
Hearing and communication present various challenges 
for the nervous system. To be heard and to be under-
stood, an auditory signal must first be transformed from 
a time-varying acoustic waveform into a perceptual rep-
resentation (FIG. 1). This is then converted to an abstract 
representation that combines the extracted information 
with information from memory stores and semantic 
information1. Last, this abstract representation must be 
interpreted to guide the categorical decisions that deter-
mine behaviour. Did I hear the stimulus? From where 
and whom did it come? What does it tell me? How can I 
use this information to plan an action?

There is broad agreement that the ventral auditory 
pathway — a pathway of brain regions that includes 
the core auditory cortex, the anterolateral belt region 
of the auditory cortex and the ventrolateral prefrontal 
cortex — has a role in auditory-object processing and 
perception2–5. However, no consensus has been reached 
on either the roles of different regions in this pathway 
in specific elements of auditory-object processing and 
perception or the contributions of particular cognitive 
states (such as attention) to the differential modulation 
of activity along this pathway. Here, we discuss how the 
brain transforms an acoustic-based representation of a 
stimulus into one that is object-based. We consider how 
object-related neural activity might emerge and how 
attention and behavioural state influence perception and 
neural activity. We also review what is known and, more 
importantly, what is unknown regarding the hierarchi-
cal flow and transformation of information along the 
ventral pathway. Finally, we focus on studies that relate 

neural activity to behaviour; reviews of work underly-
ing perceptual correlates of audition in non-behaving 
animals can be found elsewhere5–9.

What is an auditory object?
The precise definition of an auditory object has been 
the subject of considerable debate1,10–17. Intuitively, we 
understand an auditory object to be the perceptual 
consequence of the auditory system’s interpretation of 
acoustic events and happenings. For example, when 
sitting outside a café, we might hear a bird sing, a car 
passing, the hiss of a coffee machine or the voice of our 
friend. Each of these different and discrete sounds can be 
described as an auditory object11–14. More formally, audi-
tory objects are the computational result of the auditory 
system’s ability to detect, extract, segregate and group 
the spectrotemporal regularities in the acoustic environ-
ment into stable perceptual units1,11,12. Thus, we define an 
auditory object as a perceptual construct, corresponding 
to the sound (such as the hiss) that can be assigned to a 
particular source (the coffee machine).

Auditory objects have several general features and 
characteristics11. First, acoustic stimuli are emitted from 
or by things, as a consequence of actions or events. Some 
acoustic stimuli, such as human speech, are emitted with 
a clear intention, whereas others, such as environmental 
sounds, are not. In either case, we rarely hear sounds in 
isolation. Therefore, an auditory object spans multiple 
acoustic events that unfold over time, and a sequence 
of objects forms a ‘stream’. For example, when a per-
son is walking, each step is a unique acoustic event 
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a Independent auditory stimuli are created by each of the 
three sources: the singer, banjo player and bassist

b The auditory stimulus that reaches a listener’s ear is a 
complex mixture of these three sources

c A listener hears each source as a distinct auditory object

Pitch
The attribute of a sound that 
enables it to be ordered from 
high to low on a musical scale. 
The perceived pitch for a 
periodic sound is determined 
by its fundamental frequency 
(F0), usually the lowest 
frequency component.

Timbre
The quality of a sound that is 
determined by its spectral or 
temporal envelope. Timbre 
allows a listener to differentiate 
between a violin and a banjo 
despite the fact that the two 
instruments may be producing 
a sound that has the same 
pitch.

Harmonicity
A harmonic sound contains 
frequency components at 
integer multiples of the 
fundamental frequency (see 
the definition for ‘pitch’). Many 
vocalizations and other 
pitch-evoking sounds have a 
harmonic structure.

or object. However, our auditory system groups these 
separate stimuli together into a temporal sequence of 
‘footsteps’. A stream of objects can, itself, be termed an 
object1,15. Second, we can parse the soundscape into its 
constituent objects. Therefore, one auditory object has 
spectrotemporal properties that make it separable from 
other auditory objects11–15. As a consequence, we can 
detect our friend’s voice among myriad other sounds 
in the café. Third, as with a visual object, a listener can 

readily describe an auditory object by the combination of 
its features: it might have a high or low pitch, a rich timbre 
or a characteristic loudness. However, the same listener 
would find it very difficult to describe the underlying 
acoustic features that give rise to these percepts, such 
as the harmonicity of the sound or the timing difference 
between our ears15. Fourth, like vision, auditory-object 
recognition is invariant to various changes to its spec-
trotemporal properties, which result from the context 
in which the object is perceived. For example, a violin 
still sounds like a violin regardless of whether a single 
high note or a rapid melody is played, whether it is 
played loudly or softly or whether it is played alone or 
as part of an orchestra. As in the visual system, we must 
be capable of generalizing across the different ways in 
which an object or event occurs1,18–20. Last, we expect 
object representations to predict parts of the object for 
which no input is currently available. For example, Jan 
can still understand Jenny’s speech despite the fact that 
Yale’s sneezing has masked certain acoustic features of 
her speech by rendering them inaudible11,21–25.

How are auditory objects formed? Our ear receives 
a composite waveform comprised of all of the acoustic 
stimuli in the environment. The brain’s job is to appro-
priately group these acoustic features into perceptual fea-
tures and then to group these to form a representation of 
discrete objects that can be further analysed (FIG. 1). An 
auditory stimulus comes into our awareness as an audi-
tory object by means of the simultaneous and sequential 
principles that group acoustic features into stable spec-
trotemporal entities (BOXES 1,2). Although attention is 
not always necessary for auditory-object formation26, 
our awareness of an object can be influenced by atten-
tion14,17. For example, we can choose whether to listen 
to — or ignore — the first violin, the strings or the whole 
orchestra. Likewise, we can selectively attend to the fea-
tures of a person’s voice that allow a listener to identify 
the speaker.

Hierarchical processing in the cortex
Visual information processing is thought to take place 
in two parallel pathways that independently analyse the 
identity and location of objects within the visual scene27. 
Initially, on the basis of theoretical and anatomical stud-
ies, a similar processing scheme was proposed for the 
auditory cortex2–5 whereby information is processed in 
parallel hierarchical pathways specialized for the extrac-
tion of spatial (‘where is the sound?’) and non-spatial 
(‘what is the sound?’) components of an auditory stimu-
lus. These computations occur in the so‑called ‘dorsal’ 
and ‘ventral’ pathways, respectively. As we discuss in 
detail below, both functional imaging studies in humans 
and single-unit neurophysiology in non-human ani-
mals provide evidence in favour of a division of labour 
between spatial and non-spatial processing. Conversely, 
other studies using the same methods suggest that rather 
than two hierarchically organized parallel pathways, dis-
tributed, dynamically organized processing networks are 
likely to support auditory perception. According to this 
theory, feedback between brain areas would facilitate 
object selection.

Figure 1 | The transformation of an acoustic stimulus 
into a perceptual representation of a sound.  The 
fundamental problem that is solved by the auditory system 
is the need to transform an acoustic stimulus into a 
perceptual representation of one or more auditory objects. 
Typically, various independent sound sources contribute to 
the creation of a soundscape. a | In the example shown, 
there are three sound sources (a banjo player, a singer and 
a bassist), each of which is producing an acoustic stimulus 
with unique spectrotemporal features. b | The auditory 
stimulus that reaches a listener’s ear will be a complex 
mixture of the stimuli produced by these three sources.  
c | However, the listener hears each source as a distinct 
auditory object. BOXES 1,2 discuss the grouping cues that 
underlie this capacity to segregate a stimulus into unique 
sound sources.

R E V I E W S

694 | OCTOBER 2013 | VOLUME 14	  www.nature.com/reviews/neuro

© 2013 Macmillan Publishers Limited. All rights reserved



Fr
eq

ue
nc

y 
(k

H
z)

Time (ms)

Nature Reviews | Neuroscience

a b

c

2

1

0

3

4

2000 400

Fr
eq

ue
nc

y 
(k

H
z)

Time (ms)

Stimulus Percept

+

d

Fr
eq

ue
nc

y 
(k

H
z)

One 
sound

One 
sound

Two 
sounds

Processing strategies within auditory cortex. Under a 
hierarchical-processing model, auditory-object extrac-
tion occurs in the ventral processing pathway, and we 
might expect to see, as we move along the pathway, a 
transition from the representation of acoustic features 
to perceptual features and finally to objects or category-
specific representations at the highest stages — computa-
tions perhaps analogous to those that are well described 
in higher visual areas28–31. At least in non-human pri-
mates, the ventral pathway begins in the core auditory 
cortex — specifically, the primary auditory cortex and the 
rostral field (FIG. 2). These core areas project to the ante-
rolateral belt region of the auditory cortex. In turn, this 
belt region projects to the ventrolateral prefrontal cortex.

There are several pieces of evidence suggesting that 
auditory-object and spatial processing occurs in separate, 
parallel pathways (FIG. 2). Some of the first physiological evi-
dence for a separation of spatial and non-spatial processing 
was provided by a study32 that investigated neural sensitiv-
ity to sound location and identity using a series of monkey 
vocalizations presented at different spatial locations. This 
study found that belt regions in the ventral auditory path-
way were more sensitive to vocalization type, whereas belt 
regions in the dorsal pathway were modulated more by the 
location of a stimulus. Similarly, early human imaging data 
supported a division of spatial and non-spatial process-
ing33,34. Furthermore, a meta-analysis of functional imag-
ing data showed that spatial tasks almost always activate 

Box 1 | Analysing the soundscape: simultaneous grouping cues

Identifying an auditory object involves assigning elements of the incoming sensory input into one or more sources. 
Several of the cues that are used to group auditory stimuli into objects can be classified as ‘simultaneous cues’ (REF. 11). 
We automatically group the elements of a visual scene, such as that shown in panel a of the figure into distinct objects (in 
this case, on the basis of the colour of the letters, the proximity and orientation of adjacent letters, the size and letter 
font). Similarly, in audition, the brain groups together stimuli associated with acoustic cues — such as pitch, harmonicity, 
timbre, common onset or modulation time and spatial location — that can be quickly derived from a sound’s spectral 
features72.

Natural sounds, such as speech, are often harmonic: that is, they have energy at integer multiples of the lowest (or 
fundamental) frequency. This is illustrated in panel b of the figure, which shows a spectrogram of a human speech sound 
in which horizontal bands of energy are visible. Importantly, individual harmonics change coherently over time, and 
harmonic frequencies that change coherently are grouped together. This shown schematically in panel c: sound elements 
that change coherently are grouped together such that the red and blue sound elements form two separate auditory 
objects. Pitch is another important grouping cue that allows a listener to identify and track simultaneous speakers. 
Panel d of the figure shows a related cue, harmonicity. Here, a single pure tone or a harmonic series of pure tones (blue) 
are both perceived as a single sound. However, the introduction of a ‘mistuned’ harmonic — that is, a harmonic at a 
frequency that is not an integer of the fundamental frequency (red) — results in the perception of an additional separate 
sound. Differences in timbre are used to identify different vowel sounds or different musical instruments even when the 
instruments are playing the same note.

Sound components with a common onset time are likely to be perceived as originating from the same object. In natural 
listening conditions, onset time is one of the more important grouping cues. Spatial location provides relatively weak 
grouping72,166,167, but when a listener attends to a particular location, attentional resources can facilitate the distinction 
between simultaneous speech sounds14.
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the posterior auditory cortex (part of the dorsal stream), 
whereas non-spatial activity is observed across the tem-
poral lobe35. Finally, other findings have shown that  
the ventral stream is involved in the categorization of 
speech sounds36–38, which is an important component 
of auditory-object processing1. Preferential spatial and 
non-spatial processing is also found outside the auditory 
cortex: for example, in the prefrontal cortical regions 
that are part of these hypothesized dorsal and ventral 
pathways39–41.

Nevertheless, substantive auditory-object process-
ing has been identified in the dorsal pathway, and 
substantial information about auditory space has been 
found in the ventral pathway42–48. Such findings sug-
gest that a model of parallel hierarchical processing 
might be too simplistic and that a mixture of spatial 
and non-spatial auditory information might be use-
ful for those computations that create the consistent 
perceptual representations that guide goal-directed 
behaviour. For example, spatial information can act 
as a grouping cue to enable auditory stream formation. 
When a rhythmic sequence of identical sound bursts 
is presented from a single location, it is perceived 
as one source by human observers. However, such a 
sequence is perceived as two sources, each with a dis-
tinct rhythm, when the sound sequences are presented 
from two spatially separated locations49. Neural cor-
relates of this paradigm are observed in the auditory 

cortex of anaesthetized cats50. Likewise, non-spatial 
(object) information processed in the dorsal stream 
might contribute to computations that involve tar-
get selection, the online computational processing of 
dynamic auditory information, audiomotor processing 
and other computations that involve organization of 
the auditory scene (see REFS 42,43,51–54 for reviews of 
hierarchical processing of speech in both the posterior 
and anterior auditory cortex). However, as most, if not 
all, studies have asked listeners to attend to either spa-
tial or non-spatial features of a sound but not to both 
simultaneously, the interaction between these two 
pathways has not been fully resolved within either the 
auditory or visual systems55.

Within the ventral and dorsal processing pathways, 
both single-neuron studies32,56–59 and functional imag-
ing studies60–64 indicate that the perceptual features of a 
sound might be localized and organized in a hierarchical 
manner. Pitch is probably the most widely studied per-
ceptual feature; below, we use it to explore findings that 
support both hierarchical and distributed organizational 
schemes.

Pitch processing: hierarchical or distributed? Several 
important studies indicate that pitch-selective neurons 
are localized to specific cortical areas. For example, 
in non-human primates, pitch-selective neurons are 
found at the border between the core and belt auditory 

Box 2 | Analysing the soundscape: sequential grouping cues

Auditory stimuli can be grouped into objects using what are known as sequential grouping cues11. Sequential grouping 
cues enable temporal sequences of sounds to be assigned to a common source: panel a of the figure shows a visual 
analogy in which the sets of letters are grouped into two words because they form a sequence from left to right. As 
shown in panel b of the figure, these cues have been studied using repeating patterns of pure tones in which the 
patterns are separated perceptually into two or more streams168. Two factors determine most stream segregation: 
frequency separation (a bigger difference in the frequency of the tones makes it more likely that two streams will be 
perceived) and speed (if the presentation rate of the tones is increased, a listener is more likely to hear two streams). A 
hallmark of such streaming is that listeners find it hard to make inter-stream judgements, such as judging the order of 
two sounds that are in separate streams. Such percepts can be ‘bistable’: at intermediate frequency separations (such 
as 3–7 semitones), the perception of ‘one stream’ and ‘two streams’ alternates over time. However, with increased 
listening time, a stable two-stream percept is developed. Panel c illustrates another example of sequential integration 
that is called ‘amodal completion’ (the continuity illusion). Here, a discontinuous tone is heard as continuous when a 
noise burst occurs during the gap.
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Figure 2 | Dual pathways of information flow in the auditory system and the organization of the auditory 
cortex.  a | Information processing in the primate auditory system is hypothesized to occur in two streams. Neurons in the 
‘dorsal’ stream (red), which may preferentially analyse space and motion, are involved in audiomotor processing, whereas 
those in the ‘ventral’ stream (green) are preferentially involved in auditory-object processing6. Solid arrows indicate 
feedforward projections, and dashed arrows indicate feedback projections. b | A schematic representation of the 
organization of the auditory cortex (AC) in different species73. The lemniscal auditory thalamocortical projection 
terminates in the ‘core’ regions of the AC (blue shading), including the primary auditory cortex (A1). In humans, this core 
region is in Brodmann area 41 (BA41). From these core areas, there is both serial and parallel processing in the surrounding 
‘belt’ regions (such as the anterolateral (AL) and middle-lateral (ML)) regions in the macaque monkey or the secondary AC 
(A2) in the cat) and from there to the ‘parabelt’ regions (such as the rostral parabelt (RPB) in the macaque; see REF. 73 for 
more details). Although this organization was originally described in non-human primates, it appears to be a general 
organizational scheme in a variety of primate and non-primate species. Solid lines indicate boundaries between auditory 
fields, and dashed lies indicate anatomical boundaries. AAF, anterior auditory field; ADF, anterior dorsal field; Ald, dorsal 
region of the primary auditory field; AV, anteroventral field; CL, caudolateral belt region of the AC; CM, caudomedial area; 
CPB, caudal parabelt; CS, central sulcus; D, dorsal field; DC, dorsocaudal field; DCB, dorsocaudal belt; DLPFC, dorsolateral 
prefrontal cortex; DP, dorsoposterior field; DRB, dorsorostral belt; EP, ectosylvian posterior auditory region; IFC, inferior 
frontal cortex; Ins, insula; IPL, intraparietal lobule; IPS, intraparietal sulcus; LS, lateral sulcus; MM, mediomedial belt; PAF, 
posterior auditory field; PDF, posterior dorsal field; PMC, premotor cortex; PPF, posterior pseudosylvian field;  
PSF, posterior suprasylvian field; RM, rostromedial belt; RPB, rostral parabelt; RTL, rostrotemporal lateral belt; RTM, 
rostrotemporal medial belt; SRAF, suprarhinal auditory field; STGr, superior temporal gyrus rostral to the parabelt; STS, 
superior temporal sulcus; T, transitional belt area; Te, temporal; Tpt, temporal lobe association cortex; V, ventral field; VAF, 
ventral auditory field; VCB, ventrocaudal belt; VLPFC, ventrolateral prefrontal cortex; VM, ventromedial field; VP, 
ventroposterior field; VRB, ventrorostral belt. Part a is modified, with permission, from REF. 6 © (2009) Macmillan 
Publishers Ltd. All rights reserved. Part b is modified, with permission, from REF. 73 © (2011) Elsevier.
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Spectral envelope
This term refers to the 
distribution of power across 
frequency in a sound. For a 
harmonic sound, this equates 
to the relative power across 
harmonics.

Dynamic causal modelling
A computational approach that 
performs Bayesian model 
comparisons in order to infer 
the organizational structure of 
processing within different 
brain regions.

cortex56. Similarly, in humans, a pitch-sensitive area has 
been identified anterior to Heschl’s gyrus60–62. Moreover, 
whereas neural activity throughout the auditory cortex 
correlates better with changes in a listener’s reports of 
features such as pitch than with changes in the stimu-
lus features, activity recorded in the low-frequency core 
and belt regions of the auditory cortex predicts both 
pitch and listeners’ reports of pitch better than activity 
recorded in other regions65.

However, many of the same studies also provide 
evidence that a broader network of brain areas may 
subserve pitch perception. For example, pitch-related 
activity has also been reported in both the core66 and 
the non-core63,67,68 auditory cortex in humans. Similarly, 
pitch-sensitive neurons are broadly distributed in core 
and non-core regions of the ferret auditory cortex, and 
neural responses in multiple regions of the auditory cor-
tex correlate with pitch-perception judgements in this 
species44,65,69.

The difficulties inherent in comparing data derived 
using different experimental methods (and often in 
different species) limit a comprehensive understand-
ing of the neural correlates underlying pitch percep-
tion. For example, comparing studies using single-unit 
recordings and those using functional imaging is dif-
ficult as both are subject to different methodological 
constraints70. Functional MRI (fMRI) experiments, 
for example, usually compare the activity elicited by a 
pitch-evoking stimulus with that evoked by a control 
sound without pitch. By contrast, single-neuron stud-
ies present a particular class of pitch-evoking stimuli 
and test for a neuron’s tuning to a specific fundamental 
frequency. Also, studies rarely attempt to map a neuron’s 
pitch tuning while also using a number of spectrally 
different sounds in order to explore pitch constancy 
(although see REFS 56,68,71 for exceptions). Finally, it 
has proven difficult to identify individual brain regions 
or neurons that respond to a pitch irrespective of the 
stimulus’ spectral properties68,71.

Consequently, further studies (such as experiments 
in which particular neurons or brain areas are inac-
tivated) will be required to determine whether puta-
tive pitch-selective areas have a causal role in auditory 
perception and to determine how these areas function 
interdependently of one another. Neurophysiological 
experiments would additionally benefit from exploring 
neural tuning using various pitch-evoking stimuli68,71 
to test for neural representations that can abstract 
pitch. Performing such studies in animals that are 
actively discriminating sounds on the basis of their 
pitch is essential to determine the response properties 
underlying pitch perception.

We predict two broad outcomes of such sets of 
experiments. It is possible that activity in a special-
ized area underlies pitch perception9 but that broadly 
distributed pitch sensitivity enables pitch to be used for 
making sense of the auditory scene — for example, by 
enabling common pitch to be used as a grouping cue72. 
Alternatively, a distributed network of pitch-activated 
areas might form a processing hierarchy70. For exam-
ple, pitch processing within the primary auditory cortex 

could depend on the listening context, whereas pitch 
processing in extra-core regions (such as the planum 
temporale73,74) might be context-independent. In other 
words, there might be an invariant representation of 
pitch in the planum temporale but not in core areas such 
as Heschl’s gyrus63, which is consistent with the idea of a 
pitch-processing hierarchy.

Timbre: explicit and implicit representations. Similar 
principles can be drawn from the study of other percep-
tual dimensions. Another important perceptual feature of 
a sound is timbre. The neural representation of timbre is 
broadly distributed: in both core and belt regions of the 
auditory cortex, both single-neuron44,75,76 and functional 
imaging64,77 studies have shown that neurons are sensi-
tive to the timbre of a sound. However, this neural repre-
sentation of timbre is not invariant, as neural sensitivity 
to timbre is modulated by other sound features, such 
as pitch or spatial location78. Despite this, neural activ-
ity might represent different stimulus features unam-
biguously at different time points: when responding to a 
stimulus, single-unit spiking activity is initially tuned for 
the sound’s timbre but later becomes tuned for its pitch79. 
The core auditory cortex might thus contain an ‘implicit’ 
representation of both an object and identity-preserving 
transformations of the object (such as changes in loca-
tion or loudness) in a manner that may be analogous to 
the different types of visual representation contained in 
visual area V4 (REF. 28).

However, an explicit or invariant representation of 
timbre does seem to emerge in later stages of process-
ing, at least in humans. For example, neural responses 
to vowel sounds represent stimulus acoustics at the level 
of the brainstem but represent perceptual mappings at 
the level of the cortex80. Functional imaging studies indi-
cate that neurons in the planum temporale encode an 
invariant representation of a sound’s spectral envelope, 
one of the key determinants of timbre64. Indeed, dynamic 
causal modelling has directly identified a serial-processing 
architecture in which timbre information originates in 
Heschl’s gyrus, is transmitted to the planum temporale 
and then to the superior temporal gyrus; according to 
this model, spectral envelope extraction is complete 
by the time the information reaches the planum tem-
porale64. Such a hierarchical-processing scheme might 
underpin a representation of sound timbre that allows 
us to perceptually recognize and identify a music instru-
ment as a bassoon or a violin across different pitches 
and melodies.

In summary, although single neurons in the early 
core and belt auditory cortex of non-human animals 
show broad sensitivity to a number of perceptual fea-
tures, there is good evidence for specialized process-
ing of some of these features within particular areas. 
Whether these areas form a linear, hierarchical process-
ing stream or a more dynamic, distributed assembly 
remains a matter of debate. To advance our understand-
ing of the mechanisms underlying timbre perception, it 
may prove beneficial to carry out single-unit recording 
studies to test predictions derived from computational 
modelling techniques64.
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Auditory flutter
The sensation produced by a 
periodic stimulus in which a 
listener can hear the sound as 
being intermittent. At higher 
frequencies, the sound is fused 
into one with a continuous 
melodic pitch. The border 
between being heard as 
intermittent or continuous is 
the flicker–fusion limit.

From stimulus to perception
Studies in behaving animals offer the potential to observe 
neural correlates of perception, as indexed by changes  
in neural activity as a function of an animal’s behavioural 
choice during a listening task. That is, by holding a stim-
ulus constant and testing whether neural activity is mod-
ulated by the animal’s behavioural responses or choices 
(such as an animal indicating whether a target pitch is 
perceived as higher or lower than a reference pitch),  
neural activity that is associated with the stimulus itself 
can be dissociated from neural activity associated with 
the sensory decision. Choice-related activity (that is, 
activity that represents the animal’s behavioural choice 
rather than the stimulus)81 is thought to arise owing to 
correlations in the noise structure of neurons contribut-
ing to a sensory decision82. By examining how choice-
related activity and other behaviourally related signals 
are modulated in different cortical areas, we can gain 
insight into how the nervous system transforms a sen-
sory signal into a decision variable81,83,84.

Recent investigations in behaving primate and non-
primate species have found that neural activity is signifi-
cantly correlated with a listener’s behavioural reports65,85. 
For example, in core and non-core regions of the audi-
tory cortex, local-field potentials and spiking activity are 
modulated more by ferrets’ decisions regarding the pitch 
of a target sound than by the actual pitch category65. 
Similarly, in macaque monkeys, single- and multiunit 
recordings during an amplitude-modulation detection 
task reveal that activity in neurons in the primary audi-
tory cortex is, once again, correlated with an animal’s 
behavioural reports85. Last, blood-oxygen-level-depend-
ent (BOLD) signals measured in early belt regions (areas 
adjacent to Heschl’s gyrus and in the planum temporale) 
with fMRI can be decoded to predict a human listener’s 
percept of an ambiguous speech sound86. These find-
ings suggest that a population of core auditory cortical 
neurons contribute to or reflect the computations that 
underlie perceptual decision-making.

However, not all studies have found choice-related 
activity in the core auditory cortex87–91. For example, in 
an auditory flutter experiment, choice-related activity was 
not found in the auditory cortex but appeared in the ven-
tral premotor cortex90,91. Similarly, in macaques that were 
discriminating between two phonemes and morphs of 
these phonemes, choice-related activity was not present 
in the auditory cortex but was found in the ventrolateral 
prefrontal cortex87–89.

It is not clear why some studies have found choice-
related activity in the primary auditory cortex, whereas 
others have only found such activity in more anterior 
areas. One important consideration might be the task 
itself. For example, whether an animal is engaged in a 
single- or multiple-interval forced-choice task, the task 
design or the animal’s strategy to solve the task might 
determine the location of choice-related activity: a brain 
area that encodes the stimulus in a multiple-interval 
choice task is also unlikely to perform the comparison 
of the two stimuli87,90. In such a task, choice-related activ-
ity would first be observed in more anterior processing 
areas, such as the ventrolateral prefrontal cortex or the 

premotor cortex87,90. By contrast, when a task can be 
solved on the basis of listening during a single inter-
val, that interval could also code a sensory decision. 
Therefore, differences in the level of abstraction required 
by the animals might determine whether choice-related 
activity is observed within the auditory cortex: a cat-
egorical ‘same’ versus ‘different’ task88,89 necessitates a 
higher level of abstraction than does a high or low pitch 
judgement65 or detection of a particular stimulus feature 
(such as modulation85 or frequency change92).

Nevertheless, the finding of such signals in any brain 
region does not indicate that a particular cortical area 
is a locus for decision-making. A decision outcome is 
thought to require the accumulation of sensory evi-
dence into a decision variable93. It seems likely that  
the neural correlates of perception that are observed in 
the early auditory cortex represent the sensory evidence 
that is needed to form a perceptual decision, which is 
then fed forward to other areas of the ventral pathway. 
Alternatively, this choice-related activity could reflect 
feedback signals from higher areas82,94. Finally, the time 
when choice-related activity appears during the tem-
poral evolution of a task is an important consideration. 
For example, if choice-related activity appears before the 
stimulus that forms the basis of the animal’s decision 
(such as the second stimulus in a paradigm requiring an 
animal to compare two sequentially presented sounds), 
this activity should be considered to be reflective of the 
listener’s bias in making one alternative (choice) more 
favourable than the other65,85,95.

To identify the neural mechanisms underlying audi-
tory decision-making, scientists must systematically 
study changes in neural representations throughout 
a circuit of cortical areas to determine whether such 
signals reflect sensory evidence or a true decision vari-
able. Such work has proven to be fruitful in the visual 
and somatosensory systems83,96 but has yet to be applied 
broadly to the auditory system38,87,88. Additionally, 
formal computational models of perceptual deci-
sion-making that incorporate psychophysical and neu-
rophysiological predictions need to be introduced into 
auditory studies83.

Grouping features into objects
As described above, evidence suggests that the trans-
formation from sound-source acoustics into perceptual 
features such as pitch and timbre, which are used to 
describe an object, occurs in the early auditory cortex, 
where, in some instances, neural activity correlates with 
an animal’s behavioural report. It is worth repeating that 
these perceptual features are components of an auditory 
object rather than the object themselves. For example, a 
cat’s meow has a higher pitch when someone stands on 
its tail than when the cat wants to be fed. Other stud-
ies have focused on how and where features are bound 
together to allow extraction of auditory objects.

Auditory scientists test where and how objects are 
extracted by analysing how the sequential and simultane-
ous grouping principles (BOXES 1,2) that bind perceptual 
features into a unified auditory object are represented in 
the cortex. For example, in one set of studies, fMRI data 
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A process by which a sound is 
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were recorded while human listeners judged whether 
a target sound was continuous or discontinuous97,98 
(the illusion that a discontinuous sound is continuous 
is called amodal completion; see BOX 2). These studies 
found that physically identical acoustic stimuli elicited 
different BOLD signals in the primary auditory cortex 
depending on whether a listener reported a continuous 
or a discontinuous percept. The fact that listeners did 
not report a discontinuous percept suggests that, in this 
case, the auditory object itself, rather than the low-level 
spectrotemporal details, determined the listener’s per-
cept. Consistent with the idea that central brain regions 
are responsible for this illusion99, computational simula-
tions predict that cortical activity should correlate with 
the identity of the object and not its spectrotemporal 
components. Finally, single-neuron correlates of amodal 
completion have been found in the primary auditory 
cortex of rhesus macaques22. However, because behav-
ioural reports and neural data were not gathered simul-
taneously, it is not clear whether this activity was related 
to the primitive grouping principles that are needed to 
form an auditory object or to the object itself.

The ‘ABA streaming’ paradigm is commonly used 
to test sequential grouping. In this paradigm, two inter-
leaved sequences of tone bursts at two different frequen-
cies (frequency A and B) are presented to a listener. At 
slow rates, a listener is more likely to hear a single stream 
of alternating tones (FIG. 3a). When the semitone separa-
tion between frequency A and B is small (0.5 semitones), 
listeners are likely to report hearing one auditory stream 
(FIG. 3b). When this separation is large (>10 semitones), 

listeners reliably report hearing two auditory streams. 
At intermediate semitone separations, listeners hear one 
or two auditory streams on alternate trials. This type of 
stimulus is called a ‘bistable’ stimulus because the lis-
tener’s perceptual report may alternate between the two 
possibilities; therefore, neural activity related to the per-
ceptual report can be disassociated from neural activity 
related to the stimulus. These auditory bistable stimuli 
might be analogous to visual bistable stimuli84,100,101. The 
tone-burst duration, listening duration, repetition rate 
and other factors can also modulate a listener’s reports102.

What neural computations underlie a listener’s per-
ception of one or two auditory streams? Correlates of the 
grouping principles thought to underlie ABA streaming 
can be observed as early as the cochlear nucleus103. One 
reasonable hypothesis is that neurons downstream from 
the core auditory cortex, such as those in the belt cortex 
or even the frontal and parietal lobes54,104–109, read out the 
topographic distribution of activity in the core auditory 
cortex. That is, if the semitone separation is small, there 
would be one peak of activity, which downstream neu-
rons — as a proxy for a listener’s behavioural reports — 
would decode as one stream. By contrast, if the semitone 
separation was large, there would be two peaks of activity, 
which would be decoded as two streams. At intermedi-
ate separations, the number of peaks would be unclear 
and trial‑by‑trial neural noise would alternate the readout 
between one and two peaks of activity. Importantly, how-
ever, temporal parameters also influence both listeners’ 
reports and neural activity. For example, when the inter-
vals between tones are short, listeners are more likely to 
report hearing one stream. The mechanism of this bias, 
which is likely to be partly inherited from earlier parts of 
the processing pathway103, might be forward masking, which 
would ‘eliminate’ or minimize the second peak of activ-
ity104,110. However, as streaming can occur in response to 
various sounds, including noises and harmonic sounds, 
that would elicit overlapping spectral representations, 
this topographic readout explanation is probably too 
simplistic.

Indeed, recent work has proven that a topographic 
readout is insufficient to explain auditory streaming, 
at least in the ABA paradigm. If spatially segregated 
populations of neurons are necessary for streaming to 
occur, then the relative timing of tone A and tone B 
should be inconsequential because the only factor that 
would be important is the topographic representation 
of neural activity in the auditory cortex. In an elegant 
series of experiments, this hypothesis was explored by 
testing how the timing of tone A and tone B affected a 
listener’s behavioural reports. These authors found that, 
independent of semitone separation, when tone A and 
tone B were presented simultaneously, listeners reliably 
reported one stream111 (FIG. 3c). Thus, the relative timing 
of these peaks of activity is critical: when the two peaks 
are in phase, listeners report one stream but when they 
are out of phase, they are reported as two streams. This 
neural mechanism of temporal synchrony might also 
be involved in grouping of other cues such as harmonic 
stimuli and stimulus onset and offset. A strict interpreta-
tion of the temporal coherence model has itself recently 

Figure 3 | Auditory streaming.  In a classic paradigm of 
auditory streaming, two sequences of tone bursts are 
presented in an alternating fashion11,109. a | When the 
frequency separation between the tone bursts in the two 
sequences is large, listeners typically hear two streams.  
b | By contrast, when the frequency separation between 
the two sequences is small, listeners typically report 
hearing one stream. However, at intermediate frequency 
separations, the listener’s report is bistable over time: they 
alternate between perceiving one or two streams (not 
shown). With longer listening times, this report stabilizes 
and listeners reliably report two streams. c | In addition to 
parameters such as listening duration and other parameter 
manipulations168, the temporal relationship between the 
two sequences is critical. When the two sequences are 
presented concurrently, listeners consistently report 
hearing one stream. This observation suggests that the 
temporal coherence between different neural populations 
is the critical mechanism for the determination of whether 
a listener hears one or two streams. See REFS 104,169 for 
more details on the role that temporal coherence has in 
auditory streaming. Figure is modified, with permission, 
from REF. 169 © (2011) Elsevier.
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Categorical perception
The experience of perceiving a 
stimulus as being the same 
(that is, invariant) despite the 
fact that the physical 
properties of the stimulus have 
changed smoothly along a 
specific axis or continuum. A 
characteristic of categorical 
perception is that for a 
continuously changing stimulus 
dimension, subjects generalize 
across changes, with a sharp 
change in the perception from 
one class to another at the 
position of the boundary of the 
stimulus identity.

been challenged by the finding that although temporal 
coherence is an important factor in the formation of 
perceptual streams, temporally coherent sounds can be 
streamed112. Unfortunately, the specific neural readout 
mechanisms that are sensitive to such timing informa-
tion are not known. Future work in which large groups 
of neurons are recorded simultaneously while temporal 
synchrony is parametrically alternated are essential for 
addressing this question.

Whereas single-neuron recording studies in the 
cochlear nucleus indicate that, in principle, the infor-
mation in activity patterns of neurons in the cochlear 
nucleus are sufficient to support streaming103, evidence 
from the functional imaging literature suggests that 
the perception of streaming occurs in or beyond the 
auditory cortex113. Unfortunately, despite the apparent 
elegance and simplicity of the ABA-stimulus paradigm, 
the role of different cortical areas in this streaming per-
cept has been difficult to resolve. However, whereas the 
auditory cortex seems to be important for construct-
ing the stream and the perceptual organization of the 
auditory scene, activity in regions in the frontal and 
parietal lobes appear to be correlated with a listener’s 
reports54,104–109.

Key to the grouping principles underlying both 
streaming paradigms and amodal completion is the idea 
of predictability: the auditory system must generate some 
sort of prediction from current and previously present 
sounds to build a model of what is likely to occur next12. 
Neural activity in early auditory areas seems to represent 
the prediction of a regular sequence of sounds: if a sound 
is omitted from a fully predictable sequence of sounds, 
auditory cortex activity will respond to this omission as 
if the sound was actually presented23. Activity that pre-
cedes this omission-related response arises from sources 
within and beyond the primary auditory cortex and is 
thought to be the best candidate for a signal that repre-
sents a violation of ongoing predictions12.

Assigning objects to categories
Neural correlates of categorical perception have been 
found in both the core and belt regions of the auditory 
cortex. For example, in one study92, monkeys partici-
pated in a task in which the correct response depended 
on whether the frequency of a series of tone bursts was 
increasing or decreasing independent of the start and 
end frequencies. This revealed two classes of cells in the 
core and early belt auditory cortex (specifically, area A1 
and the caudomedial belt region of the auditory cortex): 
the first showed phasic responses that discriminated 
between the two categories (increasing versus decreas-
ing), whereas the second class showed tonic firing that, 
at the population level, correlated with the monkey’s 
behavioural response.

Similarly, in another study88, monkeys made a ‘same 
or different’ judgement based on the sequential pres-
entation of two speech sounds (‘dad’ versus ‘bad’) or a 
series of morphed versions of these sounds (FIG. 4). The 
behavioural data showed that monkeys perceived these 
morphed stimuli categorically; that is, despite the fact 
that the acoustic stimulus varied smoothly, the monkeys 

consistently assigned the morphs to one of the two cate-
gories, with a sharp transition between morphed sounds 
being perceived as ‘dad’ rather than ‘bad’. Neurons in the 
belt region of the auditory cortex likewise responded in 
a categorical fashion. Interestingly, the degree of neural 
categorization depended on the type of recorded neuron: 
fast-spiking neurons (putative interneurons) responded 
more categorically. That is, they showed greater invari-
ance across morphs that were categorized behaviourally 
to be the same than did slow-spiking neurons (putative 
pyramidal neurons)114.

Studies using fMRI indicate that there are categorical 
representations of speech sounds in both the posterior 
and anterior auditory cortex36,42,115,116. Fewer studies 
have investigated category selectivity with non-speech 
stimuli. These studies are important because they allow 
researchers to investigate more abstract categories that 
are not based on similarities between stimulus fea-
tures. For example, category specificity for musical and 
human-speech sounds is found in the anterior supe-
rior temporal cortex117. By contrast, no such specific-
ity is seen for songbird or ‘other animal’ vocalizations, 
although this might be because vocalization-specific 
clusters are inter-digitated among other category-sen-
sitive regions or are simply so small that they cannot 
be resolved by fMRI. An alternative interpretation is 
that object recognition might not require segregated, 
category-specific cortical subregions to represent  
different classes of objects.

However, another recent study suggests that the 
anterior areas might not be uniquely specialized for 
auditory-category information118. This study used a het-
erogeneous set of natural sounds to explore the represen-
tation of stimulus categories for non-speech stimuli. The 
authors carried out a variance decomposition analysis 
that enabled them to differentiate variability due to low-
level stimulus features from variability due to category 
specificity. Consistent with results from studies of ani-
mals78, large areas of the human cortex were sensitive to 
low-level stimulus features. In addition, posterior areas 
of the auditory cortex (such as the planum temporale) 
can encode the abstract categories of living sounds 
and human sounds118. Such findings suggest that there 
might be an increase in information abstraction as the 
cortical hierarchy ascends from the primary cortex in 
both anterior and posterior directions64. In support of 
this notion, category representation for pitch-matched 
stimuli was seen in the anterolateral Heschl’s gyrus, the 
planum temporale and the posterior superior temporal 
gyrus. Areas showing category specificity and specific-
ity for acoustic information (in this case, pitch contrast) 
overlapped and included areas of both the lower and 
higher auditory cortex67.

This abstraction of categorization continues beyond 
the auditory cortex and into the prefrontal cortex regions 
of the ventral auditory pathway. For example, neurons in 
the rhesus prefrontal cortex do not differentiate between 
vocalizations that transmit the same type of informa-
tion despite the fact that these vocalizations have dif-
ferent acoustic features. That is, these neurons code the  
‘meaning’ of vocalizations119 (FIG. 4).
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How does learning shape neural category representa-
tion? In one study120, gerbils were trained to categorize 
frequency-modulated tones as ‘upwards’ or ‘downwards’ 
regardless of the starting frequency, the ending frequency 
or the rate of the frequency modulation. During the task, 
epidural-evoked potentials were recorded from mul-
tiple sites over the auditory cortex. An analysis of these 

recordings demonstrated that over time, as the gerbils 
acquired the categorization rule, the neural activity pat-
terns changed. Initially, neural activity reflected the acous-
tical properties of the frequency-modulated tones. After 
learning, neural activity reflected the categorical mem-
bership of the frequency-modulated tones independently 
of their properties. This transformation of information 

Figure 4 | Categorization in the ventral auditory pathway.  a | The involvement of two key regions of the ventral 
auditory pathway, the anterolateral belt (ALB) and the ventral prefrontal cortex (VPFC), in assigning auditory objects to 
categories has been demonstrated in a series of experiments. b | In the experiment illustrated, monkeys participated in a 
task that required them to discriminate between a reference stimulus and a test stimulus. The reference sound was ‘dad’, 
a different sound, ‘bad’, or an acoustic morph of these two sounds. The 0% stimulus is the sound ‘bad’, and the 100% 
stimulus is the sound ‘dad’. Intermediate morph values have proportional values of the two stimuli; for example, an 80% 
morph has 80% of the acoustic features of ‘bad’ and 20% of ‘dad’. Data were reported in terms of the proportion of trials 
in which the monkeys reported that the reference and test stimuli were the same (upper panel). As can be seen, the 
monkeys’ behavioural reports are categorical. They treat sounds less than 50% morph stimuli as one category and those 
greater than 50% morph stimuli as a second category. Similarly, when recording ALB neurons during such categorization, 
neural activity also responds in a categorical fashion (lower panel). That is, ALB neurons respond similarly to all less than 
50% morph stimuli and respond in a different manner to greater than 50% morph stimuli. c | In rhesus monkeys, VPFC 
neurons encode the membership of a particular type of call in response to food to an abstract category. The two 
categories are calls that transmit information regarding low-food quality (a grunt) and calls that transmit information 
about high-quality food (a harmonic arch or a warble). Population VPFC activity is shown for a baseline condition and in 
response to a test vocalization. The presentation of the test vocalization (at the time indicated by the position of the 
dashed line) was preceded by repeated presentations of a different reference vocalization. Also shown are the 
spectrograms for the different types of vocalization. VPFC activity preferentially codes transitions between food calls 
that belong to different abstract categories independently of differences between acoustics of the vocalizations (lower 
panels). By contrast, VPFC neurons do not code transitions between acoustically distinct stimuli that transmit the same 
information (upper panels). Part b (upper panel) is modified, with permission, from REF. 88 © (2011) The American 
Physiological Society. Part b (lower panel) is modified, with permission, from REF. 114 © (2012) The Physiological Society. 
Part c is modified, with permission, from REF. 119 © (2005) MIT Press Journals.
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Scene analysis
The process by which the brain 
organizes and segregates 
acoustic stimuli into meaningful 
elements or objects.

Grandmother cells
Hypothetical cells that 
represent a very specific 
complex object or concept — 
such as one’s grandmother.

Object-related negativity
An evoked-potential 
component that is elicited 
when two concurrently 
presented sounds are 
perceived as originating from 
different sources based on 
simultaneous grouping cues.

representation might be mediated through feedback pro-
jections between the prefrontal cortex and auditory cortex 
that modulate task-relevant information121.

Neural computations underlying object recogni-
tion are thought to require selectivity for object-specific 
features, invariance across identity-preserving changes 
and generalization to enable categorization29. Whereas 
studies looking at hierarchical processing in the auditory 
system have sought increasing levels of selectivity and, as 
discussed above, some studies have looked for category-
specific neural firing, the question of invariance remains 
underexplored122.

This crucial, but unresolved, question in auditory 
neuroscience is particularly pertinent to our under-
standing of how auditory objects are formed: to per-
form scene analysis, we must be able to generalize across 
identity-preserving changes. The continuity illusion 
discussed earlier can be seen as a very basic form of 
invariance, but the ability to generalize across multi-
ple stimulus dimensions in order to assign a particular 
acoustic event to the right auditory object is more com-
putationally challenging. This task requires selectivity 
for certain stimulus parameters, a tolerance for differ-
ences in other parameters and ultimately the ability to 
generalize across features to assign a sound to a more 
general category, or class, of sounds18.

There are two contrasting models of how neu-
rons might represent the identity of an object (FIG. 5). 
Distributed-coding models postulate that ensem-
bles of neurons represent object identity. By contrast, 
sparse-coding models suggest that only a small num-
ber of neurons are activated by a given stimulus, so that  
these neurons explicitly represent the to‑be‑identified 
object29. Although sparse codes are energetically effi-
cient and easy to read out, taken to extremes such a 
theory would predict the existence of grandmother cells,  
which would require an intractable number of neurons 
to represent all possible objects. Experimental evidence 
from the visual system also suggests that the increasing 
selectivity that one would expect to see at each hierarchi-
cal stage in a sparse-coding model is not observed and 
that accurate object identification is apparently achieved 
through a population code123.

To formally understand the mechanisms underlying 
auditory-object formation and recognition, as has been 
done for the visual system18, we need to develop com-
putational models to generate testable hypotheses as to 
how population activity in higher auditory areas creates 
explicit, implicit and tolerant representations of auditory 
objects. However, to date, such models have not been 
identified for the auditory system, and this remains an 
important issue in auditory neuroscience.

The role of attention in object perception 
Simultaneous grouping principles and their neural 
correlates, such as object-related negativity, can oper-
ate independently of the listener’s attentional state124. 
Attention is not required for a person to detect changes 
in a stimulus feature. For example, oddball para-
digms, in which a rare (deviant) sound is interposed 
into a stream of repeating standard sounds, show that 

deviance-detection mechanisms operate automatically 
and do not require a subject to overtly attend to the 
stimulus125–128. Other studies indicate that the continu-
ity illusion does not require attention26. Together, these 
findings support the idea that the auditory cortex auto-
matically generates and monitors predictions about the 
current sound-scene12.

However, whether auditory streaming requires atten-
tion is a more controversial matter. Whereas attention is 
not always required for streams to form129, attention can 
heavily influence a listener’s perception, and switching 
attention ‘resets’ streaming130. It seems likely that atten-
tion is required to resolve or select representations in 
an ambiguous auditory scene. Compatible with the 
concept of a two-stage process is the finding that when 
listeners are presented with ABA tone sequences, two 
distinct event-related potential (ERP) components are 
evoked with different latencies131–133. The first compo-
nent is thought to be the initial representation of two 
alternative interpretations of the sound (one stream ver-
sus two streams), whereas the later component reflects 
the listener’s decision (one stream)131. In natural listening 

Figure 5 | Strategies for coding auditory object identity. 
Two neural coding strategies might hypothetically underlie 
how information is represented in a cortical field: 
distributed coding or sparse coding. a | Information about 
the nature of an auditory object (in this case the identity of 
a musical instrument in a situation in which all three 
instruments play the same note) could be represented by 
the pattern of activity across the neural ensemble. Here, 
each sound category elicits activity in many neurons, with 
any individual neuron potentially increasing its firing rate 
to multiple sound categories. Nevertheless, each sound 
category elicits a unique pattern of activity across the 
network. b | By contrast, in a sparse representation, each 
neuron in the array is tuned to a single sound category such 
that each musical instrument elicits activity from only a 
very small number of neurons.
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conditions, when there are almost always multiple com-
peting sources, auditory-scene analysis is likely to be 
heavily influenced by attention and the behavioural goals 
of the listener14.

Once an auditory scene has been parsed into its com-
ponent objects, selective attention can operate on these 
components to facilitate further processing and resolve 
competition between multiple sources134,135. Attention 
operates at the level of objects17,136,137, and even when 
attention is focused on a low-level stimulus feature 
(such as the pitch of someone’s voice), there is enhanced 
sensitivity to other features of that source (such as its 
location)138. Failures of object formation impair the 
ability to analyse a sound source139–141, and attention 
itself influences perception of the auditory scene142. 
Selective attention to a particular object in the visual 
scene is thought to be essential as the brain has limited 
resources. As a result of these limited resources, there is 
a biased competition between objects136,143. As in vision, 
both bottom-up and top-down cues can direct auditory 
attention to a particular object135,144, and thus one of the 
hallmarks of an ‘object-based’ neural representation is 
that it is modulated by behavioural demands. Indeed, 
highly skilled listeners have enhanced neural-process-
ing mechanisms for particular object-based listening 
tasks. For example, regions in the left anterior superior 
temporal gyrus are modulated by a listener’s expertise 
in perceiving and producing a given sound class: actors 
have greater neural activation in response to speech 
compared to music, whereas violinists have the oppo-
site pattern145.

Attentional signals are found throughout the audi-
tory cortex. In the early auditory cortex, attention can 
modify the tuning properties of neurons in the primary 
auditory cortex146–149 and can increase the magnitude of 
ERPs and fMRI signals150–155. In later parts of the audi-
tory cortex, such as the posterior auditory cortex, which 
roughly corresponds to the planum temporale, neural 
signals reflect the listener’s perception of a particular 
auditory object156,157. For example, when a listener is 
asked to attend to one of two spectrotemporally over-
lapping speech signals, the attended signal preferentially 
modulates neural activity in this region of the auditory 
cortex156. Similarly, in experiments conducted using 

surface electrodes in human patients, neural responses 
to irrelevant sounds are suppressed relative to those that 
are attended157.

Attention is not mediated by a simple feedforward 
network. Instead, attention is mediated by a complex 
network that has distinct activity patterns for spatial ver-
sus non-spatial auditory attention39,40. Differential activ-
ity patterns have been found in auditory regions of the 
superior temporal gyrus137,158–160 as well as the superior 
temporal sulcus and the inferior parietal sulcus; these 
latter regions exhibit more attention-related modula-
tion when listeners are asked to attend to a sound that 
is embedded within a complex and realistic listening 
environment39. It seems likely that these networks may 
provide feedback activity to early sensory areas, enabling 
the selection of activity related to the object of interest161.

Synthesis and discussion
We have discussed and reviewed how the auditory sys-
tem represents the perceptual features and grouping 
principles that underlie the creation of auditory objects. 
We have also highlighted several important principles, 
such as the hierarchical processing of information and 
the role of the ventral stream in auditory-object process-
ing. However, we believe that two fundamental issues 
remain to be investigated. First, beyond the ‘classical’ 
auditory cortex, a network of areas subserves the func-
tions associated with processing auditory objects. For 
example, neural activity in the prefrontal cortex162–164 and 
hippocampus165 interacts with auditory cortex activity 
to process auditory memory and the meaning and emo-
tional content of sounds. We do not fully understand 
the roles of these brain regions in auditory cognition,  
or the neural mechanisms that underlie these roles. 
Second, it is unclear which cortical areas have causal 
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