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Abstract: A hyperbolic wavelet concept that can be used to describe, represent, and identify
signals belonging to the space of functions H2 on the unit disc is constructed. The wavelet is
derived as the voice-transform belonging to the unitary representation of the Blaschke group
upon H2 on the disc. An alternative for discretization is also proposed and an efficient algorithm
is constructed to compute the wavelet coefficients.
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1. INTRODUCTION

Representations of discrete-time signals in the frequency
domain are used in many fields, e.g. in detection of phe-
nomena and changes in systems, system identification, and
control design. These representations result in complex
analytic functions defined on the unit disc. An important
class of these functions is the Hardy space H2 that can be
considered as the space of signals carrying finite energy.
The identification of H2 signals are usually based upon
physical measurements that can be interpreted as discrete
points on the boundary, i.e. the unit circle. Convenient
methods for system identification can be obtained in the
case when an orthogonal basis of the H2 space is used. Be-
sides the standard trigonometric basis, further orthogonal
bases can be generated starting from rational functions,
this concept leads to the generalized orthogonal bases
(GOBs) – see e.g. Heuberger et al. (2005). The GOBs can
perfectly be used in system identification in the case when
a priori information is available with respect to the loca-
tions of system poles. Inaccurate knowledge of the pole-
positions results in infinite series representations, while
approximate knowledge hopefully results in fast decay of
the representation coefficients.

Wavelet-type constructions can be a promising opportu-
nity to obtain representations in the space H2 without
making definite presumptions on the system poles; instead
tracing the system poles with some type of dilation and
translation, similar operators that are used in the con-
ventional wavelet theory applied in the function space L2

(Daubechies, 1988).

In this paper a hyperbolic wavelet transform is proposed
on the conceptual base of the unitary representations of
the Blaschke (hyperbolic) group on the function space
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H2(D) – where D denotes the unit disc – with the purpose
of representing signals belonging to this space, as well
as using them in solving detection, system identification,
and control problems. After a brief introduction into
generalized orthogonal bases the concept of the wavelet-
transform will be introduced, and will be extended on the
basis of group theoretic principles that will lead to the
notion of hyperbolic wavelets. Finally a discrete hyperbolic
wavelet scheme will be constructed, which facilitates the
practical computations. Other approaches of hyperbolic
wavelet constructions – starting from different conceptual
base – can be found in Papandreou-Suppappola et al.
(1998); Luo et al. (2002).

2. SIGNAL REPRESENTATIONS IN RATIONAL
ORTHOGONAL BASES

Frequency-domain description of discrete-time finite-energy
signals is associated with the spectral function X(eiω)
(where ω denotes the circular frequency) of a sequence
(xt, t ∈ N) belonging to the sequence-space ℓ2. Let D and
T denote the unit disc and the unit circle, respectively:

D := {z ∈ C : |z| < 1}, T := {z ∈ C : |z| = 1}.
It is known, that the spectral function X(eiω) can be
obtained by the transform of the sequence (xk, k ∈ N) ∈
ℓ2:

X(z) =
∞
∑

k=0

xkz
k z ∈ D, (1)

and X belongs to the Hardy–space H2(D). Replacing z by
z−1 on the righthand side of (1) we get the z–transform
as it is known in the technical literature. Moreover for a.e.
ω ∈ [−π, π] the limit function

X(eiω) := lim
r→1

X(reiω) (2)

exists and belongs to the space L2[−π, π]. This function
has a representation in the standard trigonometric system

X(eiω) =
∞
∑

k=0

xke
ikω (ω ∈ [−π, π]), (3)
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where the series converges in L2[−π, π] norm.

Alternative bases can be obtained by involving parameter
a ∈ D in the form 1−az into the z-transform. It can easily
be verified that the system (1 − az)−n (z ∈ D, n ∈ N)
with pole a∗ = 1/a outside D is complete in H2(D).
Nevertheless, we have the opportunity to orthogonalize
it by applying the Gram-Schmidt procedure, in such a
way an orthogonal basis can be obtained. Assuming one
pole or a complex conjugated pair results in the Laguerre
and the Kautz systems, respectively. The procedure can
be generalized to more poles, which leads to the concept
of generalized orthogonal bases.

The Laguerre and Kautz systems and their generalizations
can simply be constructed within the framework of the
Takenaka-Malmquist system invented by S. Takenaka and
F. Malmquist independently of each other in 1925, and
was introduced into the field of system identification by
Ninness and Gustafsson (1994).

To introduce the Takenaka–Malmquist system, let us first
define the notions of the Blaschke function and Blaschke-
product. The Blaschke function is defined in H2(D) as

Ba(z) :=
z − a

1 − az
(z ∈ C, a ∈ D), (4)

where a is called the parameter of the Blaschke-function.
The parameter a is identical to the zero and a∗ = 1/a is
the pole of Ba.

The most important feature of the Blaschke function is
that Ba : T → T and Ba : D → D are bijections, as a
consequence the Blaschke functions to be inner functions
in the space H2(D).

The Blaschke-product for the parameter sequence a =
(an, n ∈ N) is defined as

B
a|n(z) :=

n−1
∏

j=0

Baj (z).

The system of functions

φ0(z)
.
=

√

1 − |a0|2
1 − a0z

φn(z)
.
=

√

1 − |an|2
1 − anz

B
a|n(z)

(n ∈ N) is called the infinite Takenaka–Malmquist system
generated by a. It has been shown that this system
forms an orthonormal system. The necessary and sufficient
condition of the completeness is

∞
∑

n=0

(1 − |an|) = ∞.

It can be observed that the Blaschke product that is used
to generate the successive basis elements plays similar role
as the powers of z in the standard basis.

The Takenaka–Malmquist system spans a subspace of
rational functions of the H2(D) space. This system is called
generalized orthogonal basis (GOB), or – since it consist
of rational functions – it is referred as rational orthogonal
basis (ROB) in the literature.

A useful class of GOB is generated by periodic sequences.
In this case the sequence a is obtained by the periodic rep-
etition of a finite number of parameters a0, a1, . . . , aN−1 ∈
D, i.e. an = ak if n = ℓN + k (ℓ ∈ N, k = 0, 1, . . . , N − 1).
The system φn generated by the periodic sequence a is of
the form (see e.g. Soumelidis et al. (2002b))

φn = φkB
ℓ
a|N (n = ℓN + k, ℓ ∈ N, k = 0, 1, . . . , N − 1).

In the particular case of N = 1 and a0 = a the discrete
Laguerre-system

φn(z) =

√

1 − |a|2
1 − az

Bna (z),

and if N = 2 and a0 = a, a1 = a the Kautz-system is
given.

One of the most significant features of the representations
in GOBs arises from the a priori information that is
needed in association with the signal or system considered,
namely the precognition of the poles associated with
the system dynamics. It has been proved that in the
case of exact knowledge, finite representation is obtained,
approximate knowledge results in infinite series with fast
convergence (Soumelidis et al., 2002b), i.e. low number of
representation coefficients significantly differing from zero.

To apply GOP representations in practical problems re-
quires discrete numerical algorithms. An efficient numer-
ical algorithm to compute the representation coefficients
can be obtained by using the notion of the argument
function to generate a discretization scheme that gives
the opportunity to apply Fast Fourier Transform (FFT)
Soumelidis et al. (2002b)). The specific discretization
scheme that is used needs non-uniformly spaced samples
in the frequency domain, depending on the shape of the
argument function associated with the Blaschke functions
belonging to the system poles.

The fact that GOB representation can efficiently be used
when a priori knowledge is available of the system dynam-
ics can also be considered as a drawback of the method.
GOB methods require the application of some kind of non-
parametric estimation method of the system poles. There
is a great variety of identification methods – conventional
and modern ones – operating in the frequency domain
that can be used. In many cases approximate knowledge
on system dynamics is sufficient to solve the particular
problem, e.g. in the case of change detection. If the ap-
proximate knowledge is not enough the refinement of the
pole locations should be performed; an algorithm to realize
it has been proposed in Soumelidis et al. (2002a).

The demand for finding non-parametric forms in con-
nection with the GOB representations that can be used
without the need of a priori knowledge suggests to direct
the theory – by analogies with signal processing meth-
ods in time- and joint time-frequency domain – toward
developing wavelet -like constructions. The generalization
of the GOB representations in this direction provides the
opportunity to obtain more general identification methods
of the system dynamics.

3. DEVELOPING WAVELETS

The wavelet transform – first formulated in the field of
geophysics Goupillaud et al. (1984), than improved by
Meyer (1990), Mallat (1989), and Daubechies (1988) –
gained numerous applications in several areas of science.
Its success in applying it in signals and systems theory
raises – among others – from its localization capabilities
both in the time and frequency domain of signals. The
conventional wavelets has been constructed to handle
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signals belonging to the L2(R) space. The central idea of
this paper is to extend the wavelet concept to the signal
space H2 that – if some localization properties are realized
– gives the opportunity of localizing system poles, hence
solving problems of system identification. In this section
a brief introduction will be given into the conventional
wavelet theory, than the concepts will be generalized, and
in this basis a new wavelet concept will be constructed
working on signals that belong to the function space H2.

3.1 The continuous wavelet transform

The continuous wavelet transform on a function f ∈ L2(R)
is formed by taking translation and dilation of a function
ψ named the mother wavelet ; the integral operator with
the kernel

ψpq(x) :=
ψ((x− q)/p)√

p
(x ∈ R, p ∈ (0,∞), q ∈ R) (5)

is called wavelet transform:

(Wψf)(p, q) :=
1√
p

∫

R

f(x)ψ((x − q)/p) dx = 〈f, ψpq〉

(p > 0, q ∈ R, f ∈ L2(R), (6)

where 〈·, ·〉 means the inner product of the Hilbert-space
L2(R). A reconstruction formula also exists, under some
conditions concerning ψ, the function f ∈ L2(R) can
be reconstructed from its wavelet transform Wψf . To
ensure the existence of the wavelet transform and its
inverse the mother-wavelet ψ should satisfy some type
of admissibility conditions, expressing it qualitatively: ψ
should be localized in its independent variable. See for
more detailed introduction on the continuous wavelet
transform in Chui (1992) and Daubechies (1992).

3.2 Generalization of the wavelet concept

To generalize the concept let us consider the trigonometric
Fourier transform. By applying the operator (Utg)(x) =
eitxg(x) (t, x ∈ R) the Fourier-transform can be expressed
in the form

(Ff)(x) =

∫ ∞

−∞

f(x)e−itx dt = 〈f, Ut1〉 (x ∈ R) (7)

The Fourier-transform is considered – according to the
Plancherel theory – as an operator F : L2(R) →  L2(R).
The operator Ut : R → R is an unitary representation of
the group (R,+) in the Hilbert-space H = L2(R) (see e.g.
Wawrzyńczyk (1984) for details on group representations),
if it satisfies the following conditions:

(i) Us((Ut)) = Us+tf (f ∈ H, s, t ∈ R)
(ii) 〈Usf, Usg〉 = 〈f, g〉 (s ∈ R, f, g ∈ H)
(iii) For every f ∈ H s→ Usf is a

continuous mapping from R toH.

(8)

The properties (8) introduced for the Fourier-transform
can be generalized by considering any topological group
(G, ·) and its unitary representation Ux : H → H (x ∈ G)
by (Vφf)(x) := 〈f, Uxφ〉 (x ∈ G, f, φ ∈ H)

that is called the voice-transform belonging to the unitary
group-representation (see for a detailed introduction in
Heil and Walnut (1989)). The voice-transform is a meta-
transform, it results in several transforms by applying it to
several groups; some group – transform pairs can be seen
as follows:

• Heisenberg group – Gabor transform,
• affine group – conventional wavelet transform,
• Blaschke group – hyperbolic wavelet transform.

The latter one will be introduced as the main subject of
the current paper.

3.3 The affine transform of R

In the continuous wavelet transform (3.1) the mother-
wavelet ψ is dilated and translated by the parameters (p, q)
as it can be verified in (5). In the wavelet transform ψ is
submitted to an affine transform. The affine transform can
be formulated as follows:

ℓa(x) := px+ q

(x ∈ R, a := (p, q) ∈ A := (0,∞) × (−∞,∞)).

The set of affine maps (ℓa, a ∈ A) form a group with
respect to function composition. The identity element of
this group is the map

ℓe(x) := x (x ∈ R, e = (1, 0) ∈ A),

while the inverse element of ℓa is the inverse function of
this map,

ℓ−1
a = ℓa−1 ,

where a−1 := (1/p,−q/p) if a = (p, q) ∈ A. Introducing a
group operation on A by

a1 ◦ a2 := (p1p2, q1 + p1q2) (aj := (pj , qj) ∈ A, j = 1, 2)

we get a group (A, ◦) isomorphic to the group of affine
maps, i.e.

ℓa1 ◦ ℓa2 = ℓa1◦a2 .

Let us consider the Hilbert-space (H, 〈·, ·〉), and let U
denote the set of unitary bijections U : H → H , i.e. the
elements of U are bounded linear operators that satisfy

〈Uf, Ug〉 = 〈f, g〉 (f, g ∈ H),

that is identical to property (II) in (8). The set U with the
composition operation (U ◦ V )f := U(V f) (f ∈ H) forms
a group. The neutral element is the identity operator of
H , denoted I, and the inverse element of U ∈ U is the
operator U−1, which is equal to the adjoint operator U∗.
If the remaining properties (I) and (III) in (8) are also
satisfied, the homomorphism of the group (G, ·) onto the
group (U , ◦) is called the unitary representation of (G, ·)
in H .

The wavelet transform can be defined on the basis of the
operators

Uaf :=
1√
p
f ◦ ℓa−1 (a = (p, q) ∈ A). (9)

It is easy to see that the collection (Ua, a ∈ A) is a unitary
representation of the group (A, ◦) on the Hilbert–space
H := L2(R), see for proofs in Heil and Walnut (1989). The
wavelet transform can be expressed by this representation
in the form

(Wψf)(a) = 〈f, Uaψ〉 (f, ψ ∈ H, a ∈ A), (10)

where 〈·, ·〉 is the scalar product on H , as a voice-
transform.

3.4 The Blaschke (hyperbolic) wavelet

In this section an extension of the wavelet concept will
be introduced as an analogy with the affine wavelets that
will give the opportunity to represent functions in the
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space H2(D). The key notion that is used is the Blaschke
function introduced in Section 2. Following the analogy
with the affine wavelets a group theoretic approach will be
elaborated.

Consider the Blaschke function based upon zero b ∈ D as
defined in (4). A more convenient form is

Bb(z) = ε
z − b

1 − bz
(z ∈ C, b = (b, ε) ∈ D×T),

where ε ∈ T is an arbitrary parameter. Bb is bijection
either on T or D. The restriction of the Blaschke function
either on the set T or D form a group with respect to the
operation

(Bb1
◦Bb2

)(z) := Bb1
(Bb2

(z)).

Define the operation induced by the function com-
position in the set of parameters B := D×T as
Bb1

◦Bb2
= Bb1 ◦ b2

. The group (B, ◦) will be isomorphic
with the group ((Bb, b ∈ B), ◦). By using the notation

bj := (bj, εj), j ∈ {1, 2} and b := b1 ◦ b2,

b =
b1ε2 + b2

1 + b1b2ε2
= B(−b2,ε2)(b1ε2),

ε = ε1
ε2 + b1b2

1 + ε2b1b2
= B(−b1b2,ε1)

(ε2).

The neutral and inverse element of the group (B, ◦) are
e := (0, 1) and b

−1 := (−bε, ε) if b := (b, ε) ∈ B

respectively. The group defined in such a way is called
Blaschke group.

The one-parameter subgroups derived as

B1 := {(r, 1) : r ∈ [0, 1)}
B2 := {(0, eit) : t ∈ [0, 2π)}

play central role in the theory, since of B1 and B2 generate
the group B. Indeed, every element

b = (reiϕ, eiϑ) ∈ B (r ∈ [0, 1), ϑ, ϕ ∈ [0, 2π))

can be written in the form

b = (0, ε1) ◦ (r, 1) ◦ (0, ε2)

(r ∈ [0, 1), ε1 = ei(ϕ+ϑ), ε2 = e−iϕ ∈ T).

The group operation of B1 can be expressed by using the
function

th x :=
shx

chx
=
e2x − 1

e2x + 1
(x ∈ R).

With the notation rj := th sj (j = 1, 2) in the group
operation

(r, 1) := (r1, 1) ◦ (r2, 1)

r can be expressed as

r =
r1 + r2
1 + r1r2

=
th s1 + th s2

1 + th s1 th s2
= th(s1 + s2),

consequently

r = th(ath r1 + ath r2) (r1, r2 ∈ (−1, 1)).

Denote

ρ(z1, z2) :=
|z1 − z2|
|1 − z1z2|

(z1, z2 ∈ D).

It can be shown that ρ is a metric on D and (D, ρ)
is a complete metric space. The Blaschke functions are
isometries with respect to this metric, i.e.

ρ(Bb(z1), Bb(z2)) = ρ(z1, z2) (z1, z2 ∈ D).

Fig. 1. Unitary group representation on function ϕ(z) = z
for several B.

This metric is connected with the Poincaré model of
hyperbolic geometry. In this model the lines are the sets

Lb := {Bb(r) : r ∈ (−1, 1)} (b ∈ B)

that are circles crossing perpendicularly the unit circle.

Based upon the relation of the Blaschke group with
hyperbolic geometry it is also referred as hyperbolic group.

A wavelet transform on the Blaschke group can be con-
structed on the basis of the voice transform defined in the
Hardy space H2(D). The inner product in H2(D) is given
by

〈f, g〉 :=
1

2π

∫ 2π

0

f(eit)g(eit) dt (f, g ∈ H2(D)).

Introduce a unitary representation of the group (B, ◦) on
H2(D) by using the collection of functions

Fb(z) :=

√

ε(1 − |b|2)

1 − bz
(b = (b, ε) ∈ B, z ∈ D),

where D := D∪T. Let the operator Ub : H2(D) → H2(D)
be introduced for every b = (b, ε) ∈ B as

Ubϕ := Fb−1ϕ ◦Bb−1 .

This is the analogue of operator (9) belonging to the affine
group. The voice transform generated by Ub (b ∈ B) is
given by the following formula

(Vφf)(b) := 〈f, Ubφ〉 (f, φ ∈ H2(T)). (11)

The collection Ub (b ∈ B) is a unitary representation
of B, i.e. the properties (i), (ii), and (iii) in (8) are
satisfied, see for proofs in Pap and Schipp (2006). The
properties of the unitary representation imply that the
image of every complete orthonormal system (ONS) by
the operators Ub is also a complete ONS. Particularly the
discrete Laguerre system in H2 – used widely in the field
of system identification – can be obtained in this way from
the system hn(z) := zn (z ∈ T, n ∈ N, b = (b, 1) ∈ B):

Lbn(z) :=

√

1 − |b|2
1 − bz

Bn
b

(z) = (U−1
b
hn)(z). (12)

The voice transform generated by (Ub, b ∈ B) forms a
transform related to the Blaschke group analogous to
the wavelet transform on the affine group described in
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Section 3. The function φ in (11) can be considered as the
mother wavelet, which should be chosen in such a way that
fair localization properties are assured, as well as further
conditions should be satisfied arising from the particular
problem to be solved and the a priori knowledge available
of the signal or system under consideration. The operations
realized by the parameters (r, 1) ∈ B1 (r ∈ [0, 1)) and
(0, ε) ∈ B2 in the Blaschke functions can be associated
with the translation and dilation operations respectively.
Translation in the unit disc corresponds to a rotation,
hence (0, ε) ∈ B2 really corresponds with the translation
parameter. The correspondence between (r, 1) ∈ B1 and
the dilation parameter belonging to the affine wavelet
is not so evident. A dilation effect can undoubtedly be
observed on the Blaschke group elements depending on
the distance of their zero b from the unit circle, however
it cannot be separated from the rotation effect. Figure
1 presents four instances of the unitary representation
belonging to the function ϕ(z) = z as an example with
several group elements, i.e. Blaschke function associated
with b = (r, δ) equal to (0.8, 1), (0.9, 1), (0.95, 1), (0.99, 1),
respectively. As it can be observed that as parameter r
increases toward the unit, the peak formed by the function
gets sharper.

4. DISCRETIZATION OF HYPERBOLIC WAVELETS

Discretization of the hyperbolic wavelet constructions is
a significant step toward finding algorithms for practical
computations. In this section an alternative of the dis-
cretization is presented that is based upon the Laguerre
system. Other discrete hyperbolic wavelet constructions
that can result in bi-orthogonal or orthogonal systems
in a sequence of nested subspaces of H2 – i.e. can form
multiresolution schemes (see e.g. Daubechies (1992))– have
been proposed by Pap and Schipp (2009).

To define a discrete version of (11) let us consider a discrete
subset B0 of B. The system of the form

φb := Ubφ (b ∈ B0)

is called discrete hyperbolic wavelet. An obvious selection of
a mesh of discretization points in the unit disc can be done
on the basis of one-parameter subgroups of the hyperbolic
group that can directly be associated with the translation
(rotation) and the dilation of the concerned functions. By
considering the sequences

a
n = (rn, 1) ∈ B1, bn = (0, ei

2π
mn ) ∈ B2 (n = 1, 2, . . . )

where 1 ≤ mn ∈ N, and using a
n as the nth power of a,

B0 := {cmk
:= a

n ◦ bkn : 0 ≤ k < mn, n = 1, 2, . . .} (13)

will be given. An example of this scheme can be seen in
Figure 2. Every discretization point represents an element
of the hyperbolic group that is composed by two elements
taken from the subgroups B1 and B2, i.e. it means consec-
utive compositions of two Blaschke functions one with real
parameter and another with pure rotation.

The voice-transform that is performed with the unitary
representation upon the one-parameter subgroup defined
by real Blaschke parameter results in the classical Laguerre
representation of a function of H2. In the case when the
mother wavelet ϕ can be expressed by a power series of the
complex variable z, according to (12) the representation

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 2. A hyperbolic discretization scheme.

can be computed as the linear combination of the Laguerre
coefficients of the function in every discretization point
by considering the real Blaschke parameter belonging to
it. The translation parameters should also be considered;
rotation on the unitary representation belonging to the
radial subgroup associated with the real axis of the com-
plex plane can be replaced with a counter-rotation of
the associated function. Hence the computations can be
performed by applying the following procedure:

Procedure 1. Computation of the hyperbolic wavelet coef-
ficients belonging to function f ∈ H2:

(1) Expressing the mother wavelet ϕ in polynomial form,
i.e. in the form of a polynomial or a power series

ϕ(z) =
∑

k

pnz
k.

(2) Computing the Laguerre representation of the func-
tion f belonging to every rn associated with a

n ∈ B1.
(3) Counter-rotating the function f in the angles associ-

ated by the subgroup elements b
k
n ∈ B2.

(4) Repeating Step 2 on the rotated function. By this way
every discretization point is covered. .

(5) Computing the wavelet values in every discretization
point as a linear combination of the Laguerre coeffi-
cients by using the polynomial coefficients obtained
in step 1, respectively.

The realization described above can easily be realized by
using the concept of the argument function associated
with the Blaschke function, see Soumelidis et al. (2002b).
A discrete algorithm of computing the coefficients of a
Laguerre (or any other orthogonal rational) representation
can be obtained by applying a non-uniform discretization
scheme on the unit circle that can be obtained by the use
of the inverse of the argument function. The computations
can be performed by using Fast Fourier Transform (FFT)
that makes the algorithm rather efficient. A summary of
the algorithm can be found as follow.

The argument function belonging to the Blaschke function
with parameter a ∈ D can be expressed on the unit circle
as Ba(eit) = eiβa(t),

where βa is called argument function. Laguerre represen-
tation uses a single Blaschke function, hence the argument
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Fig. 3. The wavelet representation of a 2-pole system with
multiplicity 2 – mother wavelet is ϕ(z) = (1 − z)−1.

function can easily be expressed as it can be expressed by
introducing a = reiϕ as

βa(t) = 2 arctan
(

µ tan 1
2 (t− ϕ)

)

+ γ

with µ = (1 + r)/(1 − r) and an arbitrary constant γ.

The inverse of the argument function t = β−1
a (s) can be

expressed with the formula

t = 2 arctan
(

µ−1 tan 1
2 (s− γ)

)

+ ϕ,

where γ can be found such a way that the function
forms a bijection from the interval [−π, π] to itself. The
Laguerre representation coefficients can be computed by
applying the orthogonality principle onto the elements of
the Laguerre basis, i.e. by computing the scalar products

ln = 〈f, Ln〉 n = 0, 1, 2, . . . (14)

By using the definition of the scalar product belonging to
the Hilbert space H2 and introducing the inverse argument
function the scalar product (14) can be expressed as the
Fourier-transform of the following function:

fa(s) =

[

f(eit)(1 − rei(t−ϕ))√
1 − r2

]

t=β−1

a (s)

The proof can be obtained as a simplification of the general
case belonging to Generalized Orthogonal Bases; a detailed
introduction to this can be found in Soumelidis et al.
(2002b). The application of the inverse argument function
results in a non-uniform sampling scheme applied on the
unit circle, the function fa should be sampled according
to this. The samples can be considered as spectral mea-
surements arranged non-uniformly in the frequency axis.

An example is presented in Figure 3. The wavelet represen-
tation of a 2-pole system with the conjugated complex pole
pair p1 = 0.8628eiπ/4, p2 = 0.8628e−iπ/4 and multiplicity
2 has been computed, by using ϕ(z) = (1 − z)2 as a
mother wavelet. This selection of the mother wavelet seems
to be perfect: two local maxima can be observed in the
poles positions. The figure presents the surface of the
wavelet coefficients interpolated upon the discretization
points presented in Figure 2.

5. CONCLUSION

A hyperbolic wavelet concept that can be used to de-
scribe, represent and identify signals belonging to the

space H2(D) has been constructed. The are derived as the
voice-transform belonging to the unitary representation of
the Blaschke group upon H2(D). An efficient algorithm has
been proposed to compute the wavelet coefficients.
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Wawrzyńczyk, A. (1984). Group Representations and
Special Functions. Mathematics and Its Applications.
D. Reidel Publishing Comapany, Dordrecht, Boston,
Landcaster.

18th IFAC World Congress (IFAC'11)
Milano (Italy) August 28 - September 2, 2011

2314


