis among all these possibilities. The cost
function used for the best basis selection in this paper is the `1-norm of the set of coeÆcients, Cost(c) =

P
(p;q) jc(p;q)j.
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We start the best basis search by computing the wavelet packet tree to the maximum depth. For an image of size
N � N , N = 2L, this will result in a (L + 1)N � (L + 1)N coeÆcient matrix consisting of all levels in the tree.
The best basis search is made in this matrix. We search the information about how the tilings should be made at
each node in order to give us the coeÆcients corresponding to the best basis. We start the search at the smallest
scale and compute the costs for all possible pairs of two space-neighbors in the x-direction and also the cost for their
frequency versions giving the cost for corresponding frequency neighbors. We choose between tiling in space and
tiling in frequency. What we actually do is putting together two building blocks of size one element to a 1�2 block of
space or frequency neighbors. The space-neighbors can be found in the �rst LN columns of the (L+1)N � (L+1)N
coeÆcient matrix P . The corresponding frequency versions are found in the columns (N + 1); : : : ; (L + 1)N . We
compute the space-cost and the frequency-cost for all 1 � 2 blocks, compare the costs, save the winning cost and
keep track of the choice. We call the winning cost matrix C1;0 and the tiling mark matrix for M1;0, using the size
parameters (l;m) introduced in the previous section.

The size of C1;0 and M1;0 is (L+ 1)N � LN=2. In the matrix C1;0 the number of submatrices decreases by one
in the x- direction and all of these submatrixes will have one half of the previous width. Next we compute the costs
for all pairs of 1 � 2 blocks resulting in 1 � 4 blocks in matrix C1;0. The resulting winning costs are saved in the
matrix C2;0 and the tiling information in the matrix M2;0. We continue with C2;0 and compute the costs for all time
neighbors and their frequency versions and keep track of the choices. We move in the x- direction and compute the
costs for the space- and frequency neighbors and continue until the winning cost matrix has only one column.

After this we move in the y-direction from the coeÆcient matrix in a similar fashion. The cost of the winning
choice is saved in C0;1 and the information of the type of the winning tile in M0;1. After computing the matrix C0;1,
we do not need the wavelet packet matrix any more. The space in memory can be used for C0;1.

The normal search process, with four possibilities for each tile, can now start. For C0;1 we move to the right and
build blocks of space and frequency neighbors by adding the elements in C0;1 in the x-direction. The resulting blocks
have to be compared with the blocks we build by adding elements in C1;0 in the y-direction. The winning cost is
saved in C1;1. After computing C1;1 we do not need C1;0 any more and can reuse the memory for storage of C1;1.

Continue then by comparing space and frequency neighbors in x-direction in C1;1 with space and frequency
neighbors in y-direction in C2;0. The resulting winning costs are in C2;1 and the corresponding marks in M2;1.
Continue in this manner until the cost matrix consists of only one column. In Cl;m and Ml;m, the indices l and m
count the steps in x- respective y-direction. The coeÆcient matrix P has l = m = 0, and we proceed all the way to
l = m = L.

We also have to look for the corresponding tiling information for the previous generations of tilings. When we
compare the block built from the elements in C1;0 and C0;1, we can �nd the marks for the �rst generation of tiles in
M1;0 and M0;1. We store the information from the previous tilings by expanding the mark matrices into arrays of
dimension three. Thus, behind each element in M1;1 we have two elements which tell us how the tiling was made in
the �rst stage. At stage (l;m) we have to �nd two marks in Ml�1;m or Ml;m�1 consisting of the tiling information
for the previous generation of tilings. In the third dimension behind these marks we have the tiling marks for all
other generations of tilings corresponding to the winning tile at stage (l;m).

For each comparison in the x-direction the width of the cost matrix will decrease and for each comparison in
y direction the height of it will decrease. After L stages in both directions we will have the total cost in the cost
matrix. At this stage the tiling mark array has only one element at the front. Its size is 1� 1� (N2 � 1) and it has
the information of the winning tiles corresponding to the best basis joint space and frequency selection. For a N �N
image this best basis search results in a tiling vector of length N2 � 1 whose elements are one of the four numbers
0; 1; 2; 3. We use 0 = tiling in time x, 1 = tiling in frequency x, 2 = tiling in time y, and 3 = tiling in frequency y.

3.1. A 4� 4 example

Let X be the two-dimensional signal

X =

0
BB@
1 2 3 4
5 6 7 8
0 �1 2 3
1 �4 5 6

1
CCA :
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We compute the cost for all pairs of space and frequency neighbors, compare them and save the winning costs
in C1;0; C2;0; C0;1; C1;1; : : : and the corresponding tiling information in M1;0;M2;0;M0;1;M1;1; : : : . The coeÆcient
matrix P and obtained tiling information matrices (top layer of arrays) are arranged in the table below.

P M1;0 M2;0

1 2 3 4

5 6 7 8

0 �1 2 3

1 �4 5 6

1p
2

0
BB@

3 7 �1 �1
11 15 �1 �1
�1 5 1 �1
�3 11 5 �1

1
CCA

5 �2 �1 0

13 �2 �1 0

2 �3 0 1

4 �7 2 3

1p
2

0
BB@

6 8 10 12

1 �5 7 9

�4 �4 �4 �4
�1 3 �3 �3

1
CCA

7 11 �1 �1
�2 8 3 �1
�4 �4 0 0

1 �3 �2 0

1p
2

0
BB@

18 �4 �2 0

6 �10 2 4

�8 0 0 0

�2 4 �2 �2

1
CCA

1

2

0
BB@

7 3 17 21

5 13 3 3

�5 �1 �7 �7
�3 �7 �1 �1

1
CCA 1p

2

0
BB@

5 19 2 �2
9 3 �4 0

�3 �7 �2 0

�5 �1 2 0

1
CCA

12 �7 0 2

6 3 �2 �2
�5 2 �1 �1
3 �2 1 1

1 1

1 1

0 1

0 1

1 1

1 1

0 1

0 0

1 1

0 1

1 1

0 1

1 1

0 0

1 0

0 0

1 1

0 1

0 1

1 1

0 1

0 0

1 0

0 0

1

1

0

0

1

0

1

0

1

0

0

0

M0;1 M1;1 M2;1

2 2 3 3

2 2 2 3

2 3 3 3

2 3 2 3

2 3 3 2

3 3 2 2

2 3 3 3

2 3 3 3

2 3 2 3

2 3 2 3

2 2 3 2

2 2 2 2

1 3

0 1

1 1

0 0

2 1

2 1

0 1

2 0

1

0

0

2

M0;2 M1;2 M2;2

2 3 3 3 2 3 2 3 2 2 2 2 2 3 0 0 0

After L = 2 stages in both x and y direction we have only one element in the cost matrix and only one mark in
the top layer of the tiling information array. Although this is not the way the actual algorithm is programmed, let
us indicate how the rest of the tiling information can be collected from previous top layers. The top mark of M2;2

is 0, which means that we can �nd the information about the previous tiling in M1;2. This gives the marks 0 : 2 3.
Marks 2 and 3 correspond to tilings in the y-direction, which means that the information of the generation before
will be found in M1;1. This gives 0 : 2 3 : 1 0 1 1. The marks 0 and 1 point to tilings in the x- direction, we go to
M0;1 and have the resulting tiling information vector

0 : 2 3 : 1 0 1 1 : 2 3 2 2 3 3 3 3.

Unfolding this information on the level of coeÆcients leads to the vector

(3=
p
2; 11=

p
2;�1; 0; 0; 1;�1;�4; 19=

p
2; 3=

p
2;�2=

p
2; 0;�7=

p
2;�1=

p
2; 0; 0)

which represents X in the chosen orthonormal basis.

4. COMPRESSION OF THE TILING INFORMATION VECTOR

The location information of the chosen coeÆcients can be given as (row, column)-indices in the (L+1)N � (L+1)N
matrix P or as the tiling information vector of length N2 � 1. The cost for saving the location information is not
negligible. In practice we save only the largest coeÆcients and their locations. For real pictures the coeÆcients are
spread over the whole (L + 1)N � (L + 1)N matrix, see Figure 1. We can see that we really use the freedom of
choosing among all levels in the packet tree.

The information in the tiling mark vector is intended for all of the chosen best basis coeÆcients. Usually we save
only the non-zero coeÆcients and their locations. The result of the best basis search, the tiling information vector,
can be compressed to the information corresponding to only the kept coeÆcients.

The �rst mark in the tiling mark vector tells us how to tile at the �rst level of tilings, the following two marks
tell us how to tile at the second level, the following four marks at third level and so on. At each node we split into
two halves. This splitting can be made in four di�erent ways. We can draw the tiling information vector as a dyadic
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Figure 1. Location of the 8192 largest Walsh wavelet packet coeÆcients in the best basis for a 512� 512 image,
(Lena). The total address matrix of size 5120�5120 is composed of 100 submatrices each of size 512�512. All basis
functions with addresses inside a submatrix share the same rectangular support shape. The original basis is the top
left submatrix and the global Walsh basis is the bottom right submatrix. Wavelet and isotropic wavelet packet bases
would be concentrated along the diagonal. We see that both global and very local functions are used and that very
thin rectangular supports come into play.

tree structure, in which we read the tiling information level for level from the root down to the leaves. If we instead
read the information in the tree for each leaf from the root down to the leaf we get individual tiling information for
each coeÆcient. We can compute this individual tiling information for each of best basis coeÆcients from the tiling
information vector. After computing the individual tiling information we save it only for the kept coeÆcients. For a
N �N picture we have N2 coeÆcients. We produce a N2 � 2L matrix in which the rows consist of the individual
tiling information for each of the best basis coeÆcients. The �rst individual mark for all coeÆcients is the same as
the �rst element in the tiling information vector because all coeÆcients have been computed through this �rst tiling.
Thus the �rst column in the individual tiling information matrix consists of N2 marks of the same type as the �rst
mark in the tiling information vector. In the second column there are N2=2 marks of the same type as the second
mark and N2=2 marks of the same type as the third mark in the tiling information vector. After this we write the
fourth mark in the �rst N2=4 rows, the �fth mark in the following N2=4 rows, the sixth mark in the next N2=4 rows
and the seventh mark in the last N2=4 rows in the third column of the individual tiling information matrix. We
continue until all marks in the tiling information vector are used. This gives us N2 rows with 2L elements in each.

Usually we keep only a certain percentage of the largest coeÆcients. We need a signi�cance map, a vector which
tells us which coeÆcients are kept. In the individual tiling information matrix we then keep only the rows which
belong to kept coeÆcients. This matrix still contains duplicate information. When we reconstruct the image from
the kept coeÆcients, we read the tiling information for the coeÆcients. If two coeÆcients are put together at a
certain node the information for them is the same from that node to the root of the tree and thus duplicated in the
individual tiling information vectors. We can remove the duplicated information using the signi�cance map, from
which we can compute location in the tree and which of the two halves, upper or lower in space or high or low in
frequency, a coeÆcient belongs to. The location of a non-zero coeÆcient is marked by 1 in the signi�cance map. We
can make pairs of the marks in the signi�cance map. If the pair contains two ones it means that the corresponding
coeÆcients will be put together already at the �rst level of the reconstruction, which means that the individual tiling
information is the same for these coeÆcients and one of the duplicate rows in the tiling information matrix can be
removed. For all pairs with two ones we remove one of the corresponding rows in the individual tiling information
matrix. All pairs with one zero have only one of the coeÆcients among the kept coeÆcients.

The information in the individual tiling information matrix can be compressed to a vector which only contains
the information about how to handle the kept coeÆcients when the image is reconstructed. There is no information
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duplicated in this new address vector. From the signi�cance map we can read which half the coeÆcient belongs to
and whether it should be put together with an other coeÆcient or with a zero. The new address vector tells if this is
made in space or in frequency and in the x or the y direction. We can build the address vector from the individual
tiling information matrix using following algorithm: Make pairs of the elements in the signi�cance map. If the pairs
contain two ones, remove one of the corresponding duplicate rows in the individual tiling information matrix. We
start from the leaves, i.e. from the kept coeÆcients when we reconstruct the picture therefore we compress the
individual tiling vectors for the kept coeÆcients starting from the last columns which corresponds to the leaves in the
tree. We move the information in the last column of the individual tiling information matrix to be the �rst elements
in the new address vector, which is a row vector. Remove then the last column in the tiling information matrix and
put 0 in the signi�cance map instead of the pairs which have two zeros and 1 instead of the other pairs. Then start
from the beginning again: make pairs of the elements now in the signi�cance map, for each pair consisting of two
ones remove one of the corresponding duplicate rows and after that move the last column in the tiling matrix to
the end of the address vector. Then remove the last column in the tiling matrix and change all pairs (0,0) in the
signi�cance map to 0 and the other pairs to 1. Continue until all elements in the individual tiling information matrix
are removed.

4.1. Compressing the tiling information for the 4� 4 example

Let us keep only the four largest coeÆcients in the example of Section 3.1. This gives the signi�cance map R =
010000011000100. We compute the individual tiling information for the coeÆcients and save it only for the kept
coeÆcients.

Individual
tiling vectors CoeÆcient

0 2 1 2 11=
p
2

0 2 0 2 -4

0 3 1 3 19=
p
2

0 3 1 3 �7=p2

2 3 2 2 3 3 3 3

1 0 1 1

2 3

0

Figure 2. Tiling information vector for the example in this paper drawn as a dyadic tree structure. Each node of
the tree shows how the tiling is done. The tree corresponds to the tiling vector 0 : 2 3 : 1 0 1 1 : 2 3 2 2 3 3 3 3.
We get individual tiling information for each coeÆcient when we read the code from root to leaves for each leaf.
We keep only the four largest coeÆcients and their individual tiling information. This gives the signi�cance map
0100000110001000.

We can see in Figure 2 that there is a lot of information duplicated in the individual tiling vectors for the kept
coeÆcients. The new address vector, i.e. the compressed tiling information vector for the kept coeÆcients is CZ =
2 2 3 3 1 0 1 1 2 3 0. It contains the tiling information at the nodes of the reduced dyadic tree which is obtained by
removing nodes that only treats coeÆcients put to zero, see Figure 3. Clearly, we can write the information in CZ

in two vectors which both consist of ones and zeros and have the same length as CZ . This gives CZ in form of two
other vectors which both can be run-length encoded.

5. RECONSTRUCTION OF THE IMAGE

Start the procedure for reconstruction by using the compressed tiling information vector CZ and forming pairs of
the entries in the signi�cance map R. Write the pairs containing ones in a vector H , which tells whether both halves
in the pair are included or not and which half the coeÆcient belongs to. After this, replace the pairs consisting of
two zeros in R with 0 and the other pairs with 1. Start from the beginning by making pairs of the marks in the new
signi�cance map and continue to build H until R is empty.

When we reconstruct the signal we have the kept coeÆcients in the leaves of the tree. The �rst numbers in
CZ tell us what to do with these leaves. Compute the number of rows in R consisting of two ones, call it c2, and
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2 2 3 3

1 0 1 1

2 3

0

Figure 3. The result of compressing the tiling information vector for the 4� 4 example of Section 3.1. The reduced
tiling information is CZ = 2 2 3 3 1 0 1 1 2 3 0, the signi�cance map is R = 0100000110001000, and the 4 kept
coeÆcients are (11=

p
2;�4; 19=p2;�7=p2). Only nodes which have to do with the kept coeÆcients need to be stored.

the number of pairs in R consisting of 01 or 10, call this number c1. Read the �rst c2 + c1 marks in CZ , i.e., the
information about what to do with the coeÆcients in this �rst step. Join the coeÆcients in space or in frequency
depending on the marks in CZ . Join them with each other or with zeros depending on the marks in H . Continue this
procedure and join the matrices from the �rst step with each other or with zero matrixes of the same size according
to marks in CZ and H . Continue until all marks in CZ are used. For each mark in the compressed tiling information
vector CZ we read two marks in the vector H . Reconstruction simply corresponds to joining the coeÆcients using
the information in CZ and H .

5.1. Reconstruction of the image for the 4� 4 example.

We have

Tiling information (=how to join): CZ = 2 2 3 3 1 0 1 1 2 3 0
Join together or with zeros: H = 01 01 10 10 10 01 10 10 11 11 11
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1
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Figure 4. Reconstruction of the image in the example from the four largest coeÆcients using the tiling information
and the signi�cance map.

6. EXPERIMENTS

Several pictures have been compared using the methods Haar wavelets, adaptive anisotropic wavelet packets, aniso-
tropic local Walsh bases, and adaptive joint space-frequency tilings. In all these experiments the cost function has
been the `1-cost of the coeÆcients, and in all cases only Haar-Walsh �lters have been used. This �lters have poor
frequency resolution but they are easy to use and we are free from the problems at borders which occur for longer
�lters. Joint space-frequency method is possible for these �lters because of the disjoint supports of the corresponding
wavelet functions. The pictures used are gray scale pictures with pixel values between 0 and 255. We thus need 8
bits per pixel in the representation of the original images. The pictures used are Lena, Baboon, Peppers and Boat.
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We refer to Lindberg3 for results on Peppers and Boat. They have all been transformed to best basis wavelet or
wavelet packet coeÆcients using the methods mentioned above. The quality of the reconstructions is measured by
peak signal-to-noise ratio (PSNR). The measure PSNR is a good indicators of the quality of the image but if the bit
rate is low the visual quality of the image does not always agree with these measures.

The real compression ratio depends on the need of memory for the kept coeÆcients and for the location of them.
The need of memory for the kept coeÆcients was computed using Shannon's theorem which gives the average bit rate
for the coeÆcients. The need of memory for the location of the kept coeÆcients was computed from the signi�cance
map of size N2 for wavelets, from the signi�cance map of size (L+ 1)2N2 for anisotropic wavelet packets and local
Walsh bases and from the compressed tiling information vector and the signi�cance map of size N2 for the joint
space-frequency method. All these vectors, giving the location for the kept coeÆcients consist of ones and zeros and
were run-length encoded before computation of the need of memory. We found that the total need of memory for
the signi�cance map and for the tiling information for the joint space-frequency method was about twice the need
of memory for the signi�cance map for wavelets. Joint space-frequency tilings gives the same visual quality in the
reconstructed images with half the number of coeÆcients needed for the other methods. When the total need of
memory was computed we found that the joint space-frequency method gives the best both visual and measured
results for all real images tested in this paper. The reconstructed images of Lena and Baboon are given in Figures
5 and 6, and they show that we have the same visual quality for about half the number of coeÆcients for joint
space-frequency method compared with the other methods. This means that we have to compare the results for this
method with the other methods when twice the number of coeÆcients is used.

Table 1. Compression results for Lena image
Fraction Method coe� Signi�cance Signi�cance Tiling Total Total
of kept [bits/coe�] map small map large info bits per
coe�s. [bits/coe�] [bits/coe�] [bits/coe�] coe� bits/pixel
1/32 Haar wavelets 8.32 4.06 12.38 0.39

Anisotr. WP 8.23 7.95 16.19 0.51
Local Walsh 8.27 5.79 14.07 0.44
Joint space/freq. 8.20 4.92 4.66 17.78 0.56

1/64 Joint space/freq. 8.70 5.31 6.94 20.60 0.32

The experiments gave that the need of memory for tiling information for real images can be compressed to 4-7
bits per kept coeÆcient. When the location of the kept coeÆcients for Lena from 16384 coeÆcients (1/16 of all
pixels) was given as the signi�cance map in the wavelet packet tree matrix of size 5120� 5120 the need of memory
was 13.62 bits per kept coeÆcient. This shall be compared with the need of memory of 8.57 bits per kept coeÆcient
for the method introduced in Lindberg3 and described here in Section 4. This shows the eÆciency of the proposed
method for the location information of the chosen bases.
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Original 512� 512 Haar wavelets 32:1, PSNR 30.0 dB

Anisotropic wavelet packets 32:1, PSNR 30.4 dB Local Walsh bases 32:1, PSNR 29.0 dB

Space-frequency tiling 32:1, PSNR 32.7 dB Space-frequency tiling 64:1, PSNR 29.8 dB

Figure 5. Nonlinear approximation of Lena image, using Haar �lters. For bit-rates, see Table 1.
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Original 512� 512 Haar wavelets 32:1, PSNR 22.0 dB

Anisotropic wavelet packets 32:1, PSNR 22.5 dB Local Walsh bases 32:1, PSNR 21.9 dB

Space-frequency tiling 32:1, PSNR 23.7 dB Space-frequency tiling 64:1, PSNR 22.1 dB

Figure 6. Nonlinear approximation of Baboon image, using Haar �lters.
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