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A B S T R A C T

In this paper, we propose a unified framework for improved structure estimation and feature selection. Most
existing graph-based feature selection methods utilize a static representation of the structure of the available
data based on the Laplacian matrix of a simple graph. Here on the other hand, we perform data structure
learning and feature selection simultaneously. To improve the estimation of the manifold representing the
structure of the selected features, we use a higher order description of the neighborhood structures present in
the available data using hypergraph learning. This allows those features which participate in the most significant
higher order relations to be selected, and the remainder discarded, through a sparsification process. We
formulate a single objective function to capture and regularize the hypergraph weight estimation and feature
selection processes. Finally, we present an optimization algorithm to recover the hypergraph weights and a
sparse set of feature selection indicators. This process offers a number of advantages. First, by adjusting the
hypergraph weights, we preserve high-order neighborhood relations reflected in the original data, which cannot
be modeled by a simple graph. Moreover, our objective function captures the global discriminative structure of
the features in the data. Comprehensive experiments on 9 benchmark datasets show that our method achieves
statistically significant improvement over state-of-art feature selection methods, supporting the effectiveness of
the proposed method.

1. Introduction

Feature selection aims to locate an optimal set of features using a
selection criterion. It is an important technique widely used in pattern
analysis. It reduces data dimensionality by removing irrelevant and
redundant features, and brings about a number of immediate benefits,
such as speeding up a data mining algorithm, improving predictive
accuracy, and enhancing comprehensibility. According to the way in
which label information is utilized, feature selection algorithms can be
categorized as (a) supervised algorithms, (b) unsupervised algorithms
or (c) semi-supervised algorithms. Examples of supervised feature
selection algorithms include the Fisher score (FScore) [1], similarity
preserving feature selection (SPFS) [2], minimum redundancy max-
imum relevance (mRMR) [3], local-learning based feature selection
(LLFS) [4], robust feature selection via ℓ2,1-norm minimization
(L21RFS) [5] and the trace ratio [6], which only use labeled training
data for feature selection. When sufficient labeled training samples are
to used, supervised feature selection is a reliable alternative, which
selects discriminative features by exploiting class labels. However,
labeling a large set of training samples manually is unrealistic in many

real-world applications. In unsupervised feature selection on the other
hand, there is no label information, and the features are selected which
best preserve the data similarity or manifold structure. Examples
include the Laplacian score (LapScore) [7], spectral feature selection
(SPEC) [8], multi-cluster feature selection (MCFS) [9], joint embed-
ding learning and sparse regression (JELSR) [10]. Recent work on
semi-supervised learning has indicated that it is beneficial to leverage
both labeled and unlabeled training data for data analysis. Motivated
by the progress of semi-supervised learning, considerable effort has
been devoted to semi-supervised feature selection. Recent reported
algorithms include discriminative semi-supervised feature selection via
manifold regularization (FS-manifold) [11], locality sensitive semi-
supervised feature selection (LSDF) [12], the spectral analysis of semi-
supervised feature selection [13] and the noise insensitive trace ratio
criterion (TRCFS) [14]. Usually, these methods use graph representa-
tions to characterize the manifold structure.

However, there are two common problems with the aforementioned
methods. First, the graph construction process is independent of a
specific learning process. Once a graph is determined that characterizes
the initial manifold structure of the data, it remains fixed in the
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following ranking or regression steps of feature selection. Therefore,
the performance of feature selection is largely determined by the
effectiveness of the graph construction. A typical example is the k-
nearest neighbor graph used in locality preserving projection (LPP)
[15]. LPP first constructs a k-nearest neighbor graph (including its
edge weights) based on the given raw data, and then seeks an optimal
linear transformation with the aim to preserve such a neighborhood
graph or the geometry of a given set of data. This initial graph is based
on the characterization of “locality” which is unnecessary to be optimal,
since it is difficult to set the parameters in advance (e.g., the
neighborhood size and heat kernel width). In fact, these parameters
have a significant impact on the ultimate performance of the algorithm.
Second, in many situations the graph representation can lead to a
substantial loss of information. This is because in real-world problems
objects and their features tend to exhibit multiple relationships rather
than simple pairwise ones. For example, consider the problem of
classifying faces which are viewed under different lighting conditions.

See Fig. 1 for an illustration. It is well known that images of the same
objects may appear drastically different under different lighting condi-
tions [16,17]. In this scenario, the pairwise similarity measures for
images of the same person may exhibit significant randomness. This
misleading result is due to the fact that the set of images of a
Lambertian surface under arbitrary lighting lies on a 3D subspace in
the image space [18] where multiple relationships exist. As a result,
higher order relations cannot be meaningfully characterized by pair-
wise similarity measures.

A natural way of remedying the information loss described above is
to represent the dataset as a hypergraph instead of a graph.
Hypergraph representations allow vertices to be multiply connected
by hyperedges and can hence capture multiple or higher order
relationships between features. Due to their effectiveness in represent-
ing multiple relationships, hypergraph based methods have been
applied to various practical problems, such as partitioning circuit
netlists [19], clustering [20,21], clustering categorial data [22], and

Fig. 1. Shown above are images of five persons under varying illumination conditions. Is it possible to group them into clusters based on pairwise similarity measure?
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image segmentation [23]. For multi-label classification, Sun et al. [24]
construct a hypergraph to exploit the correlation information contained
in different labels. In this hypergraph, instances correspond to the
vertices and each hyperedge includes all instances annotated with a
common label. With this hypergraph representation, the higher-order
relations among multiple instances sharing the same label can be
explored. Following the theory of spectral graph embedding [25], they
transform the data into a lower-dimensional space through a linear
transformation, which preserves the instance-label relations captured
by the hypergraph. The projection is guided by the label information
encoded in the hypergraph and a linear support vector machine (SVM)
is used to handle the multi-label classification problem. Huang et al.
[26] used a hypergraph cut algorithm [21] to solve the unsupervised
image categorization problem, where a hypergraph is used to represent
the complex relationships between unlabeled images based on shape
and appearance features. Specifically, they first extract regions of
interest (ROI) for each image, and then construct hyperedges among
images based on shape and appearance features in their ROIs.
Hyperedges are defined as either (a) a group formed by each vertex
(image) or (b) its k-nearest neighbors (based on shape or appearance
descriptors). The weight of each hyperedge is computed as the sum of
the pairwise affinities within the hyperedge. In this way, the task of
image categorization is transferred into a hypergraph partition problem
which can be solved using the hypergraph cut algorithm.

One common feature of these existing hypergraph representations
is that they exploit domain specific and goal directed representations.
Specifically, most of them are confined to uniform hypergraphs where
each of the hyperedges have the same cardinality and therefore do not
lend themselves to generalization. The reason for this lies in the
difficulty in formulating a nonuniform hypergraph in a mathematically
elegant way for the purpose of computation. There has yet to be a
widely accepted and consistent way for representing and characterizing
nonuniform hypergraphs, and this remains an open problem when
exploiting hypergraphs for feature selection.

To address these shortcomings, an effective method for hypergraph
construction is needed, such that the ambiguities of relational order
can be overcome. In this paper, we improve the hypergraph construc-

tion approach presented above using a sparse representation model.
Specifically, a hypergraph is constructed using each sample as a node,
and a hyperedge includes a sample and its correlated samples, with the
corresponding non-zero elements extracted in the sparse vector.
Instead of generating a single hyperedge for each sample, we generate
a group of hyperedges by varying regularization parameter values to
give different sparsity solutions of the model. This makes our approach
much more robust than previous hypergraph methods, because we do
not need to tune the neighborhood size as a parameter. However, with
this hypergraph construction approach, a large number of remaining
hyperedges are generated with redundancy. In addition, they have
different effects in classification accuracy. For example, hyperedges
that are generated from samples close to the classification boundary
may link samples from different classes. Since samples connected by a
hyperedge are expected to be from the same class, the hyperedges that
link samples from different classes will be less informative or may even
have derogatory effects. Therefore, in order to modulate the effects of
different hyperedges, we place a regularizer on the hyperedge weights.
In this way, the effects of different hyperedges can be adaptively
modulated and useless hyperedges can be discarded (i.e., the weights of
redundant hyperedges will be 0), and thus, we can select the most
effective hyperedges.

In this paper, we propose a unified learning framework which
performs structure learning and feature selection simultaneously. The
structures are adaptively learned from the results of hypergraph
learning, and the informative features are selected to preserve the
refined structures of data. The hypergraph can well keep high-order
neighborhood relationship reflected by the original data, which cannot
be modeled by a simple graph. Moreover, rather than just targeting the
locality preserving power characterized by hypergraph learning, our
objective function also considers global discriminative structure of
data. Concretely, global discriminative information in our framework is
preserved by exploiting the underlying pairwise sample similarity. The
sample similarity measure may introduce the discriminative informa-
tion when the data labels are known. Comprehensive experiments on
seven benchmark datasets show that our method achieves statistically
significant improvement over state-of-art feature selection methods,
suggesting the effectiveness of the proposed method.

2. Related work

In this section, we first establish a list of the main notations used in
the paper and summarized in Table 1. Then, we review some of the
well-known algorithms for learning-based feature selection, all of
which are closely related to our proposed method.

(1) LapScore: Laplacian score [7] uses a k-nearest neighbor graph
to model the local geometric structure of the data and selects the
features most consistent with the graph structure. Consider a dataset

x xX = [ ,…, ]n
T

1 , in order to approximate the manifold structure of the
dataset, a k-nearest neighbor graph is built, which contains an edge
with weight wg

ij between xi and xj if xi is among the k nearest
neighbors of xj or conversely. There are different similarity based
methods that can be used to determine the edge weights. In general,
the Euclidean distance is widely used as similarity measure. Therefore,
the element wg

ij of the weight matrix Wg can be defined as below:

⎪
⎪⎧⎨
⎩

w e x x= , if and are neighbors,
0, otherwise,

g
ij i j

−
xi xj

t
∥ − ∥2

(1)

where t is a suitable constant. A feature that is consistent with the
graph structure can be thought of as the one for which two data points
are close to each other if and only if there is an edge between these two
points. Let fri denote the i-th sample of the r-th feature and
f f f= ( ,…, )r r rn

T
1 . To select a good feature, we need to minimize the

following objective function:

Table 1
Important notations used in this paper and their definitions.

d The dimension of input data, i.e., the number of all features of input data
n The number of data points
NoF The number of selected features
k Dimensionality of embedding
m The number of hyperedges
l The number of selected labeled data out of all data X
X Rx xX = [ ,…, ] ∈n T n d1 × is the input data matrix. Each row Rx ∈i d

denotes a data point, for i n= 1,…,
Wg Wg is the weight matrix of graph where each edge weigh is represented by

wg
ij. Here we assume wg

ij is symmetric where w w=g
ij

g
ji

fr Rf f f= ( ,…, ) ∈r r rn
T n

1 is the r-th feature vector of data (r d= 1,…, ). It is

also the r-th column of the data matrix X, i.e., f fX = [ ,…, ]d1
D D is the diagonal degree matrix of graph where wD = ∑ii j g

ij

Y Ry y yY = [ , ,…, ] ∈n
T n k

1 2
× is the data matrix of embedding

W Rw w wW = [ , ,…, ] ∈k d k1 2 × is the transformation matrix
De The diagonal matrix of the hyperedgedegrees
Dv The diagonal matrix of the hypergraph vertex degrees
H The incidence matrix of the hypergraph
WH The diagonal weight matrix and its (i,i)-th element is the weight of the i-th

hyperedge

LH The normalized Laplacian matrix of hypergraph

S RS ∈ d k× is the sparse transformation matrix
A RA ∈ l n× is a binary selection matrix. It selects the labeled data out of all

data X
K K is a predefined similarity matrix
w(e) The weight of hyperedge e
δ e( ) The degree of the hyperedge e
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SC
f f w

Var f
=

∑ ( − )

( )
.Ls

ij ri rj g
ij

r

2

(2)

where Var f( )r is the estimated variance of the r-th feature. Features
with larger variance are preferred, as they are expected to have more
representational power. Given Wg, its corresponding degree matrix

wD = ∑ii j g
ij and Laplacian matrix L D W= − g, the variance of weight

data can be calculated based on D which models the importance of the
data points:

Var f f fD( ) = ,∼ ∼
r r

T
r (3)

where

f f
f D1
1 D1

1= − ,∼
r r

r
T

T (4)

Here, we center the data by subtracting the mean from each feature fr
using Eq. (4). This is done to prevent a non-zero constant vector such
as 1 to be assigned a zero Laplacian score, since such a feature
obviously does not contain any information.

For a good feature, the largerwij, the smaller f f( − )ri rj , and thus it is
easy to see that,

∑ f f w f f f fL L( − ) = 2 = 2 ,∼ ∼

ij
ri rj g

ij
r
T

r r
T

r
2

(5)

Finally, the Laplacian score of the r-th feature is reduced to

SC f
f f

f f

L

D
( ) = ,

∼ ∼

∼ ∼Ls r
r
T

r

r
T

r (6)

(2) MCFS and MRSF: MCFS and MRSF are learning based feature
selection methods that first compute an embedding and then use
regression coefficients to rank each feature. In the first step, both
methods compute a low dimensional embedding represented by the co-
ordinate matrix Y. One simple way in deriving low dimensional
embedding is to use the Laplacian Eigenmap (LE) [27], a well-known
dimensionality reduction method. Denote by y y yY = [ , ,…, ]n

T
1 2 and yi

as transpose of the i-th row of Y. The idea common to both MCFS and
MRSF is to regress all xi to yi . Their differences are used to determine
sparseness constraints. MCFS [9] uses ℓ1-norm regularization and can
be regarded as solving the following problems in sequence:

Y W αYLY XW Y W= arg min tr( ) = arg min − + ∥ ∥
I

T
YY W=

2
2

1T (7)

Similarly, MRSF first computes the embedding by Eigen decomposition
of the graph Laplacian and then regression is with ℓ2,1-norm regular-
ization. In other words, MRSF can be regarded as solving the following
two problems in sequence:

Y W αYLY XW Y W= arg min tr( ) = arg min − + ∥ ∥
I

T
YY W=

2
2

2,1T (8)

MCFS and MRSF employ different sparseness constraints, i.e., ℓ1
and ℓ2,1, respectively, in constructing a transformation matrix which is
used for selecting features. Nevertheless, the low dimensional embed-
ding, i.e., Y, is determined in the first step and remains fixed in the
subsequent ranking or regression step. As a result the performance of
feature selection is largely determined by the effectiveness of graph
embedding. However, it would be better to learn a graph structure
closely linked with the feature selection process.

(3) JELSR [28]: Instead of simply using the graph Laplacian to
characterize high dimensional data structure and then performing
regression, JELSR (joint embedding learning and sparse regression)
unifies embedding/learning and sparse regression steps in constructing
a new framework for feature selection:

W Y β αYLY XW Y W( , ) = arg min tr( ) + ( − + ∥ ∥ )
I

T
W YY, =

2
2

2,1T (9)

where α and β are balance parameters. The objective function in Eq. (9)

is convex with respect to W and Y. As a result, W and Y can be updated
in an alternative way. As we can see from Eq. (29) in [28], the sparse
regression of objective function, i.e., the value of W, also affects the low
dimensional embedding, i.e., Y. Alternative methods, such as MCFS
and MRSF, simply minimize YLYtr( )T . Although JELSR performs
better in many cases, the optimal graph embedding in JELSR depends
heavily on the transformed data, without making the best use of the
original data and the graph edge weights also not learned by the
algorithm. This easily leads to the instability performance, especially
when encountering a “bad” transformation matrix.

(4) LPP [15]: LPP (locality preserving projection) constructs a
graph by incorporating neighborhood information derived from the
data. Using the graph Laplacian, a transformation is computed to map
the data into a subspace by optimally maintaining the local neighbor-
hood information. LPP optimizes a linear transformation W according
to

∑ x x wW W W X DXWmin ∥ − ∥ s. t. = 1
i j

n

i j g
ij T T

W , =1

2

(10)

where wg
ij is the graph edge weight which can be computed by Eq. (1)

and wD = ∑ii j g
ij. The basic idea underlying LPP is to find a transfor-

mation matrix W, which transforms the high-dimensional data X into a
low-dimensional matrix XW, so as to maximally preserve the local
connectivity structure of X with XW. Minimizing (10) ensures that, if xi
and xj are close, and as a result x Wi and x Wj are close too.

As described above, LPP seeks a low-dimensional representation
with the purpose of preserving the local geometry in the original data.
However, such “locality geometry” is completely determined by the
artificially constructed neighborhood graph. As a result, its perfor-
mance may drop seriously if given a “bad” graph. Therefore, it is better
to optimize the graph and learn the transformation simultaneously in a
unified objective function.

Our proposed method can be discriminated from the previous
methods in the following senses: (1) Our propose method selects
features to respect both the global and local manifold structure, while
most previous feature selection methods only incorporates the local
manifold structure. (2) The local structure in previous methods is
based on a k-nearest neighbor graph, while our proposed method
learns a hypergraph, which can model high-order neighborhood
relationship reflected by the original data. (3) JELSR [28] iteratively
performs spectral embedding for clustering and sparse spectral regres-
sion for feature selection. However, the local structure itself (i.e., the
Laplacian matrix) is not changed during iterations. Our proposed
method can adaptively improve the local structure characterization
using hypergraph learning.

3. Hypergraph learning

In this section, we review the definitions of hypergraphs and
hypergraph Laplacian. Then, we present our hypergraph construction
and learning method.

3.1. Hypergraph fundamentals

A hypergraph is defined as a triplet G V E w= ( , , )H , where
V n= {1,…, } is the node index set, E is a set of non-empty subsets of
V or hyperedges and w is a weight function which associates a real
value with each edge. A hypergraph is a generalization of a graph.
Unlike graph edges which consist of pairs of vertices, hyperedges are
arbitrarily sized sets of vertices. Each hyperedge e is assigned a positive
weight w(e). The degree of a hyperedge e, denoted as δ e( ), is the
number of vertices in e. For a vertex v V∈ , the degree is defined to be
d v w e( ) = ∑ ( )v e e E∈ , ∈ . The diagonal matrix representations for δ e( ),
d(v), w(e) are denoted by De, Dv and WH, respectively. Examples of a
hypergraph are shown in Fig. 2(a). For the hypergraph, the vertex set is
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V v v v v v v= { , , , , , }1 2 3 4 5 6 , where each vertex represents a sample, and the
hyperedge set is E e v v v e v v v e v v= { = { , , }, = { , , }, = { , }}1 1 2 3 2 3 4 5 3 5 6 .
The number of vertices constituting each hyperedge represent the
order of the relationship between samples.

The hypergraph GH can be represented by a vertex-edge incidence
matrix RH ∈ V E| |×| | (see Fig. 2(b)) is defined as follows:

⎧⎨⎩h v e v e( , ) = 1, if ∈
0, otherwise. (11)

According to the definition of H, d v w e h v e( ) = ∑ ( ) ( , )e E∈ and
δ e h v e( ) = ∑ ( , )v V∈ .

3.2. Hypergraph Laplacian

Although the incidence matrix H can fully describe the character-
istics of a hypergraph, the matrix elements represent vertex-to-
hyperedge relationships rather than vertex-to-vertex relationships. To
obtain a vertex-to-vertex representation, we need to establish the
adjacency matrix and Laplacian matrix for a hypergraph. To achieve
this goal, one possible method is to construct a graph with edges
weighted by the quotient of the corresponding hyperedge weight and
cardinality, e.g., clique expansion [29] and star expansion [29]. As an
alternative, one approach is to adopt a matrix representation deter-
mined from the adjacency matrix and the associated Laplacian matrix
for a hypergraph, e.g., the normalized Laplacian [21]. In this paper, we
adopt the method proposed in [21] to build the hypergraph Laplacian.
Specifically, the normalized Laplacian matrix of a hypergraph is defined

as L I D HW D H D= −H V v H e
1 T v| |

− − −1
2

1
2 , where Dv is the diagonal vertex

degree matrix whose diagonal element d v( )i is the summation of the
i-th row of H, and De is the diagonal edge degree matrix whose diagonal
element δ e( )j is the summation of the j-th column of H.

3.3. Hypergraph construction and learning

For our hypergraph construction, we regard each sample in the
dataset as a vertex on hypergraph G V E w= ( , , )H , where
V x x x= { , ,…, }n1 2 is the vertice set. Inspired by the recent developments
on sparse representation and ℓ1-regularized models [30], we propose to
generate hyperedges by linking correlated samples. Specifically, each
sample can be regarded as a response vector, and can be estimated by a
linear combination of remaining n − 1 samples, i.e.,

x Pα ε i n= + , = 1, 2,…,i i i i (12)

where P x x x x x= [ , ,…, , 0, ,…, ]i i i n1 2 −1 +1 denotes a dataset including all
the samples except the i-th sample (we put 0 in its location), and αi
essentially contains the combination coefficients for different samples
in approximating xi, and Rε ∈i

n is a noise term. A natural method for

determining sparse solutions of αi is formed by solving the following
problem:

x Pα λ αmin ∥ − ∥ + ∥ ∥
α

i i i i2 1
i (13)

where λ > 0 is a regularization parameter controlling the sparsity of αi.
Due to the nature of the ℓ1-norm penalty, some coefficients will be
shrunk to zero if λ is large enough. In this case, we can generate a
hyperedge containing the most correlated samples (corresponding to
the non-zero coefficients in αi) with respect to xi. Different λ values
correspond to different sparsity solutions. So instead of generating a
single hyperedge for each sample xi, we generate a group of hyperedges
by varying the value of λ over a specified range. Specifically, in our
experiments, we vary λ from 0.1 to 0.9 with an incremental step of 0.1.

With this hypergraph construction approach, a large set of remain-
ing hyperedges are generated with redundancy. In addition, they have
varying effects on the classification. For example, several hyperedges
that are generated from samples close to the classification boundary
and they link samples from different classes. Therefore, an effective
method for modulating the effects of different hyperedges is needed,
such that the weights of redundant hyperedges will be 0, and allowing
to select the effective hyperedges.

The importance of preserving local geometric data structure has
been well recognized in the recent literature on dimensionality reduc-
tion [31–33,15]. The local geometric structure of data refers to the
local neighborhood relationships for a set of a dataset, which can be
characterized through the k nearest neighbors of each sample. By
evoking by the principle that nearby points should have similar
properties, we define a regularizer on the hypergraph:

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

∑ ∑Ω
w e h x e h x e

δ e
x xS S S X L XS

S X I D HW D H D XS

= 1
2

( ) ( , ) ( , )
( )

× ( − )=

= −

e E x x V

i j
i j

T T
H

T T
V v

1
2 H e

1 T v
1

2

∈ , ∈

2

| |

−
−

−

i j

(14)

where S is a linear transformation matrix. The weight of the hyperedge
e is assigned a term x xS S∑ ( − )

δ e x x V e i j
1

2 ( ) , ∈ ( )
2

i j
. Here, V(e) is used to

denote the set of vertices connected to hyperedge e. As a result, this
term measures the feature smoothness on the samples in V(e).
Intuitively, hyperedges connecting to the samples from the same class
are informative by minimizing (14) with respect to WH. We ensure that,
if xi and xj are close, then x Si and x Sj will also be close. Therefore, we
use the following objective function to learn the weights of the
hyperedges WH

∑γ W W

j m

tr S X L XS Wmin ( ) + ∥ diag( ) ∥ s. t. = 1, ≥ 0,

= 1,…,

j

m

H
j

H
j

W
T T

H H
2

=1H

(15)

where m is the number of hyperedges and Wdiag( )H indicates the
diagonal vector of WH, i.e., W W W( , ,…, )H H H

m1 2 . In order to control the
model complexity motivated by the success of sparse learning, we add
two constraints W∑ = 1j

m
H
j

=1 and W ≥ 0H
j in (15). In particular, the first

constraint fixes the summation of the weights. The second constraint
avoids negative weights. Thus, we can see that the solution of WH is on
a simplex and enjoys the property of sparseness, i.e., the weights
assigned to redundant hyperedges will be set to 0.

4. Proposed framework for feature selection

Turning our attention to the task of feature selection, we expect that
the transformation matrix S in (15) satisfies the sparsity property for
feature selection. More concretely, we expect that only a few elements
in S are nonzero. As a result the corresponding features XS are selected
since these features are sufficient to preserve the similarity and local
geometrical structure of the original data X. We use an ℓ2,1-norm

Fig. 2. An example of hypergraph.
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regularizer to enforce row sparsity of S, and thus has the effect of
feature selection and helps to avoid selecting redundant features. This
paper introduces a novel feature selection framework: joint hypergraph
learning and sparse regression (referred to as JHLSR). Rather than
simply targeting the locality preserving power characterized by hyper-
graph learning, our proposed model also accommodate the sample
similarity structure which can be computed using a predefined
similarity measure. In order fulfill this goal, we propose to unify
hypergraph learning and sample similarity preserving in forming a new
framework as

∑

μ λ

γ W W j m

AXS AXS K tr S X L XS S

W

min ( )( ) − + ( ) + ∥ ∥

+ ∥ diag( ) ∥ s. t. = 1, ≥ 0, = 1,…,
j

m

H
j

H
j

S W
T

F
2 T T

H 2 1

H

,
,

2

=1

H

(16)

where RA ∈ l n× is a binary selection matrix and K is a predefined
similarity matrix. It selects the labeled data out of all data X when both
labeled and unlabeled data are available. RS ∈ d k× where d is the
number of features in X and k denotes the dimensions of the
transformed data. ∥·∥F denotes the Frobenius matrix norm and ∥·∥2,1
is the ℓ2,1-norm of S. The first term in (16) stands for the global
structure preservation by emphasizing the pairwise sample similarity,
while the second term exploits the local geometric structure of data.
The third term is the ℓ2,1-norm regularization term, which is added to
promote row-sparsity. The last term is the diagonal vector of hyperedge
weight WH and enjoys the sparse property, i.e., the weights of useless
hyperedges will be set to 0. To be more specific, the first term aims to
select k (k d< ) features, based on which best preserves the sample
similarity as specified by a predefined similarity matrix K. Here, K is
constructed using the Fisher Kernel in supervised learning [2] and by a
Gaussian Kernel in unsupervised learning. However,

AXS AXS K( )( ) −T
F
2 is not convex with respect to S. To solve this

problem, the method in [2] addresses the following convex optimiza-
tion problem instead:

Φ λAXS Smin − + ∥ ∥
S

F
2

2 1, (17)

where Φ is obtained by decomposing K as K ΦΦ= T. Note that S∥ ∥2,1
is convex. Nevertheless, its derivative does not exist when s = 0i for
i d= 1, 2,…, . Therefore, we use the definition S US Str( ) = ∥ ∥ /2T

2,1 in
[28] when si is not equal to 0. The RU ∈ d d× is diagonal with i-th
diagonal element where

U
s

= 1
2 ∥ ∥ii

i 2 (18)

Based on the definitions in (17) and (18), our proposed objective
function (16) can be rewritten as

∑

μ λ

γ W W j m

AXS Φ S X L XS tr S US

W

min − + tr( ) + ( )

+ ∥ diag( ) ∥ s. t. = 1, ≥ 0, = 1,…,

F

j

m

H
j

H
j

S W
T T

H
T

H

,
2

2

=1

H

(19)

From (19), it is clear that the proposed objective function has a
regularizer on the hyperedge weights and simultaneously optimizes
both the transformation matrix S and the hyperedge weights WH. In
this way, the effects of different hyperedges can be adaptively regulated.
For those hyperedges that are informative, higher weights will be
assigned. In addition, our method sparsifies the transformation matrix
S, i.e., it optimizes S by maximally preserving both the local geome-
trical structure of the data characterized by LH and the sample
similarity of the labeled data characterized by K.

Fig. 3 shows the flowchart of the proposed method for feature
selection. We propose a global and local structure preservation frame-
work for feature selection which integrates both global sample simi-
larity structure and local geometrical structure to conduct feature
selection (see Eq. (19)). Concretely, global discriminative information
in our framework is preserved by exploiting the underlying sample
similarity (see Eq. (17)). The sample similarity measure may introduce
the discriminative information when the data labels are known. Local
geometrical structure of data refers to the local neighborhood relation-
ship of a dataset, which can be captured by the results of hypergraph
learning (see Eq. (15)). Specifically, a hypergraph is constructed using
each sample as a node, and a hyperedge includes a sample and its
correlated samples, with the corresponding non-zero elements ex-
tracted in the sparse vector (see Eq. (13)).

5. Optimization algorithm

The initial value for each hyperedge weight is set according to the
rules given in [34]. First, the V V| | × | | affinity matrix A is calculated

according to
⎛
⎝⎜

⎞
⎠⎟A = exp −ij

v v

σ

∥ − ∥i j 2

2 where σ is the average distance

among all vertices. Then, the initial weight for each hyperedge is
W A= ∑H

i
v e ij∈j i

. To obtain the global minimal solution of (19), we need

an iterative and interleaved optimization process, which can be
summarized as in Algorithm 1. In each iteration step, the sparse

Fig. 3. Flowchart of the proposed method.
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matrix S is calculated with the current value WH, as in Eq. (21). The
diagonal matrix WH is updated based on the merely calculated value of
S as in Eq. (27). After obtaining WH, we then update the normalized
Laplacian matrix LH in (23).

We first fix WH and solve for S. In other words, we need to solve the
following subproblem:

μ λAXS Φ tr S X L XS tr S USmin − + ( ) + ( )
S

F
T T

H
T2

(20)

Taking the derivative with respect to S and setting it to zero, we have

⎧
⎨
⎪⎪

⎩
⎪⎪

μ λ

μ λ

S
AXS Φ tr S X L XS tr S US

AXS Φ 2 X A AX S 2A X Φ

tr S US 2US

tr S X L XS 2 X L X S

S

X A A L X U A X Φ

∂
∂

[ − + ( ) + ( )]

= 0

− = ( ) − ,

( ) = ,

( ) = ( ) .

= ( ( + ) + )

F

F

T T
H

T

S
T T T T

S
T

S
T T

H
T

H

T T
H

T T

2

∂
∂

2

∂
∂
∂

∂

−1
(21)

We then fix S and solve for WH. The subproblem becomes

μ γtr S X L XS Wmin ( ) + ∥ diag( ) ∥
W

T T
H H

2

H (22)

Let

L I D HW D H D= −H V v H e
1 T v| |

− − −1
2

1
2 (23)

Then solving the minimization problem in Eq. (22) with respect to WH
is equivalent to the following problem:

⎧⎨⎩
⎫⎬⎭

∑

μ γ

W W j m

tr S X D HW D H D XS Wmin − ( ) + ∥ diag( ) ∥ s

. t. = 1, ≥ 0, = 1,…,
j

m

H
j

H
j

W
T T v

1
2 H e

1 T v
1

2 H
2

−
−

−

=1

H

(24)

Since WH and De
1− are both diagonal matrices, we let R S X D H= T T v

1
2

−

where R is the matrix r r[ ,…, ]T
m
T T

1 and r r r r= [ , ,…, ]i i i i
m1 2 . The first term

appearing in Eq. (24) can be written as

S X D HW D H D XS tr RW D Rtr( ) = ( )T T v
1

2 H e
1 T v

1
2 H e

1 T
−

−
−

− (25)

In Eq. (25), its matrix form becomes

⎛
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⎜⎜⎜
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i
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i
m
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1 2
1
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Therefore, the minimization problem in Eq. (24) can be rewritten as

⎪
⎪

⎪
⎪

⎧
⎨
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(26)

We use the coordinate descent algorithm to solve the above minimiza-
tion problem. At each iteration, two elements are selected for updating,
and the remainder are fixed. For example, in an iteration, the p-th and
the q-th elements, i.e., WH

p and WH
q, are selected. According to

constrain W∑ = 1j
m

H
j

=1 , the summation of WH
p and WH

q will not
change after this iteration step. Hence, we have

⎧

⎨

⎪⎪⎪⎪⎪
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W W W W W W
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γ μ
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(27)

where S r δ e= −(∑ ( ) )* ( )p i
m

i
p

p=1
2 −1 and S r δ e= −(∑ ( ) )* ( )q i

m
i
q

q=1
2 −1. Note

that, in the first line of Eq. (27), we can see that W *H
p will be set to 0.

This indicates that the solution of WH has the potential to be sparse,
i.e., redundant hyperedges will be removed.

After the optimal value of S is obtained, we then sort the original d
features according to ℓ2-norm values of the d rows of S in descending
order, and then select the top ranked features.

Algorithm 1. Joint hypergraph learning and sparse regression
(JHLSR).

Input: X, K, A and regularization parameter μ,λ and γ. WH with

initial values, hypergraph normalized Laplacian LH, the matrices
Dv, De and H accordingly.
Output: the otpimal WH and sparse matrix S
Step 1: Sparse matrix S update.;
1: repeat

2: compute St +11 by Eq. (21);

3: calculate the diagonal matrix Ut +11 , where the i-th diagonal

element is
s

1

2 ∥ ∥i
t1+1

2
;

4: t t= + 11 1 ;
5: until convergence;
Step 2: WH update. Update the weights WH with the iterative co-
ordinate descent method introduced in (27);

Step 3: LH update. Update the normalized Laplacian matrix LH in
(23) accordingly;
Step 4: Let t t= + 12 2 . if t T>2 , quit iteration and output the re-
sults, otherwise go to Step 1.

6. Convergence and complexity analysis

In this section, we will analyze the properties of the JHLSR
algorithm according to three criteria. We first provide the convergence
analysis and then discuss computational complexity and parameter
determination problems.

6.1. Convergence proof

Since we have to solve JHLSR in an alternative way, we would like
to show its convergence behavior. The convergence of Algorithm 1 can
be guaranteed if the following properties be satisfied.

Table 2
Summary of 9 benchmark datasets.

Dataset Sample Features Classes

Prostate-GE 102 5966 2
GLIOMA 50 4434 4
SMK-CAN 187 19 993 2
COIL-20 1440 1024 20
MNIST 2000 784 10
ORL 400 1024 40
Caltech256-2000 2000 21 504 20
Scene15 1500 21 504 15
ALLAML 72 7129 2
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Theorem 1. The iterative procedure, i.e., Step 1 in Algorithm 1, will
monotonically decrease the objective function value in Eq. (20).

Theorem 2.When S is fixed, Step 2 in Algorithm 1will monotonically
decrease the objective function value in Eq. (19).

Proofs. The proof of Theorems 1 and 2 are provided in Appendix A
and Appendix B, respectively.

From Theorems 1 and 2, we can see that the iterative procedure in
Algorithm 1 will monotonically decrease the objective function and
converge to a global optimum. The following experiments also confirm
that the proposed method converges rapidly, typically with a number of
iterations is less than 4.

6.2. Complexity analysis

At each iteration, the main computation of Step 1 in Algorithm 1 is
to solve the d d× matrix inverse problem in Eq. (21). For many feature
selection tasks, the feature dimensionality d is much larger than the
number of samples n. The inverse of a large matrix can considerably
increase the computational cost. According to [5], we have the
following identity:

μ λ μX A A L X U X ΩX A A L XΩX I( ( + ) + ) = (( + ) + )T T
H

1 T T T
H

T 1− −
(28)

where Ω U=
λ
1 −1 and I is an n n× identity matrix. From Eq. (28), we

can convert a d d× matrix inverse problem to an n n× one. In doing
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Fig. 4. Accuracy rate vs. the number of selected features on 9 benchmark datasets by supervised learning.
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so, the time complexity of Step 1 in Algorithm 1 at each iteration is
O n d(min( , ) )3 . And the computational cost of Step 2 is O m( )2 , where m
is the number of hyperedges. The computational cost of the hypergraph
construction process in Eq. (13) is O r n( + )3 2 , where r is the number of
nonzero coefficients in α. Thus, the computational complexity of
Algorithm 1 is O n d O m O r nmax{ (min( , ) ), ( ), ( + )}3 2 3 2 .

6.3. Parameter determination

A parallel issue to optimizing the JHLSR algorithm is selecting
optimal values of the parameters μ, λ and γ. The parameters λ and γ are
regularization parameters controlling the sparsity of S and WH, and the
parameter μ is used to trade off the importance of data similarity
preservation and local geometric structure preservation. In order to
assign an appropriate value of μ, we employ a cross-validation
procedure for μ estimation. In addition, another two parameters, i.e.,
λ and γ are empirically determined by grid search.

7. Experiments and comparisons

In this section, we discuss the merits and limitations of the
proposed feature selection approach, including a convergence analysis,
computational complexity, and parameter determination. A compre-
hensive experimental study on a variety of datasets is conducted in
order to compare our feature selection approach with several state-of-
the-art methods in supervised, unsupervised, and semi-supervised
modes.

7.1. Experimental setting

From (16), we observe that the RA ∈ l n× is a binary selection matrix
and it selects the labeled data out of all data X when both labeled and
unlabeled data are available. A will degenerate to an identity matrix
when only with labeled or unlabeled data are available. According to
the value of A, the objective function (19) can implement feature
selection in supervised, unsupervised and semi-supervised way. Here,

we refer to our proposed method in these three modalities as Sup-
JHLSR, Un-JHLSR and Semi-JHLSR, respectively. The initial value for
each hyperedge weight is set according to the rules given in [34].

To demonstrate the effectiveness of the proposed approach, we
conduct experiments on 9 benchmark datasets, i.e., (a) the Prostate-GE
[5], (b) malignant glioma (GLIOMA) dataset [35], (c) SMK-CAN [36],
(d) COIL-20 [37], (e) handwritten digit image dataset MNIST [38], (f)
Caltech256-2000 [39], (g) Scene15 [40], (h) ORL [7] and (i) ALLAML
[5]. Table 2 summarizes the extent and properties of each of the 9 data-
sets. For each dataset, 50% of samples are randomly selected as
training data, and the remaining are treated as test data in both
supervised and the unsupervised modalities. In the semi-supervised
case, 5% and 40% samples are randomly selected as labeled and
unlabeled data, respectively, and the remaining are used as test data.
We repeat this procedure 10 times and obtain 10 random partitions of
the original data. The above feature selection algorithms are evaluated
on each partition and the averaged results are reported.

7.2. Experiment setup

In order to explore the discriminative capabilities of the informa-
tion captured by our method, we use the selected features for the
purpose of classification. We compare the classification results from
our proposed method (Sup-JHLSR, Un-JHLSR and Semi-JHLSR) with
twelve representative feature selection algorithms.

For supervised learning, six alternative feature selection algorithms
are selected as baselines. Compared with our proposed method Sup-
JHLSR, most of these methods focus on selecting features that preserve
the sample similarity, and neglect the local geometric structure of data.
We will briefly introduce these methods one by one.

• Fscore [1]: Fisher score is a classical feature selection algorithm. It
conducts feature selection by evaluating the importance of features
one by one. In contract to LapScore and SPEC, Fscore is supervised
with class label.

• SPFS [2]: The basic idea of SPFS is to pursue a transformation

Table 3
Study of supervised cases: aggregated SVM classification accuracy (MEAN± STD). The last row shows the averaged classification accuracy of all the algorithms over the 9 datasets.

Dataset Fscore LLFS L21RFS mRMR Traceratio SPFS Sup-JHLSR

Prostate-GE 91.43% 90.29% 90.24% 91.12% 91.43% 90.67% 93.65%
± 4.17 ± 3.14 ± 4.27 ± 4.54 ± 3.40 ± 4.26 ± 3.14

GLIOMA 69.65% 73.17% 70.21% 72.79% 69.65% 70.64% 74.3%
± 2.51 ± 2.66 ± 2.11 ± 2.22 ± 2.88 ± 2.88 ± 2.11

SMK-CAN 67.26% 70.1% 69.16% 68.34% 67.26% 68.6% 70.9%
± 2.68 ± 2.86 ± 1.95 ± 2.75 ± 3.06 ± 1.94 ± 1.94

MNIST 87.42% 88.53% 85.83% 86.66% 88.11% 88.7% 91.55%
± 1.92 ± 2.05 ± 0.78 ± 0.94 ± 1.88 ± 1.65 ± 1.26

Caltech256 40.12% 41.6% 39.83% 39.25% 38.23% 40.18% 45.69%
± 2.29 ± 2.09 ± 0.95 ± 1.59 ± 1.65 ± 1.12 ± 1.03

Scene15 61.6% 61.38% 59.83% 65.2% 60.85% 61.4% 74.57%
± 5.06 ± 2.68 ± 4.43 ± 4.80 ± 2.46 ± 2.94 ± 2.24

ORL 80.3% 90.17% 87.62% 90.34% 80.3% 89.58% 92.04%
± 1.90 ± 2.22 ± 2.83 ± 4.98 ± 1.90 ± 2.32 ± 4.98

COIL-20 84.03% 89.3% 89.86% 83.85% 89.23% 89.25% 90.34%
± 3.55 ± 3.28 ± 4.06 ± 3.28 ± 3.30 ± 1.72 ± 3.06

ALLAML 94.36% 94% 94.25% 95.61% 94.36% 95.1% 96.64%
± 1.702 ± 1.90 ± 1.36 ± 1.13 ± 1.13 ± 1.72 ± 1.38

AVG (%) 75.13 77.62 76.31 77.02 75.49 77.12 81.08
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matrix, which transform the high-dimensional data to a low-
dimensional data, to maximally preserve the global similarity
structure of original data.

• mRMR [3]: mRMR is a mutual information based method which is
designed to select features that have the maximal statistical depen-
dency on the classification variable, while simultaneously minimiz-
ing the redundancy among the selected features.

• LLFS [4]: LLFS selects features which best preserve the global
similarity structure of the original data.

• L21RFS [5]: L21RFS shares the spirit of similarity preservation is
SPFS. The major difference between L21RFS and SPFS is that the
regression loss in SPFS is measured by the Frobenius norm, while

the ℓ2,1-norm is adopted in L21RFS.

• Trace ratio [6]: The trace ratio criterion locates a feature subset for
which the within class pairwise affinities are large, while the between
class separation is large.

For unsupervised learning, four alternative feature selection algo-
rithms are selected as baselines. A commonly used criterion in these
alternative methods is to select the features which best preserve the
manifold structure derived from the Laplacian of a graph, where the
graph is constructed before hand. However, they separate the processes
of learning the graph and feature ranking. In practice, the ideal graph is
difficult to define in advance. Because one needs to assign appropriate
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Fig. 5. Accuracy rate vs. the number of selected features on 9 benchmark datasets by semi-supervised learning.
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values for parameters such as the neighborhood size or the heat kernel
parameter involved in graph construction, the process is conducted
independently of subsequent feature selection. As a result the perfor-
mance of feature selection is largely determined by the effectiveness of
graph construction. Our proposed method Un-JHLSR performs data
manifold structure learning and feature selection simultaneously. The
structures are adaptively learned from the results of hypergraph
learning, and the informative features are selected to preserve the
refined structures of data.

• LapScore [7]: LapScore selects features which can best preserve the
locality relationship revealed by weight matrix of a predefined graph.

• SPEC [8]: SPEC is a framework for feature selection based on
spectral graph theory. It firstly constructs a normalized graph
Laplacian and then defines different metrics to measure the
importance of each feature. SPEC also can be regarded as an
extension of LapScore which is more robust to noise.

• MCFS [9]: Multi-cluster feature selection (MCFS) selects features by
sequentially conducting manifold learning and spectral regression.

• JELSR [10]: which joint embedding learning with sparse regression
to perform feature selection.

We also compare our obtained results with two state-of-art semi-
supervised feature selection methods:

• LSDF [12]: Locality sensitive semi-supervised feature selection
(LSDF) is a semi-supervised feature selection approach based on
within-class and between-class graph construction.

• TRCFS [14]: Noise insensitive trace ratio criterion for feature
selection (TRCFS) is a recent semi-supervised algorithm based on
noise insensitive trace ratio criterion.

A 10-fold cross-validation strategy using the C-support vector
machine (C-SVM) [41] is employed to evaluate the classification
performance. We perform the cross-validation on the test samples
taken from the feature selection process. Specifically, the entire sample
is randomly partitioned into 10 subsets and then we choose one subset
for test and use the remaining 9 for training, and this procedure is
repeated 10 times. The final accuracy is computed by averaging the
accuracies from each of the random subsets.

7.3. Classification evaluation

Each subfigure shows the classification accuracy versus the number
of selected features for each dataset in turn.

(1) Results for the supervised case (Sup-JHLSR): The classification
accuracies obtained with different feature subsets based on supervised
learning are shown in Fig. 4. From the figure, it is clear that our

proposed method Sup-JHLSR is, by and large, superior to the alter-
native supervised feature selection methods on all the 9 benchmark
datasets. Following [2], Table 3 reports the “aggregated ” SVM
classification accuracy of different algorithms on each dataset. The
aggregated SVM classification accuracy is obtained by averaging the
averaged accuracy achieved by SVM using the top 10,20,…,200 features
selected by each algorithm. The boldfaced values are the highest ones.

The bottom row of Table 3 shows the averaged classification
accuracy for all the algorithms over the 9 datasets. Our method
improved the classification accuracy by 5.95% (Fscore), 3.46%
(LLFS), 4.77% (L21RFS), 4.06% (mRMR), 5.59% (Traceratio) and
3.96% (SPFS), respectively, compared to the averaged classification
accuracy of all competing methods over the 9 datasets. Meanwhile, our
method gives a lower standard deviation and hence more stable than
the alternatives. Overall, Fscore gives the worst performance. This may
be explained by the fact that it is unable to handle feature redundancy
and is prone to select redundant features. SPFS and L21RFS both select
a feature subset in which the pairwise similarity between high dimen-
sional samples is maximally preserved. They show inferior perfor-
mance to our Sup-JHLSR. This indicates that it is important to
preserve the sample similarity in identifying discriminative features
when the labels of the data are known. From Fig. 4 and Table 3, we
observed that those methods which incorporate manifold regulariza-
tion outperform these methods that do not, i.e., our proposed method
Sup-JHLSR is superior to both SPFS and L21RFS in terms of accuracy
values for all datasets studied. A possible explanation is that the
manifold regularization term causes data space locality information to
be preserved in the low dimensional representations. Furthermore, it is
demonstrated that the data space geometrical information is crucial for
good classification performance.

(2) Results for the semi-supervised case (Semi-JHLSR): The
classification accuracies for the different feature subsets obtained using
semi-supervised learning are shown in Fig. 5 and Table 4. Again, we
observe that our proposed method Semi-JHLSR outperforms the
alternatives. The aggregated SVM classification accuracy in Table 4
also clearly shows that the proposed method outperforms each of the
competing semi-supervised methods for all datasets studied, and the
improvement is in the range from 4.02% to 25.83%. Based on these
results, we observe that simultaneously preserving both the sample
similarity and the local geometric structure of data is necessary in
identifying discriminative features.

(3) Results for the unsupervised case (Un-JHLSR): From Fig. 6, the
proposed method Un-JHLSR still maintains the best classification
accuracy on each of the 9 benchmark datasets. The aggregated SVM
classification accuracy of different algorithms on each dataset is shown
in Table 5. From the results, we draw the following two observations:
(1) Firstly, the joint manifold characterization and feature selec-
tion methods outperform the methods which separate these two

Table 4
Study of semi-supervised cases: aggregated SVM classification accuracy (MEAN± STD). The last row shows the averaged classification accuracy of all the algorithms over the 9 datasets.

Dataset LSDF Semi-TRCFS Semi-JHLSR

Prostate-GE 64.2% ± 3.06 70.34% ± 2.63 90.03 1.37% ±
GLIOMA 58.6% ± 3.55 60.8%± 3.06 73.02 1.95% ±
SMK-CAN 57.4% ± 2.68 56.9%± 2.36 64.23 0.97% ±
MNIST 80.1% ± 2.68 78.37% ± 2.78 89.57 1.68% ±
Caltech256 34.2% ± 3.13 32.5%± 1.94 43.2 2.86% ±
Scene15 59.6% ± 3.10 62.5%± 3.63 71.8 2.78% ±
ORL 73.66% ± 3.95 74.28% ± 2.33 81.85 0.49% ±
COIL-20 78.76% ± 2.50 73.26% ± 2.82 82.78 0.88% ±
ALLAML 84.57% ± 3.32 80.89% ± 2.78 93.11 4.33% ±
AVG (%) 65.68 65.54 76.62

The best results are highlighted in bold.
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procedures, i.e., Un-JHLSR and JELSR are superior to MCFS and
LapScore in terms of accuracy in most cases. (2) Secondly, the
proposed method Un-JHLSR shows a significant improvement over
the graph based method JELSR. There are three reasons for this
improvement in performance. First, the local structure in JELSR is
based on a k-nearest neighbor graph, while UN-JHLSR leans a
hypergraph. Compared with graph regularization, hypergraph regular-
ization imposes a much stronger constraint on the data samples.
Instead of approximating them in terms of pairwise interactions which
can lead to a substantial loss of information, the hypergraph repre-
sentation is effective in capturing the high-order relations among
samples. Thus the structural information latent in the data can be

effectively preserved. Second, JELSR iteratively performs spectral
embedding for clustering and sparse spectral regression for feature
selection. However, the local structure itself (i.e., the Laplacian matrix)
is not changed during iterations of the algorithm. Our proposed
method JHLSR can adaptively improve the local structure by learning
the weights of hypergraph. Third, unlike JELSR which only incorpor-
ating the local manifold structure, our proposed method JHLSR
integrates the merits of local manifold structure and global discrimi-
native sample similarity. Thus, it performs better than the traditional
methods.

Taken together, the above experimental results for the supervised,
unsupervised, and semi-supervised feature selection modalities de-
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Fig. 6. Accuracy rate vs. the number of selected features on 9 benchmark datasets by unsupervised learning.
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monstrate the effectiveness and efficiency of the proposed JHLSR
framework.

7.4. Convergence results

In this section, we provide some numerical results to illustrate the
convergence behavior of our algorithm JHLSR. Two datasets, i.e.,
COIL-20 and GLIOMA, are employed. Since S is used for feature

selection, we would like to measure the variance between two
sequential S using the following metric:

Error t S S( ) = ∥ − ∥t t+1
2
2 (29)

As seen from Fig. 7, the divergence between two consecutive S converges
to zero, which means that the final results will not be changed drastically.
Convergence is fast, requiring less than 4 iterations.

Fig. 7. Convergence behavior of JHLSR. There are mainly 20 iterations. x-Axis represents the number of iterations and y-axis represents the divergence between two consecutive S
measure by Eq. (29). As observed, JHLSR always converge within 4 iterations.

Table 5
Study of unsupervised cases: aggregated SVM classification accuracy (MEAN± STD). The last row shows the averaged classification accuracy of all the algorithms over the 9 datasets.

Dataset SPEC JELSR MCFS LapScore Un-JHLSR

Prostate-GE 83.32% 86.2% 79.3% 78.4% 88.04%
± 2.29 ± 2.09 ± 2.19 ± 1.16 ± 1.65

GLIOMA 52.75% 51.38% 52.88% 52.65% 54.78%
± 3.33 ± 3.80 ± 2.27 ± 2.33 ± 2.03

SMK-CAN 52.5% 53.7% 50.52% 51.9% 55.23%
± 2.25 ± 3.24 ± 2.03 ± 1.82 ± 3.95

MNIST 78.89% 78.21% 78.93% 78.95% 80.45%
± 2.03 ± 2.21 ± 2.03 ± 2.90 ± 1.70

Caltech256 34.9% 33.7% 35.1% 31.8% 40.12%
± 2.50 ± 3.59 ± 3.35 ± 3.95 ± 2.39

Scene15 57.92% 54.75% 58.45% 50.2% 66.8%
± 3.33 ± 3.04 ± 2.34 ± 3.23 ± 2.52

ORL 72.12% 73.3% 72.84% 72.9% 76.2%
± 3.10 ± 3.13 ± 1.35 ± 3.74 ± 2.60

COIL-20 62.36% 64.93% 65.13% 65.42% 71.6%
± 4.16 ± 4.75 ± 5.06 ± 2.97 ± 3.23

ALLAML 70.25% 76.25% 73.4% 71.54% 81.38%
± 0.95 ± 1.12 ± 2.29 ± 1.59 ± 1.03

AVG (%) 62.78 63.60 62.95 61.53 68.29

The best results are highlighted in bold.
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Fig. 8. Accuracy rate vs. the number of selected features on three benchmark datasets by different methods (JHLSR, HYPER, and GRAPH).
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Fig. 9. Classification accuracy w.r.t. the use of different number of λ values in Eq. (13).
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Fig. 10. Illustration of the learned hyperedge weights in the proposed method.
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7.5. Effect of adaptive structure learning by hypergraph

To further illustrate the effectiveness of JHLSR in preserving the
local manifold structure of the data, we compare JHLSR with regular
hypergraph learning (HYPER) [21] (i.e., with no learning of the
hyperedge weights) and a graph based version of the proposed
algorithm (referred to as GRAPH). The main experimental results are
presented in Fig. 8 and a few interesting observations can be made.
First, JHLSR consistently outperforms HYPER and GRAPH on all the
datasets studied. The main reason is that JHLSR can represent diverse
relations among data samples, and adaptively improve the local
structure from the results of hypergraph learning. Second, JHLSR
consistently performs better than the conventional hypergraph learn-
ing algorithm (i.e., HYPER), and this result suggests that the simulta-
neous learning of hyperedge weights and feature selection is a better
strategy. Third, for the supervised case, there are few differences
among the three methods, since the label information is more crucial
than modeling the local manifold structure of data for the subsequent
classification task. However, in the semi-supervised and unsupervised
cases, JHLSR gains a significant improvement over HYPER and
GRAPH. This is because when the labeled data are scarce, feature
selection aims to select the features that well maintain the underlying
local manifold structure. In this case, the local structure itself (i.e., the
Laplacian matrix) in HYPER is not changed during iterations of the
algorithm. JHLSR can adaptively improve the local manifold structure
by updating the hyperedge weights.

7.6. Effect of hypergraph learning

In this section, we will evaluate the effectiveness of hypergraph
construction using the sparse representation model and hyperedge
weight learning.

To investigate the effect of different numbers of λ values (in Eq.
(13)) on the classification performance of the proposed method, we test
10 groups of λ values, i.e., {0.1}, {0.1, 0.2},
{0.1, 0.2, 0.3},…,{0.1, 0.2,…,0.9}, {0.1, 0.2,…,0.9, 1}. Fig. 9 gives the
classification results. The figure shows that with an increase in the
number of λ values, the classification accuracy first increases to a high
value and then decreases, finally converges to a highest value and
reaches a steady state. This observation verifies that the range (0.1: 0.9)
is enough for λ in Eq. (13).

Hypergraph construction using the sparse representation model
will produce some redundant hyperedges. Therefore, in order to
regulate the effects of different hyperedges, we place a regularizer

(i.e., W∑ = 1j
m

H
j

=1 and W ≥ 0H
j ) on the hyperedge weights. In this way,

the effects of different hyperedges can be adaptively regulated and
useless or redundant hyperedges can be discarded (i.e., the weights of
redundant hyperedges will ideally be 0), and thus, we can select the
most effective hyperedges. Fig. 10 visualizes the values of the hyper-
edge weights on the six datasets. It is clear that different hyperedges
have different weights and some hyperedge weights are 0. For clear
comparison, we illustrate the number of non-zero weight hyperedges
during learning in Fig. 11. As demonstrated in Fig. 11, the number of
non-zero weight hyperedges iteratively decreases until reaching a
steady state. Therefore, only a very small number of hyperedges are
preserved after learning. The results further verify the effectiveness of
hypergraph learning.

8. Conclusion

In this paper, we have proposed a hypergraph learning approach for
feature selection, aimed at capturing higher order sample relations in
sets of data. The approach not only incorporates a robust hyperedge
construction method, but also allows for the simultaneous learning of
hyperedge weights and feature selection based on matrix sparsification.
The learned hyperedges weight are shown to better characterize the
manifold structure of the data. Experimental results for the cases of
supervised, unsupervised and semi-supervised feature selection de-
monstrate both the effectiveness and efficiency of the proposed JHLSR
framework.

There are a number of shortcomings of the proposed method, which
we aim to address in future work. Firstly the JHLSR method has three
parameters that need to be hand-tuned, and which is computationally
cumbersome for real world applications. To reduce this burden, we will
replace the convex regularizations on S and WH with ℓ20 or ℓ0 norm.
Secondly, both the global and local structures (i.e., K and LH) in
JHLSR are based on all the available features. We will investigate how
to refine the estimation of these structures using the selected features.

At a more ambitious level, it would also be interesting to explore
whether the semi-supervised approach to feature selection presented
here could be cast into the harmonic framework [42]. This would
provide a natural way of learning the hypergraph weights in a semi-
supervised setting.
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Appendix A. Proof of Theorem 1

We prove that the proposed Algorithm 1 makes the values of the objective function in Eq. (20) monotonically decrease. We first give a lemma [5]
as follows, which will be used in our proof:

Lemma 1. For any nonzero vectors a, Rb ∈ d , the following result follows:

a a
b

b b
b

∥ ∥ −
2 ∥ ∥

≤ ∥ ∥ −
2 ∥ ∥2

2
2

2
2

2
2

2 (A.1)

Proof. For any nonzero vectors a, Rb ∈ d , there exists

a b a b∥ ∥ ∥ ∥ ≤ ( + )2 2
1
2 2

2
2
2

(A.2)

For any b ≠ 0, we have

a a
b

b
b

∥ ∥ ≤ 1
2 ∥ ∥

+ 1
2 ∥ ∥2

2
2

2

2
2

2 (A.3)

By Eq. (A.3), we obtain

a a
b

b
b

∥ ∥ − 1
2 ∥ ∥

≤ 1
2 ∥ ∥2

2
2

2

2
2

2 (A.4)

This completes the proof.□

According to [43–45,10], optimizing the non-smooth convex form S∥ ∥2,1 can be transferred to iteratively optimize U and S in S UStr( )T . As seen
from the Step 1 in Algorithm 1, when we fix U as Ut1 in the t1-th iteration and update St +11 , Eq. (20) can be rewritten as

S AXS Φ μ S X L XS λ S U S= arg min{ − + tr( ) + tr( )}t
S

F
T T

H
T t+1 21 1

(A.5)

and the following inequality holds:

AXS Φ μ S X L XS λ S U S AXS Φ μ S X L XS λ S U S− + tr(( ) ) + tr(( ) ) ≤ − + tr(( ) ) + tr(( ) )t
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Since U
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= 1
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i 2
and the inequality in S s∥ ∥ = ∑ ∥ ∥i
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i2,1 =1 2, then Eq. (A.6) can be rewritten as

∑ ∑AXS Φ μ S X L XS λ
s

s
AXS Φ μ S X L XS λ

s
s

− + tr(( ) ) +
2 ∥ ∥

≤ − + tr(( ) ) +
2 ∥ ∥

t
F

t T T
H

t

i

d
i
t

i
t

t
F

t T T
H

t

i

d
i
t

i
t

+1 2 +1 +1

=1

+1
2
2

2

2

=1

2
2

2
1 1 1

1

1
1 1 1

1

1 (A.7)

Recalling the result gain in Lemma 1, we know that
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Based on Eqs. (A.7) and (A.8), we have the following result:

AXS Φ μ S X L XS λ S AXS Φ μ S X L XS λ S− + tr(( ) ) + ∥ ∥ ≤ ∥ − ∥ + tr(( ) ) + ∥ ∥t
F

t T T
H

t t t
F

t T T
H

t t+1 2 +1 +1 +1
2,1

2
2,11 1 1 1 1 1 1 1 (A.9)

This inequality indicates that function in Eq. (20) will monotonically decrease in each iteration. Therefore, Step 1 in Algorithm 1 will converge.

Appendix B. Proof of Theorem 2

Lemma 2. For any nonzero vectors x and y, we attempt to solve the following optimization problem:

γ x y ax bys t x y c x ymin ( + ) + + . . + = , ≥ 0, ≥ 0
x y,

2 2
(B.1)

Hence, we have the optimal solution of the above problem as

⎧

⎨
⎪⎪⎪

⎩
⎪⎪⎪

x y c if c

x c y if

x else
y c x

= 0, = , − ≥

= , = 0, − ≤ 0

= ,
= −

b a γc
γ

b a γc
γ

γc b a
γ

− − 2
4

− − 2
4

2 + −
4

(B.2)

Proof. Since x c y= − , we add it into the objective function equation (B.1), then we have

γ c y γy a c y bymin ( − ) + + ( − ) +
y

2 2
(B.3)

Rewriting the above optimization problem in Eq. (B.3) as
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γy b a γc y γc acmin{2 + ( − − 2 ) + + }
y

2 2
(B.4)

the following optimal solutions hold:

⎧

⎨
⎪⎪
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y c c

y

y
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= 0, if − ≤ 0

= − , else
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This completes the proof. □

When we fix S and solve for WH, the objective function in Eq. (19) can be rewritten as

μ RW D R γ Wmin{− tr( ) + ∥ diag( ) ∥ }
W

H e
T

H
−1 2

H (B.6)

where R S X D H= T T v
−1
2 . The aforementioned problem can be solved using an alternating optimization process. By using a coordinate descent

algorithm, we develop an iterative process that alternately updates the sparse matrix S and the weight valueWH. At each iteration, two elements are
selected for updating, whereas the remaining are left fixed. For example, in t2-th iteration, the p-th and the q-th elements, i.e., WH

p
and WH

q
, are

selected. After the iteration, we update WH
p
and WH

q
as W *

H
p

and W *
H
q
, respectively (see Eq. (27)).

Recalling the results in Lemma 2, we know that if we let b μS= q, a μS= p, x W= H
p
and y W= H

q
, we have
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Therefore, the following inequality holds:
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As seen from Eq. (B.8), since each step decreases the objective function, the convergence of the alternating optimization process is guaranteed. As a
result, the objective function equation (19) has a global optimum solution.
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