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Best Basis Compressed Sensing
Gabriel Peyré, Member, IEEE

Abstract—This paper proposes a best basis extension of com-
pressed sensing recovery. Instead of regularizing the compressed
sensing inverse problem with a sparsity prior in a fixed basis, our
framework makes use of sparsity in a tree-structured dictionary
of orthogonal bases. A new iterative thresholding algorithm per-
forms both the recovery of the signal and the estimation of the
best basis. The resulting reconstruction from compressive mea-
surements optimizes the basis to the structure of the sensed signal.
Adaptivity is crucial to capture the regularity of complex natural
signals. Numerical experiments on sounds and geometrical images
indeed show that this best basis search improves the recovery with
respect to fixed sparsity priors.

Index Terms—Bandlets, best basis, compressed sensing, cosine
packets, sparsity, wavelet packets.

I. INTRODUCTION

C OMPRESSED sensing is a new sampling strategy that
uses a fixed set of linear measurements together with a

nonlinear recovery process. In order for this scheme to work
with a low number of measurements, compressed sensing theory
requires the sensed signal to be sparse in a given orthogonal
basis and the sensing vectors to be incoherent with this basis.
This theory of compressive acquisition of data has been pro-
posed jointly by Candès, Tao and Romberg [1], [2] and Donoho
[3], [4].

This paper extends the compressed sensing recovery by
switching from a fixed orthogonal basis to a tree structured
dictionary of orthogonal bases. The adaptivity of a best basis
representation increases the sparsity of sounds and geometrical
images, which in turns makes the compressed sensing recovery
more efficient. The tree structure of the dictionary is used in
a fast iterative thresholding algorithm that estimates both the
signal or the image to recover and the best basis that optimizes
the sparsity of the representation.

A. Compressed Sensing

In a series of papers, Candès, Tao, and Romberg [1], [2], and
Donoho [3], [4] have proposed the idea of directly acquiring
signal in a compressive form. Instead of performing the acqui-
sition with a high sampling rate and then compressing the data in
an orthogonal basis, the signal is rather projected on a reduced
set of linear vectors. The compressibility of the signal is only
exploited during the reconstruction phase, where one uses the
sparsity of the signal in an orthogonal basis.
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Compressed sensing acquisition of data might have an impor-
tant impact for the design of imaging devices where data acqui-
sition is expensive. Duarte et al. [5] detail a single pixel camera
that acquires random projections from the visual scene through
a digital micromirror array. A similar acquisition strategy can
be used in MRI imaging [6] to reduce the acquisition time and
increase the spatial resolution.

B. Best Basis Representations

Sparse approximation in orthogonal bases is at the heart of
many efficient compression and denoising algorithms. Fixed or-
thogonal bases are, however, not flexible enough to capture the
complex regularity of sounds or natural images. For instance,
the orthogonal wavelet transform does not compress efficiently
regular edges [7], [8] and a fixed local cosine basis fails to cap-
ture transient parts of musical sounds [9].

To improve the sparsity of complicated sounds or images, one
can consider several orthogonal bases that compose a large dic-
tionary of atoms. In this framework, one has to choose a best
basis adapted to the signal to process. To enable fast computa-
tion, this dictionary is required to have a tree structure, so that
the best basis can be optimized using a fast dynamic program-
ming algorithm.

Local cosine bases [9] divide the time axis in segments that
are adapted to the local frequency content of the sound. Other
kinds of dictionaries of 1D bases have been proposed, such as
the wavelet packets dictionary [10] and nonstationary wavelet
packets [11], [12].

The set of cartoon images is a simple model that captures
the sketch content of natural images [13]. The curvelet frame
of Candès and Donoho [7] can deal with such a regularity and
enjoys a better approximation rate than traditional isotropic
wavelets. This result can be enhanced using a dictionary of
locally elongated functions that follow the image geometry.
Bandlets bases of Le Pennec and Mallat [8], [14], later refined
by Mallat and Peyré [15], [16], provide such a geometric dic-
tionary together with a fast optimization procedure to compute
a basis adapted to a given image.

C. Previous Works

Compressed sensing recovery reconstructs a high resolution
signal or image from low dimensional measurements. The res-
olution of this ill-posed linear inverse problem is regularized by
introducing nonlinear priors. Initial papers [1]–[4] give theoret-
ical results about the performance of compressed sensing using
sparsity in an orthogonal basis. Increasing the efficiency of the
priors to fit the features of sounds and natural images might im-
prove the quality of the recovered signal.

1) Sparsity Priors Over Redundant Dictionaries: Increasing
the redundancy of the frame used to sparsify the data might be
useful to remove reconstruction artifacts. One can for instance
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use a frame of translation invariant wavelets which has proven
useful for image denoising [9]. Increasing the redundancy can
also improve the sparsity of the representation. The curvelet
frame [7] better represents edges in images than wavelets. The
resulting lack of orthogonality might however deteriorate the
coherence of the basis with the sensing vectors, see [17].

2) Advanced Fixed Priors: Other approaches to enhance
compressed sensing reconstruction impose further constraints
beyond sparsity. For instance, wavelets coefficients can be
optimized in a scale-by-scale fashion [18] and positivity or a
total variation constraint can be enforced [19].

One can use more advanced signals models not based on spar-
sity but rather on low dimensional smooth manifolds [20], [21],
union of subspaces [22], or block-sparsity [23], [24].

3) Adaptive Priors: A fixed prior does not take into account
the time-frequency structures of natural sound or the geometry
of edges that is different in each image. Adaptive reconstruction
can be obtained using an iterative nonlocal regularization [25],
[26]. It is possible to learn an adaptive sparsity prior together
with the sensing matrix [27], which extends the initial idea of
learning the sensing vectors alone [28].

In these adaptive methods, an iterative algorithm computes
both the recovered signal and parameters that control the regu-
larization prior to match the patterns of the signal. In this paper,
we also propose to use an adaptive reconstruction method, but
within the setting of sparsity in orthogonal bases. The sparsity
is increased by selecting an optimized orthogonal basis in a tree
structured dictionary.

D. Contributions and Outline of the Paper

Section II recalls the basics of compressed sensing and
reconstruction. Section III details the main contribution of this
paper, which the best basis extension of compressed sensing,
together with a fast algorithm to perform an approximate
minimization. This new framework minimizes an energy on
both the signal to recover and on the basis that sparsifies this
signal. The exploration of both the set of signals and the set
of bases is, however, not tractable numerically. A fast iterative
algorithm is, thus, derived from a series of surrogate functionals
that progressively estimates the best basis. Section IV recalls
best basis selection in a tagged tree structured dictionary, that
is required to make our best basis compressed sensing fast.
Sections V–VII show numerical applications using 1D and 2D
dictionaries which show the performance of our scheme on
synthetic and natural data.

II. COMPRESSED SENSING

1) Compressed Sensing Acquisition and Recovery: Com-
pressed sensing acquisition computes a fixed set of linear mea-
surements of an unknown high resolution signal with

with

The price to pay for this compressed sensing strategy is a
nonlinear reconstruction procedure to recover from the
compressed representation .

The sparsity of in a given orthogonal basis
of is measured by using the pseudonorm , where

and

This sparsity can be used to recover a signal that is a solution of
the following minimization

(1)

The minimization (1) is however combinatorial and, thus, in-
tractable. It is relaxed by using the norm of the coef-
ficients of in . The recovered signal is
a solution of the following convex problem:

subject to (2)

2) Sparsity and Incoherence: Compressed sensing theory re-
quires two constraints for this recovery to be efficient:

— Sparsity: the signal should be sparse in the basis . It
means that can be represented using only a small number

of atoms from

(3)

The theory extends to signals that are well approximated
with a signal that is -sparse in .

— Incoherence: the sensing vectors should be as dif-
ferent as possible from the sparsity vectors . This
is ensured by monitoring the -restricted isometry constant

, which is the smallest such that

(4)

for any -sparse signal .
One should note that although the sparity assumption (3) con-
strains the pseudo-norm of , the actual recovery process
(2) optimizes the norm. This is important since the norm
is convex, which leads to a tractable optimization problem with
fast algorithms, see [29].

The following recovery theorem ensures the perfect recovery
using the minimization.

Theorem 1 [1], [2], [30]: If is -sparse in as defined
in (3) and if the sensing matrix satisfies , the
solution of (2) satisfies .

This theorem ensures that there is an unique solution to (1)
and that it coincides with the solution of (2). It extends to the
recovery of an approximately sparse signal, in which case

is comparable with the best -terms approximation of in
the basis .

3) Random Sensing Matrices: The allowable sparsity for
which needs to be large enough for Theorem
1 to be useful. For several random matrix ensembles, this is
actually the case with high probability on the random matrix.
For instance if the entries of are drawn independently from
a Gaussian distribution of variance ,
ensures with high probability. This result extends
to other kinds of random distributions, see, for instance, [1]–[4],
[31], and [32].
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In this paper, following for instance [33], we consider a fast
sampling operator , where and are
realizations of a random permutation of the entries of a vector
in , is a 1D or 2D orthogonal Hadamard transform, and

selects the first entries of a vector, see [34] for a definition
of the Hadamard transform and its fast implementation. Such a
random sensing operator is computed in opera-
tions, which is important to process high dimensional data.

4) Robust Compressed Sensing: To deal with noisy measure-
ments , where is a bounded noise , one
can turn the constrained formulation (2) into a penalized varia-
tional problem

where (5)

(6)

where the Lagrange multiplier should be set so that
. Compressed sensing theory extends to this noisy set-

ting, since the recovery error is of the order of the
noise level , see [4] and [35].

III. BEST BASIS COMPRESSED SENSING

Fixed bases are not efficient enough to sparsify sounds and
natural images, and more redundancy is required. This section
extends the recovery process (5) to a dictionary of orthogonal
bases, the union of which contains a large collection of atoms.

A. Dictionaries and Lagrangian

1) Dictionaries of Orthogonal Bases: A dictionary is a set
of orthogonal bases of .

Instead of using an a priori fixed basis such as the wavelet or
Fourier basis, one chooses a parameter adapted to the
structures of the signal to process and use the basis .

This dictionary defines a highly redundant set of atoms
. One could use directly this set to reconstruct

a signal from compressive measurements, but this is numerically
intractable for large signals or images. Restricting the sparsity
to orthogonal bases leads to fast algorithms for structured dic-
tionaries such as those considered in Section IV.

2) Tree Structure: To enable the fast optimization of a pa-
rameter adapted to a given signal or image to process, we
impose that each is a tree, that is a subset of the larger tree

. Typical examples use the tree to index a segmentation of
either space (local cosine bases detailed in Section V) or scale
(wavelet packets detailed in Section VI). Each node in a tree
corresponds to a refinement in the segmentation.

3) Lagrangian and Adapted Basis: A best basis adapted
to a signal or an image is optimized to obtain the best
possible approximation of for a given sparsity, as measured
by the norm. This constrained formulation is turned into an
Lagrangian unconstrained optimization problem by minimizing
a Lagrangian

(7)

and where . The variable is a Lagrange
multiplier that weights the quality of approximation in the
chosen basis with the sparsity of the expansion.

The following lemma characterizes the best basis together
with the best -penalized approximation in this basis. Its proof
can be found for instance in [9].

Lemma 1: The minimizer

(8)

where the soft thresholding operator is defined as

(9)

The soft thresholding defined in (9) computes the best
approximation of a signal . The Lagrangian can
thus be written as a sum over the atoms of

where
if

otherwise.
(10)

B. Best Basis Compressed Sensing Reconstruction

1) Best Basis Regularization: Compressed sensing is ex-
tended to a dictionary of bases by imposing that the recov-
ered signal is sparse in at least one basis of . The original
recovery procedure (5) is extended to this new setting by per-
forming the minimization both on the signal to recover and on
the basis

(11)

where the energy is defined in (5).
2) Informal Discussion About Best Basis Regularization: For

several models of sounds and natural images, best basis methods
have been shown either experimentally or theoretically to out-
perform fixed representations to sparsify the data. Although for
the moment no theory is able to assess the performance of an
adaptive minimization such as (11), Sections V–VII show nu-
merically that the increase of sparsity obtained with best basis
computations translates to an increase of performances for the
regularization of compressed sensing reconstruction.

We believe that the effectiveness of best basis regularization
for compressed sensing comes in large part from the random-
ness of the measurements, which translates, as already noticed
by Donoho et al. [33], on reconstruction artifacts being close
to Gaussian white noise during an iterative thresholding recon-
struction method. This key feature is very different from the kind
of artifacts obtained for nonrandom sensing schemes, such as
Radon transform in tomography or low pass filtering in optical
imaging system. This results in a high incoherence between the
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residual noise with the sparsity vectors of during our re-
construction scheme. This incoherence allows us to efficiently
estimate an adapted basis with an iterative scheme without prior
knowledge about the signal to reconstruct.

C. Surrogate Functionals

Searching in the whole dictionary for the best basis pa-
rameter that minimizes (11) is not feasible for large
dictionaries, which typically contain of the order of bases.
Furthermore, the under-determinancy of creates coupling in
the nonlinear set of equations involved in the minimization of

.
To solve this issue, we relax the energy minimization (11)

and define an approximate energy that is simpler to minimize.
If one has some estimate of the solution , the energy can
be replaced by the following surrogate functional that depends
on

Such a surrogate functional is introduced by Daubechies et al.
[36] to derive an iterative thresholding algorithm that solves the

regularization of inverse problems.
As long as , the surrogate energy is a smooth,

strictly convex, modification of the original energy . Further-
more

It is thus reasonable to use as a proxy for the original mini-
mization (11), which leads us to consider, for a fixed

(12)

The following proposition shows that this surrogate minimiza-
tion diminishes the energy .

Proposition 1: If , one has for all

Proof: Condition ensures that

so that

One thus has

The following theorem ensures that the minimization (12) is
easily solved using a best basis search and a soft thresholding.

Theorem 2: The minimization (12) has a global minimum
which is given by

where (13)

where the Lagrangian is defined in (7) and the soft thresh-
olding operator is defined in (9).

Proof: The energy is expanded as follows:

where is independent of and . Up to multiplicative and
additive constants, one has

The result of the theorem follows from lemma 1.
Equation (13) shows that the parameter is the best basis

parameter of the modified guess . It also shows that is
obtained by thresholding in that basis. The best parameter

is thus found by optimizing a Lagrangian , which can
be achieved with a fast algorithm, as explained in Section IV.

D. Best Basis Compressed Sensing Algorithm

The minimization of over is replaced by
the minimization of a set of surrogate functionals
where is the current estimate of the solution at iteration .
Starting from an initial pair , this defines

(14)

Algorithm 1 details the step by step implementation of (14), that
is derived from (14) using Theorem 2. The steps of the algorithm
are repeated until a user defined tolerance is reached. In the
noiseless setting , one can still use this algorithm and
decay the value of toward zero during the iterations, in
a fashion similar to the Morphological Components Algorithm
(MCA) algorithm [37].

Algorithm 1: Best-Basis Compressed Sensing Algorithm

Initialization.: Set , .
repeat

Update the estimate: .

Update best basis: . This

minimization is detailed in Section IV.

Denoise the estimate: , where
is the threshold operator defined in (9).

until ;
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Fig. 1. Examples of quad-tree �.

This algorithm extends to a best basis setting the iterative
thresholding algorithm that has been proposed by several au-
thors to solve inverse problems such as (5), see, for instance,
[36], [38], and the references therein.

1) Convergence of the Algorithm: For a single basis , con-
dition ensures that this iterative thresholding con-
verges to a solution of (5), see [36]. This condition can in fact
be relaxed to , see [38]. In contrast to the fixed
basis setting, the iterations of (14) that require a best basis search
are difficult to analyze. Proposition 1 shows that the energy

is decaying through the iterations and thus con-
verges to some limit value. Since this energy is nonconvex in

, nothing more can however be said about the convergence
of the iterates .

In theory, nothing prevents the best basis parameter to
cycle through a series of limit bases, but this was never the case
in the numerical experiments performed in Sections V-B, VI-B,
and VII-B. We always observed that converged to its final
value after a small number of iterations, that is of the order
of 10 to 20 for natural sounds and images. Once this final regime
is attained, one can use classical results about the convergence
of iterative thresholding algorithms, that show for instance that
the energy is decaying at speed through
the iterations, see [38].

We note that since the objective to minimize is nonconvex
and there is no convergence guarantee, a different initialization

might lead to a different sequence of bases , and hence
a different final result. Although this is indeed the case, we did
not observed in our numerical tests significant improvement of
using alternate initialization strategies with respect to setting

.

IV. BEST BASIS COMPUTATION

This section reviews a best basis framework common to the
dictionaries used in the numerical experiments of this paper.
These dictionaries enjoy a hierarchical tree structure, which
makes the computation of the best basis in Table 1 fast. This
framework does not cover the special case of nonstationary
wavelet packets, detailed in Section VI that requires a more
advanced procedure, see [12].

A. Tree Structured Dictionaries

1) Structure of the Atoms: This paper focusses on dictio-
naries having a multiscale tree structure. The atoms of

span subspaces of for scales
and position , that obey a refinement relationship

the sum being orthogonal.
Each subspace has dimension and is equipped

with one or several orthogonal bases indexed by a token

(15)

2) Structure of an Orthogonal Basis: The parameter that
indexes a basis is a binary tree (for 1D signals, where

) or a quad-tree (for 2D, where ). The set of nodes
of is denoted as and each node is located
at some level and position . A node

is thus located in the row and the column of the
tree. Each interior node has children

. The leaves nodes
have no child.

A basis is obtained by aggregating bases defined in
(15) for that are leaves of , and for a specific choice

of token at each node of the tree

Fig. 1 shows an example of such a tagged quad-tree .
When one does not care about the location of the basis ele-

ments in the tree, the basis is written as where
the index is with and

.
3) Examples of Dictionaries for Sounds and Geometrical Im-

ages: Sections V–VII detail three kinds of dictionaries adapted
to various signals and images structures.

— The local cosine dictionary [9], [10] is used to process
highly oscillating signals such as music and
speech audio data. The binary tree segments the time
axis in order to match the variations of the local frequen-
cies in the sound. In this case since there is no need
for additional information beside the spatial segmentation.

— The nonstationary wavelet packets dictionary [11], [12]
is used to process signals that require an arbitrary
tiling of the scale axis. The nonstationary cascade of fil-
terings also allows to adapt the basis functions through the
scales. In this case, indicates the
index of a wavelet filter that is used to subdivide the fre-
quency axis. The particular case of wavelet packets [10] is
obtained for .

— The bandlet dictionary [8], [15] is used to process im-
ages with geometric features such as edges or
directional textures. The quad-tree segments the square

into subsquares of size . A
leaf node defines the local bandlet transform
and caries a geometrical information token

. A token is defined over a
geometrical square in which the bandlet vectors are
elongated and follow the angle that approximates
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Fig. 2. A dyadic tree� defining a spatial segmentation (left) ; some local cosine
basis functions � of the basis � (right).

the orientation of the closest edge. A token is de-
fined in isotropic square that corresponds to regions
where no edge is present.

Other classes of dictionaries include bases composed of atoms
with rapidly varying oscillations such as the modulated bases of
Coifman et al. [39] and the chirplets of Candès [40].

B. Dynamic Programming for Best-Basis Computation

A fast best basis search algorithm makes use of the tree struc-
ture of and the fact that the Lagrangian to min-
imize is split as a sum over the coefficients of the decompo-
sition (10). It was originally presented by Coifman et al. [10]
and is a particular instance of the Classification and Regression
Tree (CART) algorithm of Breidman et al. [41] as explained by
Donoho [42].

Algorithm 2 details the implementation of this fast best basis
search. This algorithm does not work for nonstationary wavelet
packets, which require a more complex optimization procedure
described in [12].

Algorithm 2: Best-Basis Selection Algorithm

for , , do

Compute .

for , do

Compute .

for do

for do

, ,

for .

if then
Declare as interior .

if then
Declare as leaf .

Update .

This algorithm requires the decomposition of onto each
atom for all values of , and the computation
of Lagrangians that depends on these inner products. For
several multiscale dictionaries, such as those considered in this
paper, fast algorithms perform this computation opera-
tions, where is the total number of atoms in . The re-
sulting complexity is thus , where
for the local cosine and stationary wavelet packets, and is
the number of orientations in the bandlet dictionary.

Fig. 3. (a) Synthetic sound signal with 30 random cosine atoms � � ����.
(b) Recovery using a fixed cosine basis. (c1) First iteration of the best basis
recovery algorithm, � � ���. (c2) Iteration � � �. (c3) Iteration � � ��.

C. Settings for the Numerical Results

The following sections detail several dictionaries of orthog-
onal bases. The performance of these dictionaries is illustrated
for compressed sensing recovery using the same numerical ex-
periments. The recovery success is measured using

PSNR

where the signal is assumed to take values in . This re-
covery error is measured for various values of the sensing rate

. Three kinds of recoveries are compared:
— Recovery using a fixed basis (for instance fixed local DCT

or fixed orthogonal basis) using the original optimization
(2).

— Recovery using the oracle best-basis estimated
from the original signal . This is an upper-bound for the
performance of our method since the knowledge of this
basis is not available in practice.

— Recovery using the algorithm of Section III-D, that esti-
mates iteratively the best basis.

Experiments are performed on noisy measurements
where is a Gaussian white noise of variance . The noise

level is supposed to be known, and the regularization pa-
rameter is adjusted so that the residual final error satisfies

. For noiseless experiments where ,
we still use our iterative thresholding algorithms, but decay lin-
early the threshold to 0 during the iterations, which is
similar to the approach used in the Morphological Component
Algorithm of Starck et al. [37]. We used a relaxation parameter

for the iteration.

V. BEST LOCAL COSINE BASIS COMPRESSED SENSING

A. Adapted Local Cosine Transform

A local cosine basis is parameterized with a binary tree
that segments the time axis in dyadic intervals, see [9] and [10].
Each leaf node corresponds to a selected interval
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Fig. 4. (a) Sound signal of a tiger howling, together with the best spatial
segmentation � � �����. (b) Recovery using fixed local cosine basis
� � ��� ��	
� � ���� ���. (c) Recovery using best cosine basis
� � ��� ��	
� � ����� ���.

, where . For each of these
leave node, the local cosine basis vectors are defined as

where is a smooth windowing function that satisfies some
compatibility conditions [9].

The decomposition of a signal on the vectors of some
basis is computed in using fast Fourier
transforms. A best basis that minimizes (7) is computed
in operations using Algorithm 2. Fig. 2 shows
some examples of basis vectors.

B. Numerical Results

A synthetic sparse signal is generated using
a random local cosine basis and a random signal of spikes

with , see Fig. 3(a). We use
here noiseless measurements . The signal recovered
by the nonadaptative algorithm of Section III-D in an uniform
cosine basis is significantly different from the original,
Fig. 3(b). This is due to the fact that is less sparse in ,
since and . During
the iterations of the algorithm presented in Section III-C, the
estimated best basis evolves in order to match the best
basis , see Fig. 3, (c1–c3). The recovered signal in (c3)
is nearly identical to . We note however that the segmentation

optimized by our algorithm differs slightly from the original
segmentation . In particular one can notice an oversegmen-
tation of the leftmost interval, where the recovered signal is
small but not vanishing, on the contrary to the original signal .

In Fig. 4 one can see a sound of a tiger howling, together with
the signals recovered using a fixed fully subdivided local DCT
basis and the best basis recovery algorithm of Section III-C.
We use here noisy measurements , with

. Although the final adapted basis is not the same as
the best basis of the original signal, it still provides an improve-
ment of 2 dB with respect to a fixed spatial subdivision. Fig. 5
shows for various rates of sensing the recovery error, confirming
that the iterative algorithm does not perform as good as the or-
acle best basis computed from .

Fig. 5. Recovery results for the signal of Fig. 4 for various rate of sensing��� ,
in the noiseless setting � � �� .

VI. BEST NONSTATIONARY (NS) WAVELET PACKET

COMPRESSED SENSING

A. Adapted NS Wavelet Packet Transform

The NS wavelet transform and its extension to wavelet
packets was introduced by Cohen et al. [11]. We give the
definition of a NS wavelet transform which corresponds to
the decomposition in an orthogonal basis parameterized by a
tagged binary tree . This tree structured dictionary is more
general than the trees considered in Section IV-A because a
token is associated to each node
and not only to leaves . The corresponding best
basis algorithm is thus a generalization of Algorithm 2 that is
detailed in [12].

The NS wavelet packet dictionary depends on the choice of a
set of low pass quadrature mirror filters,
to which is associated the high pass filters

.
1) NS Wavelet Packet Transform: The decomposition of

in a NS wavelet packet basis iteratively computes
by traversing the nodes of the tree from top

to bottom and computing

(16)

where is the subsampling by two operator. The coefficients
computed on the leaves correspond to the projection of on the
vectors of

This forward NS wavelet packet transform is computed in at
most operations for a signal . A best
basis defined by (7) adapted to some signal is com-
puted using a fast best-basis search introduced by Peyré and
Ouarti [12]. The complexity algorithm is for

(which corresponds to the traditional wavelet packets)
and for .

B. Numerical Results

In our tests, the NS wavelet packet dictionary is built using
a family where and where is the
Daubechies orthogonal filter with vanishing moments.
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Fig. 6. (c) Original signal� � ����. (d) Recovery using orthogonal wavelets,
� � ��� ��	
� � ������. (e) Recovery using best wavelet packets basis
� � ��� ��	
� � ����� ��� the corresponding dictionary tree is shown
in (a). (f) Recovery using best NS wavelet packets basis � � ��� ��	
� �
����� ��� the corresponding dictionary tree is shown in (b).

Fig. 6(c)–(e) shows a comparison of the recovery using the
Daubechies wavelets corresponding to , the wavelet packets
dictionary which corresponds to and the NS wavelet
packets dictionary which corresponds to . The signal

is the superposition of a piecewise-
regular signal and a sinusoid with high frequency . We use here
noiseless measurements . Fig. 6(a) shows the index
of the best NS wavelet packets basis, which is able to capture
both the high frequency content of while minimizing
the number of large coefficients created by the singularities of

.
Fig. 7 shows another example of recovery using wavelets, the

wavelet packets and the NS wavelet packets dictionaries. The
signal has dimension and is the superposition of
chirps and spikes

for , where and
, where the are random position,

are random weights and are random widths.
We use here noisy measurements with

. The best NS wavelet packets basis is able to better
recover both the high frequency oscillations of the chirps and
the localized spikes than fixed representations.

VII. BEST BANDLET BASIS COMPRESSED SENSING

A. Adapted Bandlet Transform

The bandelet bases dictionary was introduced by Le Pennec
and Mallat [8], [14]. Bandlets perform an efficient adaptive ap-
proximation of images with geometric singularities, such as the
cartoon image in Fig. 9, left. This transform has been refined
by Mallat and Peyré [15], [16] to obtain a dictionary of regular

Fig. 7. (a) Original signal � � ����. (b) Recovery using orthogonal wavelets
� � ��� ��	
� � ���� ���. (c) Recovery using best wavelet packets
basis � � ��� ��	
� � ����� ���. (d) Recovery using best NS wavelet
packets basis � � ��� ��	
� � ����� ���.

Fig. 8. Left: example of dyadic subdivision of ��� �� in squares � ; right:
corresponding quad-tree �.

and orthogonal basis functions. We present a simplified ban-
dlet transform inspired from [16]. This implementation results
in a decomposition similar to the wedgelets of Donoho [13] but
within the framework of a dictionary of orthogonal bases.

The quadtree that parametrizes the bandelet basis de-
fines a segmentation

where each is a square of size . Fig. 8 shows an
example of such a dyadic subdivision.

The subimage extracted from
the square is retransformed according to the value of the
token . If , it means that no edge is present in and
an orthogonal 2D wavelet transform is applied to to obtain

. If , an edge passes through with a direction
close to the angle . Then a 1D directional
wavelet transform is applied to to obtain . This transform
is computed by ordering the pixels of along the direction
and then applying a 1D Haar transform, as described in [16].
Fig. 9(c) and (d) shows this directional wavelet transform. The
resulting coefficients correspond to projections of on the
bandlet vectors of the basis

Keeping only a few bandelet coefficients and setting the others
to zero performs an approximation of the original image that
follows the local direction , see Fig. 9(f).

A best basis defined by 7 adapted to some function
is computed using a fast best-basis search introduced by Mallat
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Fig. 9. (a) A geometric image together with an adapted dyadic segmentation.
(b) A square � together with its adapted direction � . (c) The 1D signal
obtained by reordering the pixels of �� along direction � . (d) The 1D Haar
coefficients � of �� . (e) The 1D approximation obtained by reconstruction
from the 20 largest Haar coefficients. (f) The corresponding square approxi-
mated in bandelet.

Fig. 10. Recovery results for various rate of sensing ��� , in the noiseless set-
ting � � �� .

Fig. 11. (a,a’) Original image. (b) Compressed sensing reconstruction using
the translation invariant wavelet frame � � ��� ����	 � 
��� ��.
(c) Reconstruction using iteration in a best bandlet basis ����	 � 
��
 ��.
(b’) Wavelet frame ���	 � ���� �. (c’) Bandlet basis ���	 � �
�� �.

and Peyré [15]. Fig. 11 shows an examples of such adapted seg-
mentations.

B. Numerical Results

The geometric image depicted in Fig. 11(a), (a) is used to
compare the performance of the original compressive sensing
algorithm in a wavelet basis to the adaptative algorithm in a best
bandlet basis. We use here noisy measurements
with . We use a translation invariant 7/9
wavelet tight frame, which is more efficient for inverse prob-
lems than orthogonal wavelets. Since the wavelet basis is not
adapted to the geometric singularities of such an image, recon-
struction (b) has ringing artifacts. The adapted reconstruction
(c) exhibits fewer such artifacts since the bandlet basis func-
tions are elongated and follow the geometry. The segmentation
is depicted after the last iteration, together with the chosen di-
rections that closely match the direction of the edges of .
Fig. 11, (a’–c’) shows the recovery results for a natural image
containing complex geometric structures such as edges, junc-
tions and sharp line features. The best bandlet recovery is able
to resolve these features efficiently.

Fig. 10 shows the recovery error for various sensing rates, in
the noiseless setting . For low rate ( close to 0), the
basis estimated by the iterative algorithm is not as good as the
oracle basis estimated from . For higher rates, the algorithm
is able to find the underlying geometry efficiently and the algo-
rithm performs as good as the oracle basis.

VIII. CONCLUSION

This paper tackles the problem of improving the reconstruc-
tion from compressed sensing measurements. The proposed
method extends compressed sensing recovery to the setting
where the sparsity is imposed in a tree structured dictionary of
orthogonal bases. This best basis adaptive prior enhances the
sparsity of the signal to recover with respect to fixed priors in
an orthogonal basis. An iterative algorithm minimizes a vari-
ational energy over both the signal to reconstruct and the best
basis parameter. Numerical results show that this approach is
successful for natural sounds and geometric images that contain
a broad range of sharp transitions. Future research directions
include the application of this best basis regularization to other
linear inverse problems.
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