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Musical Acous15. Musical Acoustics

This chapter provides an introduction to the phys-
ical and psycho-acoustic principles underlying the
production and perception of the sounds of musi-
cal instruments. The first section introduces generic
aspects of musical acoustics and the perception of
musical sounds, followed by separate sections on
string, wind and percussion instruments.

In all sections, we start by considering the
vibrations of simple systems – like stretched
strings, simple air columns, stretched membranes,
thin plates and shells. We show that, for almost
all musical instruments, the usual text-book
description of such systems is strongly perturbed
by material properties, geometrical factors and
acoustical coupling between the drive mechanism,
vibrating system and radiated sound.

For stringed, woodwind and brass instruments,
we discuss excitation by the bow, reed and vi-
brating lips, which all involve strongly non-linear
processes, even though the vibrations of the ex-
cited system usually remains well within the linear
regime. However, the amplitudes of vibration of
very strongly excited strings, air columns, thin
plates and membranes can sometimes exceed the
linear approximation limit, resulting in a num-
ber of interesting non-linear phenomena, often of
significant musical importance.

Musical acoustics therefore provides an excellent
introduction to the physics of both linear and
non-linear acoustical systems, in a context of
rather general interest to professional acousticians,
teachers and students, at both school and college
levels.

The subject continues its long tradition
in advancing the frontiers of experimental,
computational and theoretical acoustics, in an area
of wide general appeal and contemporary relevance.

By discussing the theoretical models and
experimental methods used to investigate the
acoustics of many musical instruments, we
have aimed to provide a useful background for
professional acousticians, students and their
teachers, for whom musical acoustics provides an
exceedingly rich area for original research projects
at all educational levels.
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Because the subject is ultimately about the
sounds produced by musical instruments, a large
number of audio illustrations have been provided
on a CD accompanying this volume, which can
also be accessed by the electronic version of the
Handbook on springerlink.com. The extensive list
of references is intended as a useful starting point
for entry to the current research literature, but
makes no attempt to provide a comprehensive list
of all important research.

This chapter highlights the acoustics of musical
instruments. Other related topics, such as the
human voice, the perception and psychology of
sound, architectural acoustics, sound recording
and reproduction, and many experimental,
computational and analytic techniques are
described in more detail elsewhere in this volume.
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534 Part E Music, Speech, Electroacoustics

Musical acoustics is one the oldest of all the experi-
mental Sciences (see Levenson [15.1] for an informative
account of the interactions between Music and Science
over the ages). The observation of the relationship be-
tween the notes produced by the exact fraction divisions
of a stretched string and consonant musical intervals
like the octave (2:1), perfect fifth (3:2) and fourth (4:3),
resulted in the first physical law to be expressed in
mathematical terms. It also led to the idea of a di-
vinely created cosmos based on exact fractions, filled
with the music of the spheres (see, for example, Ke-
pler’s account of the ellipticity of the planetary orbits
described as notes on a musical scale, in Harmonies of
the World (1618) [15.2]). Ultimately, such observations
led to Newton’s discovery of celestial dynamics and
the laws of gravity leading to the modern view of the
universe subject to physical laws rather than numerical
relationships.

In the nineteenth century, musical acoustics contin-
ued to occupy a central scientific role. This culminated
in Lord Rayleigh’s monumental two volumes on the
Theory of Sound [15.3], which still provide the founda-
tions for almost every branch of modern acoustics. The
19th century advances in understanding waves in acous-
tics also laid the mathematical framework for quantum
wave mechanics in the early part of the 20th cen-
tury. More recently, the physics of vibrating strings can
be said to have come full circle, with the suggestion
that string-like vibrations of the quantum field equa-
tions account for the mass to the elementary particles
(Hawkins [15.4]).

Musical acoustics still remains a challenging and
exciting field of research and continues to advance
mainstream acoustics in many ways. Examples include
nonlinear physics and the use of laser holography and
both modal and finite-element analysis to investigate
complicated vibrating systems. Such developments are
described in this chapter and in more detail in other
chapters of this Handbook and in the Physics of Musi-
cal Instruments by Fletcher and Rossing [15.5], which
will often be cited, as an authoritative text and source
of additional references for most topics discussed. The
Science of Sound by Rossing et al. [15.6] covers an even
wider range of topics at a somewhat less mathematical
level. An informative overview of the history, technol-
ogy and performance of western musical instruments
has recently been published by Campbell, Greated and
Myers [15.7].

The first section of this chapter deals with the
generic properties of the vibrations and sounds of mu-
sical instruments. A brief description is first given of

the properties of both simple and coupled resonators,
typifying the vibrational modes of stringed, wind and
percussion instruments, where the sound is generated
by vibrating strings, air columns, plates, membranes
and shells. The radiation of sound by such structures
is then described in terms of multipole sources. This is
followed by a brief description of the envelopes, wave-
forms and spectra of the sounds that characterize the
sound of individual instruments. The section ends with
a consideration of the way the listener perceives such
sounds.

The section on stringed instruments first considers
the general properties of string vibrations and their exci-
tation by plucking, bowing and striking. Large amplitude
vibrations are shown to provide a particular interesting
illustration of non-linearity of much wider applicabil-
ity than to musical acoustics alone. The coupling of
the vibrating string via the bridge to the acoustically
radiating surfaces of the instrument is then discussed
in some detail, followed by a more detailed discus-
sion of excitation of a string via the bowed slip-stick
mechanism. The vibrational modes of the main shell
of the instrument and the importance of the bridge
and soundpost in determining the efficiency of en-
ergy transfer to the radiating surfaces of the instrument
are then discussed. The section ends with a descrip-
tion of some of the experiment and computational
techniques used to describe the vibrational modes, fol-
lowed by a brief description of the radiated sound and
the subjective assessment of the quality of stringed
instruments.

The section on woodwind and brass instruments
starts with a consideration of oscillating air columns
and sound radiation from cylindrical and conical tubes
and the more complicated shapes used for woodwind
and brass instruments. This is followed by sections on
the highly non-linear processes involved in the exci-
tation of such vibrations by reed and lip vibrations
and air-jets. The section concludes with a brief de-
scription of the acoustical properties of various wind
instruments.

The final section on percussion instruments de-
scribes the acoustical properties of a range of instru-
ments based on the vibrations of stretched membranes,
bars, plates and shells. Typical waveform envelopes and
time-dependent spectra are used to illustrate the relation-
ship between the vibrational modes of such instruments
and the radiated sound. Non-linearity at large amplitude
excitation is again shown to be important and accounts
for the characteristic sounds of certain instruments like
gongs and cymbals.
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Musical Acoustics 15.1 Vibrational Modes of Instruments 535

15.1 Vibrational Modes of Instruments

15.1.1 Normal Modes

All musical instruments produce sound via the excitation
of a vibrating structure. Woodwind, brass and percussion
instruments radiate sound directly. However, stringed in-
struments radiate sound indirectly, because the vibrating
string itself radiates an insignificant amount of energy.
Energy from the vibrating string therefore has to be
transferred to the much larger area, acoustically efficient,
radiating surfaces of the body of the instrument. The re-
sultant modes of vibration are complex and involve the
interactions and vibrations of all the component parts,
such as the strings, bridge, front and back plates, sound-
post, neck, and even the air inside the volume of the
violin body.

Any vibrating structure, however complicated, will
have a number of what are called normal modes of vibra-
tion (see Chap. 22). The important influence of damping
on the nature of the normal modes will be described in
the section on stringed instruments. The normal modes
satisfy exactly the same equations of motion as a simple
damped mass–spring resonator. The displacement ξn of
a given excited mode measured at any chosen point p
on the structure is given by

mn

(
∂2ξn

∂t2 + ωn

Qn

∂ξn

∂t
+ω2

nξn

)
= F(t) , (15.1)

where the effective mass mn at the point p is defined
in terms of the kinetic energy of the excited mode,
1
2 mn(∂ξn/∂t)2

p, ωn = 2π fn is the eigenfrequency (the
angular frequency) of free vibration of the excited mode
in the absence of damping and Qn is the quality fac-
tor describing its damping. Initially, we consider a local
driving force F(t) at the point p, though it could be ap-
plied at any chosen point on the structure or distributed
over the whole surface.

The effective mass of a one-dimensional string, solid
bar or air column, at the point of maximum displace-
ment, is half the mass of the vibrating system, the factor
half resulting from averaging the kinetic energy over the
sinusoidal spatial displacement. Likewise, the effective
mass of a two-dimensional vibrating object at maximum
displacement, like a violin plate or drum skin, is of or-
der 1/4 its mass. The effective mass is very large close
to nodal positions, where the displacement is small, and
is small at antinodes, where the displacement is large.

Typical driving forces are those acting on the bridge
of a bowed or plucked string instrument and the pres-
sure fluctuations at the input end of the air column of

a blown woodwind or brass instrument. Such forces are
generated by highly nonlinear excitation mechanisms.
In contrast, the vibrations of the vibrating structure are
generally linear with displacements proportional to the
driving force. However, there are important exceptions
for almost all types of instruments, when nonlinearity
becomes significant at sufficiently strong excitation, as
discussed later.

In any continuously bowed or blown musical instru-
ments, feedback from the vibrating system results in
a periodic driving force, which will not in general be
sinusoidal. Nevertheless, by the Fourier theorem, any
periodic force can always be represented as a superpo-
sition of sinusoidally varying, harmonic, partials with
frequencies that are integer multiple of the periodic rep-
etition frequency. We can therefore consider the induced
vibrations of any musical instruments in terms of the in-
duced response of its vibrational modes to a harmonic
series of sinusoidal driving forces.

Resonance and Admittance
In the harmonic approach, the applied forces and in-
duced motions are assumed to vary sinusoidally as eiωt .
We will generally use this complex notation for nota-
tional and algebraic simplicity, where Re(eiωt) = cosωt
and Im(eiωt) = sin ωt. The resonant response, with dis-
placement ξn eiωt and velocity iωξn eiωt at the driving
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Fig. 15.1 Normalised real (Re) and imaginary (Im) com-
ponents and the modulus (Mod) of the induced velocity of
a simple harmonic resonator driven by a constant amplitude
sinusoidal force for a Q-factor of 10
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536 Part E Music, Speech, Electroacoustics

point p, for an applied sinusoidal force F eiωt , is then
given by

∂ξn

∂t
= iωξn = F

mn

iω(
ω2

n −ω2 + iωωn/Qn
) . (15.2)

The ratio of induced velocity to driving force is known
as the local admittance at the driving point p, and is
plotted in normalised form in Fig. 15.1 for a Q-value of
10. The admittance has both real and imaginary com-
ponents. The real part describes the component of the
induced velocity in phase with the driving force, while
the imaginary part describes the component in phase
quadrature (with phase leading that of the force by 90◦
degrees).

Well below resonance the induced displacement is
in phase with the driving force, while at resonance the
phase lags behind the driving force by 90◦, and well
above resonance lags by 180◦. The velocity v(t) leads
the displacement by 90◦ degree and is thus in phase with
the driving force at resonance, which corresponds to the
maximum rate of energy transfer iωFξn to the excited
mode. The 180◦ change in the phase of the response, as
the excitation frequency passes from well below to well
above resonance, is especially important in interpreting
the multiple resonances of any musical instrument.

Provided the damping of an excited mode is not
too strong (i. e. Qn is significantly larger than unity), the
peak in the modulus or real part of the admittance occurs
at ωn

(
1−1/8Q2

)
, which is very close to the natural

resonant frequency ωn . The width of the resonance is
∆ f = fn/Q, where ∆ f is defined as the difference in
frequency between the points on the resonance curve
when the modulus of the induced displacement has fallen
to 1/

√
2 of its maximum value (i. e. the stored energy is

half that at resonance). The displacement at resonance
is Q× the static displacement.

Multi-Mode Systems
For any musical instrument having a number of vibra-
tional modes, the admittance at the driving point p can
be written as

App =
∑

n

1

mn

iω

ω2
n −ω2 + iωωn/Qn

, (15.3)

with admittances App of individual modes adding in
series, equivalent to impedances in parallel. The vi-
brational response of a multi-resonant mode musical
instrument can therefore be characterised by fitting the
measured admittance to such a function giving the effec-
tive mass at the point of excitation, resonant frequency
and Q-value for each of the excited modes. Using such

a procedure, Bissinger [15.8] typically identifies up to
around 40 vibrational modes for the violin below 4 kHz.
However, at high frequencies, the width of individual
resonances exceeds the spacing between them, making
it increasingly difficult to identify individual modes.

It is important to recognise that damping is only im-
portant in a relatively narrow frequency range ∼ fn/Q
around the individual resonance peaks. Outside such
regions, the reactive component associated with each
vibrational mode continues to contribute significantly
to the overall response. For example, well below res-
onance, each mode acts as a spring with effective
spring constant mn(ω2

n −ω2), while well above reso-
nance it acts as a mass with effective mass mn(1−
ω2

n/ω2). The static displacement (at ω = 0) is given
by ξ = F/Ko =∑

n
1/(mnω2

n). Note that this involves

contributions from all the vibrational modes of the struc-
ture, which is an important global property describing
the low-frequency response of a multi-resonant structure
such as the violin or guitar. If displacements are meas-
ured at a point p for an applied force at q, a nonlocal
admittance can be expressed as

Apq =
∑

n

1

mn,p

iω(
ω2

n −ω2 + iωωn/Qn
) ξn,pξn,q

ξ2
n,p

,

(15.4)

where ξn,p and ξn,q are the simultaneous displacements
of the nth mode at the points p and q, with identical
stored modal energy 1/2mn,pω

2ξ2
n,p = 1/2mn,qω2ξ2

n,q .
Equation (15.4) illustrates the principle of reci-

procity in acoustics, which states that the motion at
a point p induced by a force at q is identical to the mo-
tion at q induced by the same force at p. Equation (15.4)
also shows that, by applying a force at a particular posi-
tion and measuring the induced motion (amplitude and
phase) at a large number of different points p(x, y, z) on
the structure, it is possible to map out the amplitude of
the modal vibrations ξn(x, y, z) over the whole of any ex-
cited structure. Alternatively, the measurement point can
be fixed and the excitation point moved across the struc-
ture. This is the basis of the powerful technique of modal
analysis, which has been widely used to investigate the
vibrational modes of many stringed and percussion in-
struments, as described by Rossing in Chap. 28 of this
Handbook.

It also follows from (15.4) that a particular mode
of vibration will never be excited if the driving force is
located at a node of its vibrational state. This has impor-
tant consequences for the spectrum of sound produced
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Musical Acoustics 15.1 Vibrational Modes of Instruments 537

by bowed, plucked and struck stringed instruments and
all percussion instruments.

Time-Domain Measurements
The vibrational characteristics of an instrument can also
be investigated in the time domain. For example, by
striking a stringed instrument with a light hammer or
exciting the vibrational modes of a woodwind or brass
instrument with a short puff of air, the frequencies of
free vibration of the vibrational modes and their damp-
ing can be determined from their time-dependent decay.
Provided the damping is not too strong (Q �1), the
modes will decay with time as

ξn(t) = ξ0 e−t/τn eiωnt, (15.5)

where τn = 2Qn/ωn = Qn/π fn . The frequency fn of
a given mode can be determined from its inverse period
and Qn from π× the number of periods for the ampli-
tude to fall by the factor exponential e. The Q-value
of strongly excited modes of a musical instrument can
be estimated from τ60dB = 13.6τ , the Sabine decay time
(Chap. 10 Concert Hall Acoustics). This is the perceptu-
ally significant time taken for the sound pressure to fall
by a factor of 103 – from a very loud level to just be-
ing detectable. Hence, Qn = π fnτ60/13.6 ∼ 0.23 fnτ60.
For example, the sound of a strongly plucked cello
open A-string (220 Hz) can be heard for at least ∼ 2 s,
corresponding to a Q-value of ≈ 100 or more.

Damping results in a loss of stored energy given by

dEn

dt
= − ωn

Qn
En = −2

En

τn
. (15.6)

Hence, the power P required to maintain a constant
amplitude at resonance is ωn

Qn
En , where En is the en-

ergy stored. This tends to be the way that Q is defined
and measured by physicists, whereas in acoustic spec-
troscopy it is more usual to define and measure Q-values
from either the width of resonances in spectroscopic
measurements or from decay times after transient ex-
citation. As illustrated above, all such definitions are
equivalent.

15.1.2 Radiation from Instruments

Although a large number of vibrational modes of a musi-
cal instrument may be excited simultaneously, they will
not be equally important in radiating sound, which has
important consequences for the quality of the sound.
This section therefore provides a brief introduction to
the radiation of sound from the vibrational modes of
musical instruments.

Sound Waves in Air
In free space, the longitudinal displacement ξ(x, t) =
ξ0 ei(ωt−kx) of plane sound waves satisfies the wave
equation

∂2ξ

∂x2
= 1

c2
0

∂2ξ

∂t2
. (15.7)

The dispersionless (independent of frequency) veloc-
ity of sound c0 = √

γ P0/ρ, where γ (≈ 1.4) is the ratio
of specific heats at constant pressure and volume, P0
(≈ 105 Pa or N/m2) is the ambient pressure and ρ

(≈ 1 kg/m3) is the density (the brackets give the values
for air at ambient pressure and temperature). The ratio
of acoustic pressure p = −γ P0∂ξ/∂x to the particle ve-
locity v = ∂ξ/∂t is referred to as the specific impedance,
z0 = p/v = ρc0.

The appearance of γ in the expression for the veloc-
ity of sound reflects the adiabatic nature of acoustic
waves. This arises because acoustic wavelengths are
far too long to allow any significant equalisation of
the longitudinal temperature fluctuations arising from
the compressions and rarefactions of a sound wave. In
free space longitudinal heat flow between the fluctuating
regions is only important at very high ultrasonic frequen-
cies (MHz), where it leads to significant attenuation. The
major source of attenuation of freely propagating acous-
tic sound waves arises from the water vapour present.
However, both viscous and transverse thermal losses to
the side walls of woodwind and brass instruments can
result in significant attenuation, as described later.

The above expressions neglect first-order, nonlin-
ear, corrections to the compressibility, proportional to
∂ξ/∂x, and other inertial correction terms in the nonlin-
ear Navier–Stokes equation. This approximation breaks
down at the very high intensities in the bores of the
trumpet and trombone when played very loudly [15.9],
which results in shockwave propagation, with a transi-
tion from a relatively smooth to a very brassy sound (son
cuivré in French). For the present, such corrections will
be neglected.

The speed of sound in air depends on the temperature
θ (degrees centigrade) and, to a lesser extent, on the
humidity. For 50% humidity,

c0(θ) = 332 (1+ θ/273)1/2 ≈ 332(1+1.710−3θ) ,

(15.8)

giving a value of 343 m/s at 20 ◦C. Note that the air
inside a woodwind or brass instrument, once the instru-
ment is warmed up, will always be warm and humid,
which will affect the playing pitch.
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Pressure and Intensity
The intensity I of sound radiated by a musical instrument
is given by the flow of acoustic energy (1/2ρv2 per unit
volume) crossing unit area per unit time,

I = 1

2
ρc0v

2
max = 1

2
z0v

2
max = 1

2z0
p2

max . (15.9)

Sound pressure levels (SPL) are measured in dB rela-
tive to a reference sound pressure p0 of 2 × 10−5 Pa or
N/m2, so that SPL(dB) = 20 log10(p/p0). The reference
pressure is approximately equal to the lowest level of
sound that can be heard at around 1–3 kHz in a noise-
free environment. Relative changes in sound pressure
levels are given by 20 log10(p1/p2) dB. A sound pres-
sure of 2 × 10−5 Pa is very close to an intensity of
I0 = 10−12 W/m2, which is used to define the almost
identical intensity level, IL(dB) = 10 log10(I/I0). The
difference between the factor 10 and 20 arises because
sound intensity is proportional to the square of the sound
pressure.

Spherical Waves
In free space, sound from a localised source will propa-
gate as a spherical wave satisfying the three-dimensional
wave equation (Fletcher and Rossing [15.5], Sect. 6.2),
with pressure

p(r) = A
ei(ωt−kr)

r
(15.10)

and particle velocity

v(r) = A

z0

(
1+ 1

ikr

)
ei(ωt−kr)

r
. (15.11)

Near and Far Fields
Note that, unlike plane-wave solutions, the velocity and
pressure differ in phase by an amount that depends on
the distance from the source and the wavelength. Close
to the source, in the near field (kr � 1), the pressure and
induced velocity are in phase quadrature. Such terms
therefore involve no work being done (proportional to∫

pvdt) and hence no radiation of sound. The near-
field term describes the motion of the air that is forced
to vibrate backwards and forwards with the vibrating
surface of the source, which simply adds inertial mass
to the vibrating mode. This term is responsible for the
end correction (∆L ∼ a, where a is the pipe radius),
which extends the effective length of an open-ended
vibrating air column. The additional inertial mass also
lowers the vibrational frequency of the relatively light
vibrating membranes of a stretched drum skin.

Dipole ~

a) b)

q2
xω4

r2
cos2 θMonopole ~ q2

o ω2/r 2

Quadrupole
q2

xyω6

r2
cos2 θsin2 θ

c)

Fig. 15.2 Typical radiation patterns and intensities for
monopole, dipole and quadrupole sources. The two colours
represent monopole sources and sound pressures of oppo-
site signs

In contrast, in the far field (kr � 1), the pressure is
in phase with the velocity, so that work is done on the
surrounding gas. This accounts for the fact that sound
radiation varies in intensity as 1/r2.

The transition from the near- to far-field regions oc-
curs when r ∼ λ/2π, where λ is the acoustic wavelength
of the radiated sound. At 340 Hz, this corresponds to
a distance of only ≈15 cm. The difference in the fre-
quency dependencies of the near- and far-field sound
means that a violinist or piccolo player, with their ears
relatively close to the instrument, experiences a rather
different sound from that heard by the listener in the
far field. However, for most musical instruments, the
distance between the source of radiated sound and the
player’s head is already at least λ/2, so that even the
player is in the far field (kr > 1), at least for the high-
frequency partials of a musical tone.

Directionality and Multipole Sources
At very low frequencies, the acoustic wavelength λ is
often considerably larger than the physical size of the
radiating source (e.g. the open ends of woodwind and
brass instrument bores and the body of most stringed
instruments), which can then be considered as a point
source radiating isotropically into space. However, as
soon as the wavelength becomes comparable with the
size of the radiating source, the radiated sound will ac-
quire directional properties determined by the geometry
of the instrument and the vibrational characteristics of
the excited modes. The directional properties can then
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Musical Acoustics 15.1 Vibrational Modes of Instruments 539

be described by treating the instrument as a superposi-
tion of monopole, dipole, quadrupole and higher-order
multipole acoustic sources, with the directional radiating
properties shown schematically in Fig. 15.2.

A monopole source can be considered as a pulsating
sphere of radius a with surface velocity veiωt result-
ing in a pulsating volume source 4πa2veiωt = Q eiωt .
Equations (15.10) and (15.11) describe the sound field
generated by such a source. Equating the velocities on
the surface of the sphere to that of the induced air motion
gives, at low frequencies such that ka � 1,

p(r, t) = iωρ

4πr
Q ei(ωt−kr) . (15.12)

The radiated power P is then given by 1
2 p2/ρc0 in-

tegrated over the surface of a sphere at radius r, so
that

P(ka � 1) = ω2ρQ2

8πc0
. (15.13)

In the high-frequency limit (ka � 1), when the acoustic
wavelength is much less than the size of the sphere,

P(ka � 1) = ρc0

8πa2 Q2 = 4πa2 1

2
z0v

2 . (15.14)

Equation (15.12) is a special case of the general re-
sult that, at sufficiently high frequencies such that the
size of the radiating object � λ, the radiated sound is
simply 1

2 z0v
2 per unit area, though the sound at a dis-

tance also has to take into account the phase differences
from different parts of the vibrating surface. Note that

P(ka � 1)

P(ka � 1)
= (ka)2 . (15.15)

The radiated sound intensity from a monopole source
therefore initially increases with the square of the fre-
quency but becomes independent of frequency above the
crossover frequency when ka > 1. Hence members of the
violin family and guitar families are rather poor acous-
tic radiators for the fundamental component of notes
played on their lowest strings, as are wind and brass in-
struments, which radiate sound from the relatively small
open ends and side holes. However, it is only because
of such low radiation efficiencies, that strong resonances
can be excited in the air columns of brass and woodwind
instruments.

A dipole source can be formed by displacing two
oppositely signed monopoles ±Q a short distance along
the x-, y- or z-directions. For a dipole aligned along
the x-axis of strength qx = Q∆x. The sound pressure
is simply the difference in pressure from monopoles of

opposite sign a distance ∆x apart, so that in the far field
(kr � 1)

p(θ)dipole = p(θ)monopole × (ik∆x) cos θ . (15.16)

A polar plot of the sound pressure from a dipole is il-
lustrated schematically in Fig. 15.2, with intensity and
radiated power now proportional to ω4 and q2

x . In gen-
eral, any radiating three-dimensional object will involve
three dipole components (px, py and pz), with radiation
lobes along the three directions.

A quadrupole source is generated by two oppositely
signed dipole sources displaced a small distance along
the x- ,y-, or z-directions (e.g. of the general form qxy =
Q∆x∆y). The pressure is now given by the differential
of the dipole radiation in the newly displaced direction,
so that, for example, the pressure from a quadrupole
source qxy in the xy-plane is given by

pdipole = pmonopole ×
(
−k2∆x∆y

)
cos θ sin θ ,

(15.17)

as illustrated in Fig. 15.2. Note that each time the order
of the multipole source increases, the radiated pressure
depends on one higher power of frequency, while the in-
tensity increases by two powers of the frequency. The
radiated power from multipole sources therefore de-
creases dramatically at low frequencies relative to that of
a monopole source. At low frequencies, radiation from
most musical instruments is dominated by monopole
components.

In general, six quadrupole sources (qxx, . . . , qyz)
would be required to describe radiation from a three-
dimensional source. However, because the acoustic
power radiated by a quadrupole source at low frequen-
cies is proportional to ω6, one need often only consider
the monopole and three dipole components to describe
the low-frequency radiation pattern of instruments like
the violin and guitar family, as described in a recent study
of the low-frequency radiativity of a number of quality
guitars by Hill et al. [15.10]. However, at high frequen-
cies, when λ is comparable with or less than the size
of an instrument, the above simplifications break down.
The directionality of the radiated sound then has to be
computed from the known velocities over the whole sur-
face, taking into account phase differences and baffling
effects from the body of the instrument.

Radiation from Surfaces
Many musical instruments produce sound from the vi-
brations of two-dimensional surfaces – like the plates
of a violin or the stretched membrane of a drum. Imag-
ine first a standing wave set up in the two-dimensional
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xy-plane with displacements in the z-direction vary-
ing as sin(kx x)eiωt . We look for propagating sound
waves solutions radiating from the surface of the form
sin(kx x)ei(ωt−kz z), which must satisfy the wave equation
and hence the relationship,

k2
z = ω2

c2
0

− k2
x = ω2

(
1

c2
0

− 1

c2
m

)
, (15.18)

where cm is the phase velocity of transverse waves on the
membrane or plate in the xy-plane. Sound will therefore
only propagate away from the surface (k2

z > 0) when
cm > c0. If the sound velocity is greater than the phase
velocity in the plate or membrane, energy will flow from
regions of positive to negative vertical displacements and
vice versa, with an exponentially decaying sound field,
varying as e−z/δ where δ = |kz |−1.

Typical dispersionless wave velocities for the
stretched drum heads of timpani are around 100 m/s
(Fletcher and Rossing [15.5], Sect. 18.1.2), so that they
are not very efficient radiators of sound. This is par-
ticular relevant for asymmetrical modes, when sound
energy can flow from the regions of positive to negative
displacement and vice versa. However, for even modes,
the cancellation between adjacent regions moving out
of phase with each other can never be complete, so that
such modes will radiate more effectively.

A particularly interesting case occurs for stringed
instruments, where the phase velocity of the transverse
vibrations of the thin front and back plates increases with
frequency as ω1/2 (Sect. 15.2.6). Hence, below a criti-
cal crossover or coincidence frequency, when the phase
velocity in the plates is less than the speed of sound
in air, standing waves on the vibrating plates are rel-
atively inefficient radiators of sound, while above the
crossover frequency the plates radiate sound rather effi-
ciently. Cremer [15.11] estimates the critical frequency
for a 4 mm-thick cello plate as 2.8 kHz; for a 2.5 mm
violin plate the equivalent frequency would be ≈ 2 kHz.

Radiation from Wind Instruments
The holes at the ends or in the side walls of wind instru-
ments can be considered as piston-like radiation sources.
At high frequencies, such that ka � 1, where a is their
radius, the holes will be very efficient radiators radiating
acoustic energy ∼ 1/2z0v

2 per unit hole area. However,
over most of the playing range ka � 1, so that the radi-
ation efficiency drops off as (ka)2, just like the spherical
monopole source. Most of the sound impinging on the
end of the instrument is therefore reflected, so that strong
acoustic resonances can be excited, as discussed in the
later section on woodwind and brass instruments.

15.1.3 The Anatomy of Musical Sounds

The singing voice, bowed string, and blown wind in-
struments produce continuous sounds with repetitive
waveforms giving musical notes with a well-defined
sense of musical pitch. In contrast, many percus-
sion instruments produce sounds with non-repetitive
waveforms composed of a large number of unre-
lated frequencies with no definite sense of pitch, such
as the side drum, cymbal or rattle. There are also
other stringed instruments and percussion instruments,
such as the guitar, piano, harp, xylophone, bells and
gongs, which produce relatively long sounds, where the
slowly decaying vibrations produce a definite sense of
pitch.

In all such cases, the complexity of the waveforms
of real musical instruments distinguishes their sound
from the highly predictable sounds of simple electronic
synthesisers. This is why the sounds of computer-
generated synthesised instruments lack realism and are
musically unsatisfying. In this section, we introduce
the way that sound waveforms are analysed and de-
scribed.

Sinusoidal Waves
The most important, but musically least interesting,
waveform is the pure sinusoid. This can be expressed
in several alternative forms,

a cos(2π ft +φ) = a cos(ωt +φ) = Re(a eiωt) ,

(15.19)

where a is in general complex to account for phase,
f is the frequency measured in Hz and equal to the
inverse of the period T , ω = 2π f is the angular fre-
quency measured in radians per second, t is time, and
φ is the phase, which depends on the origin taken for
time.

Any sound, however complex, can be described
in terms of a superposition of sinusoidal waveforms
with a spectrum of frequencies. Figure 15.3 contrasts
the envelopes, waveforms and spectra of a synthesised
sawtooth waveform and the much more complex and
musically interesting waveform of a note played on the
oboe ( provides an audio comparison). Note
the much more complex fluctuating envelope and less
predictable amplitudes of the frequency components in
the spectrum of the oboe.

As we will show later, in defining the sound and
quality of any musical instrument, the shape and fluc-
tuations in amplitude of the overall envelope are just as
important as the waveform and spectrum.
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0 10 (Hz)5 0 10 (Hz)5
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2.2 s

Fig. 15.3a,b Comparison of the envelope, repetitive waveform and spectrum of (a) a synthesised sawtooth and (b) a note
played on an oboe

Range of Hearing and Musical Instruments
A young adult can usually hear musical sounds from
around 20 Hz to 16 kHz, with the high-frequency re-
sponse decreasing somewhat with age (typically down to
between 10–12 kHz for 60-year olds). Audio
provides a sequence of 1 s-long sine waves starting from
25 Hz to 12.8 kHz, doubling in frequency each time.
Doubling the frequency of a sinusoidal wave is equiva-
lent in musical terms of increasing the pitch of the note
by an octave. Audio is a similar sequence of
pure sine waves from 8 kHz to 18 kHz in 2 kHz steps.
Any loss of sound at the low frequencies in
will almost certainly be due to the limitations of the
reproduction system used, which is particularly poor be-
low ≈ 200 Hz on most PC laptops and notebooks, while
the decrease in intensity at high frequencies in
simply reflects the loss of high-frequency sensitivity of
the ear (see Fig. 15.16 and Chap. 13 for more details on
the amplitude and frequency response of the human ear).

The above sounds should be compared with the
much smaller range of notes on a concert grand piano,
typically from the lowest note A0 at 27.5 Hz to the high-
est note C9 at 4.18 kHz, as illustrated in Fig. 15.4. The
nomenclature for musical notes is based on octave se-
quences of C-major scales with, for example, the note
C1 followed by the white keys D1, E1, F1, G1, A1,
B1, C2, D2, . . . . Alternatively, the octave is indicated

by a subscript (e.g. A4 is concert A). Where the white
notes are a tone apart, a black key is inserted to play the
semitone between the adjacent white keys. This is indi-
cated by the symbol # from the note below or � from
the note above. Figure 15.4 also illustrates the playing
range of many of the instruments to be considered in this
chapter.

Frequency and Pitch
It is important to distinguish between the terms fre-
quency and pitch. The frequency of a waveform is
strictly only defined in terms of a continuous sinusoidal
waveform. In contrast, the waveforms of real musical
instruments are in general complex, as illustrated by the
oboe waveform in Fig. 15.3. However, despite such com-
plexity, the repetition frequency and period T can still be
defined provided the waveform does not vary too rapidly
with time. The periodicity of a note (measured in Hz)
can then be defined as the inverse of T . This is generally
the note that the player reads from the written music.
However, as described later, a repetitive waveform does
not necessarily include a sinusoidal component at the
repetition frequency, an effect referred to as the missing
fundamental. Furthermore, depending on the strength of
the various sinusoidal components present, there can of-
ten be an ambiguity in the pitch of a note perceived by
the listener. The subjective pitch, when matched against
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Harp

Octave

A0 C1 A1 C2

1 2 3 4 5 6 7

A2 C3 A3 C4 A4 C5 A5 C6 A6 C7 A7 C8D E F G

27.5 55 110 220 440 880 1760 3520
33 66 132 264 528 1056 2112 4224

Guitar

Violin

Viola

Cello

Bass

Piccolo

Flute

Oboe

Cor-anglais

B-flat clarinet

Bass clarinet

Bassoon

Contra

Cornet

Trumpet

Bass trumpet

Trombone

Bass trombone

Middle C Concert A

B

Fig. 15.4 Notation used for notes of the musical scale and the playing range of classical western musical instruments.
Subdivisions for stringed instruments represent the tuning of the open strings

a pure sinusoidal wave, can often be an octave below or
above the repetition frequency. The subjective pitch, as
its name implies, can differ from person to person and
within the musical context of the note being played.

Musical Intervals and Tuning
In western music the octave interval is divided into
six tones (a whole-tone scale) and 12 semitones (the
chromatic scale). Today, an equal temperament, loga-
rithmic scale is used to tune a piano, with a fractional
increase in frequency of 21/12 = 1.059 (≈ 6%) be-
tween any two notes a semitone apart. The fractional
increase between the frequencies of a given musical in-
terval (a given number of semitones) is then always
the same, whatever the starting note. Twelve successive

semitones played in sequence therefore raises the fre-
quency by an octave [(21/12)12 = 2]. Any music played
on the piano keyboard can therefore be transposed
up or down by a given number of semitones, chang-
ing the pitch but leaving the relationship between the
musical intervals unchanged. Such a scale was advo-
cated as early as 1581, in a treatise by the lutenist
Vincenzo Galileo (the father of Galileo Galilei). Al-
though it is sometimes claimed that Bach exploited
such a tuning in his 48 Preludes and Fugues, which
uses all possible major and minor keys of the diatonic
scale, historical research now suggests that Bach used
a form of mean-tone tuning, which preserved some of
the characteristic qualities of music written in particular
keys [15.1].
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To provide a greater discrimination in the meas-
urements of frequency, the semitone is divided into 100
further logarithmic increments called cents. The octave
is therefore equivalent to 1200 cents and a quarter-
tone to ≈ 50 cents, with the exact relationship between
frequencies given by

interval = 1200

ln 2
ln( f2/ f1) cents (15.20)

corresponding to ∼ 1.73 × 103(∆ f/ f ) cents for small
fractional changes ∆ f/ f .

Early musical scales were based on various variants
of the natural harmonic series of frequencies, fn = n f1,
where n is an integer (e.g. 200, 400, 600, . . . 1600 Hz),
illustrated by the audio . These notes corre-
spond to the harmonics produced when lightly touching
a bowed string at integral subdivisions of its length (1/2,
1/3, 1/4, etc.) . These simple divisions give
successive musical intervals of the octave, perfect fifth,
perfect fourth, major third and minor third, with fre-
quency ratios 2/1, 3/2, 4/3, 5/4 and 6/5, respectively.
The seventh member of the harmonic sequence has no
counterpart in traditional western classical music, al-
though it is sometimes used by modern composers for
special effect [15.12].

Just temperament corresponds to musical scales
based on these integer fraction intervals. The Pythag-
orean scale is based on the particularly consonant
intervals of the octave (2/1) and perfect fifth (3/2),
which can be used to generate individual intervals of
the form 3p/2q or 2p/3q , where p and q are positive
integers. Although the Pythagorean and just-tempered
scales coincide for the octave, perfect fifth and fourth,
there are musically significant differences in the tun-
ing for all other defined intervals, and all intervals
other than the octave differ slightly from those of
the equally tempered scale. A comparison between
the musical intervals of just and equal temperament

Table 15.1 Principal intervals and differences between just-
and equal-temperament intervals

Interval Just Equal ∆ f/ f
Just-equal cents

Octave 2/1 2.00 0

Perfect fifth 3/2 27/12 = 1.498 +2

Perfect fourth 4/3 25/12 = 1.334 −2

Major third 5/4 24/12 = 1.260 −13

Minor third 6/5 23/12 = 1.189 +15

Tone 9/8 22/12 = 1.122 −4

Semitone 16/15 21/12 = 1.066 +1

tuning is shown in Table 15.1, with the fractional mis-
tuning indicated in cents. Because of the differences
in tunings of the musical intervals, music transposed
from one key to another will generally sound badly
out of tune (particularly for commonly used inter-
vals like the major and minor third) – unlike those
played on a modern equal-tempered keyboard. Prior
to the now almost universal practice of tuning key-
board instruments to a equal-tempered scale, many
tuning schemes were devised which partially overcame
the problems of tuning when playing in a succession
of different keys (see Fletcher and Rossing [15.5],
Sect. 17.6, and Barbour [15.13] for further discus-
sion). Singers, stringed and wind instrument players
can adjust the pitch of the notes they produce to op-
timise the tuning with other performers and for musical
effect.

Figure 15.5 and audio illustrate the dif-
ference in the sounds of a major triad formed from the
just intervals (1, 5/4, 3/2) and the equivalent equal-
tempered scale intervals (1 : 1.260 : 1.498). The rational
Pythagorean intervals give a repetitive waveform of
constant amplitude, while the less-consonant, inhar-
monic, equal-tempered intervals have a non-repetitive
waveform with an easily discernable periodic beat in
amplitude resulting from the departures in harmonicity
of its component frequencies, as illustrated in Fig. 15.5.
Interestingly, the pitch of the equally tempered intervals
also sounds slightly higher, though both share the same
fundamental.

A sequence of upward fifths (frequency ratio 3/2)
and downward octaves (ratio 1/2) can be used to fill
in all the semitones of an octave scale on the piano
keyboard. However, the resulting octave formed from
a succession of 12 upward fifths and six downward

Fig. 15.5 Wave envelope of a major triad chord based on
the Pythagorean scale followed by the same chord on the
equal-tempered scale, with pronounced beats in the ampli-
tude arising from the departures from harmonicity in the
frequencies of the major third and perfect fifth
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octaves gives a frequency ratio of (3/2)12/26 = 2.027,
which is significantly sharper (higher in frequency) than
a true octave. In practice, a skilled piano tuner listens
to the beats produced when playing the above intervals
and tunes the upward fifth slightly flat, so that the se-
quence returns to the exact octave. However, there are
striking psychoacoustic effects, in addition to physical
shifts in the frequencies of upper partials arising from
the finite rigidity of the strings, which result in pianos
being tuned on a slightly stretched tuning scale with the
octaves purposely tuned sharp at higher frequencies and
flat at lower frequencies (Fletcher and Rossing [15.5],
Sect. 12.8).

Repetitive Waveforms
Before considering the more complex waveforms of
musical instruments, we consider the simple square, tri-
angular, sawtooth and triangular repetitive waveforms
(audio ) and the corresponding Fourier spectra
illustrated in Fig. 15.6.

Fourier Theorem
Fourier showed that any repetitive waveform, f (t +nT )
= f (t), can be described as a linear combination of si-

Waveform
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0.5
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1

0
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0.5

0
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Triangular

Square

Sawtooth

Fig. 15.6 Typical repetitive waveforms (synthesised from
the first 100 components of a Fourier series) and the ampli-
tudes of the first few partials normalised to the amplitude
of the fundamental

nusoidal components with frequencies that are exact
multiples of the inverse repetition period T or physi-
cal pitch of the wave. This is formally expressed by the
Fourier theorem,

f (t) =
∞∑

n=−∞
cn einω1t , (15.21)

where ω1 = 2π/T and

cn = 1

T

T∫
0

f (t)e−iωt dt , (15.22)

where n takes on all positive and negative integer val-
ues. The Fourier coefficients cn can be evaluated by
performing the integral over any single period of the
waveform. In general, the Fourier coefficients will have
both real and imaginary components describing both the
amplitude and phase.

For simple waveforms, such as the square, sawtooth
and triangular waveforms, the origin of time can be cho-
sen to make the waveforms symmetric or antisymmetric
in time. The Fourier expansion can then be expressed in
terms of the even cosine or odd sine functions,

f (t) =
∞∑

n=0

⎧⎪⎨
⎪⎩

an sin(nω1t)

or

bn cos(nω1t)

⎫⎪⎬
⎪⎭ , (15.23)

with corresponding coefficients given by

(
an

bn

)
= 2

T

T∫
0

f (t)

(
sin(nω1t)

cos(nω1t)

)
dt , (15.24)

where n is now restricted to positive integer values.
The factor 2 is replaced by unity for the zero frequency
average component b0.

The first few terms of the square, sawtooth and tri-
angular waveforms are listed in Table 15.2. The origin
of time has been selected to make the waves odd-
functions of time, as illustrated in Fig. 15.6, with the
Fourier series only including sine terms. The Fourier
components at integral multiples of the fundamental
repetition frequency are referred to as partials, har-
monics, or overtones. The nth partial has a frequency
fn = n f1. This differs from the terminology used by
musicians, who refer to f2 as the first harmonic or over-
tone. Interestingly, a waveform depends critically on
the sign (phase) of the individual Fourier components.
In contrast, the ear is largely insensitive to the phase
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of the individual partials, with little change in the per-
ceived sound when the sign or phase of a component
partial is changed, though the waveforms will be very
different.

For an arbitrarily chosen origin of time, the Fourier
expansion will include both sine and cosine terms. The
energy or intensity is proportional to the resultant am-
plitudes squared, a2

n +b2
n , which is independent of the

origin of time. The phase φn is given by tan−1(bn/an).
The spectrum of a waveform is often plotted in terms
of the modulus of the amplitude as a function of fre-
quency, without reference to phase, as in Fig. 15.6.
However, measurements of both amplitude and phase
are important in any detailed comparison with theoreti-
cal models and in analytic measurements, such as modal
analysis.

The square and sawtooth waveforms are closely re-
lated to the waveforms excited on bowed and plucked
strings and loudly played notes on wind and brass instru-
ments. The discontinuities in waveform generate a very
rich harmonic spectrum with Fourier components or
partials that decrease relatively slowly (as 1/n) with
increasing n. The strong higher partials give a much
harsher and more penetrating sound than simple sinu-

Clarinet
D4 #
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0 25

1

0.5

0

–0.5

–1
5 10 15 20

(Hz)
0 2000

1

0.5

0
500 1000 1500

Violin
G3

(ms)
0 25

1

0.5

0

–0.5

–1
5 10 15 20
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1

0.5

0
500 1000 1500

Fig. 15.7 Short-period samples of clarinet (D#4) and bowed violin (G3) tones and the corresponding Fourier spectra. The
vertical scales are linear

Table 15.2 Fourier expansions of the square, sawtooth and triangular
waveforms

Square
4

π

(
sin ω1t + 1

3
sin 3ω1t + 1

5
sin 5ω1t . . .

)

Sawtooth
2

π

(
sin ω1t − 1

2
sin 2ω1t + 1

3
sin 3ω1t − 1

4
sin 4ω1t . . .

)

Triangular
2

π

(
sin ω1t − 1

32 sin 3ω1t + 1

52 sin 5ω1t . . .
)

soids, which is why the oboe, which has a sound that is
very rich in higher partials, is used to sound concert A
when an orchestra tunes up. In contrast, the partials of the
triangular wave, with discontinuities in slope instead of
amplitude, decrease more rapidly as 1/n2, with a resul-
tant sound little different from that of a simple sinusoidal
wave.

Note the large difference between the sound of a saw-
tooth waveform, which is closely related to the sound of
an oboe in having a complete set of harmonic compo-
nents, and the “hollow” sound of the square waveform,
which is more like the sound of the lowest notes on
a clarinet, with rather weak even-integer harmonics or
overtones on its lowest notes (Fig. 15.7).
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Fig. 15.8 Typical spectra for a clarinet and violin note plot-
ted on a dB scale illustrating the large number of harmonics
or overtones excited by bowed and blown instruments

Musical Waveforms and Spectra
The waveforms produced by musical instruments are
generally far more complicated than the above sim-
ple examples, as already illustrated for an oboe note
in Fig. 15.3. Waveforms and associated spectra of the
clarinet note D#4 (309 Hz) and the violin bowed open-
G-string G3 (195 Hz) are illustrated in Fig. 15.7. These
are simply representative waveforms. Unlike the im-
pression given in some elementary textbooks, there is
no such thing as a defining violin or clarinet waveform
or spectrum. Both the waveforms and the spectra change
significantly from one note to the next – and even within
a note when played with vibrato, particularly on stringed
instruments. Despite the complexity of the waveforms,
any repetitive waveform can be described as a linear
superposition of sine waves, with frequencies that are
integer multiples of the fundamental, as illustrated by
the spectra.

Plotting the amplitudes of the Fourier coefficients
on a linear scale often highlights the physical processes
involved in the production of the sound. For example,

the relatively small amplitudes of the second harmonic
or partial in the sound of the clarinet reflects the absence
of even-n modes of a cylindrical tube closed at one end,
which approximates to that of the clarinet. Similarly, the
small amplitude of the first partial in the sound of a violin
reflects the absence of efficient radiating modes at low
frequencies. However, because of the very wide dynamic
range of hearing (a factor of ≈ 1010–1012 in intensity), it
is often more appropriate to plot the Fourier coefficients
in decibels on a logarithmic scale. Figure 15.8 shows the
spectrum for clarinet and violin notes re-plotted on a dB
scale, which illustrates the strength of all the partials over
a very wide dynamical range. For bowed instruments
such as the cello, well over 40 harmonic partials can be
identified below 8 kHz. The sound of an instrument will
be determined by all such components and not simply
by the fundamental, which may make a relatively small
contribution to the perceived sound. This is illustrated
for a scale played on the violin with each note first played
as recorded and then with the fundamental component
removed by a digital filter (audio ). The lowest
notes of the scale, for which the fundamental component
is already very weak, are little affected by the removal
of the fundamental component; however, the sound gets
progressively “thinner” in the second half of the scale
for notes for which the fundamental partial makes an
increasingly significant contribution to the “richness” or
“warmth” of the sound.

Transient and Non-Repetitive Tones
No musical note lasts for ever, so that musical sounds
are all, to some extent, transient. Moreover, the sound
of many percussion instruments is composed of many
strongly inharmonic partials, with no regime in which
the waveforms can be considered even quasi-repetitive.
Nevertheless, one can still use the Fourier theorem to
extract the spectrum of such a note, by considering each
transient signal as one of a sequence of such transients
repeated, say, every second, minute or even year. The
spectrum of such a repeated waveform will therefore in-
volve frequency components at integer multiples of the
inverse repetition period, which we can make as long
as we choose. In the limit of infinitely long repetition
times, the Fourier series of a non-repeating waveform
can therefore be replaced by a continuous spectral dis-
tribution over all possible frequencies, known as the
Fourier transform F(ω),

f (t) =
∞∫

−∞
F(ω)eiωt dt , (15.25)
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where

F(ω) = 1

2π

∞∫
−∞

f (t)e−iωt dt . (15.26)

The Fourier transform spectra of important non-
repetitive waveforms are shown in Fig. 15.9. In all
cases, the width ∆ f of the Fourier spectrum is in-
versely proportional to the length τ of the input
waveform, with ∆ f τ ∼ 1. For a rectangular pulse,
the spectrum extends over a rather wide frequency
range with the first zero when f τ = 1, but with many

Modulated
sinusoid at f0

τ

f0= 1/πτ

f0= 1/τ

–f0 f0
t

Gaussian pulse

Impulse or
δ-function

Rectangular pulse

f

f

f

f

1

�

0

Fig. 15.9 Fourier transforms of transient waveforms
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Fig. 15.10 Envelope, typical short-period waveform and spectrum for the sounds of a ratchet, cymbal and timpani

ripples of decreasing amplitude extending to higher
frequencies. For an impulse of negligible width (the
delta-function), the spectrum is flat out to very high
frequencies. The spectrum of a Gaussian waveform
varying as exp[−(t/τ)2] is also a Gaussian propor-
tional to exp[−(π f τ)2], with a width ∆ f = 1/πτ .
Similarly, the spectrum of a sinusoidal waveform with
a Gaussian envelope of width τ is broadened by
∆ f = 1/πτ .

Any waveform that involves variations on a time
scale τ will have Fourier components extending out to
frequencies ∼ 1/τ . To reproduce such waveforms faith-
fully, the bandwidth of any recording or reproduction
system must therefore extend to frequencies of at least
1/τ . Examples of non-repetitive waveforms and their
associated spectra are illustrated in Fig. 15.10 for an
orchestral rattle, a cymbal crash and timpani.

The ratchet sound consists of a sequence of short
clicks illustrated by the selected short-section wave-
form. The spectrum is very broad with no individual
frequencies particularly dominant. The crash of a cym-
bal generates a very large number of very closely spaced
resonances, which appear as a fairly random set of peaks
giving an overall broadband spectrum. The timpani spec-
trum shows a small number of large peaks corresponding
to the prominent modes of vibration of the drum head,
superimposed on a very wide-band spectrum largely
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Table 15.3 Dynamic range of an analogue-to-digital con-
verter (ADC)

N-bit ADC Dynamic range ±2n−1 Dynamic range (dB)

8 bit 128 42

16 bit 32.8 k 90

24 bit 8.39 M 138

associated with the initial transients involving sound
from all parts of drum.

Digital Recording
Nowadays almost all sound is recorded digitally using
an analogue-to-digital converter (ADC). This converts
the continuously varying analogue input signal into
a stream of numbers, which can be recorded digitally on
a computer or compact disc. Audio signals are typically
recorded at a sampling rate of 44.1 kHz with 16-bit reso-
lution corresponding to 1 part in 216. This allows signals
to be recorded in 65 536 equally divided levels between
the maximum positive and negative input signals (i. e.
between ±32.8 k levels).

For the highest-quality digital recordings, even faster
recording rates with higher-bit resolution are used (typ-
ically 24-bit sampling at 96 kHz). This allows for
over-sampling of the recorded signal, so that signals
can be averaged, any errors detected and eliminated,
and filtered more easily. As already noted, the dy-
namic range of human hearing can be as large as
100 dB. To exploit such a large range and to capture
the details of both loud and soft sounds from a large
orchestra accurately requires the recording system to
have a large dynamic range. Table 15.3 shows the dy-
namic range in terms of the number of bits used to
record the sound. Audio illustrates the greatly
enhanced signal-to-noise ratio and hence increased dy-
namic range when sound is recorded at 16-bit rather than
8-bit resolution.

Aliasing
When sound is recorded digitally, ambiguities can arise
when any of the input frequencies is larger than half
the sampling rate fD. This is known as the Nyquist
limit fNyquist = fD/2. For example, if a 2 kHz sine wave
were to be sampled at 2 kHz, the digital signal would be
recorded at exactly the same point of the waveform each
cycle. The recorded digital signal would then be indistin-
guishable from a DC signal. It can easily be shown that
sinusoidal inputs at fNyquist +∆ f give the same digital
output as at fNyquist −∆ f and that the recorded signal
is the same for all frequencies differing in frequency by

fequiv

fNyquist 2fNyquist 3fNyquist finput

Fig. 15.11 Ambiguity of digital output for a steadily increas-
ing frequency exceeding the Nyquist limit

the digitising frequency, 2 fNyquist. Thus for a steadily in-
creasing input frequency the digital output is equivalent
to that of a frequency which first increases up to fNyquist
then decreases to zero when fin = fD = 2 fNyquist, with
the process repeating for higher input frequencies, as
illustrated in Fig. 15.11. In any replay system, an ana-
logue output is generated that assumes a smooth curve
between the sampled points. Hence, recorded frequen-
cies above the Nyquist limit will be misinterpreted and
will produce sounds below fNyquist with no harmonic
relevance to the original input.

This ambiguity is illustrated in audio , in
which a sinusoidal input is swept in frequency from
200 Hz to 6 kHz. This is first recorded at 22.05 kHz,
when aliasing is not a problem, and then at 6 kHz,
when halfway through the increasing frequency signal,
at 3 kHz, the replayed sound starts to descend to zero
frequency at the end of the sweep, when the input sig-
nal has the same frequency as the sampling rate. The
single-frequency sweep is then followed by an ascend-
ing major triad (with intervals in the ratios 1 : 5/4 : 3/2)
recorded at 6 kHz, which illustrating the severe prob-
lems of aliasing in terms of musical harmonies, as soon
as any of the higher-frequency components in a signal
exceed the Nyquist limit, with the frequency of some
partials ascending while others are descending.

To avoid such problems, a high-frequency cut-off
input filter is generally used, with a cut-off frequency
slightly below the Nyquist frequency (see Chap. 14 by
Hartmann for further details).

Sound File Formats
A sound signal is frequently recorded and stored as
an encoded WAVE file of the generic form *.wav,
which includes additional information on data acqui-
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Table 15.4 Decoded WAVE file information

Data provided Typical example

Mono (1), stereo (2) 2

Data acquisition rate 2.205 × 104

Resolution in bits 16

Data per second 4.41 × 104

First measurement from left channel 237

Simultaneous measurement −1356

from right channel

Second measurement from left channel 456

Simultaneous measurement −1972

from right channel

Repeated sequence until end . . .

of recorded sound

sition rate, stereo or mono format and bit resolution.
The decoded structure of a WAVE file is shown in
Table 15.4.

Recording audio signals as WAVE files is very ex-
pensive in memory, with 1 hour of stereo music recorded
at 22 kHz requiring ≈ 300 MB. Music files on CDs are
encoded so that the input is redistributed over time and
therefore over the surface of the disc. This enables the
original signal to be reproduced even in the presence
of dust, scratches and other small imperfections on the
disc surface, eliminating the clicks that were a famil-
iar feature of older vinyl records. More sophisticated,
adaptive, encoding schemes can be used to significantly
reduce the amount of memory used, such as the now
widely used mp3 format. An algorithm is used, based
on physical principles and on the way the ear responds to
musical sounds, to continuously analyse and process the
incoming data. The input data can then be recorded using
a much reduced number of bits, in much the same sort
of way that digital pictures are encoded more efficiently
in ZIP files and compact image formats. The informa-
tion used to encode the digital signal is also recorded, so
that the processed data can be unscrambled on playback
with relatively little loss in perceived quality.

Discrete Fourier Transform
The digital form of the recorded data allows cer-
tain computational efficiencies in calculating the
Fourier spectrum. Consider a recorded sample of N
measurements, corresponding to a sample of length
Ts = N/ fD. To calculate the spectrum, this data set is
assumed to repeat indefinitely, to form a continuous
waveform with a repetition frequency. From the Fourier
theorem, the resulting spectrum is composed of Fourier
components that are exact multiples of the repetition

frequency, so that fn = n/Ts. Hence, a 1 s set of data
points will give a discrete Fourier spectrum with fre-
quencies at 1, 2, . . . n . . . Hz. In practice, the number
of Fourier components is limited to N/2, because each
component has both an amplitude and a phase, which
requires at least two independent measurements to be
made per Fourier component.

Windowing Functions
Using the sampled waveform to form a continuously
repeating waveform will, in general, introduce a repeat-
ing discontinuity ∆ at the beginning and end of each
repeated data set, since the start and end values will
not usually be the same. Any such discontinuity will
generate spurious contributions to the spectrum, with
additional Fourier coefficients with amplitudes propor-
tional to ∆/n. To circumvent this problem, a windowing
function is used. This applies a smooth envelope to the
data set, which reduces the values at the start and end to
zero, thus eliminating the discontinuities. However, as
described above, the application of such an envelope will
give an extra width ∆ f ∼ 1/Ts to the spectral features.

A typical windowing function is the Hanning
function sin2(2πt/Ts). A number of other windowing
functions are illustrated in Fig. 15.12, each of which
has advantages for specific applications [15.14]. The
Hanning windowing is widely used for general-purpose
measurements, while the Hamming function is used to
separate closely spaced sine waves. In general there is
a trade-off between the accuracy that can be achieved in
determining the frequency of individual spectral com-
ponents and the width of the low-amplitude side lobes
generated by application of a windowing function. Vari-
ous forms of the Blackman–Harris windowing function

Amplitude

Time
0.0 1.0

1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

4 term Blackmann –
Harris (BH)

Hanning

7 term BH

8 term BH

Constant

Fig. 15.12 Representative windowing functions (after
[15.14])
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Analogue
input

Windowing
function

Anti-
aliasing
filter

ADC FFT

FFT
spectrum

N = 2n samples at
rate fD, sample length

TS = N/fD

Amplitude and phase of
N/2 frequencies from

0 to fD /2 spaced 1/TS apart

Fig. 15.13 A typical digital sampling and FFT analysis
scheme

can be used to optimise the fast Fourier transform (FFT)
for specific measurements. Windowing need not be used
for the accurate measurements of widely separated sinu-
soidal waves with similar amplitudes, though one should
be aware of the existence of the rather wide side lobes
generated unless the sampling period is an exact integer
multiple of the period of the waveform being measured.

Fast Fourier Transform (FFT)
To determining the amplitude and phase of the N /2
Fourier components from N input measurements re-
quires the inversion of an N × N matrix, requiring
a computation time proportional to N2. However, if N
is an integral power of 2 (e.g. 28 = 256, 216 = 65536),
the FFT computing algorithm can be used to reduce the
computing time by many orders of magnitude (by a fac-
tor ∼ N/ log N). The speed of modern computers is such
that FFT spectra of the sound of musical instruments can
be calculated and displayed with delays of only a few
milliseconds, though any such delay will always be lim-

0 1 2 (kHz)

Fig. 15.14 Time sequence of delayed FFTs illustrating the
decay of excited modes of a violin, when the A-string is
plucked, with an expanded section of the frequency scale for
the lowest resonances excited. The time between successive
traces is 10 ms

ited by the length and hence frequency resolution of the
data set being analysed.

A typical implementation of the FFT method for
spectral analysis is shown schematically in Fig. 15.13.
An input anti-aliasing filter is first used to remove fre-
quency components above the Nyquist limit fD/2; an
ADC then converts the incoming signal to a digital out-
put to give a data set of N = 2n measurements over a time
T = N/ fD. A windowing function removes problems
from discontinuities at the start and end of the recorded
set of data, and the computer evaluates the FFT giving
the amplitudes and phases of the Fourier components at
N/2 discrete frequencies spaced 1/T = fD/N Hz apart.

A sequence of FFTs from data taken over successive
short periods of time can be used to illustrate the decay of
individual partials in transient and decaying waveforms,
such as those of a plucked string, a piano note or struck
bell, as illustrated for the sound of a plucked violin
A-string in Fig. 15.14.

Envelopes of Sound Waveforms
The time dependence or envelope of the amplitude of
a sound signal is just as important a factor in the recog-
nition of any musical instrument as the spectrum of the
sound produced. In general, the envelope has a starting

Violin

Clarinet

Trumpet

Initial transient
Decay

Decay

Decay

50 ms

50 ms

50 ms

Fig. 15.15 Typical wave envelopes for a violin, clarinet and
trumpet with a 50 ms expanded view of the initial starting
transient
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transient, a period with a quasi-constant amplitude for
a continuously bowed or blown instrument, and a period
of free decay, when the instrument is no longer being
excited. The sound produced by musical instruments is
also significantly affected by the acoustic environment in
which the instrument is played, but this will be ignored
for the moment. Typical initial transients and overall en-
velopes of single notes played on a violin, clarinet and
trumpet are shown in Fig. 15.15.

The starting transient provides an immediate clue
to the ear enabling the listener to recognise the instru-
ment being played quickly. However, the characteristic
fluctuations in frequency and amplitude within the over-
all envelope and noise associated with the method of
excitation (e.g. bowing and blowing) are just as impor-
tant in the recognition of specific instruments. This can
easily be shown by removing the starting transient from
a musical sound altogether, as illustrated in . In
this example comparisons are made between the sounds
of a violin, flute, trombone and oboe played first with
the initial 200 ms transient removed and then with the
transient reinserted. In each case the instrument can im-
mediately be identified even in the absence of the starting
transient. The audio example ends with a constant am-
plitude sawtooth waveform having an unvarying sound
quite unlike the sound of any real musical instrument.

Nevertheless, the starting transient and subsequent
decay of sound are extremely important in the identifica-
tion of the sounds of plucked or hammered strings and all
percussion instruments, where the waveform and spec-
tral content changes very rapidly with time after the start
of the note. This is illustrated by the dramatic difference
in the unrecognisable sound of a piano when played
backwards and then replayed in the normal direction
( ).

Noise
There are several potential sources of fluctuations in the
envelope of musical instruments, which help to charac-
terise their characteristic sounds, such as the breathiness
induced by the noise of turbulent air passing over the
sound hole in a recorder, flute or organ pipe (Verge and
Hirschberg [15.15]) and irregularities in the sound of any
bowed instrument due to inherent noise in the slip–stick
bowing mechanism (McIntyre et al. [15.16]).

Amplitude and Frequency Modulation
Another important source of fluctuations is vibrato,
which involves periodic changes in the amplitude, fre-
quency, or spectral content of a note and often all
three (Meyer [15.17], Gough [15.18]). Vibrato is pro-

duced on a stringed instrument by periodically changing
the length of the bowed string by rocking the fin-
ger stopping the string backwards and forwards. In
singing (Prame [15.19]) and wind instruments (Gilbert
et al. [15.20]) vibrato is produced by periodic modula-
tions of the pressure exerted by the lungs or mouth on
the exciting reed or air passage.

Amplitude modulation of a sinusoidal frequency
component can be expressed as

y(t) = (1+am cos Ωt) sin ωt

= sin ωt + am

2
[sin(ω+Ω)t + sin(ω−Ω)t] ,

(15.27)

where Ω is the modulation frequency and a the modula-
tion parameter. Amplitude modulation introduces two
“side-bands” with amplitude am/2 at frequencies Ω

above and below that of the principal central compo-
nent. The side-bands have a net resultant that remains
in phase with the central component giving a fractional
change in amplitude [1+am cos Ωt].

Frequency modulation should more strictly be re-
ferred to as phase modulation, with the phase varying
as

φ(t) = ωt +af cos Ωt . (15.28)

where af is frequency-modulation index. The time-
varying frequency can then be defined by the rate of
change of phase, such that

dφ

dt
= ω−afΩ sin Ωt , (15.29)

with a fractional shift in frequency varying as

∆ω(t)

ω
= −af

Ω

ω
sin Ωt . (15.30)

For small modulation index, a phase-modulated wave
can be written as

y(t) = sin ωt + af

2
[cos(ω+Ω)t + cos(ω−Ω)t] ,

(15.31)

which again results in equally spaced side-bands about
the central frequency with amplitude af/2, but with a re-
sultant now in phase-quadrature with that of the central
frequency giving the above phase modulation.

Because of the multi-resonant frequency response
of all musical instruments, changes in driving frequency
also induce significant fluctuations in amplitude. Such
fluctuations are particularly important for the strongly
peaked multi-resonant instruments of the violin family,
as illustrated in Fig. 15.15.
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15.1.4 Perception and Psychoacoustics

In this section, we briefly highlight a number of psy-
choacoustic aspects of particularly importance in any
discussion of musical acoustics. See also Chap. 13 on
Psychoacoustics by Brian Moore.

Sensitivity of Hearing
We have already commented that the brain interprets
both frequency and intensity on a logarithmic scale.
The recognition of familiar intervals such as the octave,
perfect fifth, irrespective of the absolute frequencies,
provide an immediate example, as is the use of the dB
scale in the measurement of sound levels.

In the 1930s, Fletcher and Munson [15.22] un-
dertook a survey of a large population of subjects to
investigate how the sensitivity of the ear varies with fre-
quency and intensity (and age). These measurements
were later refined by Robinson and Dadson [15.21].
Their published values for normal equal-loudness level
contours, shown in Fig. 15.16, were adopted by the Inter-
national Standards Organization, as the original ISO 226
standard for audio sensitivity, with data recently refined
to define the new ISO 226:2003 standard.

The plotted curves show population-averaged equal
loudness contours for sinusoidal sound waves measured
in phons on a dB scale, which equate to sound pres-
sure level (SPL) measurements in dB at 1 kHz. The SPL
dB scale is based on a reference root-mean-square pres-
sure of 20 µPa (equivalent to 2 × 10−5 Nm−2), which
is very close to an qintensity of 10−12 Wm−2. The
threshold contour is the population-averaged minimum

Sound level, dB SPL

Frequency, kHz
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Threshold

Fig. 15.16 Robinson–Dadson [15.21] curves with contours
of perceived equal loudness measured in phons on a dB
scale

sound pressure that can be just detected under the qui-
etest environmental conditions. Above sound pressures
of ≈ 120 dB, the ear experiences pain and potential
permanent damage.

The equal subjective sound level contours reflect the
dynamics of the ear’s detection system. There is a rapid
fall-off in sensitivity at low frequencies, where the ef-
ficiency of the outer ear drum considered as a piston
detector falls off as ω4. The fall-off at high frequencies
is due to the increasing inertial impedance of the ear
drum and bones in the inner ear. However, the fall-off is
partially compensated by peaks in sensitivity from the
resonances of the outer air channel between the ears and
ear-drum. Older people experience a considerable loss
in sensitivity at high frequencies, which is strongly cor-
related with age. Fortunately, the losses are at relatively
high frequencies and are generally not too important for
the appreciation of music.

The sensitivity of the ear is particularly strong in the
frequency range 2–6 kHz, which is important for recog-
nising the consonants in speech. One would therefore
expect such frequencies to be equally important in the
identification and assessment of sound quality of mu-
sical instruments. Below around 200–400 Hz there is
an increasingly rapid fall-off in sensitivity, which will
differentially affect the subjective loudness of the lower
partials of any complex musical sound at these and lower
frequencies. At low frequencies the contours of equal
amplitude are more closely spaced, so that the effect
of increasing the SLP by 20 dB increases the subjective
loudness by considerably more. Turning up the volume
on any reproduction system changes the perceived qual-
ity from a rather thin sound to a more exciting sound
with a much stronger bass and a somewhat stronger
high-frequency response.

From a musical acoustics viewpoint, it is often sen-
sible to invert the equal contour plot, as the inverted
plot essentially acts as a subjective, mid-frequency band
filter, de-emphasising the perceived intensities of the
lowest and highest-frequency partials in a complex
waveform.

Loudness levels will clearly vary with distance from
any source. Sounds levels exceed 120 dB close to an
aeroplane on take off or close to a loudspeaker in a noisy
rock concert, resulting in potential permanent damage
to the ear. Sound levels close to a heavily used motor-
way are typically around 90 dB, around 70 dB inside
a car, about 50 dB in an office, 30 dB inside a quiet
house at night, 20 dB in a very quiet recording studio
and 0 dB inside an anechoic chamber. At the quietest
levels, one begins to hear the beating of the heart and
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workings of other internal organs, which can be a some-
what disquieting experience. There would clearly be no
evolutionary reason to have developed a more sensitive
hearing system.

Audio is a short orchestral excerpt played
at successively decreasing 6 dB steps (half the ampli-
tude or a quarter the intensity). Musicians indicate the
loudness with which music should be played using the
dynamic markings pp, p, mp, mf, f and ff, which roughly
correspond to a subjective doubling of intensity between
each level. Such levels are clearly only relative, since ab-
solute values will vary strongly with the distance of the
listener from the source with a 12 dB decrease in inten-
sity on doubling the distance in free space. Although
the dynamic range of an individual note on a musical
instrument rarely exceeds 20 dB, with only about six dis-
tinguishable dynamic levels within this range, the total
dynamic range of an instrument is more like 45 dB (Pat-
terson [15.23]). However, there is a much larger range of
sounds produced by different instruments (e.g. the trom-
bone and violin. The carrying power, penetration and
prominence of musical sounds is not simply a matter
of absolute intensity, but also depends on the harmonic
content and transient structures of the complex tones
produced. This helps to explain how a solo violinist can
still be heard over the massive sound of a large orchestra.

Subjective Assessment of Pitch
We have already noted that the perceived pitch of a note
is determined by the inverse period of a waveform and
does not necessarily require the presence of a Fourier
component at that frequency. This is illustrated in audio

, in which simple sinusoidal tones at 300 Hz
and 200 Hz are first played in succession and then played
together to produce a repeating waveform sounding an
octave lower at 100 Hz, which is then followed by a pure
100 Hz tone of the same amplitude but sounding very
much quieter. The final sinusoidal tone at 100 Hz may
well not be heard on a typical PC laptop or notebook
sound production systems, which radiate little sound
below around 200 Hz. The absence of a Fourier com-
ponent at the pitch of a complex tone is often referred
to as the missing fundamental phenomenon. It is impor-
tant in many stringed instruments, which produce very
little sound at the actual frequency of their lowest open
strings.

The missing fundamental phenomenon is a psy-
choacoustic rather than a nonlinear effect produced by
a distortion of the waveform in the ear. It reflects the
way that the ear processes sounds in the time domain at
low frequencies (Moore [15.24] and Chap. 13).

The ability of the ear to recognise the pitch at which
an instrument is playing, even though the lower partials
of the sound of individual instruments may be miss-
ing is very important in sound reproduction systems. It
enables the listener to recognise the distinctive sounds
of all the instruments in an orchestra, even when the
recording or reproduction system may have a very poor
low-frequency response – as in early gramophones and
the loudspeakers used in cheap radios and typical PC
laptops and notebooks.

Combining tones to produce a lower tone is ex-
ploited on the quint combination stop on the organ to
produce low-pitched sounds (e.g. a 16 ft pipe and a
16 × 2/3 = 10.66 ft pipe sounding a fifth above, when
sounded together, reproduce the sound of a 32 ft pipe, as
illustrated for the combination of 200 and 300 Hz sine
waves in above). Interesting, the effect is noth-
ing like so strong in playing two bowed strings a fifth
apart (e.g. open A and open E on a violin), presum-
ably because of the very rich spectrum of higher partials
and independent fluctuations of the two sounds. How-
ever, such sounds can often be heard when two flutes
play well-tuned intervals together. The early 18th cen-
tury virtuoso violinist Tartini recognised the existence
of such mysterious tones, whenever pairs of notes were
played together in exact intonation [e.g. integer ratios
such as 3/2 (perfect fifth), 5/4 (major third), 6/5 (ma-
jor third)], and reputedly attributed them to the devil.
The effect is small, but is still used by violinists when
practising playing such intervals exactly in tune.

In general, complex tones are composed of a num-
ber of spectral components which have no particular
harmonic relationship to each other. One then has to
consider what determines the subjective pitch of the per-
ceived sound. This involves the way the brain processes
the signal and the relative emphasis given to the spec-
tral components present, which will depend on their
frequencies and intensities. It is important to recognise
that the perceived pitch is not necessarily that of the
lowest-frequency component present. This is illustrated
in in which the fundamental and first octave
are fixed in frequency, while an intermediate partial is
swept upwards from the lower to the higher note. First
the fundamental is sounded by itself and then with the
octave added producing a note at the same pitch but
with a different timbre. An intermediate partial is then
added and swept upwards in steps from the lower to the
upper note, giving the sense of a note of continuously
rising pitch, though the fundamental and its octave re-
main fixed. Although the fundamental and octave remain
fixed, the rising partial gives the sense of a note of in-
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creasing pitch. In this particularly simple example, it is
relatively easy to identify and follow the pitch of each
harmonic component separately. However, for a musi-
cal instrument like a gong or bell, with no preconceived
knowledge of the likely pitch of the individual partials,
this is far more difficult. The perceived pitch of the strike
note of a bell and many other percussion instruments,
with an inharmonic combination of excited modes, de-
pends in a rather complex way on the relative weighting
of the partials present and the musical context.

In assessing the subjective pitch of a note there
can often be an ambiguity of an octave in the appar-
ent pitch. This is illustrated by the famous example of
the apparent, ever-rising pitch of a note generated by
a continuously rising comb of logarithmically spaced
frequencies passing through a fixed hearing band of
frequencies, [15.25], which appears to be in-
creasing in pitch at all times though clearly repeating
itself. This illustrates the circularity of pitch perception
and is the audio equivalent of the visual illusion of con-
tinuously rising steps which return to the same point in
space in an Escher drawing.

Precedence Effect
Another important time-domain phenomenon in the per-
ception of musical sounds is the Haas precedence effect,
which enables a listener to locate the source of a dis-
tant sound from the small difference in time that sound
arriving at an angle to the head takes to reach the two
ears. The brain gives precedence to the sound arriving
first, even though later sounds from other directions may

be significantly stronger. Any sound arriving within the
first 20–40 ms (depending somewhat on frequency and
intensity) of the first sound to arrive simply adds to the
perceived intensity of the first sound. This is very impor-
tant in musical performance, with reflections from close
reflecting surfaces adding strongly to the intensity and
definition of the music.

The precedence effect is illustrated in .
This is a stereo recording of identical clicks recorded
on the left and right channels with a delay of 20 ms be-
tween them, which is then reversed. Although the clicks
are too close together for the ear to distinguish them
separately, when replayed through a pair of stereo loud-
speakers (not earphones), the sound will appear to come
from the speaker providing the earlier click.

The precedence effect is one of the ways in which
one can locate the origin of a particular sound within an
orchestra or the sound of a particular voice in a crowded
room. Once located, the brain is able to focus on the
subsequent source even against a highly confusing back-
ground of other sources. It is likely that fluctuations
within the characteristic sound of an individual person
or musical instrument enable the brain to focus con-
tinuously on a particular source. In musical acoustics
one must always recognise the formidable power of
the brain’s auditory processing capabilities, which is far
beyond what can be achieved using present-day comput-
ers. Consequently, even very small effects on a physical
measurement scale can have a very significant effect
on the listener’s subjective response to the sound of
a particular instrument.

15.2 Stringed Instruments

In this section we describe the production of sound
by the great variety of musical instruments based on
the plucking, bowing and striking of stretched strings.
This will include an introduction to the different modes
of string vibrations excited by the player, the transfer
of energy from the vibrating string to the acoustically
radiating structural vibrations of the body of the in-
strument via the bridge, and the modification of such
sound by the environment in which the instrument is
played. Although the production of sound is based on
the vibrations of relatively simple structures, such as
strings and plates, it is the interactions between these, ex-
tending the physics well beyond introductory text-book
treatments, which results in the characteristic sounds of
individual stringed instrument, as summarised in this
section.

The Physics of Musical Instruments by Fletcher and
Rossing ([15.5], Chaps. 9–11) provides an authoritative
account of the acoustics of a wide range of string in-
struments, and a comprehensive set of references to the
research literature prior to 1998. The four volumes of
research papers on violin acoustics, collated and edited
by Hutchins [15.26] and Hutchins and Benade [15.27],
also includes excellent introductions to almost every as-
pect of the acoustics of instruments of the violin family,
much of which is just as relevant to other stringed instru-
ments. Carleen Hutchins has been an inspirational figure
in the field of violin acoustics. The Catgut Acoustical
Society, which she cofounded, published a journal and
an earlier newsletter [15.28] containing many important
papers on violin research of interest to both professional
acousticians and violin makers. Her inspiration has en-
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couraged a world-wide school of violin makers, who
use scientific measurements and plate tuning in particu-
lar as an aide to making high-quality instruments. The
comprehensive monograph on the Physics of the Vio-
lin by Cremer [15.29] provides an invaluable theoretical
and experimental survey of research on instruments of
the violin family, with particular emphasis on the bowed
string, the action of the bridge, the vibrations of the body
and the radiation of sound.

The production of sound by any stringed instrument
is based on the same acoustic principles. The player
excites the vibrations of a stretched string by bow-
ing, plucking or striking. Energy from the vibrating
string is then transferred via the supporting bridge to
the acoustically radiating structural vibrations of the in-
strument. The radiated sound is then conditioned by the
performing environment.

There are many different types of stringed instru-
ments formally classified as chordophones. Harp-like
lyres appear in Sumerian art from around 2800 BC.
However, more primitive instruments, like a plucked
string stretched over a bent stick and resonated across the
mouth, probably date back to soon after the emergence
of man the hunter [15.30, 31].

Stokes [15.32] was the first to recognise that the
vibrating string was essentially a linear dipole, which
radiated a negligible amount of sound at low frequencies
(see also Rayleigh [15.3] Vol. 2, Sect. 341). To produce
sound, the vibrating string has to excite the vibrations
of a much larger area radiating surface. For bowed and
plucked instruments, such as members of violin, lute and
guitar families, almost all the sound is radiated by the
shell of the instrument, with the acoustic output at low
frequencies usually boosted by the Helmholtz resonance
of the air inside the instrument vibrating in and out of

Player

Fingers
Hands
Arms
Body
Ears

Ears

ListenerInstrument

Acoustic

Aural

Tactile

Bowing
Plucking
Striking

Brain

Brain

Fig. 15.17 A schematic representation of the complex feed-
back and sound radiation systems involved in the generation
of sound by a bowed string instrument

the f- or rose-holes cut into the front plate. On larger
instruments, such as the piano and harp, the sound is
radiated by a large soundboard.

For any continuously bowed (or blown) instrument,
the sound is conditioned by a complex feedback loop in-
volving the instrument, player and surrounding acoustic,
illustrated schematically for the violin in Fig. 15.17. The
expert string player controls the intonation and quality of
the sound produced using slight adjustments of the posi-
tion of the left-hand fingers stopping the string, and the
pressure, velocity and position of the bow on the string,
in response to the sound heard from both the instrument
and the surrounding acoustic. In addition, there is direct
tactile feedback through the fingers of both the left hand
controlling the pitch of the note and the right hand con-
trolling the bow. A similar overall feedback system is
also involved in playing woodwind or brass instrument.
The perception of the sound by both player and listener is
also strongly influenced by the performing acoustic and
the way the brain processes the sound received by the
sensory organs in the ears, as illustrated schematically in
Fig. 15.17. All such factors are involved in determining
the perceived quality of the sound produced by a mu-
sical instrument. However, for simplicity and physical
insight into the various mechanisms involved, it is con-
venient to consider the acoustics of musical instruments
in terms of their component parts, like the vibrating
string, the supporting bridge and shell of the instrument.
Nevertheless, it is important not to lose sight of the
fact that the sound produced by any instrument will in-
volve the interactions of all such subsystems and, even
more importantly, the skill of the player in exciting and
controlling the vibrations ultimately responsible for the
sound produced.

15.2.1 String Vibrations

The transverse vibrations ξ(x, t) of a perfectly flexible
stretched string, of mass µ per unit length and tension T ,
satisfy the one-dimensional wave equation (d’Alembert,
1747)

∂2ξ

∂x2 = 1

c2
T

∂2ξ

∂t2 , (15.32)

where the velocity of transverse waves cT = √
T/µ. The

tension T = ES∆L/L , where E is Young’s modulus, S
is the cross-sectional area of the string and ∆L/L is the
fractional stretching of the string over its length L . For
the relatively small transverse displacements of bowed
and plucked strings on musical instruments, changes
in tension can be ignored. However, at larger ampli-
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tudes, a number of interesting nonlinear effects can be
observed, which will be described in Sect. 15.2.2.

A string can also support longitudinal and
torsional modes, with velocities cL = √

E/ρ and
cθ = √

E/ρ(1+ν), where ρ is the density and ν is the
Poisson ratio (≈ 0.35 for most materials). The Pois-
son ratio ν is the ratio of transverse to longitudinal
strain when the material is stretched along a given
direction. For strings on musical instruments, the lon-
gitudinal and torsional wave velocities are typically an
order of magnitude larger than the transverse velocity,
with cL/cT ∼ √

L/∆L.
Although both longitudinal and torsional waves play

important roles in the detailed physics of the bowed,
plucked and struck string, the musically important
modes of string vibration are the transverse modes –
apart from unwanted squeaks from longitudinal modes,
which are often excited by the beginner on the violin. Un-
less otherwise stated, we only consider transverse waves
and drop the defining subscript, unless a distinction
needs to be made.

Waves on an ideal string are dispersionless (inde-
pendent of frequency), so that any wave initially excited
on the string will travel along the string without change
in amplitude or shape. D’Alembert obtained a general
solution of the wave equation of the form

f (x, t) = f1(x + ct)+ f2(x − ct) , (15.33)

corresponding to two waves of unchanging shape trav-
elling with wave velocity c in opposite directions along
the string.

If the string is supported rigidly at its ends, the prop-
agated waves are reflected with a change in sign giving
zero displacement at the nodal end-points. Each propa-
gating wave will continue to be reflected with change of
sign on reflection at each end. For a string of length L ,
the string displacement will therefore return to its ini-
tial state in multiples of the transit time 2L/c. The same
is also true for the velocity and acceleration waveforms,
since, if f satisfies the wave equation, then so must all its
temporal and spatial derivatives, ∂n f/∂xn and ∂n f/∂tn .
It follows that the repetition frequency of any freely
propagating wave on a given length of a stretched string
will always be the same, however the string is excited
(e.g. sinusoidally or by plucking, bowing or striking).

Excitation of Vibrations
First consider a string subject to a localised force F
applied suddenly at a point along its length. This causes
the string to move with velocity v at the point of contact
exciting transverse waves travelling outwards in both

c c
F

T T

v

Fig. 15.18 Transverse motion of string induced by a lo-
calised force, with the dotted lines indicating the displace-
ment at an earlier time

directions with velocity c, as illustrated schematically in
Fig. 15.18.

In a short time δt, the transverse waves travel a dis-
tance cδt along the string while the string at the point
of contact is displaced by a transverse distance vδt. For
v � c, one can make the usual small-angle approxima-
tions, so that equating the applied force to the transverse
force from the deformed string, we obtain

v =
( c

2T

)
F = 1

2R0
F , (15.34)

where R0 = µc is the characteristic impedance (force/
induced velocity) of the string, which for an ideal string
ignoring intrinsic losses is purely resistive. The factor of
two in the above equation arises because the force acts
on the two semi-infinite lengths of string in parallel. In
practice, any discontinuity in slope will be rounded by
the finite flexibility of real strings, as discussed later.

Force on End-Supports
The characteristic resistance R0 of the string is an im-
portant parameter, because it determines the transfer of
energy from the vibrating string to the acoustically radi-
ating modes of the instrument via the supporting bridge
at the end of the string. The transverse force exerted by
the string on an end-support at the origin can be written
as FB = T (∂ξ/∂x)0. This induces a transverse velocity
at the point of string support given by

vB = 1

ZB
FB = AB FB , (15.35)

where ZB and AB are the frequency-dependent charac-
teristic impedance and admittance at the end-support. In
general, the induced velocity at the point of string sup-
port on the supporting bridge will differ in phase from
that of the driving force, so that Z(ω) and A(ω) will be
complex quantities.

The bridge on a musical instrument is never a perfect
node otherwise no energy could be transferred to the
radiating surfaces of the instrument. Waves on the string
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are reflected at the bridge with a frequency-dependent
reflection coefficient r and a fractional loss of energy ε

given by

r = R0 − ZB

R0 + ZB
and ε = 2R0

(
ZB + Z∗

B

)
|R0 + ZB|2 , (15.36)

where Z∗
B is the complex conjugate of the complex

impedance at the terminating bridge.
For strings on musical instruments, R0 � |ZB|, so

that to a first approximation we can consider the bridge
as a node. If this were not so, the vibrational frequen-
cies of strings would by strongly perturbed from their
harmonic values. Nevertheless, first-order corrections
are important, as they determine the energy transfer
from the strings to the body of the instrument and
hence the intensity of the radiated sound. The coupling
via the bridge also affects the string vibrations them-
selves, with the resistive losses at the bridge causing
damping and the reactive component of the admittance
perturbing their vibrational frequencies, as described in
Sect. 15.2.3. Such perturbations can sometimes be so
large that it is no longer possible to sustain a stable
bowed note, resulting in what is known as a wolf-note
(for an illustration of a bad wolf-note on the cello listen
to ).

Before considering the interaction of real strings
with the supporting structure, we first consider the sim-
plest cases of sinusoidal and simple Helmholtz modes
of vibration on an ideal string with perfectly rigid end-
supports.

Sine-Wave Modes
An ideally flexible string stretched between rigid end-
supports a distance L apart can support standing waves,
or eigenmodes, with transverse string displacements
given by

ξn(x, t) = an sin
(nπx

L

)
cos (ωnt +φn) , (15.37)

where ωn = 2π fn and an is the amplitude of the nth
mode with frequency fn = nc/2L and phase φn . Such
modes can be considered as the sum of two sine waves of
the d’Alembert form (15.33) travelling in opposite direc-
tions. For an ideal string, these solutions form a complete
orthogonal set of eigenmodes with a harmonic set of
eigenfrequencies, which are integer multiples of the
fundamental frequency c/2L .

The resonant response of individual modes of a metal
or metal-covered string can be investigated, for exam-
ple, with a photosensitive device to detect the transverse
string motion induced by a sinusoidal current passing

through the string placed in a magnetic field to give
a transverse Lorentz force (Gough [15.33]).

Because the wave equation is linear, any waveform,
however excited, can be described as a Fourier sum of
harmonic modes, such that

ξn(x, t) =
∞∑

n=1

sin
(nπx

L

)

[An cos (ωnt)+ Bn sin (ωnt)] , (15.38)

where the Fourier coefficients An and Bn are determined
by the initial transverse displacement and velocity along
the length of the string, so that

An = 2

L

L∫
0

ξ(x, 0) sin
(nπx

L

)
dx , (15.39)

and

Bn = 2

Lωn

L∫
0

dξ(x, 0)

dt
sin
(nπx

L

)
dx . (15.40)

The transverse force on the end-support at x = L is
given by

Fend = −T

(
∂ξ

∂x

)
L

= −T
∑

n

(nπ

L

)
(−1)n

[An cos (ωntn)+ Bn sin (ωnt)] . (15.41)

Helmholtz Modes
Although many physicists and most musicians intu-
itively associate waves on strings with the sinusoidal
waves of textbook physics, in practice, the vibrations
of a bowed, plucked or struck string are very different.
Nevertheless, because such waves are repetitive, it fol-
lows from the Fourier theorem that all such solutions
can be described as a sum of sinusoidal wave com-
ponents. However, the motions of plucked, bowed and
struck strings are much more easily described by what
are known as Helmholtz solutions to the wave equa-
tion [15.34]. These are illustrated for the plucked and
bowed string in Fig. 15.19a,b.

The Helmholtz solutions are made up of straight-
line sections of string. There is no net force acting on
any small segment within any such section, because the
transverse tension forces acting on its ends are equal
and opposite. By Newton’s laws, any such segment must
therefore be either at rest or moving with constant ve-
locity. Only where there is a kink or discontinuity in the
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c

v bow

c

c

a)

b)

P

Fig. 15.19a,b Helmholtz waveforms for (a) a centrally
plucked and (b) a bowed string. The horizontal arrows in-
dicate the directions that the kinks are travelling in and the
vertical arrows the directions of the moving string sections.
The different colours represent string displacements at dif-
ferent times. P indicates a typical bowing position along
the string

slope between adjacent straight-line sections (equivalent
to a δ function in the spatial double derivative) can there
be any acceleration. From our earlier discussion, any
such kink must travel backwards and forwards along
the string at the transverse string velocity c, reversing
its sign on reflection at the ends. As the kink moves
past a specific position along the string, the difference
in the transverse components of the tension on either
side of the kink results in a localised impulse, which
changes the local velocity of the string from one moving
or stationary straight-line section to the next. In general,
there can be any number of Helmholtz kinks travelling
along the string in either direction, each kink marking
the boundary between straight-line sections either at rest
or moving with constant velocity. Similar solutions also
exist for torsional and longitudinal waves.

We now consider the Helmholtz wave solutions for
the plucked, bowed and hammered string in a little more
detail.

Plucked String
Consider an ideal string initially at rest with an initial
transverse displacement a at its mid-point, as illustrated
in Fig. 15.19a. On release, kinks will propagate away
from the central point in both directions with velocity c,
but points on the string beyond the kinks will remain at
rest. When the kink arrives at a particular point along the
string, the associated impulse will accelerate the string
from rest to the uniform velocity of the central section of
the string. After a time t, the solution therefore comprises
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t

a) b)

Fig. 15.20 (a) Square-wave time dependence of transverse
force acting on the bridge from a string plucked at its centre
and (b) the corresponding amplitudes of the odd Fourier
components n varying as 1/n (dotted curve)

a straight central section of the string of width 2ct mov-
ing downward with constant velocity c (2a/L), with the
outer regions remaining at rest until a kink arrives. After
a time L/2c, the kinks separating the straight-line sec-
tions reach the ends and are reflected with change of sign.
After half a single period L/c, the initial displacement
will therefore be reversed and will return to the original
displacement after one full period 2L/c. In the absence
of damping, the process would repeat indefinitely.

Now consider the transverse force acting on the
end-support responsible for exciting sound through the
induced motion of the supporting bridge and vibrational
modes of the instrument. The initial transverse force
on the bridge is 2Ta/L , where we assume a � L . This
force is unchanged until the first kink arrives. On reflec-
tion, the direction of the force is reversed and is reversed
again when the second kink returns after reflection from
the other end of the string. The two circulating kinks
therefore cause a reversal in sign of the force on the end-
supports every half-cycle, resulting in a square-wave
waveform, as illustrated in Fig. 15.20. The spectrum of
a square wave has Fourier components at odd multi-
ples n of the fundamental frequency with amplitudes
proportional to 1/n, Fig. 15.20b.
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0
105 20
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Fig. 15.21 Normalised Fourier amplitudes for the force on
the bridge for a string plucked 1/4 and 1/7 of the string
length from the bridge. The dashed curves show the 1/n
envelope of the partials of a sawtooth waveform
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Note that plucking a string at the mid-point excites
only the odd-n modes. This is a consequence of the initial
force being applied at a node of all the even-n modes. If
a string is plucked at a fractional position 1/m along its
length, any partial that is an integer multiples of m will
be missing. This is illustrated in Fig. 15.21, showing
the spectra of the force on the supporting bridge for
a string plucked at points 1/4 and 1/7-th along its length.
By selecting the plucking position along the string, the
guitar or lute player can change the harmonic content of
the sound produced. When plucked near the bridge, the
sound of the plucked guitar string is rather bright, with
nearly all the prominent partials almost equally strongly
excited (audio ).

In practice, the finite width of the plucking point,
the finite rigidity of the string and the loss of energy
at the bridge perturb the Helmholtz wave, removing the
unphysical discontinuities of the idealised model. This
results in a more rapid decrease in the intensities of the
higher partials excited.

Bowed String
The motion of the bowed string can be described rather
accurately by a simple Helmholtz wave with a sin-
gle kink circulating backwards and forwards along the
string. The kink now separates two straight sections
moving with constant angular velocity about the nodal
end-points, as illustrated in Fig. 15.19b. This is again
a solution that satisfies Newton’s laws of motion, with
the only acceleration occurring as the kink arrives at
a particular point along the string. Such a wave is just as
valid a solution to the wave equation as a sine wave and
once excited would continue indefinitely, if there were
no damping or energy losses on reflection at the bow or
supported ends.

The energy required to excite and maintain such
a wave is provided by frictional forces between the mov-
ing bow hair and the string, involving what is known as
the slip–stick excitation mechanism. For a typical bow-
ing position, marked by the line at P in Fig. 15.19b, the
friction between the bow and string forces the string to
remain in contact with the bow hair moving with con-
stant bow velocity. This is referred to as the sticking
regime and occurs all the time the kink is travelling to
the left of the bowing position. However, when the kink
is between the bow and supporting bridge, the string
moves in the opposite direction to the bow. This is the
slipping regime. Such motion is possible because the
sliding friction between the bow and string can be much
smaller than the sticking friction, when the bow and
string are in contact. In this highly idealised model, the

frictional force is assumed to be infinite in the sticking
regime and zero in the slipping regime.

A more detailed discussion of the slip–stick bowing
mechanism will be given later (Sect. 15.2.3), taking into
account more-realistic models for the frictional forces
between the bow and string and the transfer of energy
from the string to the vibrational modes of the structure
via the bridge. However, the idealised Helmholtz motion
provides a surprisingly good description of the vibra-
tions of real strings, as confirmed in early measurements
by Raman [15.35] and many more-recent publications
to be cited later.

The amplitude of the Helmholtz bowed waveform
is determined by the velocity of the bow vbow and
its distance LB from the bridge. The transverse dis-
placement of the kink maps out a parabolic path as it
traverses the string (Fig. 15.19b). At the mid-point, the
string displacement executes a triangular-wave motion
with time, moving with velocity ±2ca/L in alter-
nate half-periods, where the maximum displacement
a = (L2/4LB)(vB/c), for a � L . At the bowing posi-
tion, the transverse string velocity alternates between
vbow in the sticking regime and −vbow (L − LB) /LB in
the slipping regime, as illustrated in Fig. 15.22.

To increase the sound, the player can therefore either
use a faster bow speed or play with the bow nearer the
bridge. Schelling [15.36] has shown that more-realistic
frictional models limit the playing range, as discussed
later (Fig. 15.31).

The transverse force on the bridge produced by
an idealised Helmholtz bowed wave has a sawtooth-

Displacement

v bow

Velocity

vslip

t

Fig. 15.22 Displacement and velocity of string at the bow-
ing point. The mark-to-space ratio in the velocity is the
same as the division of the string by the bow
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Fig. 15.23 Sawtooth time-dependence of force on the end
supports from Helmholtz bowed waveform and correspond-
ing amplitudes of the normalised Fourier spectrum with
partials varying as 1/n

20 dB markers
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Fig. 15.24 The spectrum of the intensity of the lowest
bowed note on a cello, illustrating the very large number of
partials contributing to the sound of the instrument

waveform time dependence, as shown in Fig. 15.23.
Each time the kink is reflected at the bridge, the trans-
verse force acting on the bridge reverses in sign. It then
increases monotonically with time until the process re-
peats again. The sense of the sawtooth motion reverses
with bow direction. The spectrum of the force acting
on the bridge includes both even and odd partials, with
amplitudes varying as 1/n.

The spectrum of the sound produced by the lowest
plucked and bowed notes on stringed instruments can
typically involve 40 or more significant harmonic par-
tials, as illustrated in Fig. 15.24 by the spectrum of the
sound produced by a bowed cello open C-string (C2 at
∼64 Hz, audio ). The FFT spectrum is plotted
on a dB scale to illustrate the large range of amplitudes
of the partials (Fourier components) excited. The am-
plitudes of the individual partials depend not only on
the force at the bridge exerted by the plucked or bowed
strings, but also on the frequency dependent response

and radiative properties of the supporting structure, as
discussed later.

Struck String
Many musical instruments are played by striking the
string with a hammer. The hammer can be quite light
and hard, as used for playing the dulcimer, Japanese koto
and many other related Asian instruments, or relatively
heavy and soft, like the felted hammers on a piano.
Some time after the initial impact, the striking hammer
bounces away from the string, leaving the string in a free
state of vibration. There are a few instruments, such as
the clavichord (Thwaites and Fletcher [15.37]), where
the string is struck with a metal bar (the tangent), which
remains in contact with the string, defining its vibrating
length and hence the note produced.

Consider first a point mass m moving with velocity
v striking an ideal stretched string of infinite extent.
In any small increment of time, the moving mass will
generate a wave moving outwards from the point of
impact. This will result in a decelerating force on the
mass equal to 2Tv/c = mcv, as illustrated in Fig. 15.18.
The displacement of the mass will then be described by
the following equation of motion

m
d2ξm

dt2 = −2T

cT

dξm

dt
. (15.42)

The transverse velocity of the impacting mass therefore
decays exponentially with time as

dξm

dt
= vm exp (−t/τ) , (15.43)

with τ = mc/2T . The is identical to the dynamics of
a trapeze artist dropping onto a stretched wire, with
waves of displacement and velocity travelling outwards
in both directions away from the point of impact, as
illustrated in Fig. 15.25.

In general, the string will be struck at a distance a
from one of its end-supports. Hence, in a time (a/2L)T0,
a reflected wave will return to the mass and exert an ad-
ditional force, which will tend to throw the mass back

cTcT

vm(t)

Displacement Velocity cTcTa) b)

Fig. 15.25a,b Time sequences of (a) string displacement
and (b) string velocity for a mass striking a string
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Fig. 15.26 (a) Time dependence of the upward force acting
on a light hammer impacting a string in arbitrary units of
time, and (b) amplitudes of Fourier coefficients of force
acting on end supports for a hammer after hitting the string
1/7 of the length from an end-support. The continuous line
shows the continuous spectrum for a string of semi-infinite
length

off the string. However, because the mass cannot change
its velocity instantaneously, any returning wave will be
partially reflected, so that the mass acts as a source of
secondary reflected waves travelling outwards in both
directions. The total force acting on the hammer is then
given by any residual force from the first impact plus
the subsequent forces created by the succession of re-
flections from the end-supports. This problem was first
correctly solved by Hall, in the first of four seminal pa-
pers on the string–piano hammer interaction [15.38–41].

Hall showed that the first reflected wave exerts an
additional decelerating force g(t′) ∼ (1− t′/τ)e−t′/τ on
the mass, where t′ is the time after arrival of the first re-
flection. This is illustrated in Fig. 15.26 for a relatively
light mass impacting the string at a position 1/7-th of
the string length from an end. Provided the mass is suf-
ficiently small, the force from the initial impact will
have decayed significantly by the time the first reflec-
tion returns, so that the force acting on the mass will
become negative (the dotted section in Fig. 15.26a), and
the mass will detach itself from the string. The string
will then move away from the mass and will vibrate
freely, provided the hammer is prevented from falling
back onto the string. An elaborate mechanism is used on
the piano to prevent this from happening (see Rossing,
Fletcher [15.5], Sect. 12.2), while the zither or dulcimer
player quickly lifts the hammer well away from the string
after the initial impact using much the same striking ac-
tion as a percussionist playing a drum, where the same
considerations apply.

The heavier the mass, the longer it will remain in
contact with the string. Hall showed that it may then
take several reflections from both ends of the string and
sometimes several periods of attachment and detach-

ment before the mass is finally thrown away from the
string. A sufficiently heavy mass will never bounce back
off the string.

In general, the waveforms excited on the string
will therefore be rather complicated functions of the
properties of the string, hammer and striking position.
However, for a very light mass (� mass of the string),
which is thrown off the string by the first reflected wave,
the Fourier coefficients of the induced velocity wave-
form, and hence the force on the end-supports, are given
by vn ≈ (1+ e−1+inπα

)
sin (nπα), where α = a/L , il-

lustrated in Fig. 15.26b for an impact 1/7-th of the way
along the string. Note that the seventh harmonic is miss-
ing, as again expected from general arguments, since no
work can be transferred to a particular mode of string
vibration for a force applied at a nodal position.

In practice, the spectrum is affected by the finite
size of the hammer, multiple reflections occurring be-
fore the hammer is thrown from the string, and the
elastic and often hysteretic properties of the hammer
material [15.38].

Striking Tangent
On the clavichord (Fletcher, Rossing [15.5], Sect. 11.6),
a string is struck by a rising end-support, or tangent,
which remains in contact with the string, exciting trans-
verse vibrations of the string on both sides of the tangent.
If we assume a simplified model in which the rising
tangent moves with constant velocity until its final dis-
placement a is reached, there is again a simple Helmholtz
wave solution. In practice, the length of string on one
side of the tangent is damped, so that free vibrations are
only excited on one side of the striking point. We there-
fore need only consider the length of string between the
tangent and the end connected to the soundboard. The
discontinuities ±v in the tangent velocity, occurring on
initial impact and on reaching its final displacement after
a time ∆t, generate propagating kinks and discontinu-
ities of velocity of opposite sign separated in time by
∆t. The striking therefore excites waves with kinks, ve-
locities and displacements along the string shown in
Fig. 15.27a. The solutions are again Helmholtz waves,
but now with two kinks of opposite signs travelling
around the string in the same direction.

The Fourier coefficients of the velocity waveform
shown in Fig. 15.27b can be written as

cn ∼ 1

n

a

L ′
(

1− ein2πβ
)

, (15.44)

where β = ∆t/T1 is the fraction of the period T1 = L ′/2c
of the freely vibrating length of string during which the
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Fig. 15.27a–c Waveforms for a tangent hitting and sticking
to string: (a) displacement and (b) velocity profiles along the
string, at a succession of times (different colours) after the
tangent hits the string, and (c) the spectrum of the resultant
force on the end-supports for β = 3/8 (see text)

striking tangent moves from its initial to final position.
Figure 15.27 also includes the spectrum of the force
acting on the end-supports for β = 3/8.

Very similar modes to the above will be excited
during the time a heavy hammer is initially in con-
tact with the string on instruments like the dulcimer,
zither and piano. Such modes therefore contribute to
the initial transient sounds of such instruments. Another
related example is the use of col legno on stringed in-
struments, when the strings are struck by the wooden
part of the bow. By hitting the string at specific po-
sitions along the string, pitched initial transients can
be produced, creating special sound effects, nageln,
sometimes used in avant-garde contemporary music, au-
dio ). The above simplistic model for striking
a clavichord string will, in practice, be modified by the
way the player depresses the key, which is directly cou-
pled to the rising tangent, both during and after the
initial impact. The player can therefore influence the
initial transient and the after-sound, including the use
of a small amount of vibrato on the after-note, resulting
in a particularly responsive and intimate but quiet in-
strument, which was particularly popular in the baroque
period.

Real Strings
We now consider a number of departures from the above
idealised models for real strings including:

1. the finite size of the plucking or striking point
2. the finite flexibility of the string
3. nonlinear effects

In a subsequent section, we consider the even larger
perturbations resulting from coupling to the acoustically
radiating modes of the body of the instrument via the
bridge.

Finite Spatial Variation
Idealised models for the string, with infinitely sharp
kinks produced by plucking, bowing or striking, in-
volve waveforms with discontinuities in amplitude and
slope and an infinite number of Fourier components
are clearly unphysical. In practice, physics and geo-
metrical limitations, like the finite size of the player’s
finger or plectrum, will always limit the maximum
curvature of the string at the point of excitation.
The kinks will therefore no longer be δ-functions
(infinitely narrow) but will have a finite size. For il-
lustration, travelling kinks can be modelled as Gaussian
waveforms, ξ±(x, t) ∼ exp[−(x ± ct)2/2 (∆x)2], which
approximate to δ-functions when ∆x → 0, where ∆x
characterises the width of the kink. The Fourier trans-
form of such a function has a Gaussian distribution of
Fourier coefficients varying as c(k) ∼ exp[−(k/∆k)2/2],
where ∆k∆x = 1. This is analogous to the uncertainty
principle in position and momentum in quantum wave
mechanics. For long bending lengths, the amplitudes
of the higher-frequency Fourier components will be
strongly attenuated.

The sound of a guitar string played with a sharp
plectrum is therefore much brighter, with many more
contributing higher partials, than when played with the
fleshy part of a finger, which limits the bending radius to
a few mm. This is illustrated by the sound of an acoustic
guitar plucked first with a plectrum and then with the
thumb, both at a distance of ≈ 10 cm from the bridge
(audio ).

Finite Rigidity
Even for an infinitely narrow plectrum, the bending at
the plucking point will be limited by the finite flexibility
of the string. The wave equation is then modified by an
additional fourth-order bending stiffness term (Morse
and Ingard [15.42, (5.1.25)]),

ρS
∂2ξ

∂t2 = T
∂2ξ

∂x2 − ESκ2 ∂4ξ

∂x4 , (15.45)

where E is Young’s Modulus, S is the cross-sectional
area of the string (assumed homogeneous) and κ its
radius of gyration. For a uniform circular wire of ra-
dius a, Sκ2 = πa4/4. Using dimensional arguments, any
changes in slope of the string will take place over a char-
acteristic length δ ∼ (ESκ2/T )1/2 = (a2L/2∆L)1/2,
where ∆L is the extension of the string required to
bring it to tension. This provides an intrinsic limit to
the sharpness with which the string is bent and hence to
the wavelength and frequency of the highest partials con-
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tributing significantly to the sound of a plucked, bowed
or struck string.

The additional stiffness energy required to bend the
string will also affect wave propagation on the string
and the frequencies of the excited modes. Assuming
sinusoidal wave solutions varying as ei(ωt±kx), the mod-
ified wave equation (15.45) gives modes with resonant
frequencies

ω2
n = c2k2

n

(
1+ δ2k2

n

)
. (15.46)

Waves on a real string are therefore no longer dis-
persionless, but travel with a phase and group velocity
that depends on their frequency and wavelength. Any
Helmholtz kink travelling around a real string will there-
fore decrease in amplitude and will broaden with time.
To maintain the Helmholtz slip–stick bowed waveform,
with a well-defined single kink circulating around the
string, the bow has to transfer energy to the string to com-
pensate for such broadening each time the kink moves
past the bow (Cremer [15.29], Chapt. 7 and Sect. 15.2.2.

If a rigidly supported string is free to flex at its
ends (known as a hinged boundary condition), solutions
of the form sin(nπx/L) sin(ωt). However, the mode
frequencies remain are no longer harmonic;

ω∗
n

ωn
=
(

1+ Bn2
)1/2 ∼ 1+ 1

2
Bn2 , (15.47)

with B = (π/L)2δ2, where the expansion assumes
Bn2 � 1.

When a string is clamped (e.g. by a circular collet), it
is forced to remain straight at its ends. Fletcher [15.43]
showed that this raises all the modal frequencies by
an additional factor ∼ [1+2/πB1/2 + (2/π)2 B]. For
a real string supported on a bridge, connected to another
length of tensioned string behind the bridge, the bound-
ary conditions will be intermediate between hinged and
clamped.

Kent [15.44] has demonstrated that finite-flexibility
corrections raise the frequency of the fourth partial of
the relatively short C5 (an octave above middle-C) string
on an upright piano by 18 cents relative to the funda-
mental. The inharmonicity would be even larger for the
very short, almost bar-like, strings at the very top of
the piano. However, the higher partials of the highest
notes on a piano rapidly exceed the limits of hearing,
so that the resulting inharmonicity becomes somewhat
less of a problem. The inharmonicity of the harmonics
of a plucked or struck string results in dissonances and
beats between partials, providing an edge to the sound,
which helps the sound of an instrument to penetrate

more easily. This is particularly true for instruments like
the harpsichord and the guitar when strung with metal
strings.

Finite-rigidity effects are particularly pronounced
for solid metal strings with a high Young’s modulus.
To circumvent this problem, modern strings for musi-
cal instruments are usually composite structures using
a strong but relatively thin and flexible inner core, which
is over-wound with one or more flexible layers of thin
metal tape or wire to achieve the required mass (Picker-
ing [15.45, 46]). The difference in sound of an acoustic
guitar strung with metal strings and the same instrument
strung with more flexible gut or over-wound strings is
illustrated in .

15.2.2 Nonlinear String Vibrations

Large-amplitude transverse string vibrations can result
in significant stretching of the string giving a time-
varying component in the tension proportional to the
square of the periodically varying string displacement.
This leads to a number of nonlinear effects of con-
siderable scientific interest, though rarely of musical
importance.

Morse and Ingard [15.42] and (Fletcher and Ross-
ing [15.5], Chap. 5) provide theoretical introductions to
the physics of nonlinear resonant systems and to non-
linear string vibrations in particular. Vallette [15.47] has
recently reviewed the nonlinear physics of both driven
and freely vibrating strings.

The Nonlinear Wave Equation
Transverse displacements of a string result in a frac-
tional increase of its length L by an amount
1/L0

∫ L
0 1/2(∂ξ/∂x)2 dx and hence to a similar frac-

tional increase in tension and related frequency of
excited modes. For a spatially varying sinusoidal wave,
the induced strain and hence tension will vary with
both position and time along the string. Any spatially
localised changes in the tension will propagate along
the string with the speed of longitudinal waves. As
this is typically an order of magnitude larger than for
transverse waves, cL/cT ∼ √

L/∆L , where ∆L is the
amount that the string is stretched to bring it to ten-
sion, such perturbations will propagate backwards and
forwards along the string many times during a sin-
gle cycle of the transverse waves. Hence, as pointed
out by Morse and Ingard [15.42], to a rather good
approximation, transverse wave propagation is deter-
mined by the spatially averaged perturbation of the
tension.
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Consider a stretched string vibrating with large
amplitude in its fundamental mode with transverse
displacement u = a sin(πx/L) cos ωt. The spatially av-
eraged increase in tension is given by(

1+ π2

4

a2

∆LL
cos2 ω1t

)

=
[
1+β (1− cos 2ω1t) a2

]
, (15.48)

where β = π2

8
1

L∆L . Inserting this change in tension into
the equation of motion for transverse string vibrations
coplanar with a localised external driving force f (t), we
can write

∂2u

∂t2 + ω1

Q

∂u

∂t
+ω2

1

[
1+β (1− cos 2ω1t) a2

]
u

= 2

m
f (t) . (15.49)

Mode Conversion
Nonlinearity results in an increase in the static tension by
the factor (1+βa2) and hence an increase in frequency
of all the string modes. In addition, the term varying as
cos 2ω1t, at double the frequency of the principal mode
excited, will interact with any other modes present to
excite additional with frequencies fn ±2 f1. Of special
note is the effect of this term on the principal mode
of vibration itself, exciting a new mode at three times
the fundamental frequency 3 f1 and an additional para-
metric term (acting on itself) from the f1 −2 f1 = − f1
contribution. The parametric term causes an additional
increase in frequency of the principal mode excited, so
that in total

ω2
1∗ = ω2

1

(
1+ 3

2
βa2
)

, (15.50)

where ω1 is the small-amplitude resonant frequency.
Nonlinear effects depend on the square of the ampli-

tude of the strongly excited mode and inversely on the
amount by which the string has been stretched to bring it
to tension. To investigate nonlinear effects, it is therefore
advantageous to use weakly stretched strings at low ini-
tial tension. Conversely, because the tension of strings
on musical instruments tends to be rather high, nonlin-
ear effects are not in general important within a musical
context.

Figure 15.28 shows measurements by Legge and
Fletcher [15.48], which illustrate the nonlinear excita-
tion and subsequent decay of the third partial of a guitar
string plucked one third of the way along its length, so
that the third partial was initially absent.

Fig. 15.28 Nonlinear excitation of the third partial of
a stretched string plucked 1/3 of the way along its length;
the graticule divisions are 50 ms apart (after Legge and
Fletcher [15.48])

In general, bowed, plucked and struck waveforms
have many Fourier components, each of which will con-
tribute a term proportional to a2

n to the nonlinear increase
in tension. However, in most cases, the fundamental will
be the most strongly excited mode and will therefore
dominate the nonlinearity.

The inharmonicity and changes in frequency as-
sociated with nonlinearity at large amplitudes can
give a strongly plucked string an initial rather twangy
sound. Nonlinear effects can also raise the fre-
quency of a very strongly bowed open C-string of
a cello by almost a semitone. However, under nor-
mal playing conditions, nonlinearity is rarely musically
significant, at least in comparison with other more
important perturbations of string vibrations, such as
their interaction with the acoustically important struc-
tural resonances of an instrument, to be considered
later.

Nonlinear Resonances
The nonlinear increase in frequency of modes with in-
creasing amplitude leads to string resonances, which
become increasingly skewed towards higher frequen-
cies at large amplitudes, as illustrated in Fig. 15.29.
For sufficiently large amplitudes and small damp-
ing, the resonance curves develop an overhang. On
sweeping through resonance from the low-frequency
side, the amplitude rises causing the resonance fre-
quency to shift to higher frequencies, as indicated
by the dashed line in Fig. 15.29a. Damping eventu-
ally leads to a sudden collapse, with the amplitude
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Fig. 15.29 (a) The effect of nonlinearity on the resonance
curves of a stretched string with a Q of 100, for increas-
ing drive excitation plotted against normalised resonant
frequency. The dashed curve represents the nonlinear am-
plitude of the frequency for free decay. Note the hysteretic
transitions at large amplitude; (b) the transition at large am-
plitudes from linearly polarised vibrations coplanar with the
driving force to elliptical and finally circular orbital motion
of the string at very large amplitudes. The two continuous
curves represent the induced amplitudes in the directions
parallel and perpendicular to the driving force

dropping to a much lower high-frequency value, il-
lustrated by the downward arrow. On decreasing the
frequency, the response initially remains on the low-
amplitude curve before making a sudden hysteretic
transition back to the large amplitude, strongly nonlin-
ear, regime.

This behaviour is characteristic of any nonlin-
ear oscillator with a restoring force that increases
in strength on increasing amplitude. For a spring
constant that softens with increases displacement, as
we will discuss later in relation to Chinese gongs,
the resonance curves are skewed in the opposite
direction.

Orbital Motion
Nonlinearity results in another surprising effect on the
driven resonant response. At sufficiently large ampli-
tudes of vibration, a sinusoidally driven string suddenly
develops motion in a direction orthogonal to and in
phase-quadrature with the driving force, illustrated
schematically in Fig. 15.29b. The transverse displace-
ments then execute elliptical orbits about the central axis
approaching circular motion at very large amplitudes
(Miles [15.50]). In this limit, the string is under constant
increased tension, producing an amplitude-dependent
inward force balancing the centrifugal force of the orbit-
ing string, resulting in an amplitude-dependent orbital
frequency ω2

1∗ = ω2
1(1+2βa2). For circular motion, the

extension of the string and hence the increase in tension
and resonant frequency are determined by the orbital ra-
dius of the whirling string, so there is now no variation in
tension with time. The sense of clockwise or anticlock-
wise rotation is determined by chance or in practice by
slight geometrical or material anisotropies of the string
or supporting structure.

Such transitions have been investigated by Hanson
and coworkers [15.51, 52] using a brass harpsichord
string stretched to playing tension. The transition from
linear to elliptically polarised motion was observed in
addition to chaotic behaviour at very large amplitude.
However, their measurements were complicated by the
very long time constants predicted to reach equilibrium
behaviour close to the transitional region and to rather
strong and not well-understood splitting of the degen-
eracy of the transverse modes, even at low amplitudes
when nonlinearity is unimportant.

A related effect occurs when a string is plucked
so that it is given some orbital motion, as is invari-
ably the case when plucking a string on a stringed
instrument such as the guitar. Nonlinearity introduces

x

y

x

y

Time

a) b)

Fig. 15.30 (a) The computed precession of the damped
elliptical orbits of a strongly plucked string, and (b) meas-
urements of the orthogonal transverse components of such
motion for a string plucked close to its mid-point (after
[15.49])
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coupling between motions in orthogonal transverse di-
rections, causing the orbits to precess (Elliot [15.53],
Gough [15.49], Villagier [15.47]), as illustrated by com-
putational simulations and measurements in Fig. 15.30.
The precessional frequency Ω is given by Ω

ω
= ab

L∆L ,
where a and b are the major and minor semi-axes of the
orbital motion and ∆L is the amount by which the string
is stretched to bring it to tension [15.49].

Such precession can lead to the rattling of the string
against the fingerboard on a strongly plucked instru-
ment, as the major axis of the orbiting string precesses
towards the fingerboard. The nonlinear origin of such ef-
fects can easily by distinguished from other linear effects
causing degeneracy of the string modes and hence beats
in the measured waveform, by the very strong depen-
dence of the precession rate on amplitude, as illustrated
in Fig. 15.30b.

15.2.3 The Bowed String

Realistic Models
Although the main features of the bowed string can be
described by a simple Helmholtz wave, it is important
to consider how such waves are excited and maintained
by the frictional forces between the bow and string.
The simple Helmholtz solution is clearly incomplete
for a number of reasons including:

1. the unphysical nature of infinitely sharp kinks,
2. the insensitivity of the Helmholtz bowed waveform

to the position and pressure of the bow on the string.
In particular, the simple Helmholtz waveform in-
volves partials with amplitudes proportional to 1/n,
whereas such partials must be absent if the string
is bowed at any integer multiple of the fraction 1/n
along its length, since energy cannot be transferred
from the bow to the string at a nodal position of
a partial,

3. the neglect of frictional forces in the slipping regime,
4. the neglect of losses and reaction from mechanical

coupling to structural modes at the supporting
bridge,

5. the excitation of the string via its surface, which must
involve the excitation of additional torsional modes.

Understanding the detailed mechanics of the strongly
nonlinear coupling between the bow and string has been
a very active area of research over the last few decades,
with major advances in our understanding made pos-
sible by the advent of the computer and the ability to
simulate the problem using fast computational methods.
Cremer ([15.29], Sects. 3–8) provides a detailed account

of many of the important ideas and techniques used to in-
vestigate the dynamics of the bowed string. In addition,
Hutchins and Benade ([15.27], Vol. 1), includes a useful
introduction to both historical and recent research pref-
acing 20 reprinted research papers on the bowed string.
Woodhouse and Galluzzo [15.54] have recently reviewed
present understanding of the bowed string.

Pressure, Speed and Position Dependence
In the early part of the 20th century, Raman [15.35], later
to be awarded the Nobel prize for his research on opto-
acoustic spectroscopy, confirmed and extended many
of Helmholtz’s earlier measurements and theoretical
models of the bowed string. Raman used an automated
bowing machine to investigate systematically the effect
of bow speed, position and pressure on bowed string
waveforms. He also considered the attenuation of waves
on the string and dissipation at the bridge. From both
measurements and theoretical models, he showed that
a minimum downward force was required to maintain
the Helmholtz bowed waveforms on the string, which
was proportional to bow speed and the square of bow
distance from the bridge. He also measured and was
able to explain the wolf-note phenomenon, which oc-
curs when the pitch of a bowed note coincides with an
over-strongly coupled mechanical resonance of the sup-
porting structure. At such a coincidence, it is almost
impossible for the player to maintain a steady bowed
note, which tends to stutter and jump in a quasi-periodic
way to the note an octave above, illustrated previously
for a cello with a bad wolf note, audio .

Saunders [15.55], well known for his work in
atomic spectroscopy (Russel–Saunders spin-orbit cou-
pling) was a keen violinist and a cofounder of the
Catgut Acoustical Society. He showed that, for any given
distance of the bow from the bridge, there was both
a minimum and a maximum bow pressure required for
the Helmholtz kink to trigger a clean transition from
the sticking to slipping regimes and vice versa. Subse-
quently, Schelling [15.56] derived explicit formulae for
these pressures in terms of the downward bow force F
as a function of bow speed vB, assuming a simple model
for friction between bow hair and string in the slipping
region of µd F and a maximum sticking force of µs F,

Fmin = R2
0vB

2Rβ2 (µs −µd)
and

Fmax = 2R0vB

β (µs −µd)
= 4β

R

R0
Fmin , (15.51)

where R0 is the characteristic impedance of the string
terminated by a purely resistive load R at the bridge, and
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Fig. 15.31 The playing range for a bowed string as a func-
tion of bow force and distance from bridge, with the bottom
and right-hand axis giving values for a cello open A-string
with a constant bow velocity of 20 cms−1 (after Schelling
[15.56])

β is the fractional bowing point along the string. If the
downwards force is larger than Fmax the string remains
stuck to the string instead of springing free into the slip-
ping regime, while for downward forces less than Fmin
an additional slip occurs leading to a double-slipping
motion.

Figure 15.31 is taken from the article by Schelling
on the bowed string in the Scientific American special
issue on the Physics of Musical Instruments [15.57]. It
shows how the sound produced by a bowed cello string
changes with bow position and downward bow pressure
for a typical bow speed of 20 cm/s. Note the logarithmic
scales on both axes. In practice, a string can be bowed
over a quite a large range of distances from the bridge,
bow speeds and pressures with relatively little change in
the frequency dependence of the spectrum and quality
of the sound of an instrument, apart from regions very
close and very distant from the bridge. Nevertheless, the
ability to adjust the bow pressure, speed and distance
from the bridge, to produce a good-quality steady tone, is
one of the major factors that distinguish an experienced
performer from the beginner.

Slip–Stick Friction
An important advance was the use of a more realis-
tic frictional force, dependent on the relative velocity
between bow and string, shown schematically for
three downward bow pressures in Fig. 15.32. Such
a dependence was subsequently observed by Schu-
macher [15.58] in measurements of steady-state sliding
friction between a string and a uniformly moving bow.

Vp(t) vB

String velocity vs(t)
0

Friction

Increasing bow pressure

Fig. 15.32 Schematic representation of the dependence of
the frictional force between bow and string on their relative
velocity and downward pressure of the bow on the string.
The straight line with slope 2R0 passes through the veloc-
ity vp of the string determined by its past history and the
intersection with the friction curves determines its current
velocity. The open circle represents the single intersection
in the slipping regime at low bow pressures, while the closed
circles illustrate three intersections at higher pressures

The frictional force is proportional to the downward bow
pressure.

Friedlander [15.59] showed that a simple graphical
construction could be used to compute the instantaneous
velocity v at the bowing point from the velocity vp(t) at
the bowing point induced by the previous action of the
bow. The new velocity is given by the intersection of
a straight line with slope 2R0 drawn through vp with
the friction curve, where R0 is the characteristic string
impedance. This follows because the localised force be-
tween the bow and string generate secondary waves with
velocity F/2Z0 at the bowing point as previously de-
scribed (15.34). In the slipping region well away from
capture, there will be just a single point of intersection,
so the problem is well defined. However, close to cap-
ture, as illustrated by the intersections marked by the
black dots with the upper frictional curve, the straight
line can intersect in three points (two in the slipping
regime and one in the sticking regime) as first noted by
Friedlander.

Computational Models
This model has been used in a number of de-
tailed computational investigations of both the transient
and steady-state dynamics of the bowed string, no-
tably by the Cambridge group lead by McIntyre
and Woodhouse [15.60–62], their close collaborator
Schumacher [15.58, 63] from Carnegie-Mellon, and
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Guettler [15.64], who is also a leading international
double-bass virtuoso. Readers are directed to the origi-
nal publications for details of the various computational
schemes used, which are also discussed in some detail
by Cremer ([15.29], Sect. 8.2).

Whenever a string is bowed at an integer interval
along its length, the secondary waves excited by the
frictional forces between bow and string can give rise to
coherent reflections between the bow and bridge, giving
rise to pronounced Schelling ripples on the Helmholtz
waveform and hence significant changes in the spectrum
of the radiated sound. However, because the bowing
force tends to be distributed across the ≈1 cm width
of the bow hairs, such effects tend to be smeared out
and are not generally of significant musical importance.
McIntyre et al. [15.62] have also shown that uncertainties
in the sticking point from the finite-width strand of bow
hairs leads to a certain amount of jitter or aperiodicity in
the pitch of the bowed string amounting of a few cents,
which is again of little musical significance, though the
noise generated may be significant in contributing to the
characteristic sound of bowed string instruments.

It is instructive to consider the kind of computational
methods developed by Woodhouse and his collaborators
to investigate both the initial transient and the steady-
state dynamics of the bowed string. This is illustrated
schematically in Fig. 15.33, where u and u′ represent
the velocity under the bow from waves travelling to-
wards the bow from the bridge and from the stopped
end of the string respectively, and v and v′ are the ve-
locities at the bowing point of the waves travelling away
from the bow. In the absence of any bowing force v = u′
and v′ = u. However, in the presence of a frictional force
between the bow and string, the outgoing waves will ac-
quire an additional velocity f/2R0, where the frictional

un

vn+1 v'n+1

u'n

Kn–m K'n–m

Bridge Bow End-stop

Fig. 15.33 Schematic representation of the model used by
McIntyre and Woodhouse to compute bowed string dynam-
ics. The velocities u and v represent incoming and outgoing
waves from the two ends, with reflections of impulse func-
tions from the bridge and end-stop represented in their
digitised form

force is determined by the velocity from the incoming
waves u +u′ excited by previous events. The outgoing
wave travelling towards the stopped end or nut of the
string will simply be reflected, while the outgoing wave
reaching the bridge will not only be reflected, but will
also excite continuing vibrations at the bridge from the
excitation of the coupled structural modes.

Such problems can be solved using a Green’s func-
tion approach Cremer ([15.29], Sect. 8.4), in which the
outgoing waves can be considered in terms of the re-
sponse to forces represented as a succession of short
impulses. The problem is then reduced to understanding
the response of the system for the reflection of a sequence
of short impulses or δ functions. At the end-stop, an im-
pulse will simply be reflected with reversed sign, but
reduced amplitude in the case of a soft finger stopping the
string. The incoming wave u′ generated by the reflected
impulse will therefore be an impulse function delayed in
time by the transit time from the bow to the end-stop and
back. Similarly, the impulse returning from the bridge
will be an impulse delayed by the transit time between
bow and bridge and back followed by a wave generated
by the induced motions of the bridge on reflection. The
time-delayed impulse responses from reflections at the
bridge and end-stop can described by the functions K (t)
and K ′(t). The incoming waves (u(t), u′(t)) can then be
described by the convolution of K (t) and K ′(t) with the
outgoing waves (v(t), v′(t)) considered as a succession
of impulse functions at all previous times t′, such that

u(t) =
t∫
v(t′)K (t − t′)dt′ and

u′(t) =
t∫
v′(t′)K ′(t − t′)dt . (15.52)

To compute the resulting dynamics of string motion
digitally, one simply computes the above velocities at
a succession of short time intervals, with the outgoing
waves determined from the incoming waves plus the sec-
ondary waves induced by the resulting frictional force,
such that

v′
n+1 = un + fn/2R0 and

vn+1 = u′
n + fn/2R0 (15.53)

and

un+1 =
n∑

vmKn−m and

u′
n+1 =

n∑
v′

mK ′
n−m , (15.54)

where K j and K ′
j are now the digital equivalents of

the time-delayed impulse responses, illustrated schemat-
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ically in Fig. 15.33. The frictional force fn enter-
ing (15.53) is evaluated from the pressure- and vel-
ocity-dependent frictional force using the Friedlander
construction with the computed string velocity under
the bow given by un +u′

n .

Pressure Broadening and Flattening
As an example, Fig. 15.34 illustrates the computed
velocity of the string under the bow as a function of
increasing bow pressure (McIntyre et al. [15.60]). In con-
trast to the rectangular waveform predicted by the simple
Raman model, the waveform is considerably rounded,
especially at low bow pressures. This results in a less stri-
dent, less intense sound, with the higher partials strongly
attenuated. At higher pressures, but at the same position
and with the same bow velocity, the rounding is less
pronounced, so that higher partials become increasingly
important. The increased intensity of the higher par-
tials leads to an increased perceived intensity with bow
pressure, in contrast to the Raman model, in which the
waveform and hence intensity remains independent of
bow pressure. This is referred to as the pressure effect.
At even higher pressures, the ambiguity in intersections

vs

a)

b)

c)

t

t

t

Fig. 15.34 Computed velocity of string at bowing point
for increasing bow pressures in the ratios 0.4 : 3 : 5 (af-
ter McIntyre and Woodhouse [15.60]) illustrating both the
broadened waveform and pitch dependence on bow pres-
sure compared with the idealised rectangular Helmholtz
bowed waveform

noted by Friedlander leads to a pronounced increase in
the capture period and hence the pitch of the bowed
note, known as the flattening effect. These features are
discussed in considerable detail along with his own im-
portant research and that of his collaborators on such
effects by Cremer ([15.29], Chaps. 7 and 8).

Initial Transients
Computational models can also describe the initial
transients of the bowed string before the steady-state
Helmholtz wave is established. Figure 15.35 compares
the computed and measured initial transients of the string
velocity under the bow for a string played with a sharp at-
tack (a martelé stroke) (McIntyre, Woodhouse [15.60]).
These computations also include the additional excita-
tion of torsional waves, which are excited because the
bowing force acts on the outer diameter of the wire, ex-
erting a couple in addition to a transverse force. The
excitation and loss of energy to the torsional waves ap-
pears to encourage the rapid stabilisation of the bowed
Helmholtz waveform.

For low-pitched stringed instruments such as the
double bass, it is very important that the Raman bowed
waveform is established very quickly, otherwise there
will be a significant delay in establishing the required
pitch. Remarkably, Guettler [15.64] has shown that, by
simultaneously controlling both bow speed and down-
ward pressure, the player can establish a regular Raman
waveform in a single period. The speed with which
a steady-state bowed note can be established can be
represented on a Guettler diagram, where the number
of slips before a steady-state Helmholtz motion is estab-
lished can be illustrated as a two-dimensional histogram
as a function of bowing force and acceleration of the
bow speed from zero.

a)

b)

Fig. 15.35 (a) Computed transient string velocity at the
bowing point for a strongly bowed string including cou-
pling to both transverse and torsional modes and (b) the
measured string velocity for a strongly played martelé bow
stroke (after McIntyre and Woodhouse [15.60])

Part
E

1
5
.2



570 Part E Music, Speech, Electroacoustics

To investigate such effects experimentally, Galluzzo
and Woodhouse [15.54, 65] have recently developed
a dynamically controlled bowing machine with ac-
tive feedback, providing programmable control of both
downward bow pressure and bow speed. This enables
reliable and reproducible results to be made over a very
wide range of possible playing parameters, extending
Guettler’s original measurements.

Viscoelastic Friction
Recent measurements have shown that the frictional
model assumed in these investigations is over-simplistic.
The force between the bow hairs and the string is main-
tained by a thin layer of rosin which coats them both.
Rosin is a rather soft, sticky substance, with a glass-
to-liquid transition not far above room temperature,
resulting in viscoelastic properties, which are very sen-
sitive to temperature (Smith, Woodhouse [15.66]). As
the bow slides past the bow hair, the frictional forces
will heat the rosin and hence reduce its viscoelastic-
ity frictional properties. During the sticking regime,
with no work being done at the bow–string interface,
the rosin will cool down and the friction will increase.
The frictional forces are therefore hysteretic and will
be strongly dependent on past history within a given
period of string vibration. Woodhouse et al. [15.68]
and Smith [15.69] have investigated this hysteretic be-
haviour in some detail using rosin-coated glass rods.
The hysteretic properties shown in Fig. 15.36 were de-
duced from measurements at the two supported ends
of the string. Woodhouse [15.70] subsequently extended

Friction coefficient

Velocity (m/s)

1

0.8

0.6

0.4

0.2

0
–0.15 –0.1 –0.05 0 0.05

Fig. 15.36 Measured hysteretic frictional force between
string and a glass bow coated with rosin, with the dashed
line indicating previously assumed velocity dependence
(after Smith and Woodhouse [15.66])

his computational models to incorporate the hysteretic
frictional properties. Somewhat surprisingly, this more
realistic model made little qualitative difference to the
predicted behaviour. Such measurements contribute to
our understanding of the physical processes underlying
viscoelastic properties of various coatings and lubri-
cants and have become an important tool in the field
of tribology (studies of friction).

15.2.4 Bridge and Soundpost

We now consider the role of the bridge and soundpost
in providing the coupling between the vibrating strings
and the vibrational modes of the body of instruments
of the violin family. We also consider the influence of
such coupling on the modes of string vibration, which
involves a discussion of the very important influence of
damping on the normal modes of any coupled system.

Bridges
Many plucked and struck stringed instruments, such as
the piano or guitar, use a rather low solid bridge to sup-
port the strings and transfer energy directly from the
transverse string vibrations perpendicular to the sup-
porting soundboard or front-plate of the instrument. The
bridge needs only to be sufficiently high to prevent the
strings from vibrating against the fingerboard or shell
of the instrument. This is also true for the Chinese two-
string violin, the erhu, which is held and played so that
the bow excites string vibrations perpendicular rather
than parallel to the stretched snake-skin membrane sup-
porting the bridge and strings. The strings of a harp are
attached to an angled sounding board, so that transverse
string vibrations in the plane of the strings couple di-
rectly to the perpendicular vibrations of the supporting
soundbox Fletcher and Rossing ([15.5], Sect. 11.2).

For such instruments, the bridge and other string ter-
minations play a relatively insignificant acoustic role,

3060 6100 985 2100 Hz

Fig. 15.37 The lowest in-plane resonant modes and fre-
quencies of violin and cello bridges (after Reinicke [15.67]).
The arrows represent the vibrational directions of the
bowed outer and middle strings
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apart from adding a small inertial mass and additional
stiffness to the soundboard or top plate, which only
slightly perturbs the frequencies of the structural modes
of vibration.

In contrast, the rather high bridges on instruments
of the violin and viol families have a profound influence
on the acoustical properties, particularly at frequencies
comparable with and above any mechanical resonances
of such structures. Figure 15.37 illustrates the shape of
modern violin (and viola) and cello bridges and indi-
cates their principal vibrational modes, as measured by
Reinicke and Cremer [15.67, 71] using laser interfer-
ence holography. Bridges are cut from maple and taper
in thickness from the two feet to the top surface sup-
porting the four strings, which are set in small v-shaped
locating grooves.

Reinicke [15.67, 71] showed that the lowest vio-
lin bridge resonance at typically around 3 kHz involves
a rotational motion of the top half of the bridge about
its waist. The rotational motion induced by the vibrat-
ing strings supported on the top of the bridge results in
a couple acting on the top plate via the two feet. The next
most important in-plane resonance is at ≈ 6 kHz and in-
volves the top of the bridge bouncing up and down on
its feet, resulting in forces via the legs perpendicular to
the supporting surface. The cello bridge has rather longer
legs, resulting in two low-frequency twisting modes with
resonances at around 1 and 2 kHz, both of which ex-
ert a couple on the top plate. Longitudinal forces from
the vibrating strings can also induce bridge motion per-
pendicular to its plane (at double the frequency of the
vibrating strings), but such motion is generally rather
small and will be ignored for the purposes of this chapter.

Any transverse string force at the top of the bridge,
from bowing, plucking or striking the string, will be
transferred to the supporting body via the two feet. This
will induce a linear motion of the centre of mass of the in-
strument, rotation about its centre of mass and the excita-
tion of both flexural and longitudinal waves in the plates
of the instrument. Because bowing involves a static force
which reverses with bow direction, a bowed instrument
has to be held fairly firmly by the player, which in-
troduces an extra channel for energy loss through the
supporting chin and fingers. The induced linear and ro-
tational motions of an instrument are relatively unimpor-
tant at audio frequencies as they involve the whole mass
M of the instrument with admittances varying ∼ 1/iMω.

If a tall bridge is placed centrally on a symmetric
shell structure, like the body of an early renaissance
viol, the plucked or bowed motion of the strings parallel
to the supporting top plate would excite only asym-

metrical modes of the supporting structure, whereas
perpendicular string vibrations would excite only sym-
metrical modes. For instruments of the violin family,
an offset soundpost is wedged between the front and
back plates, which destroys the symmetry. The coupled
modes will then involve a linear combination of sym-
metrical and asymmetric body modes, as discussed later
(Sect. 15.2.6).

The arching of the top of the bridge allows each of
the supported four strings to be bowed separately or to-
gether (double stopping), with the bow direction making
an angle of around ±15−20◦ relative to the top plate for
the outer two strings and almost parallel for the middle
two strings. Bowing on the outer two strings therefore
involves significant perpendicular in addition to parallel
forces, but only slightly different sounds from a sin-
gle type of string when supported in different positions
on the bridge. Audio compares the sound of
a bowed covered-gut D-string mounted in the normal
position and in the G-, A- and E-string positions on the
same violin. On a guitar almost all the sound is produced
by the vertical motion of the plucked string rather than by
parallel vibrations, which primarily excite non-radiating
longitudinal modes of the top plate.

Simplified Bridge Model
Cremer ([15.29], Chap. 9) gives a detailed historical and
scientific introduction to research on violin and cello
bridges and their coupling to the body of the instru-
ment. Relatively complicated mechanical models are
described composed of several masses and springs to ac-
count for the various possible vibrational modes of the
bridge. However, the principal resonances of the violin
bridge shown in Fig. 15.37 can be modelled very sim-
ply by a two-degree-of-freedom mechanical model, with
effective masses representing the linear and rotational
energy of the top of the bridge coupled to the supporting
surface through the two supporting feet via a rotational
or vertical spring, illustrated schematically in Fig. 15.38.
The relatively light mass and added rigidity of the lower

mr
Fparallel

–F F

vparallel

ωr

mb

Fperp

F F

vperp

ωb

a) b)

Fig. 15.38a,b Simplified mechanical models for the low-
est (a) rotational and (b) bouncing motions of the bridge
supported by its two feet on a rigid surface
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half of the bridge will only slightly perturb the resonant
frequencies of the more massive supporting plates and
can therefore be ignored as a first approximation. The ef-
fective masses and strength of the coupling springs can
be chosen to reproduce the vibrational characteristics of
the first two vibrational modes of the violin (or cello)
bridge, which dominate the acoustical properties of the
instrument.

At low frequencies, well below any resonant fre-
quency, the bridge will vibrate as a rigid body, adding
a small amount of additional mass, moment of iner-
tia and rigidity to the top plate, which will again only
slightly perturb the vibrational frequencies of the sup-
porting shell structure. The additional relative height of
the cello bridge compared with that of the violin bridge
enables a rather larger couple to be exerted by the bowed
string on the more massive top plate. There is a delicate
balance between increasing the coupling to enhance the
intensity at low frequencies without making it so strong
that troublesome wolf-note problems arise, as referred
to earlier.

Bridge-Hill (BH) Feature
Reinicke [15.67,71] and Cremer [15.29] highlighted the
importance of the bridge resonance on both the sound

(dB)

(kHz)
1 5
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20

15

10
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0
2

Fig. 15.39 The admittance at the top of the bridge on a sin-
gle violin, plotted on the same but arbitrary dB scale, for
a number of violin bridges having the same height and res-
onant frequency (≈ 2 kHz) but different masses. The upper
curve corresponds to the lightest bridge that could be fab-
ricated from a standard bridge blank and the lowest curve
by the heaviest. Subtracting 45 dB from the results would
give the approximate admittance in units of ms−1N−1 (data
kindly provided by Woodhouse [15.72])

of the violin and on admittance measurements, which
are traditionally made by exciting the violin at the top
of the bridge using an external force parallel to the
top supporting plate. In recent year, this problem has
attracted renewed interest, in an attempt to describe
the rather broad peak and associated phase changes
superimposed on the multi-resonant response of the in-
strument, which Jansson refers to as the Bridge-Hill
(BH) feature [15.74, 75].

Figure 15.39 shows recent measurements by Wood-
house [15.72] of the modulus of the admittance at the
bridge for a particular instrument using a series of
bridges with different masses but the same resonant fre-
quency at ≈ 2 kHz. A strong but rather wide overall BH
peak is observed in the vicinity of the bridge resonance.
Note the marked decrease in admittance with increas-
ing bridge mass above the bridge resonance. There is
also an associated overall 90◦ change in the phase of the
admittance on passing through the peak.

Evidence for the BH feature can also be seen in
Dünnwald’s [15.73] superimposed measurements of the
sound output of a large number of high-quality Ital-
ian, modern master and factory violins as a function of
sinusoidal input force at top of the bridge, shown in

(Hz)
300 500 1000 2000 4000

“Master” violins

Old Italian

Factory-made

Fig. 15.40 Overlays of the sound output of 10 typical old
Italian, modern master instruments, and 10 factory instru-
ments for a constant sinusoidal force at the top of the bridge
(after Dünnwald [15.73])
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Fig. 15.40. A surprising aspect of these measurements is
the apparent lack of any such feature for modern master
violins, possibly because of a wider variation in bridge
resonances and effective masses of bridge and plate res-
onances in the chosen instruments. From measurements
of the radiated sound of over 700 violins, Dünnwald
proposed that the presence of a number of strong acous-
tic resonances in the broad frequency band from 1.5 to
4 kHz was one of the distinguishing features of a really
fine instrument. The influence of the bridge in account-
ing for such a peak and the reduced response at higher
frequencies is clearly important.

Woodhouse [15.76] has recently revisited the prob-
lem of the coupling between bridge and body of the
instrument and the origin of the BH peak. A simple the-
oretical model shows that the peak depends on many
factors, such as the effective masses, Q-values and
resonant frequencies of the major vibrational modes
of the bridge and the multi-resonant properties of the
instrument. To demonstrate the overall effect of the
bridge without having to consider the detailed vibra-
tional response of a particular instrument, Woodhouse
first considered coupling to a simplified model for the
vibrational modes of the coupled instrument. This as-
sumed a set of coupled vibrational modes each having
the same effective mass M and Q-value, with a constant
spacing of resonances ω0 = 2π∆ f . Different values
for these parameters would need to be used to model
the independent rotational or bouncing modes, though
Woodhouse concentrates on the influence of the low-
est frequency “rocking” bridge mode. The merit of such
a model is that the multi-resonant response of such a sys-
tem varies monotonically with frequency. The features
introduced by the resonant properties of the bridge can
then be easily identified and the input admittance ex-
pressed relative to the admittance AV for a completely
rigid bridge of the same mass, where

AV(ω) = 1

M

∑
n

iω

(nω0)2 −ω2 + iωnω0/Q
.

(15.55)

The corresponding input admittance for the one-
degree-of-freedom model bridge is then given by

ABB(ω) = AV + iω/mω2
B

1− (ω/ωB)2 + iωm AV
, (15.56)

where m is the effective mass of the bridge and ωB its
resonant frequency and internal damping of the bridge
has been neglected.

We can also define a nonlocal admittance or mobility
AVB to describe the induced body motion per unit force

|ABB| (dB)
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Fig. 15.41 Response curves for a one-degree-of-freedom
bridge coupled to an artificial set of regularly spaced
(200 Hz), constant effective mass (100 g) and constant Q
(50) structural resonances. The upper curves illustrate the
effect of bridge mass on the admittance ABB measured at
the point of excitation at the top of the bridge, while the
lower curves illustrate the corresponding induced body mo-
bility AVB. The coloured response curves are for lossless
bridges with effective masses 1, 1.5 and 3 g (highest to low-
est response), having the same resonant frequency at 3 kH
(after Woodhouse [15.76]) The black curves show the violin
body response AV that would be measured using a massless
rigid bridge

at the foot of the bridge given by

AVB(ω) = AV

1− (ω/ωB)2 + iωm AV
. (15.57)

The simulations in Fig. 15.41 illustrate the major
effect of the bridge resonance on both the input re-
sponse and induced body motion and hence radiated
sound at, around and above the resonant frequency of
the bridge (3 kHz in the above example). For a real
instrument, the spacing and Q-values of the individ-
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Fig. 15.42 Admittances of a violin measured at the top of
the bridge (top trace) and at the left foot of the bridge (lower
trace) illustrating a strong BH peak when measured at the
top of the bridge but a relatively monotonic dependence of
the body of the instrument (after Cremer [15.29], Fig. 12.9).
The added solid line represents the 1/ f reduction in the
predicted BH response above the bridge resonance

ual modes will be very irregular and highly instrument
dependent; nevertheless, the effect of the bridge reso-
nance on the overall response will be very similar. In
particular, the bridge resonance gives a broad peak in
input admittance followed by a 6 dB/octave decrease
in the admittance above resonance, where the response
is largely dominated by the bridge dynamics rather
than that of the instrument itself, with ABB ∼ 1/imω.
Note that the height and width of the peak is largely
determined by energy lost to the coupled structural vi-
brations (including, in practice, additional energy lost
to all the supported strings) rather than from inter-
nal bridge losses, which have been neglected in this
example.

The bridge resonance introduces a somewhat smaller
peak in the induced body mobility and hence radiated
sound. Well above the bridge resonance, the induced
body velocity is given by AVB(ωB/ω)2, with an intensity
decreasing by 12 dB/octave. Unlike the input bridge
admittance, the induced body motion and output sound

retains the characteristic resonances of the instrument,
though attenuated.

The predicted difference in admittance at the top
of the bridge ABB and top of the instrument AV is
illustrated in Fig. 15.42, in measurements by Moral
and Jansson [15.77] reproduced by Cremer ([15.29],
Fig. 15.9). Whereas the average admittance of the vio-
lin varies relatively little with frequency, the admittance
at the bridge shows a pronounced BH peak with a rel-
atively featureless and approximately 1/ f (the added
solid line) variation above the peak, as anticipated from
the above model.

Woodhouse [15.76] has extended this idealised
model to describe the coupling of the bridge to a more
realistic, but still simplified, model for the vibrational
modes of the violin with a soundpost. This changes the
detailed response, but not the overall qualitative fea-
tures. Because the response of a violin depends rather
randomly at higher frequencies on the positions and
Q-values of the structural modes, Woodhouse uses a log-
arithmic scale to average the peaks and troughs at the
maxima and minima of the admittance (approximately
proportional to Q and 1/Q), to give a skeleton curve
describing the global variation of the violin’s com-
plex admittance (more details are given in the later
Sect. 15.2.3 on shell modes). This enables Woodhouse to
illustrate the influence of various bridge parameters on
the acoustical properties of the instrument, suggesting
ways in which violin makers could vary bridge prop-
erties to optimise the sound quality of an instrument,
though that will always be a matter of personal taste
rather than being scientifically defined.

The important role of the bridge in controlling the
sound of the violin or cello has often been overlooked,
even by many skilled violin makers. Indeed one of the
reasons why Cremonese violins generally produce such
highly valued sounds is the experience and skill in-
volved in adjusting the mass, size and fitting of the
bridge (and the position of the soundpost) to opti-
mize the sound quality, investigated experimentally by
Hacklinger [15.78].

Added Mass and Muting
A familiar demonstration of the importance of the mass
of the bridge on the sound of an instrument is to place
a light mass or mute on the top of the bridge. This
dramatically softens the tone of the instrument by de-
creasing the resonant frequency of the bridge and hence
amplitude of the higher-frequency components in the
spectrum of sound. The added mass ∆m lowers the
resonant frequency ωB by a factor [m/(m +∆m)]1/2.
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Fig. 15.43 Measurements of bridge resonances from meas-
urements of the ratio of the force exerted by one bridge foot
on a rigid surface to the applied force, for an added mass
of 1.5 g and for wedges introduced between the wings of
the bridge to increase its rotational stiffness (after Reinicke
data reproduced in Fletcher and Rossing [15.5], Fig. 10.19)

Figure 15.43 illustrates changes in resonant frequency
measured by Reinicke for a bridge mounted on a rigid
support for an additional mass of 1.5 g and when wedges
are inserted between the wings of the bridge to inhibit
the rotational motion of the top of the bridge and hence
the resonant frequency. Audio illustrates the
changes in sound of a violin before and after first placing
a commonly used 1.8 g mute and then a much heavier
practice mute on top of the bridge, and after wedges were
inserted in the bridge to inhibit the rocking motion.

Helmholtz
air resonance

Force rocks bridge

Bowing direction

Sound post

Bass bar

Fig. 15.44 Schematic cross section of the violin illustrating
the position of the soundpost, bass-bar and f-hole openings

Soundpost and Bass Bar
In instruments of the violin family, a soundpost is
wedged asymmetrically between the top and back plates,
as illustrated schematically in Fig. 15.44. Additionally,
a bass bar runs longitudinally along much of the length
of the bass-side of the front plate. The soundpost and
bass bar give added mechanical strength to the instru-
ment, helping it to withstand the rather large downward
force from the angled stretched strings passing over the
bridge, which is typically ≈ 10 kg weight for the violin.

The influence of the soundpost on the quality of
sound is so strong that the French refer to it as the
âme (soul) of the instrument. Its acoustic function is to
provide a rather direct coupling of the induced bridge
vibrations to both the back and the front plates of the
instrument and to provide an additional mechanical con-
straint, so that the bowed string vibrations excite normal
modes, which are linear combinations of the asymmet-
ric and symmetric modes of vibration of the front and
back plates of the instrument.

Of modern stringed instruments, only the violin fam-
ily makes use of a soundpost. However, soundposts were
probably used in the medieval fiddle and other early in-
struments including the viol. The ancient Celtic crwyth
effectively combined the functions of the bridge and
soundpost by using a bridge with feet of unequal length,
the first resting on the top plate and the second passing
through a hole in the front face to rest on the back plate
– a bridge design still used today in the folk-style Greek
rebec (see Gill [15.79]).

15.2.5 String–Bridge–Body Coupling

We now consider the interaction of the strings with the
vibrational modes of the body of the instrument via the
bridge. Because we are dealing with the coupling of the
vibrational modes of the strings, bridge and body of the
instrument, the problem has to be considered in terms
of the normal modes of the coupled system. An im-
portant aspect of this problem that is often not widely
recognised, but is always important in dealing with mu-
sical instruments, is the profound influence of damping
on the nature of the coupled modes. This is a generic
phenomenon for any system of coupled oscillators. As
we will see, the strength of the damping relative to the
strength of the coupling determines whether a system
can be considered as weakly or strongly coupled.

String–Body Mode Coupling
For simplicity, we only consider the perturbation of
string resonances from the induced motion of the bridge
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a) ω< ωo

b) ω> ωo

c) ω= ωo

Spring support

∆B =F/K

δL

Mass support

∆B = –F/Mω2

δL

Resistive

∆B = –iωF/R

δL = 0

Fig. 15.45a–c Coupling of vibrating string to a weakly cou-
pled normal mode via the bridge for the string resonance
(a) below the resonant frequency of the coupled mode,
(b) above the resonant frequency, and (c) at resonance

and ignore any damping introduced by, for example,
a finger stopping the string at its opposite end. In gen-
eral, as we have already seen, the admittance at the
point of string support on the bridge will be a compli-
cated, multi-resonant, function of frequency reflecting
the normal modes of vibration of the coupled structure.
The normal modes will include the combined motions
of all parts of the violin body, including the body, bridge,
neck, tailpiece, etc.

Each coupled normal mode will contribute a charac-
teristic admittance, which will be spring-like below its
resonant frequency, resistive at resonance and mass-like
above resonance. The effect of such terminations on the
vibrating string is therefore to shift its effective nodal
position, as illustrated in Fig. 15.45a–c, for a spring-like
string termination with spring constant K , an effective
mass M and a lossy support with resistance R.

For a spring-like termination with spring constant K ,
the bridge will move in phase with the force acting on
it. This will increase the effective length of the vibrating
string between nodes by a distance ∆B = T/K , lowering
the frequency of a string mode by a fraction T/KL . For
a mass-like termination M, the end-support will move in
anti-phase with the forces acting on it, so that the effec-
tive string length is shortened. The string frequencies are
then increased by the fraction T/Mω2

n = (1/nπ)2m/M,
where m is the mass of the string. It is less easy to visu-
alise the effect of a resistive support because the induced
displacement is in phase-quadrature with the driving
force. Mathematically, however, a resistive termination

can be considered as an imaginary mass m∗ = R/iω
leading to an imaginary fractional increase in frequency
iωn1/(nπ)2m/R. This imaginary frequency is equiva-
lent to an exponential decay e−t/τ for all modes with
τ = π2 R/mω2

1, where ω1 is the frequency of the funda-
mental string mode. This result can also be derived using
somewhat more physical arguments, by equating the loss
of stored vibrational energy to the energy dissipated at
the end-support.

The terminating admittance at the bridge for a single
coupled vibrational mode can be written in the form

An(ω) = 1

Mn

iω

ω2
n −ω2 + iωωn/Qn

, (15.58)

with the real part of this function determining the decay
time of the coupled string resonances and the imaginary
part the perturbation in their resonant frequencies. The
perturbations are proportional to the ratio of mass of
the vibrating string to the effective mass of the coupled
resonance at the point of string support on the bridge
and vary with frequency with the familiar dispersion and
dissipation curves of a simple harmonic oscillator. For
a multi-resonant system like the body of any stringed
instrument, the string perturbations from each of the
coupled structural resonances are additive.

Normal Modes and Damping
Strictly speaking, whenever one considers the coupling
between any two or more vibrating systems, one should
always consider the normal modes or coupled vibrations
rather than treat the systems separately, as we have done
above. However, the inclusion of damping has a pro-
found influence on the normal modes of any system
of coupled oscillators (Gough [15.80]) and justifies the
above weak-coupling approximation, provided that the
coupling at the bridge is not over-strong. Although we
consider the effect of damping in the specific context
of a lightly damped string coupled to a more strongly
damped structural resonance, the following discussion
is completely general and is applicable to the normal
modes of any coupled system of damped resonators.

Consider a string vibrating in its fundamental mode
coupled via the bridge to a single damped structural res-
onance. The string has mass m, an unperturbed resonant
frequency of ωs a Q-value of Qs and a displacement at
its mid-point of v. The coupled structural resonance has
an effective mass M at the point of string support, an un-
perturbed resonant frequency of ωM a Q-value of QM
and displacement of u.
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The vibrating string exerts a force on the coupled
body mode, such that

M

(
∂2v

∂t2
+ ω

Qm

∂v

∂t
+ω2

Mv

)
= T

(π

L

)
u . (15.59)

Multiplying this expression through by ∂v/∂t, one re-
covers the required result that the rate of increase in
stored kinetic and potential energy of the coupled mode
is simply the work done on it by the vibrating string
less the energy lost from damping. Similar energy bal-
ance arguments enable us to write down an equivalent
expression for the influence of the coupling on the string
vibrations,

m

2

(
∂2u

∂t2 + ω

Qm

∂u

∂t
+ω2

Mu

)
= T

(π

L

)
v , (15.60)

where the effective mass of the vibrating string is m/2
(i. e. its energy is 1/4 mω2u2). To determine the normal-
mode frequencies, we look for solutions varying as eiωt .
Solving the resultant simultaneous equations we obtain(

ω2
M −ω2 (1− i/QM)

) (
ω2

m −ω2 (1− i/Qm)
)

=
(

T
π

l

)2 2

mM
= α4 , (15.61)

where α is a measure of the coupling strength.
Solving to first order in 1/Q-values and α2 we obtain

the frequencies of the normal modes Ω± of the coupled
system,

Ω2± = ω2+ ±
(
ω4− +α4

)1/2
, (15.62)

where

ω2± = 1

2

[
ω2

M ±ω2
m + i

(
ω2

M

QM
± ω2

m

Qm

)]
. (15.63)

If the damping terms are ignored, we recover the
standard perturbation result with a splitting in the fre-
quencies of the normal modes at the crossover frequency
(when the uncoupled resonant frequencies of the two
systems coincide) such that Ω2± = ω2

M ±α2.
In the absence of damping, the two normal modes

at the crossover frequency are linear combinations of
the coupled modes vibrating either in or out of phase
with each other, with equal energy in each, so that
v/u = ±√

m/2M. Well away from the crossover re-
gion, the mutual coupling only slightly perturbs the
individual coupled modes, which therefore retain their
separate identities. However, close to the crossover re-
gion, when |ωM −ωm|� 2α2/ (ωM +ωm), the coupled

modes lose their separate identities, with the normal
modes involving a significant admixture of both.

The inclusion of damping significantly changes the
above result. If we focus on the crossover region, cou-
pling between the modes will be significant when

α2 ∼ ω2
M −ω2

m . (15.64)

At the crossing point, when the uncoupled resonances
coincide, the frequencies of the coupled normal are given
by

Ω2± = ω2
M (1+ i/2Q+)±

⎛
⎝α4 −

(
ω2

M

2Q−

)2
⎞
⎠

1/2

,

(15.65)

where
1

Q±
= 1

QM
± 1

Qm
. (15.66)

The sign of the terms under the square root clearly
depends on the relative strengths of the coupling and
damping terms. When the damping is large and the cou-
pling is weak, such that

(
ω2

M/2Q−
)2

> α4, one is in the
weak-coupling regime, with no splitting in frequency
of the modes in the crossover region. In contrast, when
the coupling is strong and the damping is weak, such
that (ω2

M/2Q−)2 < α4, the normal modes are split, but
by a somewhat smaller amount than had there been no
damping.

Figure 15.46 illustrates the very different character
of the normal modes in the crossover region in the weak-
and strong-coupling regimes. The examples shown are
for an undamped string interacting with a structural
resonance with a Q of 25, evaluated for coupling factors,

K = 2QM

ω2
M

α = 2QM

nπ

√
2m

M
, (15.67)

of 0.75 and
√

5, in the weak- and strong-coupling
regimes, respectively.

In the weak-coupling limit, the frequency of the
vibrating string exhibits the characteristic perturbation
described in the previous section, with a shift in fre-
quency proportional to the imaginary component of the
terminating admittance and an increased damping pro-
portional to the real part. Note that the coupling also
weakly perturbs the frequency and damping of the cou-
pled structural resonance. However, there is no splitting
of modes at the crossover point and the normal modes
retain their predominantly string-like or body-like char-
acter throughout the transition region.
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Fig. 15.46 Normal modes of coupled oscillators illustrat-
ing the profound effect of damping on the behaviour in the
cross-over region illustrated for K -values of 0.75 and

√
5

for an undamped string resonance coupled to a body res-
onance with a typical Q = 25. The solid line shows the
shifted frequencies of the normal modes as the string fre-
quency is scanned through the body resonance, while the
dashed lines show the 3 dB points on their damped resonant
response (Gough [15.80])

In the strong-coupling limit, K > 1, the normal
modes are split at the crossover point. The losses
are also shared equally between the split modes. As
the string frequency is varied across the body reso-
nance, one mode changes smoothly from a normal
mode with a predominantly string-like character, to
a mixed mode at cross over, and to a body-like mode at

higher frequencies, and vice versa for the other normal
mode.

Our earlier discussion of the perturbation of string
resonances by the terminating admittance is therefore
justified in the weak-coupling regime (K � 1), which
is the usual situation for most string resonances on mu-
sical instruments. However, if the fundamental mode of
a string is over-strongly coupled at the bridge to a rather
light, weakly damped body resonance, such that K > 1,
the normal-mode resonant frequency of the vibrating
string, when coincident in frequency with the coupled
body mode, will be significantly shifted away from its
position as the fundamental member of the harmonic set
of partials. It is then impossible to maintain a steady
Helmholtz bowed waveform on the string at the pitch of
the now perturbed fundamental, which is the origin of
the wolf-note problem frequently encountered on other-
wise often very fine-stringed instruments, and cellos in
particular.

To overcome such problems, it is sometimes possible
to reduce K by using a lighter string, but more commonly
the effective Q-value is reduced by extracting energy
from the coupled system by fitting a resonating mass
on one of the strings between the bridge and tailpiece.
A lossy material can be placed between the added mass
and the string to extract energy from the system, which
might otherwise simply move the wolf note to a nearby
frequency.

String Resonances
Figure 15.47 illustrates: (a) the frequency dependence of
the in-phase and phase-quadrature resonant response of
an A-string as its tension increased, so that its frequency
passes through a relatively strongly coupled body reso-
nance at ≈460 Hz; (b) the splitting in frequency of the
normal modes of the second partial of the heavier G-
string frequency tuned to coincide with the frequency
of the coupled body resonance. Superimposed on these
relatively broad resonances is a very sharp resonance
arising from transverse string vibrations perpendicular
to the strong coupling direction, to be explained in the
next section. This very weakly perturbed string reso-
nance provides a marker, which enables us to quantify
the shifts and additional damping of string vibrations in
the strong coupling direction.

When the frequency of the lighter A-string is tuned
below that of the strongly coupled body resonance, the
coupling lowers the frequency of the coupled string
mode, as anticipated from our earlier discussion. In
contrast, when tuned above the coupled resonance the
frequency of the coupled string mode is increased, while
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In-phase and phase-quadrature string resonance

Frequency (Hz)
425 500450 475

90° phase

(Hz)400 500

180° phase

(Hz)400 500

a) b)

Fig. 15.47a,b Measurements of the in-phase and in-quadrature resonant response of violin strings coupled via the bridge
to a strong body resonance (Gough [15.33]). The shift of the broader resonances relative to the unperturbed narrow
resonance indicates the extent of the perturbative coupling. (a) tuning the A-string resonance through a coupled resonance
at ≈ 460 Hz; (b) the splitting of the string–body normal modes for the more strongly coupled, second partial, of the
heavier G-string

at coincidence there is a slight indication of split modes
somewhat smaller than the widths. The splitting of
modes is clearly seen for the second partial of the much
heavier G-string (Fig. 15.47b), with symmetrically split
broad string/body modes above and below the narrow
uncoupled mode. Not surprisingly, this violin suffered
from a pronounced wolf note when played at 460 Hz in
a high position on the G-string, but not on the lighter
D- or A-string. Such effects tend to be even more pro-
nounced on cellos due to the very high bridge providing
strong coupling between the vibrating strings and body
of the instrument.

On plucked string instruments the inharmonicity of
the partials of a plucked note induced by coupling at
the bridge to prominent structural resonances causes
beats in the sound of plucked string, which contribute
to the characteristic sound of individual instruments.
Woodhouse [15.81,82] has recently made a detailed the-
oretical, computational and experimental study of such
effects for plucked notes on a guitar taking account of
the effect of damping on the coupled string–corpus nor-
mal modes. This is sometimes not taken into proper
account in finite-element software, in which the normal
modes of an interacting system are first calculated ignor-
ing damping, with the damping of the modes then added.

As is clear from Fig. 15.46, such an approach will always
break down whenever the width of resonances associated
with damping becomes comparable with the splitting of
the normal modes in the absence of damping, as is fre-
quently the case in mechanical and acoustical systems.

Polarisation
We have already commented on the response of a bridge
mounted centrally on a symmetrically constructed in-
strument, with string vibrations perpendicular to the
front plate exciting only symmetric modes of the body
of the instrument, while string vibrations parallel to
the front plate induce a couple on the front plate
exciting only asymmetric modes. The terminating ad-
mittance at the bridge end of the string will therefore
be a strongly frequency dependent function of the
polarisation direction of the transverse string modes.
The angular dependence of the terminating admit-
tance lifts the degeneracy of the string modes resulting
in two independent orthogonal modes of transverse
string vibration, with different perturbed frequencies and
damping, polarised along the frequency-dependent prin-
cipal directions of the admittance tensor. If a string is
excited at an arbitrary angle, both modes will be ex-
cited, so that in free decay the directional polarisation
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will precess at the difference frequency. The resultant
radiated sound from the excited body resonances will
also exhibit beats, which unlike the nonlinear effects
considered earlier will not vary with amplitude of string
vibration.

In instruments of the violin family, the sound-
post removes the symmetry of the instrument, with
normal modes involving a mixture of symmetric and
asymmetric modes. Measurements like those shown in
Fig. 15.47 demonstrate that below ≈ 700 Hz, the effect
of the soundpost is to cause the bridge to rock back-
wards and forwards about the treble foot closest to
the soundpost, which acts as a rather rigid fulcrum.
This accounts for the very narrow string resonances
shown in Fig. 15.47, which correspond to string vibra-
tions polarised parallel to the line between the point
of string support and the rigidly constrained right-hand
foot, as indicated in Fig. 15.44. In contrast, string vi-
brations polarised in the orthogonal direction result in
a twisting couple acting on the bridge, with the left-
hand foot strongly exciting the vibrational modes of
the front plate giving the frequency-shifted and broad-
ened string resonances of the strongly coupled string
modes.

By varying the polarisation direction of an elec-
tromagnetically excited string, one can isolate the
two modes and determine their polarisations (Baker
et al. [15.84]). When such a string is bowed, it will
in general be coupled to both orthogonal string modes.
The unperturbed string mode may well help stabilise the
repetitive Helmholtz bowed waveform.

String–String Coupling
A vibrating string on any multi-stringed instrument is
coupled to all the other strings supported on a common
supporting bridge. This is particularly important on the
piano, where pairs and triplets of strings tuned to the
same pitch are used to increase the intensity of the notes
in the upper half of the keyboard. Such coupling is also
important on instruments like the harp, where the strings
and their partials are coupled via the soundboard. On
many ancient bowed and plucked stringed instruments,
a set of coupled sympathetic string were used to enhance
the sonority and long-term decay of plucked and bowed
notes. Even on modern instruments like the violin and
cello, the coupling of the partials of a bowed or plucked
string with those of the other freely vibrating open (un-
stopped) strings enhances the decaying after-sound of
a bowed or plucked note. This may be one of the rea-
sons why string players have a preference for playing in
the bright key signatures of G, D and A major associated

with the open strings, where both direct and sympathetic
vibrations can easily be excited.

The musical importance of such coupling on the
piano is easily demonstrated by first playing a single
note and holding the key down so that the note remains
undamped and then holding the sustaining pedal down,
so that many other strings can also vibrate in sympathy
and especially those with partials coincident with those
of the played note. Composers, such as Debussy, exploit
the additional sonorities produced by such coupling, as
in La Cathédrale Engloutie .

The influence of coupling at the bridge of the normal
modes of string vibration on the piano has been dis-
cussed by Weinreich [15.83] and for sympathetic string
in general by the present author [15.80]. Consider first
two identically tuned string terminated by a common
bridge with string vibrations perpendicular to the sound-
board and relative phases represented by arrows. The
normal modes can therefore be described by the com-
bination ↑↑ and ↓↑ with the strings vibrating in phase
or in anti-phase. When the strings vibrate in anti-phase
↓↑, they exert no net force on the bridge, which there-
fore remains a perfect node inducing no perturbation in
frequency or additional damping or transfer of energy
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Fig. 15.48 Normal modes of a string doublet coupled at
the bridge by a complex impedance. The dashed and dot-
ted curves illustrate the effect of increasing the reactive
component (after Weinreich [15.83])
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to the soundboard. In contrast, when the strings vibrate
in the same phase ↑↑, the force on the bridge and re-
sultant amplitude of sound produced will be doubled, as
will the perturbation in frequency and damping of the
normal modes, and the amplitude of the resultant sound,
relative to that of a single string.

Reactive terms in the common bridge admittance
tend to split the frequencies of the normal modes in
the vicinity of the crossover frequency region, while re-
sistive coupling at the bridge tends to draw the modal
frequencies together over an appreciable frequency
range. This is illustrated by Weinreich’s predictions
for two strings coupled at the bridge by a complex
admittance shown in Fig. 15.48, which shows the veer-
ing together of the normal modes induced by resistive
coupling and the increase in splitting as the reactive
component of the coupling is increased.

If the two strings are only slightly mistuned, the
amplitudes of the string vibrations involved in the nor-
mal modes can still be represented as ↑↑ and ↓↑, but
the amplitudes of the two string vibrations will no
longer be identical. Hence, when the two strings of
a doublet are struck with equal amplitude by a ham-
mer, the mode can be represented by a combination of
vibrations ↑↑ with equal amplitude with a small compo-
nent with opposite amplitudes the ↓↑ dependent on the
mistuning. This leads to a double decay in the sound
intensity, with the strongly excited ↑↑ mode decay-
ing relatively quickly, leaving the smaller amplitude but
weakly damped ↓↑ mode persisting at longer times.
Figure 15.49, from Weinreich [15.83], shows the rapid
decay of a single C4 string, when all other members
of the parent string triplet are damped, followed by

String displacement (dB)

(s)
0 50

0

–20

–40

–60

10 20 10 20 30 40

Fig. 15.49 Decay in string vibration of a struck C4 (262 Hz)
piano string, first with other members of the string triplet
damped and then with one other similarly tuned string
allowed to vibrate also (after Weinreich [15.83])

the much longer long-term decay of the normal mode
excited when one other member of the triplet is also
allowed to vibrate freely. More-complicated decay pat-
terns with superimposed slow beats are observed for
various degrees of mistuning, from interference with
small-amplitude orthogonally polarised string modes
excited when the strong-coupling direction is not exactly
perpendicular to the soundboard. Weinreich suggests
that skilled piano tuners deliberately mistune the indi-
vidual strings of string doublets and triplets to maximise
their long-term ringing sound. Any weakly decaying
component of a decaying sound is acoustically impor-
tant because of the logarithmic response of the ear to
sound intensity.

15.2.6 Body Modes

Stringed instruments come in a great variety of shapes
and sizes, from strings mounted on simple boxes or on
skins stretched over hollow gourds to the more complex
renaissance shapes of the viols, guitars and members
of the violin family. The vibrational modes of all such
instruments, which are ultimately responsible for the
radiated sound, involve the collective modes of vibration
of all their many component parts. For example, when
a violin or guitar is played, all parts of the instrument
vibrate – the individual strings, the bridge, the front
and back plates and ribs that make up the body of the
instrument, the air inside its hollow cavity, the neck, the
fingerboard, the tailpiece and, for members of the violin
family, the internal soundpost also.

Because of the complexity of the dynamical struc-
tures, it would be well nigh impossible to work out
the modal shapes and frequencies of even the simplest
stringed instruments from first principles. However, as
we will show later in this section, with the advent of
powerful computers and finite-element analysis soft-
ware, it is possible to compute the modal vibrations
and frequencies of typically the first 20 or more normal
modes for the violin and guitar below around 1 kHz.
Such calculations do indeed show a remarkable variety
of vibrational modes, with every part of the instrument
involved in the vibrations to some extent. Such modes
can be observed by direct experiment using Chladni
plate vibrations, laser holography and modal analysis
techniques, as briefly described in this section.

The frequencies of the vibrational modes can be ob-
tained even more simply from the admittance measured
at the position of string support or other selected posi-
tion on the body of an instrument, when the instrument
is excited at the bridge by a sinusoidal electromagnetic
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force or a simple tap. However, unless a large number
of measurements over the whole body of the instrument
(normal-mode analysis) are made, such measurements
provide very little direct information about the nature
of the normal modes and the parts of the violin which
contribute most strongly to the excited vibrations.

Although a particular structural mode can be very
strongly excited, it may contribute very little to the
radiated sound and hence the quality of sound of an
instrument. Examples of such resonances on the vio-
lin or guitar include the strong resonances of the neck
and fingerboard. However, even if such resonances pro-
duce very little sound, their coupling to the strings
via the body and bridge of the instrument can lead to
considerable inharmonicity and damping of the string
resonances, as discussed in the previous section. Such
effects can have a significant effect on the sound of
the plucked string of a guitar and the ease with which
a repetitive waveform can be established on the bowed
string.

To produce an appreciable volume of sound, the nor-
mal modes of instruments like the violin and guitar have
to involve a net change in volume of the shell structure
forming the main body of the instrument. This then acts
as a monopole source radiating sound uniformly in all
directions. However, when the acoustic wavelength be-
comes comparable with the size of the instrument, dipole
and higher-order contributions also become important.

For the guitar and instruments of the violin fam-
ily, there are several low-frequency modes of vibration
which involve the flexing, twisting and bending of the
whole body of the instrument, contributing very lit-
tle sound to the lowest notes of the instruments. To
boost the sound at low frequencies, use is often made
of a Helmholtz resonance involving the resonant vibra-
tions of the air inside the body cavity passing in and
out of f-holes or rose-hole cut into the front plate of
the instrument. This is similar to the way in which the
low-frequency sound of a loudspeaker can be boosted
by mounting it in a bass-reflex cabinet. The use of a res-
onant air cavity to boost the low-frequency response
has been a common feature of almost every stringed
instrument from ancient times.

Although finite-element analysis and modal analy-
sis measurement techniques provide a great wealth of
detailed information about the vibrational states of an
instrument, considerable physical insight and a degree
of simplification is necessary to interpret such meas-
urements. This was recognised by Savart [15.85] in the
early part of the 19th century, when he embarked on
a number of ingenious experiments on the physics of

the violin in collaboration with the great French violin
maker Vuillaume. To understand the essential physics
involved in the production of sound by a violin, he
replaced the beautiful, ergonomically designed, renais-
sance shape of the violin body by a simple trapezoidal
shell structure fabricated from flat plates with two cen-
tral straight slits replacing the elegant f-holes cut into the
front. As Savart appears to have recognised, the detailed
shape is relatively unimportant in defining the essen-
tial acoustics involved in the production of sound by
a stringed instrument.

We will adopt a similar philosophy in this section
and will consider a stringed instrument made up of its
many vibrating components – the strings and bridge,
which we have already considered, the supporting shell
structure, the vibrations of the individual plates of such
a structure, the soundpost which couples the front and
back plates, the fingerboard, neck and tailpiece, which
vibrate like bars, and the air inside the cavity. Although
we have already emphasised that it is never possible to
consider the vibrations of any individual component of
an instrument in isolation, as we have already shown for
the string coupled to a structural resonance at the bridge,
it is only when the resonant frequencies of the coupled
resonators are close together that their mutual interac-
tions are so important that they change the character
of the vibrational modes. Otherwise, the mutual inter-
actions between the various subsystems simply provide
a first-order correction to modal frequencies without any
very significant change in their modal shapes.

Flexural Thin-Plate Modes
To radiate an appreciable intensity of sound, energy has
to be transferred via the bridge from the vibrating strings
to the much larger surfaces of a soundboard or body of
an instrument. The soundboards of the harp and key-
board instruments and the shell structures of stringed
instruments like the violin and guitar can formally be
considered as thin plates. Transverse or flexural waves
on their surface satisfy the fourth-order thin-plate equa-
tion (Morse and Ingard [15.42] Sect. 5.3), which for an
isotropic material can be written as

∂2z

∂t2
+ Eh2

12ρ(1−ν2)

(
∂4z

∂x4
+2

∂2z

∂x2

∂2z

∂y2
+ ∂4z

∂y4

)
= 0 ,

(15.68)

where z is the displacement perpendicular to the xy-
plane, h is the plate thickness, E is the Young’s modulus,
ν is the Poisson ratio, and ρ the density.

It is instructive first to consider solutions for a narrow
quasi-one-dimensional thin plate, like a wooden ruler or
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the fingerboard on a violin. One-dimensional solutions
can be written in the general form

z = (a cos kx +b sin kx

+ c cosh kx +d sinh kx)eiωt , (15.69)

where

ω =
(

E

12ρ(1−ν2)

)1/2

hk2 . (15.70)

The hyperbolic functions correspond to displace-
ments that decay exponentially away from the ends of
the bar as exp(±kx). Well away from the ends, the so-
lutions are therefore very similar to transverse waves on
a string, except that the frequency now depends on k2

rather than k with a phase velocity c = ω/k proportional
to k ∼ ω1/2. Flexural waves on thin plates are therefore
dispersive and unlike waves travelling on strings any dis-
turbance will be attenuated and broadened in shape as it
propagates across the surface.

The k values are determined by the boundary condi-
tions at the two ends of the bar, which can involve the
displacement, couple M = −ESκ2∂2z/∂x2 and shear-
ing force F = ∂M/∂x = −ESκ2∂3z/∂x3 at the ends of
the bar, where k is the radius of gyration of the cross
section (Morse and Ingard [15.42] Sect. 5.1).

For a flexible bar there are three important boundary
conditions:

1. freely hinged, where the free hinge cannot exert
a couple on the bar, so that

z = 0 and
∂2z

∂x2
= 0 , (15.71)

2. clamped, where the geometrical constraints require

z = 0 and
∂z

∂x
= 0 , (15.72)

3. free, where both the couple and the shearing force at
the ends are zero, so that

∂3z

∂x3 = ∂2z

∂x2 = 0 . (15.73)

A bar of length L , freely hinged at both ends,
supports simple sinusoidal spatial solutions with m half-
wavelengths between the ends and modal frequencies

ωm = h

√
E

12ρ(1−ν2)

(mπ

L

)2
. (15.74)

For long bars with clamped or free ends, the nodes
of the sinusoidal component are moved inwards by
a quarter of a wavelength and an additional exponen-
tially decaying solution has to be added to satisfy the
boundary conditions, so that at the x = 0 end of the bar

z ∼ A

[
sin(kmx −π/4)± 1√

2
e−km x

]
, (15.75)

where the plus sign corresponds to a clamped end and
the minus to a free end, and km = (m +1/2)π/L . The
modal frequencies are given by

ωm = h

√
E

12ρ(1−ν2)

(
(m +1/2) π

L

)2

(15.76)

which, for the same m value, are raised slightly above
those of a bar with hinged ends. Corrections to these
formulae from the leakage of the exponentially decaying
function from the other end of the bar are only significant
for the m = 1 mode and are then still less than 1%.

The solutions close to the end of a bar for hinged,
clamped and free boundary conditions are illustrated
in Fig. 15.50, with the phase-shifted sinusoidal com-
ponent for the latter two indicated by the dotted line.
The exponential contribution is only significant out to
distances ∼ λ/2.

The above formulae can be applied to the bending
waves of quasi-one-dimensional bars of any cross sec-
tion, by replacing the radius of gyration κ = h/

√
12 of

the thin rectangular bar with a/2 for a bar of circular
cross section and radius a, and

√
a2 +b2/2 for a hollow

cylinder with inner and outer radii a and b (Fletcher and
Rossing [15.5], Fig. 2.19).

Hinged

Clamped

Free

Fig. 15.50 Boundary conditions for flexural waves at the
end of a one-dimensional bar. The dashed line represents
the phase-shifted sinusoidal component, to which the ex-
ponentially decaying component has to be added to satisfy
the boundary conditions
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Another case of practical importance in musical
acoustics is a bar clamped at one end and free at the
other. This would, for example, describe the bars of
a tuning fork or could be used to model the vibrations of
the neck or finger board on a stringed instrument. In this
case, there is an addition m = 0 vibrational mode, with
exponential decay length comparable with the length of
the bar. The modal frequencies are then given [Fletcher
and Rossing [15.5], (2.64)] by

ωm = h

4

(π

L

)2
√

E

12ρ(1−ν2)[
1.1942, 2.9882, 52, . . . , (2m +1)2

]
.

(15.77)

In the above discussion, we have described the modes in
terms of the number m of half-wavelengths of the sinu-
soidal component of the wave solutions within the length
of the bar. A different nomenclature is frequently used
in the musical acoustics literature, with the mode num-
ber classified by the number of nodal lines (or points in
one dimension) m in a given direction not including the
boundaries rather than the number of half-wavelengths
m between the boundaries, as in Fig. 15.51.

Twisting or Torsional Modes
In addition to flexural or bending modes, bars can
also support twisting (torsional) modes, as illustrated
in Fig. 15.51 for the z = xy (1,1) mode.

The frequencies of the twisting modes are deter-
mined by the cross section and shear modulus G, equal
to E/2(1+ν) for most materials (Fletcher and Ross-
ing [15.5], Sect. 2.20). The wave velocity of torsional
waves is dispersionless (independent of frequency) with
ωn = ncTk, where

cT = ω

k
=
√

GKT

ρI
= α

√
E

2ρ(1+ν)
, (15.78)

where GKT is the torsional stiffness given by the couple,
C = GKT∂θ/∂x, required to maintain a twist of the bar
through an angle θ and I = ∫ ρr2 dS is the moment of
inertia per unit length along the bar. For a bar of circular
cross section α = 1, for square cross section α = 0.92,
and for a thin plate with width w > 6h, α = (2h/w). For
a bar that is fixed at both ends, fn = ncT/2L , while for
a bar that is fixed at one end and free at the other, fn =
(2n +1)cT/4L , where n is an integer including zero.

Thin bars also support longitudinal vibrational
modes, but since they do not involve any motion perpen-
dicular to the surface they are generally of little acoustic

Fig. 15.51 Schematic illustration of the lowest-frequency
twisting (1,1) and bending (2,0) modes of a thin bar with
free ends

importance, other than possibly for the lowest-frequency
soundpost modes for the larger instruments of the violin
family.

Two-Dimensional Bending Modes
Solutions of the thin-plate bending wave solutions in two
dimensions are generally less straightforward, largely
because of the more-complicated boundary conditions,
which couple the bending in the x- and y-directions. For
a free edge parallel to the y-axis, the boundary conditions
are (Rayleigh [15.3] Vol. 1, Sect. 216)

∂2z

∂x2 +ν
∂2z

∂y2 = 0

and

∂

∂x

[
∂2z

∂x2 + (2−ν)
∂2z

∂y2

]
= 0 . (15.79)

Thus, when a rectangular plate is bent downwards along
its length, it automatically bends upwards along its width
and vice versa. This arises because downward bending
causes the top surface of the plate to stretch and the
bottom surface to contract along its length. But by Pois-
son coupling, this causes the top surface to contract
and lower surface to stretch in the orthogonal direc-
tion, causing the plate to bend in the opposite direction
across its width. This is referred to as anticlastic bend-
ing. The Poisson ratio ν can be determined from the ratio
of the curvatures along the bending and perpendicular
directions.

In addition, for orthotropic materials like wood, from
which soundboards and the front plates of most stringed
instruments are traditionally made, the elastic constants
are very different parallel and perpendicular to the grain
structure associated with the growth rings. McIntyre
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and Woodhouse [15.86] have published a detailed ac-
count of the theory and derivation of elastic constants
from measurement of plate vibrations in both uniform
and orthotropic thin plates, including the influence of
damping.

For an isotropic rectangular thin plate, hinged along
on all its edges, a simple two-dimensional (2-D) sine-
wave solution satisfies both the wave equation (15.68)
and the boundary conditions, with m and n half-
wavelengths along the x- and y-directions, respectively,
giving modal frequencies

ωmn = h

√
E

12ρ(1−ν2)

[(
mπ

Lx

)2

+
(

nπ

L y

)2
]

.

(15.80)

By analogy with our discussion of flexural waves in
one-dimensional bars, we would expect the modal fre-
quencies of plates with clamped or free edges to be
raised, with the nodes of the sinusoidal components of
the wave solution moved inwards from the edges by
approximately quarter of a wavelength. For the higher-
order modes, the modal frequencies would therefore be
given to a good approximation by

ωmn = h

√
E

12ρ(1−ν2)[(
(m +1/2) π

Lx

)2

+
(

(n +1/2) π

L y

)2
]

.

(15.81)

As recognised by Rayleigh ([15.3] Vol. 1, Sect. 223), it
is difficult to evaluate the modal shapes and modal fre-
quencies of plates with free edges. The method used by
Rayleigh was to make an intelligent guess of the wave-
functions which satisfied the boundary conditions and
to determine the frequencies by equating the resulting
potential and kinetic energies. Leissa [15.88] has re-
viewed various refinements of the original calculations.
For a plate with free edges, the nodal lines are also no
longer necessarily straight, as they were for plates with
freely hinged edges.

Chladni Patterns
The modal shapes of vibrating plates can readily be vi-
sualised using Chladni patterns. These are obtained by
supporting the plate at a node of a chosen mode ex-
cited electromagnetically, acoustically or with a rosined
bow drawn across an edge. A light powder is sprinkled
onto the surface. The plate vibrations cause the pow-
der to bounce up and down and move towards the nodes

3

2

1

0

3210 4

Fig. 15.52 Chladni pattern with white lines indicating the
nodal lines of the first few modes of a rectangular plate
(after Waller [15.87])

of the excited mode, allowing the nodal line patterns to
be visualised. Figure 15.52 illustrates Chladni patterns
measured by Waller [15.87] for a rectangular plate with
dimensions Lx/L y = 1.5, with the number of nodal lines
between the boundary edges determining the nomencla-
ture of the modes. Note the curvature of the nodal lines
resulting from the boundary conditions at the free edges.

Figure 15.53 illustrates the nodal line shapes and
relative frequencies of the first 10 modes of a square plate
with free edges, where f11 = hcL/L2√1−ν/2 (after
Fletcher and Rossing, [1] Fig. 3.13).

Another important consequence of the anticlastic
bending is the splitting in frequencies of combination
modes that would otherwise be degenerate. This is illus-
trated in Fig. 15.54 by the combination (2, 0) ± (0, 2)
normal modes of a square plate with free edges. The
(2, 0) ± (0, 2) modes are referred to as the X- and ring-
modes from their characteristic nodal line shapes. The
(2, 0)−(0, 2) X-mode exhibits anticlastic bending in the
same sense as that induced naturally by the Poisson cou-
pling. It therefore has a lower elastic energy and hence
lower vibrational frequency than the (0, 2)+(2, 0) ring-

(1,1) (2,0)–(0,2) (2,0)+(0,2) (2,1) (1,2)

(2,2) (3,0) (0,3) (3,1)–(1,3) (3,1)+(1,3)

1.00 1.52 1.94 2.71 2.71

4.81 5.10 5.10 5.30 6.00

Fig. 15.53 Schematic representation of the lowest 10 vibra-
tional modes of a square plate with free edge
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(2,0)

(0,2)

(2,0)+(0,2)

(0,2)–(2,0)

Fig. 15.54 Formation of the ring- and X-modes by the
superposition of the (2, 0) and (0, 2) bending modes

mode, with curvatures in the same sense in both the x-
and y-directions. The ring- and X-modes will therefore
be split in frequency above and below the otherwise de-
generate mode, as illustrated in Fletcher and Rossing
([15.5], Fig. 13.11).

Plate Tuning
The modal shapes and frequencies of the lowest-order
(1,1) twisting mode and the X-and ring-modes are
widely used for the scientific tuning of the front and back
plates of violins following plate-tuning guidelines devel-
oped by Hutchins [15.89, 91]. These are referred to as
violin plate modes 1, 2 and 5, as illustrated in Fig. 15.55
by Chladni patterns for a “well-tuned” back plate. The
violin maker aims to adjust the thinning of the plates

286 533 628 672 731 Hz

873 980 1010 1124 1194 Hz

Fig. 15.56 Typical modal shapes for a number of low-frequency
modes of a guitar top plate from time-averaged holographic meas-
urements by Richardson and Roberts [15.90]

Mode 1 Mode 2 Mode 5

Fig. 15.55 Chladni patterns for the first twisting-(#1),
X-(#2) and ring-(#5) modes of a viola back plate (after
Hutchins [15.89])

across the area of the plate to achieve these symmetrical
nodal line shapes at specified modal frequencies.

The use of such methods undoubtedly results in
a high degree of quality control and reproducibility of
the acoustic properties of the individual plates before
assembly and, presumably, of the assembled instrument
also, especially for the lower-frequency structural res-
onances. Unfortunately, they do not necessarily result
in instruments comparable with the finest Italian in-
struments, which were made without recourse to such
sophisticated scientific methods. Traditional violin mak-
ers instinctively assess the elastic properties of the plates
by their feel as they are twisted and bent, and also by
listening to the sound of the plates as they are tapped
or even rubbed around their edges, rather like a bowed
plate. From our earlier discussion, it is clear that the
mass of the plates is also important in governing the
acoustical properties.

Geometrical Shape Dependence
The above examples demonstrate that the lower-
frequency vibrational modes of quite complicated
shaped plates can often be readily identified with those
of simple rectangular plates, though the frequencies of
such modes will clearly depend on the exact geome-
try involved. This is further illustrated in Fig. 15.56 by
the modal shapes of a guitar front plate obtained from
time-averaged holography measurements by Richard-
son and Roberts [15.90], where the contours indicate
lines of constant displacement perpendicular to the sur-
face. For the guitar, the edges of the top plate are rather
good nodes, because of the rather heavy supporting ribs
and general construction of the instrument. The bound-
ary conditions along the edges of the plate are probably
intermediate between hinged and clamped. The modes
can be denoted by the number of half-wavelengths along
the length and width of the instrument. Note that cir-
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cular rose-hole opening in the front face, which plays
an important role in determining the frequency of the
Helmholtz air resonance boosting the low-frequency re-
sponse of the instrument, tends to concentrate most of
the vibrational activity to the lower half of the front
plate.

Mode Spacing
Although the frequencies of the modes of complicated
shapes such as the violin, guitar and piano soundboard
are rather irregularly spaced, at sufficiently high fre-
quencies, one can use a statistical approach to estimate
the spacing of the modal frequencies (Cremer [15.29],
Sect. 11.2). For large m and n values, the modal fre-
quencies of an isotropic rectangular plate are given
by

ωmn ∼ h

√
E

12ρ(1−ν2)

(
km

2 + k2
n

)
, (15.82)

where km = mπ/Lx and kn = nπ/L y. The modes can
be represented as points (m, n) on a rectangular grid in
k-space, with a grid spacing of π/Lx and π/L y along
the kx and ky directions. Each mode therefore occupies
an area in k-space of π2/Lx L y. For large m and n, the
number of modes ∆N between k and k +∆k is therefore
on average just the number of modes in the k-space area
between k and k +∆k, so that

∆N = π

2
k∆k

Lx L y

π2 = π

2

∆ω

2β

Lx L y

π2 , (15.83)

where we have made use of the dispersion relationship
ω = βk2.

The density of modes per unit frequency is then
constant and independent of frequency,

dN

d f
= 1

2β
Lx L y =

√
3
(
1−ν2

)
cLh

S ∼ 1.5
S

cLh
,

(15.84)

where S is the area of the plate. The spacing of modes
∆ f will therefore on average be ∼ cLh/1.5S, propor-
tional to the plate thickness and inversely proportional
to plate area. For large k values, this result becomes in-
dependent of the shape of the plate. For an orthotropic
plate like the front plate of the violin or guitar, the spac-
ing is determined by the geometric mean (cxcy)1/2 of the
longitudinal velocities parallel and along the grain. For
the violin, Cremer ([15.29], p. 292) estimates an asymp-
totic average mode spacing of 73 Hz for the top plate
and 108 Hz for the back plate. Above around 1.5 kHz
the width of the resonances on violin and guitar plates
becomes comparable with their spacing, so that exper-

imentally it becomes increasingly difficult to excite or
distinguish individual modes.

On many musical instruments such as the violin and
guitar, the presence of the f- and rose-hole openings
introduce additional free-edge internal boundary condi-
tions, which largely confine the lower-frequency modes
to the remaining larger areas of the plate. The effective
area determining the density of lower-frequency modes
for both instruments will therefore be significantly less
that that of the whole plate. Any reduction in plate di-
mensions, such as the island region on the front plate of
the violin between the f-holes, will limit the spatial vari-
ation of flexural waves in that direction. Such a region
will therefore not contribute significantly to the normal
modes of vibration of the plate until λ(ω)/2 is less than
the limiting dimension.

Anisotropy of Wood
Wood is a highly anisotropic material with different elas-
tic properties perpendicular and parallel to the grain.
Furthermore, the wood used for soundboards and plates
of stringed instruments are cut from nonuniform circu-
lar logs (slab or quarter cut), so that their properties can
vary significantly across their area.

McIntyre and Woodhouse [15.86] have described
how the anisotropic properties affect the vibrational
modes of rectangular thin plates and have shown how
the most important elastic constants including their loss
factors can be determined from the vibrational frequen-
cies and damping of selected vibrational modes. For
a rectangular plate with hinged edges

ω2
mn = h2

ρ

[
D1k4

m + D3k4
n + (D2 + D4) k2

mk2
n

]
,

(15.85)

where D1–D4 are the four elastic constants required
to describe the potential energy of a thin plate with
orthotropic symmetry. These are related to the more
familiar elastic constants by the following relationships

D1 = Ex/12µ , D3 = Ey/12µ , D4 = Gxy/3 ,

D2 = νxy Ey/6µ = νyx Ex/6µ , (15.86)

where µ = 1−vxyvyx . Gxy gives the in-plane shear en-
ergy when a rectangular area on the surface is distorted
into a parallelogram. This is the only energy term in-
volved in a pure twisting mode (i. e. z = xy). For an
isotropic plate, D4 = E/6(1+ν).

Part
E

1
5
.2



588 Part E Music, Speech, Electroacoustics

Table 15.5 Typical densities and elastic properties of wood
used for stringed instrument modelling (after Woodhouse
[15.76]). (The values with asterisks are intelligent guesses
in the absence of experimental data)

Property Symbol Units Spruce Maple

Density ρ kg/m3 420 650

D1 MPa 1100 860

D2 MPa 67 140*

D3 MPa 84 170

D4 MPa 230 230*

Relative 4√D1/D3 1.9 1.4

scaling

factors

For many materials, (D2 + D4) ∼ 2
√

D1 D2, so that
(15.82) can be rewritten as

ω2
mn = h2

ρ

√
D1 D3

[
4

√
D1

D3

(
mπ

Lx

)2

+ 4

√
D3

D1

(
nπ

L y

)2
]2

.

(15.87)

The vibrational frequencies are therefore equivalent
to those of a shape of the same area with averaged elas-
tic constant

√
D1 D3 and length scales Lx multiplied

by the factor 8
√

D1/D3 and L y by its inverse. The rela-
tive change in scaled dimensions is therefore 4

√
D1/D3.

These scaling factors account for the elongation of the
equal contour shapes along the stiffer bending direction
in the holographic measurements of mode shapes for the
front plate of the guitar (Fig. 15.56), where the higher
elastic modulus along the grains is further increased by
strengthening bars glued to the underside of the top plate
at a shallow angle to the length of the top plate.

Typical values for the elastic constants of spruce
and maple traditionally used for modelling the violin
are listed in Table 15.5 from Woodhouse [15.76]. The
anisotropy of the elastic constants along and perpendic-
ular to the grain of a spruce plate cut with the growth
rings running perpendicular to the surface would give
a relative scaling factor for a violin front plate of almost
double the relative width, if one wanted to consider the
flexural vibrations in terms of an equivalent isotropic
thin plate. The anisotropy is therefore very important in
determining the vibrational modes of such instruments.

Plate Arching
The front and back plates of instruments of the violin
family have arched profiles, which give the instrument

a greatly enhanced structural rigidity to support the
downward component of the string tension (≈ 10 kg
weight). The arching also significantly increases the fre-
quencies of the lowest flexural plate modes. In the case
of lutes, guitars and keyboard instruments with a flat
sounding board or front plate, the additional rigidity is
achieved by additional cross-struts glued to the back of
the sounding board. The bass bar in members of the vio-
lin family serves a similar purpose in providing addition
strengthening to that of the arching.

The influence of arching on flexural vibration fre-
quencies is easily understood by considering the trans-
verse vibrations of a thin circular disc. For a flat disc, the
modal frequencies are determined by the flexural energy
associated with the transverse vibrations. The longitu-
dinal strains associated with the transverse vibrations
are only second order in displacement and can therefore
be neglected. However, if the disc is belled out to raise
the centre to a height H , the transverse vibrations now
involve additional first-order longitudinal strains stretch-
ing the disc away from its edges. The energy involved in
such stretching, which is resisted by the rigidity of the
circumferential regions of the disc, introduces an addi-
tional potential energy proportional to H2. By equating
the kinetic to the increased potential energy, is follows
that the frequency of the lowest-order symmetrical mode
will be increased by a factor [1+α(H/h)2]1/2, where
α ≈ 1 has to be determined by detailed calculation.
Reissner [15.92] showed that, when the arching is larger
than the plate thickness, H � h, the frequency of the
fundamental mode is raised by a factor ω/ω0 = 0.68H/h
for a circular disc with clamped edges, and 0.84H/h with
free edges. For a shallow shell with H/a < 0.25, where
a is the radius of the disc, the asymptotic frequency can
conveniently be expressed as ωn ∼ 2(E/ρ)1/2 H/a2. The
arching dependence of the modal frequencies is greatest
for the lowest-frequency modes. At high frequencies, the
radius of curvature is large compared to the wavelength,
so arching is much less important.

The combined effect of the arching and the f- and
rose-holes cut into the front face of many stringed in-
struments is to raise the frequency of the acoustically
important lower-frequency modes to well above the
asymptotic spacing of modal frequencies predicted by
(15.82). For example, the lowest-frequency plate modes
of the violin front and back plates are typically in the
range 400–500 Hz compared with Cremer’s predictions
for an asymptotic spacing of modes ≈73 Hz for the top
plate and 108 Hz for the back plate ([15.29], p. 292).

The more highly arched the plates the stiffer they
will be and, for a given mass, the higher will be their
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a)

Simple shell Soundpost and f-holes

b)

c)

d)

Fig. 15.57 Schematic cross-sectional representation of typ-
ical shell modes for a simple box and a “violin-type”
structure with f-holes and a soundpost

associated vibrational frequencies. High arching may
well contribute to the relatively soft and sweet sounds of
the more highly arched early Amati and Stainer violins
and the more powerful and brilliant sounds of the flatter
later Stradivari and Guarneri models.

Shell Structures
Although it is interesting to investigate the free plates of
violins and other instruments before they are assembled
into the instrument as a whole, once assembled their vi-
brational properties will generally be very different, as
they are subject to completely different boundary con-
ditions at their supporting edges and by the soundpost
constraint for instruments of the violin family. The sup-
porting ribs tie the outer edges of the back and front
plates together. The curvature of the outer edge shape
gives the 1–2 mm-thick ribs of a violin considerable
structural strength and rigidity, in much the same way as
the bending of a serpentine brick wall. In many instru-
ments there are extra strips and blocks attached to the
ribs and plate edges to strengthen the joint, which still
allow a certain amount of angular flexing, as indicated
by the schematic normal-mode vibrations illustrated in
Fig. 15.57. The supporting ribs add mass loading at the
edges of the plates and impose a boundary condition for
the flexing plates intermediate between freely hinged
and clamped.

For a simple shell structure, Fig. 15.57a represents
a low-frequency twisting mode in which the two ends

of the instrument twist in opposite directions, just
like the simple (z = xy) twisting mode of a rectan-
gular plate. Figure 15.57b–d schematically represent
normal modes involving flexural modes of the front
and back plates. Mode (b) is the important breath-
ing mode, which produces a strong monopole source
of acoustic radiation at relatively low frequencies. In
mode (c), the two plates vibrate in the same direc-
tion, resulting in a much weaker dipole radiation source
along the vertical axis. The above examples assumed
identical top and back plates, whereas in general they
will have different thicknesses arching, and will be
constructed from different types of wood with differ-
ent anisotropic elastic properties: spruce for the front
and maple for the back plate of the violin. Hence,
for typical high-frequency normal modes (e.g. shown
schematically in Fig. 15.57d), the wavelengths of flex-
ural vibrations will be different in the top and back
plates.

Note that, at low frequencies, several of the nor-
mal modes involve significant motion of the outer edges
of the front and back plate, since the centre of mass
of the freely supported structure cannot move. Hence,
when an instrument is supported by the player, additional
mode damping can occur by energy transfer to the
chin, shoulder or fingers supporting the instrument at
its edges, as indeed observed in modal analysis inves-
tigations on hand-held violins by Marshall [15.93] and
Bissinger [15.94].

Admittance dB

200 Hz

60

40

20

500 1000 2000 5000

Phase

200 Hz

90

0

–90
500 1000 2000 5000

Fig. 15.58 The rotational admittance across the two feet of
a bridge on an idealised rectangular violin structure with
a soundpost under the treble foot but with no f-holes (after
Woodhouse [15.76])
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Skeleton Curves
In this idealised model, the normal modes of the struc-
ture at high frequencies will be similar to those of the
individual plates. Such modes will only be significantly
perturbed when the resonances of the separate plates are
close together, apart from a general background interac-
tion from the average weak but cumulative interaction
with all other distant modes. Woodhouse [15.76] has re-
cently shown that the averaged amplitude and phase of
the admittance can be described by skeleton curves, indi-
cated by the dashed lines in Fig. 15.58, on which peaks
and troughs of height Q and 1/Q and phase changes
from individual resonances are superimposed. These
curves were evaluated analytically for the rotational ad-
mittance across the two feet of a bridge mounted on the
front plate of an idealised rectangular box-like violin
without f-holes but with a soundpost close to the treble
foot of the bridge.

At low frequencies the averaged input impedance
across the two feet of the bridge is largely reactive, with
a value close to the static springiness, which can be iden-
tified with the low-frequency limit of the normal-mode
admittance

∑
n iω/mnω2

n , where the effective mass of
each mode will depend on where and how the instrument
is excited. However, at high frequencies the admittance
becomes largely resistive resulting from internal damp-
ing and energy loss to the closely overlapping modes.
The use of skeleton curves enables Woodhouse to il-
lustrate the effect of various different bridge designs on
the overall frequency response of a violin, without hav-
ing to consider the exact positions, spacing or damping
of the individual resonances of the shell structure. Al-
though the idealised model is clearly over-simplistic, the
general trends predicted by such a model will clearly be
relevant to any multi-resonant shell model.

Soundpost and f-Holes
The soundpost and f-holes cut into the front plate of the
violin and related instruments have a profound effect on
the frequencies and waveforms of the normal modes,
illustrated schematically by the right-hand set of exam-
ples in Fig. 15.57. The f-holes create an island area on
which the bridge sits, which separates the top and lower
areas of the front plate. Like the rose-hole on a guitar il-
lustrated in Fig. 15.56, the additional internal free edges
introduced by the f-holes tend to localise the vibrations
of the front plate to the regions above and below the is-
land area. In addition, the soundpost acts as a rather rigid
spring locking the vibrations of the top and back plates
together at it its ends. At low frequencies, the soundpost
introduces an approximate node of vibration on both the

top and back plates, unless the frequencies of the uncou-
pled front and back plates modes are close together.

For some low-frequency modes, the soundpost and
f-hole have a relatively small effect on the modes of the
shell structure, such as the twisting mode (a) and mode
(c), when the plates vibrate in the same direction. How-
ever, the breathing mode (c) will be strongly affected by
the soundpost forcing the front and back plates to move
together across its ends.

As indicated earlier, any string motion parallel to
the plates will exert a couple on the top of the bridge. In
the absence of the soundpost, only asymmetric modes
of the top plate could then be excited. However, to
satisfy the boundary conditions at the soundpost po-
sition, the rocking action now induces a combination of
symmetric and antisymmetric plate modes (illustrated
schematically in Fig. 15.57b), approximately doubling
the number of modes that can contribute to the sound
of an instrument including the very important lower-
frequency symmetric breathing modes. Because of the
f-holes, the central island can vibrate in the opposite di-
rection to the wings on the outer edges of the instrument.
The mixing of symmetric and antisymmetric modes is
strongly dependent on the position of the soundpost rel-
ative to the nodes of the coupled waveforms. As a result,
the sound of a violin instrument is very sensitive to the
exact placing of the soundpost. The difference in the
sound of a violin with the soundpost first in place and
then removed is illustrated in .

To a good approximation, in the audible frequency
range, the violin soundpost can be considered as a rigid
body, as its first longitudinal resonance is ≈100 kHz,
though lower-frequency bending modes can also be ex-
cited, particularly if the upper and lower faces of the
soundpost fail to make a flat contact with the top and
back plates (Fang and Rogers [15.95]). At high frequen-
cies, there is relatively little induced motion of the outer
edges of top and back plates, so that the impedance Z(ω)
(force/induced velocity) measured at the soundpost po-
sition is simply given by the sum of the impedances at
the soundpost position, Z(ω)top + Z(ω)back, of the indi-
vidual plates with fixed outer edges. If one knows the
waveforms of the individual coupled modes, it is rela-
tively straightforward to evaluate the admittance at any
other point on the two surfaces, and hence to evaluate the
rotational admittance across the two feet of the bridge
(Woodhouse [15.76]).

We have already described the important role of the
bridge dynamics in the coupling between the strings and
the vibrational modes of the instrument. For instruments
of the violin family, the island region between the f-holes
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probably plays a rather similar role to the bridge, as it is
via the vibrations of this central region that the larger-
area radiating surfaces of the front plate are excited.
At low frequencies this will be mainly by the lowest-
order twisting and flexing modes of the central island
region. It therefore seems likely that the dynamics of the
central island region also contributes significantly to the
BH hill feature and the resulting acoustical properties
of the violin in the perceptually important frequency
range of ≈ 2–4 kHz, as recognised by Cremer and his
colleagues [15.11].

Historically, the role of the soundpost and the cou-
pling of plates through enclosed air resonances were first
considered analytically using relatively simple mass–
spring models with a limited number of degrees of
freedom to mimic the first few resonances of the vi-
olin, as described in some detail by Cremer ([15.29],
Chap. 10). Now that we can obtain detailed informa-
tion about not only the frequencies, but also the shapes
of the important structural modes of an instrument from
finite-element calculations, holography and modal anal-
ysis, there is greater emphasis on analytic methods based
on the observed set of coupled modes.

The Complete Instrument
Bowing, plucking or striking a string can excite every
conceivable vibration of the supporting structure includ-
ing, where appropriate, the neck, fingerboard, tailpiece
and the partials of all strings both in front of and behind
the bridge. Many of the whole-body lower-frequency
modes can be visualised by considering all the possi-
ble ways in which a piece of soft foam, cut into the
shape of the instrument with an attached foam neck and
fingerboard, can be flexed and bent about its centre of
mass.

Figure 15.59 illustrates the flexing, twisting and
changes in volume of the shell of a freely supported vi-
olin for two prominent structural resonances computed
by Knott [15.96] using finite-element analysis. How-
ever, not all modes involve a significant change in net
volume of the shell, so that many of the lower-frequency
modes are relatively inefficient acoustic radiators. Nev-
ertheless, since almost all such modes involve significant
bridge motion, they will be strongly excited by the player
and will produce prominent resonant features in the
input admittance at the point of string support on the
bridge. They can therefore significantly perturb the vi-
brations of the string destroying the harmonicity of the
string resonances and resulting playability of particular
notes on the instrument, especially for bowed stringed
instrument.

Helmholtz Resonance
Almost all hand-held stringed instruments and many
larger ones such as the concert harp make use of
a Helmholtz air resonance to boost the sound of their
lowest notes, which are often well below the frequen-
cies of the lowest strongly excited, acoustically efficient,
structural resonances. For example, the lowest acousti-
cally efficient body resonance on the violin is generally
around 450 Hz, well above the bottom note G3 of
the instrument at ≈ 196 Hz. Similarly, the first strong
structural resonance on the classical acoustic guitar is
≈ 200 Hz, well above the lowest note of ≈ 82 Hz.

To boost the sound in the lower octave, a relatively
large circular rose-hole is cut into the front plate of
the guitar and two symmetrically facing f-holes are cut
into the front plate of instruments of the violin family.
The air inside the enclosed volume of the shell of such
instruments vibrates in and out through these openings
to form a Helmholtz resonator.

The frequency of an ideal Helmholtz cavity res-
onator of volume V , with a hole of area S in one of
its rigid walls is given by

ωH =
√

γ P

ρ

S

L ′V
= c0

√
S

L ′V
, (15.88)

Mode 10 @ 436 Hz

Mode 15 @ 536 Hz

Fig. 15.59 Representative finite element simulations of the
structural vibrations of a violin, with greatly exaggerated
vibrational amplitudes (after Knott [15.96])
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where L ′ is the effective length of the open hole. For
a circular hole of radius a, Rayleigh ([15.3] Vol. 2,
Sect. 306) showed that L ′ = π

2 a, while for an ellipse
L ′ ∼ π

2 (ab)1/2, provided the eccentricity is not too large.
Noting that the effective length depends largely on area,
Cremer ([15.29], Fig. 10.6) modelled the f-hole as an el-
lipse having the same width and area as the f-hole. The
two f-holes act in parallel to give an air resonance for the
violin at ≈ 270 Hz, at an interval of just over a fifth above
the lowest open string. For the acoustic guitar, the circu-
lar rose-hole produces an air resonance around 100 Hz,
which, like for the violin, is close to the frequency of the
second-lowest open string on the instrument.

Any induced motion of the top and bottom plates
that involves a net change in volume results in coupling
to the Helmholtz mode. Such coupling will perturb the
Helmholtz and body-mode frequencies, in just the same
way that string resonances are perturbed by coupling
to the body resonances (see Cremer [15.29], Sect. 10.3
for a detailed discussion of such coupling). Since the
acoustically important coupled modes are at consider-
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Fig. 15.60a,b The mechanical (a) and equivalent electrical
(b) circuit for a three-mass model describing the vibrations
of the front and back plates of a stringed instruments cou-
pled via a Helmholtz resonance (after Fletcher and Rossing
[15.5]). The modulus of the admittance at the top plate has
been evaluated for identical front and back plates with un-
coupled frequencies of 300 Hz, coupled via a Helmholtz
air resonator at 250 Hz in the absence of coupling. The
frequencies of the uncoupled air and body resonances are
indicated by the vertical lines

ably higher frequencies than the Helmholtz resonance,
the mutual perturbation is not very large. Because of
such coupling, purists often object to describing this
resonance as a Helmholtz resonance. Similar objections
could apply equally well to string resonances, since
they too are perturbed by their coupling to body modes.
But, as already discussed, in many situations the normal
modes largely retain the character of the individually
coupled modes other then when their frequencies are
close together and, even then, when the damping of
either of the coupled modes is large compared to the
splitting in frequencies induced by the coupling in the
absence of damping (Fig. 15.46).

Well below the Helmholtz resonance, any change
in volume of the shell of the violin or guitar induced
by the vibrating strings will be matched by an identical
volume of air flowing out through the rose- or f-holes,
with no net volume flow from the instrument as a whole.
Since at low frequencies almost all the radiated sound is
monopole radiation associated with the net flow of air
across the whole surface of an instrument, little sound
will be radiated. However, above the air resonance, the
response of the air resonance will lag in phase by 180◦,
so that the flow from body and cavity will now be in
phase, resulting in a net volume flow and strong acous-
tic radiation. The Helmholtz resonance serves the same
purpose as mounting a loudspeaker in a bass-reflex cab-
inet, with the air cavity resonance boosting the intensity
close to and above its resonant frequency.

A number of authors have considered the influ-
ence of the enclosed air on the lowest acoustically
important modes of the violin (Beldie [15.97]) and gui-
tar (Meyer [15.98], Christensen [15.99] and Rossing
et al. [15.100]) using simple mechanical modes of in-
teracting springs and masses with damping and their
equivalent electric circuits. Figure 15.60 shows the me-
chanical and equivalent electrical circuits and resulting
admittance curve for the top plate for the illustrative
three-mass model used by Rossing et al., which accounts
for the qualitative features of the first three most impor-
tant resonances of a guitar body. To emphasise a number
of important points, we have calculated the admittance
for a cavity with identical front and back plates with
uncoupled resonances at 300 Hz, coupled via a cavity
Helmholtz resonance at 250 Hz. The closeness in fre-
quencies of the coupled resonators has been chosen to
emphasise the influence of the coupling on the modal
frequencies.

Without concerning oneself with mathematical de-
tail, one can immediately recognise an unshifted normal
mode associated with the uncoupled body resonances
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at 300 Hz, corresponding to the two plates vibrating in
the same phase, with no volume change and hence no
coupling to the air resonance. However, the coupling
via the Helmholtz resonance splits the degenerate plate
modes, to give a normal mode at a raised frequency, with
the plates vibrating in opposite directions in a breath-
ing mode. The coupling also decreases the frequency of
the Helmholtz cavity resonance. The unperturbed mode
may dominate the measured admittance and affect the
playability of the instrument via its perturbation of string
resonances. But, because there is no associated volume
change, it will be an inefficient acoustic radiator. One
should note that, because of the changes in phase of the
air resonance on passing through resonance, it appears as
a dispersive curve superimposed on the low-frequency
wings of the stronger higher-frequency body resonances.
The frequency of the excited normal mode is not the
peak in the admittance curve (i. e. its modulus), as of-
ten assumed but is more nearly mid-way between the
maximum and minimum, where its phase lags 90◦ rela-
tive to the phase of the higher frequency normal modes.
Similarly, the upper body mode results in a dispersive
feature in the opposite sense, as its phase changes from
almost 180◦ to 0◦ relative to the unshifted normal mode.
Very similar, but narrower, dispersive features are also
observed in admittance-curve measurements from string
resonances, unless they are purposely damped.

Cavity Modes
In addition to the Helmholtz air resonance, there will
be many other cavity resonances of the air enclosed
within the shell of stringed instruments, all of which can
in principle radiate sound through the f- or rose-holes.
Alternatively, the internal air resonances can radiate
sound via the vibrations they induce in the shell of
the instrument, as discussed in some detail by Cre-
mer ([15.29], Sect. 11.4). Because of the relatively
small height of the violin ribs, below around 4 kHz
the cavity air modes are effectively two dimensional
in character. Simple statistical arguments based on the
overall volume of the violin cavity show that there are
typically ≈ 28 resonances below this frequency, as ob-
served in measurements by Jansson [15.101]. Whether
or not such modes play a significant role in determining
the tonal quality of an instrument remains a somewhat
contentious issue. However, at a given frequency, the
wavelengths of the flexural modes of the individual
plates and the internal sound modes will not, in gen-
eral, coincide. The mutual coupling and consequent
perturbation of modes will therefore tend to be rather
weak. Even if such coupling were to be significant, it is

likely to be far smaller than the major changes in modal
frequencies and shapes introduced by the f-holes and
soundpost.

Finite-Element Analysis
To progress further in our understanding of the complex
vibrations of instruments like the violin and guitar, it
is necessary to include the coupled motions of every
single part of the instrument and to consider the higher-
order front and back plate modes, which will be strongly
modified by their mutual coupling via the connecting
ribs and, for the violin, the soundpost as well.

Such a task can be performed by numerical simula-
tions of the vibrations of the complete structure using
finite-element analysis (FEA). This involves modelling
any plate or shell structure in terms of a large num-
ber of interconnected smaller elements of known shape
and elastic properties. This division into smaller seg-
ments is known as tessellation. Provided the scale of
the tessellation is much smaller than the acoustic wave-
lengths at the frequencies being considered, the motion
of the structure as a whole can be described by the three-
dimensional translations and rotations of the tessellated
elements. The motion of each element can be related to
the forces and couples acting on the adjoining faces of
each three-dimensional (3-D) element. The problem is
then reduced to the solution of N simultaneous equa-
tions proportional to the number of tessellated elements.
Deriving the frequencies and mode shapes of the result-
ing normal modes of the system involves the inversion
of a N × N matrix. Such calculations can be performed
very efficiently on modern computer systems, though the
computation time, proportional to N2, can still be con-
siderable for complex structures, particularly if a fine
tessellation is used to evaluate the higher-frequency,
shorter-wavelength, modes.

Figure 15.59 has already illustrated the potential
complexity of the vibrational modes of a violin. The
displacements have been greatly exaggerated for graph-
ical illustration. In practice, the displacements of the
plates are typically only a few microns, but can eas-
ily be sensed by placing the pad of a finger lightly on
the vibrating surfaces. The first example shows a typical
low-frequency mode involving the flexing and bending
of every part of the violin, but with little change in its
volume, so that it will radiate very little sound. The sec-
ond example illustrates a mode involving a very strong
asymmetrical vibration of the front plate, excited by the
rocking action of the bridge with the soundpost inhibit-
ing motion on the treble side of the instrument. Such
a mode involves an appreciable change in volume of the
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Fig. 15.61a,b FEA computations of admittance at bridge
for a guitar with a 2.9 mm-thick front plate (a) in vacuo and
(b) coupled to the air-cavity resonances (after Derveaux
et al. [15.102])

shell-like structure, which will therefore radiate sound
quite strongly.

One of the virtues of FEA is that the effects of
changes in design of an instrument, or of the ma-
terials used in its construction, can be investigated
systematically, without having to physically build a new
instrument each time a change is made. For exam-
ple, Roberts [15.103] has used FEA to investigate the
changes in normal-mode frequencies of freely supported
violin as a function of thickness and arching, the effects
of cutting the f-holes and adding the bass bar, and the af-
fect of the soundpost and mass of the ribs on the normal
modes of the assembled body of the instrument, but with-
out the neck and fingerboard. This enables a systematic
correlation to be made between the modes and frequen-
cies of the assembled instrument with the modes of the
individual plates before assembly. Without the sound-
post, the modes of the assembled violin were highly
symmetric, with the bass-bar having only a marginal

effect on the symmetry and frequency of modes. As ex-
pected, adding the soundpost removed the symmetry and
changed the frequencies of almost all the modes, demon-
strating the critical role of the soundpost and its exact po-
sition in determining the acoustic response of the violin.

Similar FEA investigations have been made of sev-
eral other stringed instruments including the guitar
(Richardson and Roberts [15.104]). Of special inter-
est is the recent FEA simulation from first principles
of the sound of a plucked guitar string by Derveaux
et al. [15.102]. Their model includes interactions of
the guitar plates, the plucked strings, the internal cavity
air modes and the radiated sound. A DVD illustrating
the methodology involved in such calculations [15.105]
recently won an international prize, as an outstand-
ing example of science communication. The effects of
changing plate thickness, internal air resonances and ra-
diation of sound on both admittance curves and the decay
times and sound waveforms of plucked strings were in-
vestigated. Figure 15.61 compares the admittance curves
at the guitar bridge computed for damped strings for
a front-plate thickness of 2.9 mm first in vacuo and then
in air. Note the addition of the low-frequency Helmholtz
and higher-order cavity resonances in air and the pertur-
bations of the structural resonances by coupling to the
air modes.

15.2.7 Measurements

In this section we briefly consider the various methods
used to measure the acoustical properties of stringed in-
struments, a number of which have already been referred
to illustrate specific topics in the preceding section.

Admittance
The most common and easiest method used to inves-
tigate and characterise the acoustical properties of any
stringed instrument is to measure the admittance A(ω)
(velocity/force) at the point of string support on the
bridge. Fletcher and Rossing [15.5] give examples of
typical admittance curves for many stringed (and per-
cussion) instruments including the violin, guitar, lute,
clavichord and piano soundboard.

As described earlier, the admittance is in reality
a complex tensor quantity, with the induced velocity
dependent on and not necessarily parallel to the direc-
tion of the exciting force. In practice, most published
admittance curves for the high-bridge instruments of the
violin family show the amplitude and phase of the com-
ponent of induced bridge velocity in the direction of an
applied force parallel to the top plate. In contrast, for
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Fig. 15.62 Admittance measurements at bridge for six vio-
lins (after Beldie [15.97]). The arrows indicate the position
of the Helmholtz air resonance. The horizontal lines are
20 dB markers

low-bridge instruments like the guitar, piano or harpsi-
chord, the induced motion perpendicular to the top plate
or soundboard is of primary interest.

The admittance at the bridge can be expressed in
terms of the additive response of all the damped nor-
mal modes, which includes the mutual interactions of
the plates of the instrument and all the component parts
including, where appropriate, the neck, tailpiece, finger-
board, and all the strings. The admittance can then be
written as

A(ω) =
∑

n

1

mn

iω

ω2
n −ω2 + iωωn/Qn

, (15.89)

where ωn and Qn are the frequency and Q-value of the
nth normal mode and mn is the associated effective mass
at the point of measurement. The value of mn depends
on how well the normal mode is excited by a force at
the point of measurement on the bridge. If, for exam-
ple, the bridge on a guitar is at a position close to the
nodes of particular normal modes, then the coupling
will be weak and the corresponding effective mass will
be rather large. Conversely, the low-frequency rocking
action of the bridge on a bowed stringed instrument cou-
ples strongly into the breathing mode of the violin shell,
so that the effective mass will be relatively low. The
strength of this coupling plays an important role in de-
termining the sound output from a particular instrument
and also affects the playability of the bowed string and
the sound of a plucked string.

In practice, by measuring the frequency response of
the admittance, including both amplitude and phase, it
is possible to decompose the admittance into the sum of
the individual modal contributions and hence determine
the effective mass, frequency and damping of the con-
tributing normal modes. For the violin there are ≈ 100
identifiable modes below ≈ 4 kHz (Bissinger [15.106]),
though not all of these are efficient acoustic radiators.

To avoid complications from the numerous sym-
pathetic string resonances that can be excited, which
includes all their higher-frequency partials, meas-
urements are often made with all the strings damped by
a piece of soft foam or a piece of card threaded between
the strings. However, it should always be remembered
that the damped strings still contribute significantly to
the measured admittance. At low frequencies the strings
still exert the same lateral restoring force on the bridge
whether damped or not, while at high frequencies the
damped strings present a resistive loading with their
characteristic string impedances µc in parallel. When
undamped, the strings present an additional impedance
and transient response, which reflects the resonances
of all the partials of the supported strings. This can
make a significant difference to the sound of an instru-
ment, notably when the sustaining pedal is depressed on
a piano and in the ringing sound of any multi-stringed
instrument, when a note is plucked or bowed and es-
pecially instruments like the theorbo and viola d’amore
with freely vibrating sympathetic strings.

Figure 15.62 illustrates admittance measurements
for six different violins by Beldie [15.97] reproduced
from Cremer ([15.29], Fig. 10.1). The arrows indi-
cate the position of the dispersive-shaped Helmholtz
air resonance, which is the only predictable feature
in such measurements, though its relative amplitude
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varies significantly from one instrument to the next.
Such measurements provide a fingerprint for an indi-
vidual instrument, highlighting the very large number
of almost randomly positioned resonances that can be
excited, which must ultimately be responsible for the
distinctive sound of an instrument. As described ear-
lier, above ≈1500 Hz the admittance often exhibits an
underlying BH peak at ≈2 kHz followed by a charac-
teristic decrease at higher frequencies, which can be
attributed to a resonance of the bridge/central island
region [15.75, 76].

Although most instruments have very different
acoustic fingerprints, Woodhouse (private communica-
tion), in a collaboration with the English violin maker
David Rubio, demonstrated that it is possible to construct
instruments with almost identical admittance character-
istics, provided one uses closely matching wood from
the same log, with a nearly perfect match of plate thick-
ness and arching. The German violin maker Martin
Schleske [15.107] also claims considerable success in
producing tonal copies with almost identical acoustical
properties to those of distinguished Cremonese instru-
ments by grading the thickness and arching of the plates
to reproduce both the input admittance and radiated
sound.

In contrast, slavishly copying the dimensions of
a master violin rarely produces an instrument with
anything like the same tonal quality. This is easily un-
derstood in terms of the differing elastic and damping
properties of the wood used to carve the plates, which re-
mains a problem of great interest, but beyond the scope
of this article.

Traditionally, the admittance is usually measured us-
ing a swept sinusoidal frequency source, often generated
by a small magnet waxed to the bridge and driven by a si-
nusoidally varying magnetic field. The admittance can
equally well be determined from the transient response
f (t) following a very short impulse to the bridge, since
it is simply the Fourier transform,

A(ω) =
∞∫

0

f (t)eiωt dt . (15.90)

If signal-to-noise ratio from a single measurement
is insufficient, one can use a sequence of impulses or
a noise source, which is equivalent to a random succes-
sion of short pulses. In addition to many professional
systems, relatively inexpensive PC-based versions us-
ing sound cards have been developed for researchers
and instrument makers, such as the WinMLS system by
Morset [15.108].

Laser Holography
Admittance measurements at the bridge provide detailed
information on the frequencies, damping and effec-
tive masses of the normal modes of vibration of an
instrument, but provide no information on the nature
of the modes excited. Laser holography, which is es-
sentially the modern-day equivalent of Chladni plate
measurements, enables one to visualise the vibrational
modes of stringed and percussion instruments. In such
measurements, photographs or real-time closed-circuit
television images of the interference patterns of laser
light reflected from a stationary mirror and from the
vibrating object are recorded. Using photographic or
electronic/software reconstruction of the original image
from the recorded holograms, a 3-D image of the vi-
brating surface is formed with superimposed contours
indicating lines of equal vibrational amplitude, as al-
ready illustrated for a number of prominent guitar modes
in Fig. 15.56.

Recent developments in laser and electronic data-
acquisition technology allow one to record such
interferograms electronically and to display them in
real time on a video monitor (for example, Saldner
et al. [15.109]). To record the shapes of individual vi-
brational modes of an instrument excited by a sinusoidal
force, care has to be taken to avoid contamination from
neighbouring resonances, by judicious placing of the
force transducer (e.g. placing it at a node of an unwanted
mode). Cremer ([15.29], Chap. 12) reproduces an inter-
esting set of holograms by Jansson et al. [15.110] for
the front plate of a violin at various stages of its con-
struction, before and after the f-holes are cut, before and
after the bass-bar is added and with a soundpost sup-
ported on a rigid back plate. These highlight the major
effect of the f-holes and soundpost on the modal shapes
and frequencies, but the relatively small influence of
the bass-bar, consistent with the FEA computations by
Roberts [15.103] referred to earlier. However, the bass
bar strengthens the coupling between the island area be-
tween the f-holes and the larger radiating surfaces of
the top plate and therefore has a strong influence on the
intensity of radiated energy.

With modern intense pulsed laser sources, one can
also investigate the transient response of instruments
using single pulses. For example, Fletcher and Rossing
([15.5], Fig.10.15) reproduce interferograms of the front
and back plate of a violin by Molin et al. [15.111, 112],
which illustrate flexural waves propagating out from the
feet of the bridge on the front face and from the end
of the soundpost on the back plate at intervals from
100–450 µs after the application of a sharp impulse at
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the bridge. Holograms can even be recorded while the
instrument is being bowed [15.111, 112].

Modal Analysis
Modal analysis measurements have been extensively
used to investigate the vibrational modes of the vi-
olin, guitar, the piano soundboards and many other
stringed and percussion instruments (Chap. 28). Briefly,
the method involves applying a known impulse at one
point and measuring the response at a large number of
other points on the surface of an instrument, which al-
lows one to determine both the modal frequencies and
the vibrations at all points on the surface. The Fourier
transform of the impulse response is directly related to
the nonlocal admittance, which in terms of the normal
modes excited can be written as

A(r1, r2, ω) = iω
∑

n

1

mn

ψn(r1)ψn(r2)

ω2
n −ω2 + iωωn/Qn

,

(15.91)

where ψn(r1)ψn(r2) is the product of the wavefunctions
describing the displacements at the measurment and ex-
citation points normalised to the product at the point
of maximum displacement, and mn is now the effec-
tive mass of the normal mode at its point of maximum
amplitude of vibration (i. e. K Emax = 1/2mnω2ψ2

n |max).
An FFT of the recorded transient response will give
peaks in the frequency response, which can be decom-
posed into contributions from all the excited normal
modes. By keeping the point of excitation fixed and
moving the measurement point, one can record the am-
plitude and phase of the induced motion for a specific
mode and, using the spatial dependence in (15.91), can
map out the nodal waveform. Alternatively, one can
keep the measurement point fixed and apply the im-
pulse over the surface of the structure to derive similar
information.

One of the first detailed modal analysis investiga-
tions of the violin was made by Marshall [15.93], who
used a fixed measurement point on the top plate of the
violin near the bass-side foot of the bridge with a force
hammer providing calibrated impulses at a large num-
ber of points over the surface of the violin. From the
FFT of the resultant transient responses, the amplitudes
and phases of the excited normal modes of the violin
involving all its component parts including the body
shell, neck, fingerboard and tailpiece could be deter-
mined. Marshall identified and characterised around 30
normal modes below ≈1 kHz. Many of the modes in-
volved the relatively low-frequency flexing and twisting
of the instrument as a whole. However, because such

modes involved little appreciable change in overall vol-
ume of the shell of the instrument structure, they resulted
in little radiated sound. Nevertheless, it was suggested
that such modes might well play an important role for
the performer in determining the feel of the instrument
and its playability.

In any physical measurement, the instrument has
to be supported in some way. Rigid supports introduce
additional boundary conditions, which can significantly
perturb the normal modes of the instrument. Many meas-
urements are made with the instrument supported by
rubber bands, which provide static stability without sig-
nificant perturbation of the higher-frequency structural
modes. However, Marshall [15.93] showed that, when
an instrument is held and supported by the player un-
der the chin, the damping of many of the normal modes
was significantly increased, which will clearly affect
the sound of the instrument when played. This obser-
vation has also been confirmed in more recent modal
analysis measurements by Bissinger [15.94] and by di-
rect measurements of the decaying transient sound of
a freely and conventionally supported violin by the
present author [15.18].

Bissinger [15.106] has made extensive admittance,
modal analysis and sound radiation measurements on
a large number of instruments. Measurements were
made using impulsive excitation at the bridge and a laser
Doppler interferometer to record the induced veloci-
ties at over 550 points on the surface of the violin.
Simultaneous measurements of the overall radiation and
directivity were made using 266 microphone positions
over a complete sphere. Figure 15.63 shows cross sec-
tions illustrating the displacements associated with four
low frequency modes. The 159 Hz mode
involves major vibrations of the neck, fingerboard, tail-
piece and body of the instrument. The second example
at 281 Hz illustrates the body displacements
associated with the Helmholtz air resonance. The mode

159 Hz

281 Hz 425 Hz 480 Hz

Fig. 15.63 Modal analysis measurements illustrating the
displacements associated with four representative low-
frequency modes of a violin (data provided by Bissinger)
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at 425 Hz illustrates a mode with asymmet-
ric in-phase vibrations of the front and back plates,
with little net volume change and hence little radiated
sound, while the mode at 480 Hz is a strong
breathing mode.

By combining the modal analysis and radiativity
measurements, Bissinger has shown that the radia-
tion efficiency of the plate modes (i. e. the fraction of
sound energy radiated by the violin relative to a baf-
fled piston of the same surface area having the same
root mean square surface velocity displacement) rises
to nearly 100% at a critical frequency of ≈2–4 kHz,
when the wavelength of the flexural vibrations of the
plates matches that of sound waves in air. Little ap-
parent correlation was observed between the perceived
quality of the measured violins and the frequencies
and strengths of prominent structural resonances be-
low ≈1 kHz or with the internal damping of the front
and back plates. This runs contrary to the general
view of violin makers that the front and back plates
of a fine violin should be made of wood with a very
long ringing time when tapped. Interestingly, the Amer-
ican violin maker Joseph Curtin has also observed that
individual plates of old Italian violins often appear to
be more heavily damped than their modern counter-
parts [15.113]. This is clearly an area that merits further
research.

15.2.8 Radiation and Sound Quality

As already emphasised, at low frequencies, when the
acoustic wavelength is smaller than the size of an in-
strument, the radiated sound is dominated by isotropic
monopole radiation. As the frequency is increased,
higher-order dipole and then quadrupole radiation be-
come progressively important, while above the critical
frequency, when the acoustic wavelength is shorter than
the that of the flexural waves on the shell of an in-
strument, the radiation patterns become increasingly
directional, so that it is no longer appropriate to consider
the radiation in terms of a multipole expansions.

Fletcher and Rossing ([15.5], Fig. 10.30) repro-
duce measurements on both the violin and cello by
Meyer [15.114], which highlight the increasing di-
rectionality of the sound produced with increasing
frequency and the rather strong masking effect of the
player at high frequencies. More recently, Weinreich
and Arnold [15.115,116] have made detailed theoretical
and experimental studies of multipole radiation from the
freely suspended violin at low frequencies (typically be-
low 1 kHz). Interestingly, they made use of the principle
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Fig. 15.64 Plots of the root-mean-square (rms) mobility
〈Y〉 (m/sN) averaged over the surface of the front and back
plate (solid shaded region) and ribs (white curve) of the in-
strument, the radiativity 〈R〉 (Pa/N) averaged over a sphere,
and directivity 〈D〉, the ratio of forward to backward radia-
tion averaged over hemispheres. The top arrows represent
the positions of the open-string resonances and their par-
tials. A0 is the position of the Helmholtz air resonance and
A1 the first internal cavity air resonance, CBR is a strong
corpus bending mode and B1 and B2 are the two strong
structural normal mode resonances of the coupled front
and back plates (data kindly supplied by Bissinger)

of acoustic reciprocity, based on the fact that the ampli-
tude of vibration at the top of the bridge produced by
incoming sound waves is directly related to the sound ra-
diated by a force applied to the violin at the same point.
The violin was radiated by an array of loudspeakers to
simulate incoming spherical or dipole sound fields and
the induced velocity at the bridge recorded by a very
light gramophone pick-up stylus.

Hill et al. [15.117] have used direct measurements
to investigate the angular dependence of the sound
radiated by a number of high-quality modern acous-
tic guitars with different cross-strutting, when excited
by a sinusoidal force at the bridge. From such meas-
urements, they were able to derive the fraction of sound
radiated as the dominant monopole and dipole (with
components in three directions) radiation, in addition
to effective masses and Q-values, for a number of
prominent modes up to ≈600 Hz. Significant differences
were observed for the three different strutting schemes
investigated.
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Bissinger [15.118] has made an extensive inves-
tigation of radiation from both freely supported and
hand-held violins, including measurements above 1 kHz,
where the multimodal radiation expansion is no longer
appropriate. Bissinger correlates the sound radiated over
a large number of points on a sphere surrounding
the violin with measurements of the input admittance
at the bridge and the induced surface velocities over
the whole violin structure. Figure 15.64 shows a typ-
ical set of simultaneous measurements up to 1 kHz.
Although the low-frequency Helmholtz resonance con-
tributes strongly to the radiated sound, it results in
a relatively small feature on the mobility curves for the
body of the instrument (or on the measured admittance
at the bridge, not shown). Bissinger was unable to find
any significant correlation between the frequencies and
Q-values of the prominent signature modes excited (see,
for example, Jansson [15.119]) below ≈ 1 kHz and the
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Fig. 15.65 Ratio of sound intensities along neck and per-
pendicular to front plate for four violins of widely different
qualities (after Weinreich [15.120])

perceived quality of the instruments investigated. Above
≈ 1 kHz the modes strongly overlap, so that it becomes
more appropriate to compare the frequency averaged
global features. The measurements show that the frac-
tion of mode energy radiated increases monotonically
from close to zero at low frequencies up to around almost
100% efficient at 4 kHz and above, where almost all the
energy is lost by radiation rather than internal damping.
The ultimate aim of these detailed modal analysis stud-
ies is to correlate the measured acoustical properties with
the results obtained from finite-element analysis and
to produce sufficient information about the acoustical
properties that might allow a more realistic comparison
between physical properties and the properties of an in-
strument judged from their perceived sound quality and
playability.

Directional Tone Colour
Although the acoustic power radiated averaged over
a given frequency range is clearly an important signa-
ture of the sound of a particular instrument, the intensity
at a particular frequency in the important auditory range
above 1 kHz can vary wildly from note to note. This
is illustrated in Fig. 15.65 by Weinreich [15.120], which
compares the intensities of radiated sound in an anechoic
chamber along the direction of the neck and perpendic-
ular to the front plate for four violins of widely differing
quality, with 0 dB representing an isotropic response.
Above around 1 kHz, the wavelengths of flexural waves
on the plates of the instrument become comparable with
the wavelength of the radiated sound. This leads to
strong diffraction effects in the radiated sound, which
fluctuate wildly with direction as different modes are
preferentially excited. At a particular point in the lis-
tening space, the spectral content of the bowed violin
therefore varies markedly from note to note, as will the
sound within a single note played with vibrato resulting
in frequency modulation. The spectral content will also
vary from position to position around the violin, espe-
cially if the player moves whilst playing. Weinreich has
emphasised the importance of such effects in producing
a greater sense of presence and vibrancy in the per-
ceived sound from a violin than would be produced by
a localised isotropic sound source, such as a small loud-
speaker. Weinreich has coined the term directional tone
colour to describe such effects. He has also designed
a loudspeaker system based on the same principles,
which gives a greater sense of realism to the sound of
the recorded violin than a simple loudspeaker.

In addition to the intrinsic directionality of the vio-
lin, the time-delayed echoes from the surrounding walls

Part
E

1
5
.2



600 Part E Music, Speech, Electroacoustics

of a performing space also have a major influence on
the complexity of the sound waveforms produced by
a violin (or any other instrument) played with vibrato,
as first noted by Meyer [15.121]. This arises from the
interference between the different frequencies associ-
ated with the prompt sound reaching the listener (or
microphone) and the sound generated at earlier times
reflected from the surrounding surfaces. As discussed
by the present author (Gough [15.18]), the additional
complexity is largely a dynamic effect associated with
the time-delayed interference between signals of dif-
ferent frequencies rather than caused by the amplitude
modulation of individual partials associated with the
multi-resonant response of the violin, first highlighted
by Fletcher and Sanders [15.122] and Matthews and
Kohut [15.123].

Perceived Quality
No problem in musical acoustics has attracted more at-
tention or interest than the attempts made over the last
150 or so years to explain the apparent superiority of old
Cremonese violins, such as those made by Stradivarius
and Guarnerius, over their later counterparts, which have
often been near exact copies. Many explanations have
been proposed – a magic recipe for the varnish, chemical
treatment of the wood and finish of the plates prior to
varnishing [15.124], the special quality of wood result-
ing from micro-climate changes [15.125], etc. However,
despite the committed advocacy for particular explana-
tions by individuals, there is, as yet, little agreement
between researchers, players or dealers on the acousti-
cal attributes that distinguish a fine Italian violin worth
$1M or more from that of a $100 student instrument.

From a physicist’s point of view, given wood of the
same quality as that used by the old Italian makers, there
is no rational reason why a modern violin should not be
just as good from an acoustic point of view as the very
best Italian instrument. We have already commented on
Martin Schleske’s attempts to replicate the sounds of fine
Italian instruments, by making tonal copies having as
near as possible the same acoustical properties [15.107].
In addition, we have also highlighted Dünnewald’s at-
tempt to correlate the physical properties of well over
200 violins with their acoustical properties [15.73], in-
cluding the comparison of selected student, modern and
master violins reproduced in Fig. 15.62. Such studies ap-
pear to show a correlation between the amount of sound
radiation in the acoustically important range around
3–4 kHz. As we have emphasized, this is just the re-
gion where the resonant properties of the bridge have
a major influence on the spectrum.

It must also be remembered that the changed design
of the bridge, the increase in string tension, higher pitch,
increased size of the bass-bar, neck and soundpost, and
the use of metal-covered rather than gut strings have
resulted in a modern instrument sounding very differ-
ent from the instruments heard by the 17th and early
18th century maker and performer. Even amongst the
violins of the most famous Cremonese luthiers, indi-
vidual instruments have very different distinctive tones
and degrees of playability, particular as judged by the
player. The gold standard itself is therefore very elusive.
What is currently and may always be lacking is reli-
able measurements on the individual plates and shells
of a large number of really fine instruments. We still
largely rely on a small number of measurements per-
formed by Savart in the nineteenth century and a few
measurements by Saunders in the 1950s on which to
base scientific guidelines for modern violin makers.

Performance Acoustic
It should also be recognised that, when a violin (or any
other instrument) is played, the performer excites not
only the vibrational modes of the instrument but also the
multi-resonant normal modes of the performance space.
Whereas the sound heard by a violinist is dominated by
the sound of the violin, for the listener the acoustics of
the performance space can dominate the timbre and qual-
ity of the perceived sound. To distinguish between the
intrinsic sound qualities of violins, comparisons should
presumably best be made in a rather dry acoustic, even
though such an acoustic is generally disliked by the per-
former (and listener), who appreciates the improvement
in sound quality provided by a resonant room acoustic.

One cannot review progress towards our understand-
ing of what makes a good violin without recognising
the inspiration and enthusiastic leadership of Carleen
Hutchins, the doyenne and founder of the Catgut So-
ciety and scientific school of violin making, which has
attracted many followers world-wide. By matching the
frequencies and shapes of the first few modes of free
plates before they are assembled into the completed
instrument (Fig. 15.55), the scientific school of violin
makers clearly achieve a high degree of quality con-
trol, which goes some way towards compensating for
the inherent inhomogeneities and variable elastic prop-
erties of the wood used to carve the plates. However,
in practice, there is probably just as much variability in
the sound of such instruments as there is in instruments
made by more traditional methods, where makers tap,
flex and bend the plates until they feel and sound about
right, this being part of the traditional skills handed down
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from master to apprentice even today. That is certainly
the way that the Italian masters must have worked, with-
out the aid of any scientific measurements beyond the
feel and the sound of the individual plates as they are
flexed and tapped.

Scientific Scaling
The other interesting development inspired by Carleen
Hutchins and her scientific coworkers Schelling and
Saunders has been the development of the modern vi-
olin octet [15.126], a set of eight instruments designed
according to physical scaling laws based on the premise
that the violin is the most successful of all the bowed
stringed instruments. The aim is to produce a consort
of instruments all having what are considered to be
the optimised acoustical properties of the violin. Each

member of the family is therefore designed to have
the frequencies of the main body and Helmholtz res-
onances in the same relationship to the open strings as
that on the violin, where the Helmholtz air resonance
strongly supports the fundamental of notes around the
open D-string, while the main structural resonances sup-
port notes around the open A-string and the second and
generally strongest partial of the lowest notes played on
the G-string. Several sets of such instruments have been
constructed and admired in performance, though not
all musicians would wish to sacrifice the diversity and
richness of sounds produced by the different traditional
violin, viola, cello and double bass in a string quartet
or orchestra. Nevertheless, the scaling methods have
led to rather successful intermediate and small-sized
instruments.

15.3 Wind Instruments

In this section we consider the acoustics of wind
instruments. These are traditionally divided into the
woodwind, played with a vibrating reed or by blowing
air across an open hole or against a wedge, and brass in-
struments, usually made of thin-walled brass tubing and
played by buzzing the lips inside a metal mouthpiece
attached to the input end of the instrument.

In general, the playing pitch of woodwind instru-
ments is based on the first two modes of the resonating
air column, with the pitch changed by varying the effec-
tive length by opening and closing holes along its length.
In contrast, brass players pitch notes based on a wide
range of modes up to and some times beyond the 10th.
The effective length of brass instruments can be changed
by sliding interpenetrating cylindrical sections of tub-
ing (e.g. the trombone) or by a series of valves, which
connect in additional length of tubing (e.g. trumpet and
French horn). The pitch of many other instruments, such
as the organ, piano-accordion and harmonium, is deter-
mined by the resonances of a set of separate pipes or
reeds to excite the full chromatic range of notes, rather
like the individual strings on a piano.

A detailed discussion of the physics and acousti-
cal properties underlying the production of sound in
all types of wind instruments is given by Fletcher
and Rossing [15.5], which includes a comprehensive
list of references to the most important research lit-
erature prior to 1998. As in many fields of acoustics,
Helmholtz [15.127] and Rayleigh [15.3] laid the founda-
tions of our present-day understanding of the acoustics
of wind instruments. In the early part of the 20th century,

Bouasse [15.128] significantly advanced our under-
standing of the generation of sound by the vibrating reed.
More recently, Campbell and Greated [15.129] have
written an authoritative textbook on musical acoustics
with a particular emphasis on musical aspects, including
extensive information on wind and brass instruments.
Recent reviews by Nederveen [15.130] and Hirschberg
et al. [15.131] provide valuable introductions to recent
research on both wind and brass instruments. Ear-
lier texts by Backus [15.132] and Benade [15.133],
both leading pioneers in research on wind-instrument
acoustics, provide illuminating insights into the physics
involved and provide many practical details about the
instruments themselves. A recent issue of Acta Acus-
tica [15.134] includes a number of useful review articles,
especially on problems related to the generation of sound
by vibrating reeds and air jets and on modern methods
used to visualise the associated air motions. For a mathe-
matical treatment of the physics underlying the acoustics
of wind instruments, Morse and Ingard [15.135] remains
the authoritative modern text. Other important review
papers will be cited in the appropriate sections, and se-
lected publications will be used to illustrate the text,
without attempting to provide a comprehensive list of
references.

We first summarise the essential physics of sound
propagation in air and simple acoustic structures before
considering the more complicated column shapes used
for woodwind and brass instruments. An introduction
is then given to the excitation of sound by vibrating
lips and reeds, and by air jets blown over a sharp edge.
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The physical and acoustical properties of a number of
woodwind and brass instruments will be included to
illustrate the above topics.

A brief introduction to freely propagating sound in
air was given in Sect. 15.1.3. In this section, we will be
primarily concerned with the propagation of sound in
the bores of wind and brass instruments, the excitation
of standing-wave modes in such bores, the mechanics
involved in the excitation of such modes and the resultant
radiation of sound.

15.3.1 Resonances in Cylindrical Tubes

Standing waves in cylindrical tubes with closed or open
ends provide the simplest introduction to the acoustics of
wind instruments. For example, the flute can be consid-
ered as a first approximation as a cylindrical tube open
at both ends, while the clarinet and trombone are closed
at one end by the reed or the player’s lips. For a cylin-
drical pipe open at both ends, wave solutions are of the
general form

pn(x, t) = A sin(kx x) sin(ωnt) , (15.92)

with the acoustic pressure zero at both ends. Neglecting
end-corrections, open ends are therefore displacement
antinodes and pressure nodes. These boundary con-
ditions result in eigenmodes with kn = nπ/L and
ωn = nc0π/L , where L is the length of the pipe and
n is an integer.

Such modes are closely analogous to the transverse
standing-wave solutions on a stretched string having n
half-wavelengths along the length L and a harmonic set
of frequencies fn = nc0/L , which are integral multi-
ples of the fundamental (lowest) frequency f1 = c0/2L .
When a cylindrical pipe open at both ends, such as a flute,
is blown softly, the pitch is determined by the funda-
mental mode, but when it is overblown the frequency
doubles, with the pitch stabilising on the second mode
an octave above (audio ).

A cylindrical pipe played by a reed or vibrating lips
has a pressure antinode and displacement node at the
playing end. This results in standing-wave solutions
with an odd number of 1/4-wavelengths between the
two ends, such that kn = nπ/4L , where n is now lim-
ited to odd integer values. The corresponding modal
frequencies, ωn = nπ/4L , are therefore in the ratios
1:3:5:7: etc. The lowest note on the cylindrical bore
clarinet, closed at one end by the mouthpiece, is there-
fore an octave below the lowest note on a flute of the
same length. Furthermore, when overblown, the clarinet
sounds a note three times higher than the fundamental,

musical interval of an octave plus a perfect fifth (au-
dio ). The weak intensity of the even-n-value
modes in the spectrum accounts for the clarinet’s char-
acteristic hollow sound, particularly for the lowest notes
on the instrument.

Real Instruments
For real wind and brass instruments, the idealised model
of cylindrical tube resonators is strongly perturbed by
a number of important factors. These include:

1. the shape of the internal bore of an instrument, which
is often non-cylindrical including conical and often
flared tubes with a flared bell on the radiating end,

2. the finite terminating impedance of the reed or
mouthpiece used to excite the resonances, no longer
providing a perfect displacement node,

3. radiation of sound from the end of the instrument,
which is therefore no longer a perfect displacement
antinode,

4. viscous and thermal losses to the walls of the instru-
ment,

5. open and shut tone holes in the sides of wind instru-
ments used to vary the pitch of the sounded note,
and

6. bends and valves along the length of brass in-
struments, connecting additional lengths of tubing,
which allow the player to play all the notes of
a chromatic scale within the playing range of the
instrument.

The skill of wind-instrument makers lies in their
largely intuitive understanding of the way that changes
in bore shape and similar factors affect the resonant
modes of an instrument. This allows the design of in-
struments that retain, as closely as possible, a full set of
harmonic resonances across the whole playing range of
the instrument. This facilitates the stable production of
continuous notes by the player, as the resulting harmonic
set of Fourier components or partials coincide with the
natural resonances of the instrument. For brass instru-
ments with a flaring end this can often be achieved for
all but the lowest natural resonance of the air column.

In discussing the acoustics of wind instruments with
variable cross-sectional area S, the flow rate U = Sv is
a more useful parameter than the longitudinal particle
velocity v. For example, the force acting on an element
of air of length ∆x along the bore length of an air column
is then given by

−S
∂p

∂x
∆x = ρS

∂v

∂t
∆x = ρ

∂U

∂t
∆x . (15.93)
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For travelling waves,ei(ωt±kx), this results in a ratio be-
tween the pressure and flow rate, defined as the tube
impedance

Z = p

U
= ±ρc0

S
, (15.94)

where the plus and minus signs refer to waves travelling
in the positive and negative x-directions, respectively.
There is a very close analogy with an electrical trans-
mission line, with pressure and flow rate the analogue
of voltage and current, as discussed later. Because the
impedance is inversely proportional to area, it can be
appreciably higher at the input end of a brass or wind
instrument than at its flared output end. The flared bore
of a brass instrument or the horn on an old wind-up
gramophone can therefore be considered as an acoustic
transformer, which improves the match between the high
impedance of the vibrating source of sound to the much
lower impedance presented by air at the end of the in-
strument. There is clearly an optimum matching, which
enhances the radialed sound without serious degredation
of the excited resonant modes.

Acoustic Radiation
In elementary textbook treatments, the pressure at the
end of an open pipe is assumed to be zero and the flow
rate a maximum, so that Zclosed = p/U = 0. However,
in practice, the oscillatory motion of the air extends
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Fig. 15.66 Real and imaginary components of f , the
impedance at the unbaffled open end of a cylindrical tube
of radius a, in units of ρc0/πa2, as a function of ka (after
Beranek [15.136])
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Fig. 15.67 Polar plots of the intensity radiation from the
end of a cylindrical pipe of radius a for representative ka
values, calculated by Levine and Schwinger [15.137]. The
radial gradations are in units of 10 dB. The intensities in the
forward direction (θ = 0) relative to those of an isotropic
source are 1.1, 4.8 and 11.8 dB (Beranek [15.136])

somewhat beyond the open end, providing a pulsating
source that radiates sound, as described by Rayleigh
([15.3] Vol. 1, Sect. 313). Such effects can be described
by a complex terminating load impedance, ZL = R+ jx.
Figure 15.66 shows the real (radiation resistance) R and
imaginary (inertial end-correction) x components of ZL
as a function of ka, where a is the radius of the open-
ended pipe. The impedance is normalised to the tube
impedance pc0/πa2.

When ka � 1, the reactive component is propor-
tional to ka and corresponds to an effective increase in
the tube length or end-correction of 0.61a. At low fre-
quencies, the real part of the impedance represents the
radiation resistance Rrad = ρc/4S(ka)2. In this regime,
the sound will be radiated isotropically as a monopole
source of strength U eiωt , illustrated in Fig. 15.67 by the
polar plots of sound intensity as a function of angle and
frequency.

When ka is of the order of and greater than unity,
the real part of the impedance approaches that of a plane
wave acting across the same area as that of the tube.
Almost all the energy incident on the end of the tube is
then radiated and little is reflected. For ka � 1, sound
would be radiated from the end of the pipe as a beam
of sound waves. The transition from isotropic to highly
directional sound radiation is illustrated for a sequence
of ka values in Fig. 15.67. The ripples in the impedance
in Fig. 15.66 arise from diffraction effects, when the
wavelength becomes comparable with the tube diameter.

For all woodwind and brass instruments, there is
therefore a crossover frequency fc ∼ c0/2πa, below
which incident sound waves are reflected at the open
end to form standing waves. Above fc waves generated
by the reed or vibrating lips will be radiated from the
ends of the instrument strongly with very little reflec-
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tion. Narrow-bore instruments can have a large number
of resonant modes below the cut-off, while instruments
with a large output bell, like many brass instruments,
have far fewer.

For a narrow-bore cylindrical bore wind instrument
with end radius a ≈ 1 cm, the cut-off frequency (ka ≈ 1)
is ≈ 5.5 kHz. Below this frequency the instrument will
support a number of relatively weakly damped resonant
modes, which will radiate isotropically from the ends
of the instrument or from open holes cut in its sides.
In contrast, for brass instruments the detailed shape and
size ot the flared end-bell determines the cut-off fre-
quency. The large size of the bell leads to an increase
in intensity of the higher partials and hence brilliance
of tone-color, especially when the bell is pointed di-
rectly towards the listener. For French horns, much of

Input impedance

Excitation frequency
0 2000

c0/Ain

1000

Input impedance

Excitation frequency
0 20001000

ρ

Fig. 15.68 Input impedance of a length of 1 cm diameter
trumpet tubing with and without a bell attached to the output
end (after Benade [15.133])

the higher-frequency sound is therefore projected back-
wards relative to the player, unless there is a strongly
reflecting surface behind.

For ka � 1, the open end of a musical instrument acts
as an isotropic monopole source with radiated power P
given by

P = U2
rms Rrad = ω2 ρ

8πc
(Sωξ)2 . (15.95)

For a given vibrational displacement, the radiated power
therefore increases with the fourth power of both fre-
quency and radius. This very strong dependence on size
explains why brass instruments tend to have rather large
bells and why high-fidelity (HI-FI) woofer speakers and
the horns of public address loudspeakers tend to be rather
large. Conversely, it explains why the sound of small
loudspeakers, such as those used in PC notebooks, fall
off very rapidly below a few hundred Hz.

Acoustic radiation will lower the height and in-
crease the width of resonances in a cylindrical tube.
The resulting Q-values can be determined from

Q = ω
stored energy

radiated energy

= ω

1
4ρSLω2ξ2

ω4 (ρ/8πc) S2ξ2 = 2πcL/ωS . (15.96)

Narrow-bore instruments will therefore have larger
Q-values and narrower resonances than wide-bore in-
struments such as brass instruments, where the flared
end-sections enhance the radiated energy at the expense
of increasing the net losses.

The increased damping introduced by radiation from
the end of an instrument is illustrated in Fig. 15.68,
which compares the resonances of a length of 1 cm-
diameter trumpet tubing, first with a normal open
end and then with a bell attached (Benade [15.132],
Fig. 20.4). Attaching a bell to such a tube dramatically
increases the radiated sound from the higher partials and
perceived intensity, but at the expense of a cut-off fre-
quency at around ≈1.5 kHz and a significant broadening
of the resonances at lower frequencies. Audio
demonstrates the sound of a mouthpiece-blown length
of hose pipe with and without a conical chemical filter
funnel attached to its end.

Viscous and Thermal Losses
In addition to radiation losses, there can be significant
losses from viscous damping and heat transfer to the
walls, as discussed in detail in Fletcher and Rossing
([15.5], Sect. 8.2). Although simple models for waves
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propagating along tubes assume a constant particle dis-
placement across the whole cross-section, in reality the
air on the surface of the walls remains at rest. The
particle velocity only attains the assumed plane-wave
constant value over a boundary-layer distance of δη

from the walls. This is determined by the viscosity
η, where δη = (η/ωρ)1/2, which can be expressed as
∼ 1.6/ f 1/2 mm for air at room temperature. At 100 Hz,
δη ∼ 0.16 mm. which is relatively small in comparison
with typical wind-instrument pipe diameters. Neverthe-
less, it introduces a significant amount of additional
damping of the lower-frequency resonances of wind and
brass instruments.

The viscous losses lead to an attenuation of sound
waves, which can be described by adding an imaginary
component to the k value such that k′ = k − iα. Waves
therefore propagate as e−αx ei(ωt−kx), with an attenua-
tion coefficient

α = 1

ac0

√
ηω

2ρ
= kδη

a
. (15.97)

In addition, heat can flow from the sinusoidally vary-
ing adiabatic temperature fluctuations of the vibrating
column of air into the walls of the cylinder. At acoustic
frequencies, this takes place over the thermal diffusion
boundary length δθ = (κ/ωρCp)1/2, where κ is the ther-
mal conductivity and Cp is the heat capacity of the gas
at constant pressure. In practice, δθ ∼ δη, as anticipated
from simple kinetic theory (for air, the values differ
by only 20%). Viscous and heating losses are therefore
comparable in size giving an effective damping fac-
tor for air at room temperature, α = 2.2104k1/2/a m−1

(Fletcher and Rossing [15.5], Sect. 8.2). The ratio of the
real to imaginary components of k determines the damp-
ing and effective Q-value of the acoustic resonances
from wall losses alone, with Qwalls = k/2α.

The combination of radiation and wall losses leads
to an effective Qtotal of the resonant modes given by

1

Qtotal
= 1

Qradiation
+ 1

Qwall-damping
. (15.98)

Because of the different frequency dependencies, wall
damping tends to be the strongest cause of damping of
the lowest-frequency resonances of an instrument. It can
also be significant in the narrow-bore tubes and crooks
used to attach reeds to wind instruments.

Input Impedance
The method used to characterize the acoustical proper-
ties of a wind or brass instrument is to measure the input
impedance Zin = pin/Uin at the mouthpiece or reed end

of the instrument. Such measurements are frequently
made using the capillary tube method. This involves
connecting an oscillating source of pressure fluctuations
to the input of the instrument through a narrow-bore
tube. This maintains a constant oscillating flow of air
into the instrument, which is largely independent of the
frequency-dependent induced pressure fluctuations at
the input of the instrument. Several examples of such
measurements, similar to those for the length of trumpet
tubing (Fig. 15.68), for woodwind and brass instruments
are shown and discussed by Backus [15.132] and Be-
nade [15.133], who pioneered such measurements, and
in Fletcher and Rossing ([15.5], Chap. 15). Alterna-
tively, a piezoelectric driver coupled to the end of the
instrument can provide a known source of acoustic
volume flow.

The input impedance of a cylindrical tube is a func-
tion of both the tube impedance Z0 = ρc0/S and the
terminating impedance ZL at its end. It can be calculated
using standard transmission-line theory, which takes into
account the amplitude and phases of the reflected waves
from the terminating load. The reflection and transmis-
sion coefficients R and T for a sound wave impinging
on a terminating load ZL are given by

R = ZL − Z0

ZL + Z0
and T = 2ZL

ZL + Z0
. (15.99)

Real and imaginary components of Z in

2kL /π
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Fig. 15.69a,b Real and imaginary components of the in-
put impedance in units of Z0 as a function of 2kL/π for
(a) an ideally open-ended, ZL = 0, cylindrical tube with
wall losses varying as k1/2, and (b) the same components
shifted downwards for a pipe with radiation resistance
proportional to k2 also included
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Fig. 15.70 The modulus of the input impedance plotted on
a logarithmic scale of cylindrical pipe with wall damping
alone and with additional radiative damping as a function
of k in units of π/2

For a cylindrical tube of length L , the input impedance
is given by

Zin = Z0
ZL cos kl + iZ0 sin kl

iZL sin kl + Z0 cos kl
, (15.100)

with complex k values k − iα, if wall losses need to be
included.

In Fig. 15.69 we have plotted the kL dependence
of the real and imaginary components of the input
impedance of an open-ended cylindrical pipe. The upper
plot includes wall losses alone proportional to k1/2 while
the lower plot includes losses from the end of the instru-
ment with radiation resistance Re(ZL) varying as k2.
The input impedance is high when kn = nc0/4L , where
n is an odd integer. The input impedance is a minimum
when n is even.

It is instructive to consider the magnitude of the
input impedances on a logarithmic scale, as shown in
Fig. 15.70. When plotted in this way, the resonances and
anti-resonances are symmetrically placed about the tube
impedance Z0. The magnitude of the impedance of the
nth resonance is Qn Z0, where Qn is the quality factor of
the excited mode. In contrast the anti-resonances have
values of Z0/Q. The widths ∆ω/ω of the modes at half
or double intensity are given by 1/Qn .

For efficient transfer of sound, the input impedance
of a wind instrument has to match the impedance of the
sound generator. For instruments like the flute, recorder
and pan pipes, sound is excited by imposed fluctua-
tions in air pressure across an open hole, so that the

generator impedance is small. The resonances of such
instruments are therefore located at the minima of the
anti-resonance impedance dips, corresponding to the
evenly spaced resonances, fn = nc0/2L , of a cylindri-
cal tube with both ends open. In contrast, for all the
brass instruments and woodwind instruments played
by a reed, the playing end of the tube is closed by
a relatively massive generator (the lips or reed). Res-
onances then occur at the peaks of the input impedance
with frequencies fn = nc0/4L , where n is now an
odd integer, corresponding to the resonances of a tube
closed at one end. If we had plotted the magnitude of
the input admittance, A(ω) = 1/Z(ω), instead of the
impedance, the positions of the resonances and anti-
resonances would have been reversed. The resonant
modes of a double-open-ended wind instrument there-
fore occur at the peaks of the input admittance, whereas
the resonant modes of wind or brass instruments played
with a reed or mouthpiece are at the peaks of the
input impedance. This is a general property of wind
instruments, whatever the size or shape of their internal
bores.

15.3.2 Non-Cylindrical Tubes

Although there are simple wind instruments with cylin-
drical bores along their whole length, the vast majority
of modern instruments and many ancient and ethno-
logically important instruments have internal bores that
flare out towards their ends. One of the principle reasons
for such flares is that they act as acoustic transformers,
which help to match the high impedance at the mouth-
piece to the much lower radiation impedance of the
larger-area radiating output end. However, increasing
the fraction of sound radiated decreases the amplitude
of the reflected waves and hence the height and sharp-
ness of the natural resonances of the air resonances. In
addition, the shape of the bore can strongly influence
the frequencies of the resonating air column, which
destroys the harmonicity of the modes. This makes
it more difficult for the player to produce a contin-
uous note that is rich in partials, since any repetitive
waveform requires the excitation of a harmonic set of
frequencies.

Conical Tube
We first consider sound propagation in a conical tube, ap-
proximating to the internal bore of the oboe, saxophone,
cornet, renaissance cornett and bugle. If side-wall inter-
actions are neglected, the solutions for wave propagation
in a conical tube are identical to those of spherical wave
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propagating from a central point. Such waves satisfy
the wave equation, which may be written in spherical
coordinates as

∇2 (r p) = 1

c2
0

∂2 (r p)

∂t2
. (15.101)

We therefore have standing-wave solutions for r p that
are very similar to those of a cylindrical tube, with

p = C
sin kr

r
eiωt . (15.102)

Note that the pressure remains finite at the apex of the
cone, r = 0, where sin(kr)/r → k. For a conical tube
with a pressure node p = 0 at the open end, we there-
fore have standing wave modes with kn L = nπ and
fn = nc0/2L , where n is any integer. The frequencies of
the excited modes are therefore identical to the modes
of a cylindrical tube of the same length that is open at
both ends. The lowest note at f1 = c0/2L for a conical
tube instrument with a reed at one end (e.g. the oboe and
saxophone) is therefore an octave above a reed instru-
ment of the same length with a cylindrical bore (e.g. the
clarinet) with a fundamental frequency of c0/4L .

The flow velocity U is determined by the accelera-
tion of the air resulting from the spatial variation of the
pressure, so that

ρ
∂U

∂t
= ∂(r2 p)

∂r
= C (sin kr + kr cos kr) eiωt .

(15.103)

Figure 15.71 illustrates the pressure and flow velocity
for the n = 5 mode of a conical tube. Unlike the modes
of cylindrical tube, the nodes of U no longer coincide
with the peaks in p, which is especially apparent for
the first few cycles along the tube. Furthermore, the
amplitude fluctuations increase with distance r from the
apex (∼ r), whilst the fluctuations in pressure decrease
≈ 1/r. A conical section therefore acts as an acoustic
transformer helping to match the high impedance at the
input mouthpiece end to the low impedance at the output
radiating end.

Attaching a mouthpiece or reed to the end of a con-
ical tube requires truncation of the cone, which will
clearly perturb the frequencies of the harmonic modes.
However, using a mouthpiece or reed unit having the
same internal volume as the volume of the truncated
section removed will leave the frequencies of the lowest
modes unchanged. Only when the acoustic wavelength
becomes comparable with the length of truncated section
will the perturbation be large.
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Fig. 15.71 Pressure and flow velocity of the n = 5 mode
along the length of a conical tube

Fletcher and Rossing ([15.5], Sect. 8.7) consider the
physics of the truncated conical tube and give the input
impedance derived by Olson [15.139]

Zin = ρc0

S1

iZL

(
sin(kL−θ2)

sin θ2

)
+
(

ρc0
S2

)
sin kL

ZL
sin(kL+θ1−θ2)

sin θ1 sin θ2
+ j
(

ρc0
S2

)
sin(kl+θ1)

sin θ1

,

(15.104)

where x1 and x2 are the distances of the two ends from
the apex of the truncated conical section. The length L =
x2 − x1, the end areas are S1 and S2, with θ1 = tan−1 kx1
and θ2 = tan−1kx2.

R
es

on
an

t f
re

qu
en

ci
es

Input/output diameters
0.01 1.0

4

3

2

1

0.1
Input/output diameters

0.01 1.00.1

a) b)

Fig. 15.72a,b The first four resonant frequencies of trun-
cated cones with (a) both ends open, and (b) the input end
closed, as a function of the ratio of their input to output
diameters (after Ayers et al. [15.138])
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For a cone with ZL = 0 at the open end, (15.104)
reduces to

Zin = − j
ρc0

S1

sin kL sin θ1

sin(kL + θ1)
, (15.105)

which is zero for kL = nπ. The resonant frequencies of
truncated cones with both ends open are therefore inde-
pendent of cone angle and are the same as the equally
spaced harmonic modes of a cylinder of the same length
with both ends open, as shown in Fig. 15.72a. In con-
trast, the resonant frequencies of a truncated cone with
one end closed (e.g. by the reed of an oboe or saxophone
or mouthpiece of a bugle) are strongly dependent on the
cone angle or ratio of input to output diameter, as shown
in Fig. 15.72b, adapted from Ayers et al. [15.138]. As
the ratio of input to output diameters of a truncated cone
increases, the modes change from the evenly spaced har-
monics of an open-ended cylinder of the same length, to
the odd harmonics of a cylinder closed at one end. In the
transitional regime, the frequencies of the modes are no
longer harmonically related. This has a significant effect
on the playability of the instrument, as the upper harmon-
ics are no longer coincident with the Fourier components
of a continuously sounded note. However, for an instru-
ment such as the oboe, with a rather small truncated cone
length, the perturbation of the upper modes is relatively
small, as can be seen from Fig. 15.71b.

Cylindrical and non-truncated conical tubes are the
only tubes that can produce a harmonically related set
of resonant modes, independent of their length. Hence,
when a hole is opened in the side walls of such a tube, to
reduce the effective length and hence pitch of the note
played, to first order, the harmonicity of the modes is re-
tained. This assumes a node at the open hole, which will
not be strictly correct, as discussed later in Sect. 15.3.3.

In reality, the bores of wind instruments are rarely
exactly cylindrical or conical along their whole length.
Moreover, many wind instruments have a small flare at
the end to enhance the radiated sound, while others, like
the cor anglais and oboe d’amore, have an egg-shaped

Table 15.6 Instruments approximately based on cylindrical and conical air columns

fn = nc0/2L
n even and odd

fn = nc0/4L
n odd

fn = nc0/2L
n even and odd

Flute
Recorders
Shakuhachi
Organ flue pipes (e.g. diapason)

Clarinet
Crumhorn
Pan pipes
Organ flue pipes (e.g. bourdon)
Organ reed pipes (e.g. clarinet)

Oboe
Bassoon
Saxophone
Cornett
Serpent
Organ reed pipes (e.g. trumpet)

cavity resonator towards their ends, which contributes to
their characteristic timbre or tone colour. Table 15.6 lists
representative wind instruments that are at least approx-
imately based on cylindrical and conical bore shapes.
The modern organ makes use of almost every conceiv-
able combination of closed- and open-ended cylindrical
and conical pipes.

Hybrid Tubes
Although many brass instruments include considerable
lengths of cylindrical section, they generally have a fairly
long, gently flared, end-section terminated by a very
strongly flared output bell to enhance the radiated sound.
The shape of such flares can be optimized to preserve the
near harmonicity of the resonant modes, as described in
the following section.

One can use (15.104) to model the input impedance
of a flared tube of any shape, by approximating the shape
by a number of short truncated conical sections joined
together. Starting from the radiating end, one evaluates
the input impedance of each cone in turn and uses it
to provide the terminating impedance for the next, until
one reached the mouthpiece end.

A weakness of all such models is the assumed plane
wavefront across the air column, whereas it must always
be perpendicular to the walls and belled outwards in any
rapidly flaring region. We will return to this problem
later.

Typical brass instruments, like the trumpet and trom-
bone, have bores that are approximately cylindrical for
around half their length followed by a gently flared
section and end bell, while others have initial conical
sections, like the bugle and horn. The affect on the
resonant frequencies of the first six modes of adding
a truncated conical section to a length of cylindrical
tubing is shown as a function their relative lengths in
Fig. 15.73, from Fletcher and Rossing ([15.5], Fig. 8.9).
Note the major deviations from harmonicity of the res-
onant modes, apart from when the two sections are of
nearly equal lengths. These results highlight the com-
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Fig. 15.73 The frequencies of the first six modes of a com-
pound horn formed from different fractional lengths of
cylindrical and conical section (after Fletcher and Rossing
[15.5])

plexity involved, when adding flaring sections to brass
instruments to increase the radiated sound.

Horn Equation
Physical insight into the influence of bore shape on the
modes of typical brass instruments is given by the horn
equation introduced by Webster [15.141], though similar
models date back to the time of Bernoulli (Rossing and
Fletcher [15.5], Sect. 8.6). In its simplest form, the horn
equation can be written as

1

S

∂

∂x

(
S
∂p

∂x

)
= 1

c2
0

∂2 p

∂t2 , (15.106)

where S(x) is the cross-sectional area of the horn at
a distance x along its length. Provided the flare is not too

Cylindrical

Conical

exponential ~ exp(3x /L)

cosh ~ cosh(3xL)

Bessel ~ (1.01–x/L)– 0.7

Fig. 15.74 Analytic horn shapes
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Fig. 15.75 Comparison of input impedance at the input
throat of an infinitely long exponential horn and a pis-
ton of the same area set into an infinite baffle (after Kinsler
et al. [15.140])

large, the above plane-wave approximation gives a good
approximation to the exact solutions and preserves the
essential physics involved.

If we make the substitution p = ψS1/2 and look for
solutions varying as ψ(x)eiωt , the horn equation can be
expressed as

∂2ψ

∂x2 +
[(

ω

c0

)2

− 1

a

∂2a

∂x2

]
ψ = 0 , (15.107)

where the radius a(x) is now a function of position
along the length. The above equation is closely re-
lated to the Schrödinger wave equation in quantum
mechanics, with 1/a ∂2a/∂x2 the analogue of potential
energy and −∂2ψ/∂x2 the analogue of kinetic energy
−h2/2m ∂2ψ/∂x2, where m is the mass of the particle
and h is Planck’s constant. One can look for solu-
tions of the form ei(ωt±kx). At any point along the horn
at radius x the radius of curvature of the horn walls,
R = (∂2a/∂x2)−1, so that

k2 =
(

ω

c0

)2

− 1

aR
. (15.108)

If ω > ωc = c0/(aR)1/2, k is real, so that unattenuated
travelling and standing-wave solutions exist. However,
when ω < ωc, k is imaginary and waves no longer prop-
agate, but are exponentially damped as e−x/δ eiωt with
a decay length of c0/

(
ω2

c −ω2
)1/2

.
The propagation of sound waves in a horn is there-

fore directly analogous to the propagation of particle
waves in a spatially varying potential. If the curvature
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is sufficiently large sound waves will be reflected be-
fore they reach the end of the instrument. However, just
like particle waves in a potential well, sound waves can
still tunnel through the potential barrier and radiate into
free space at the end of the flared section. For a horn
with a rapidly increasing flare, the reflection point oc-
curs when the wavelength λ2 ∼ (2π)Ra. The effective
length of an instrument with a flared horn on its end is
therefore shorter for low-frequency modes than for the
higher-frequency modes. This is illustrated schemati-
cally in Fig. 15.77 for resonant modes of a flared Bessel
horn, which will be considered in more detail in the next
section.

Exponential Horn
We now consider solutions of the horn equation, for
a number of special shapes that closely describe sec-
tions of the internal bore of typical brass instrument.
Cylindrical and conical section horns are special so-
lutions with (1/a)∂2a/∂x2 = 0, so that ψ satisfies the
simple dispersionless wave equation. Figure 15.74 il-
lustrates a number of other horn shapes described by
analytic functions.

The radii of exponential and cosh function horns vary
exponentially as A emx and A cosh(mx), respectively, so
that (1/a)∂2a/∂x2 = m2. The cosh mx function provides
a smooth connection to a cylindrical tube at the input
end. For both shapes, the horn equation can then be
written as

∂2ψ

∂x2 +
[(

ω

c0

)2

−m2

]
ψ = 0 , (15.109)

which has travelling solutions for the sound pressure
p = ψ/S1/2, where

p(x) = e−mx e
i
(
ωt−

√
k2−m2x2

)
, (15.110)

and k = ω/c0. Above a critical cut-off frequency,
fc = c0m/2, waves can propagate freely along the
air column with a dispersive phase velocity of
c0/
√

1− (ωc/ω)2, while below the cut-off frequency the
waves are exponentially damped. The cut-off frequency
occurs when the free-space wavelength is approximately
six times the length for the radius to increase by the
exponential factor e.

Figure 15.75 compares the input resistance and reac-
tance of an infinite exponential horn with that of a baffled
piston having the same input area (Kinsler et al. [15.140]
Fig. 14.19). The plots are for an exponential horn with
m = 3.7 m−1, which corresponds to a cut-off frequency

of ≈100 Hz, and a baffled piston having the same ra-
dius of 2 cm as the throat of the exponential horn.
Above ≈400 Hz, there is very little difference between
the impedance of an infinitely long horn and a horn
with a finite length of ≈1.5 m or longer, though below
this frequency reflections cause additional fluctuations
around the plotted values. Below the cut-off frequency,
no acoustic energy can be radiated. Above the cut off the
input resistance rises rather rapidly towards its limiting
100% radiating value. The exponential horn with a pis-
ton source at its throat is therefore a much more efficient
radiator of sound than a baffled piston at all frequencies
above the cut-off frequency.

The exponential horn illustrates how the flared cross
section of brass instruments enhances the radiation of
sound, though brass instruments are never based on ex-
ponential horns, otherwise no resonant modes could be
set up. However, exponential horns were widely used in
the early days of the gramophone. In the absence of any
electronic amplification, they amplified the sound pro-
duced by the input diaphragm excited by the pick-up
stylus on the recording cylinder or disc. They are still
widely used in powerful public address systems. Such
horns can also be used in reverse, as very efficient de-
tectors of sound, with a microphone placed at the apex
of the horn.

Bessel Horn
We now consider more realistic horns with a rapidly
flaring end bell, which can often be modelled by what
are known as Bessel horn shapes, with the radius varying
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Fig. 15.76 Bessel horns representing the rapid outward
flare of the bell on the end of a brass instrument, for
a sequence of m values giving a ratio of input to output
diameters of 10
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as 1/xm from their open end. Typical flared horn shapes
are shown in Fig. 15.76 for various values of m, where
the horn functions A/(x + x0)m have been normalised
by suitable choice of A and x0, to model horns with
input and output values 1 and 10. Increasing the value
of m increases the rapidity with which the flare opens
out at the end.

Again assuming the plane-wave approximation, the
horn equation can be written as

∂2ψ

∂x2 +
[(

ω

c0

)2

− m(m +1)

x2

]
ψ = 0 , (15.111)

with solutions

ψ(kx) = x1/2 Jm+1/2(kx) (15.112)

and pressure varying from the end as

p(kx) = 1

x1/2 Jm+1/2(kx) , (15.113)

where Jm+1/2(kx) is a Bessel function of order m +1/2,
giving the name to such horns.

In the plane-wave approximation, the sharpness and
height of the barrier to wave propagation arising from the
curvature could result in total reflection of the incident
waves, so that no sound would be emitted from the end
of the instrument. In reality, the curvature of the wave-
form will smear out any singularity in the horn function
over a distance somewhat smaller than the output bell
radius. Nevertheless, despite its limitations, the plane-
wave model provides an instructive description of the
influence of a rapidly flaring bell on a brass instrument.
This is illustrated in Fig. 15.77 for the fundamental and
fourth modes of a Bessel horn with m = 1/2, with the
pressure p(x) varying from the output end as xJ1(kx).

The most important point to note is the way that
the flare pushes the effective node of the incident
sine-wave solutions (extended into the flared section
as dashed curves) away from the end of the in-
strument. The effective length is therefore shortened
and resonant frequencies increased, the effect being
largest for the lower frequency modes. The flare and
general outward curvature of the horn cross section
therefore destroys the harmonicity of the modal fre-
quencies. This is a completely general result for any
horn with a flared end. In practice, the nodal posi-
tions will also be affected by the curvature of the
wavefront, which will further perturb the modal fre-
quencies, but without changing the above qualitative
behaviour.

Benade ([15.133], Sect. 20.5) notes that, from the
early 17th century, trumpets and trombones have been

Fig. 15.77 Fundamental and fourth mode of an m = 1/2
Bessel horn, illustrating the increase in wavelength and
resulting shift inwards of the effective nodal position. The
dashed lines illustrate the extrapolated sine-wave solutions
from well inside the bore. The plot is of p(x)/x

designed with strongly flaring bell corresponding to m
values of 0.5–0.65, while French horns have bells with
a less sudden flare with m values of 0.7–0.9.

From Fig. 15.77, it is easy to see how the player can
significantly affect the pitch of a note on the French horn,
by moving the supporting hand up into the bell of the
instrument, which is referred to as hand-stopping. The
pitch can be lowered by around a semitone, by placing
the downwardly cupped hand and wrist against the top of
the flared bell, effectively reducing the flare and increas-
ing the effective length of the instrument. Alternatively,
the pitch can be raised by a similar amount when the hand
almost completely closes the inner bore. This leads to
a major perturbation of the boundary conditions, effec-
tively shortening the air column and reducing the output
sound. The increase in frequency can be explained by
the player using an almost unchanged embouchure to
excite a higher frequency mode of the shortened tube.
Because of the increased reflection of sound by the pres-
ence of the hand, the resultant sound although quieter is
also much richer in higher partials (Fig. 15.113). Both
effects are illustrated in Audio example .

Flared Horns
Use is made of the dependence of modal frequencies on
the curvature of horn shapes to design brass instruments
with a set of resonances, which closely approximate
to a harmonic series with frequencies fn = n f1. This
should be contrasted with the modes of a cylindrical
tube closed at one end by the mouthpiece, which would
only involve the odd-n integer modes with frequencies
of fn = c/2L .

Historically, this has been achieved by empirical
methods, with makers adjusting the shapes of brass
instrument to give as near perfect a set of harmonic
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resonances as possible, as illustrated in Fig. 15.78 from
Backus ([15.132] Chap. 12). A harmonic set of modes
enhances the playability of the instrument, as the par-
tials of any continuously blown note then coincide with
the natural resonances of the instrument. However, the
fundamental mode is always significantly flatter than
required and is therefore not normally used in musi-
cal performance. Nevertheless, the brass player can still
sound a pedal note corresponding to the virtual funda-
mental of the higher harmonics by exciting a repetitive
waveform involving the higher harmonics, but with only
a weak Fourier component at the pitch of the sounded
note.

The way that this is achieved is shown schemati-
cally in Fig. 15.79 starting from the odd-n resonances

Mouthpiece pressure

116 Hz 2 104 6 8

Mouthpiece pressure

57.6 Hz 2 104 6 8
Mouthpiece pressure

43.2 Hz 2 104 6 83 13 18
Relative excitation frequency

Trumpet

Trombone

French horn

Fig. 15.78 Input impedances of the trumpet, trombone and
French horn with the positions of the resonant peaks marked
above the axis to show their position relative to a harmonic
series based on the second harmonic of the instrument (after
Backus [15.132])
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Fig. 15.79 The transformation of the odd-n modes of
a cylindrical air column closed at one end to the near har-
monic, all integer, n′ modes of a flared brass instruments.
The lower dashed line indicates schematically what can be
achieved in practice for the lowest

of a cylindrical tube closed at one end by the mouth-
piece to an appropriately flared horn of the same
length. In practice, one can achieve a nearly perfect
set of harmonic resonances, midway between the odd-
integer modes of a cylindrical tube closed at one end,
for all but the fundamental mode, which cannot be
shifted upwards by a sufficient amount to form a har-
monic fundamental, stopping and of the new set of
modes.

Benade ([15.133], Sect. 20.5) has given an em-
pirical expression for the frequencies of the partials
of Bessel horns closed at the mouthpiece end, which
closely describes these perturbations,

f ′
n

fn
∼
(

1+0.637

√
m(m +1)

2n −1

)
, (15.114)

where the (2n −1) in the denominator emphasising the
preferential raising in frequency of the lower-frequency
modes. This gives frequencies for the first six modes of
a Bessel function horn with m = 0.7 are in the ratios
0.94, 2.00, 3.06, 4.12, 5.18 and 6.24, normalised to the
n = 2 mode. These should be compared with the ideal 1,
2, 3, 4, 5, 6 ratios. Apart from the lowest note, which is
a semitone flat, the higher modes are less than a semitone
sharp compared with their ideal values.

Perturbation Models
Perturbation theory can be used to describe how changes
in bore shape perturb the resonant modes of brass and
woodwind instruments. Fletcher and Rossing ([15.5],
Sect. 8.10) show that the change of frequency of a reso-

Part
E

1
5
.3



Musical Acoustics 15.3 Wind Instruments 613

nant mode ∆ω resulting from small distributed changes
∆S(x) in bore area S(x) is given by

∆ωn

ωn
= −1

2

(
c0

ωn

)

L∫
0

[
∂

∂x

(
∆S(x)

S(x)

)
pn

∂pn

∂x
dx

]/

L∫
0

[
S(x)p2

n dx
]

. (15.115)

An alternative equivalent derivation uses Rayleigh’s
harmonic balance argument and equates the peak ki-
netic energy to the peak potential energy. To first order,
the perturbation is assumed to leave the shape of the
modal wavefunction unchanged. The kinetic and po-
tential energy stored in a particular resonant mode can
be expressed in terms of the local kinetic 1

2ρω2
nξ

2
n and

strain 1
2γ P0(∂ξn/∂x)2 energy densities. For simplicity,

we consider the perturbation of the nth resonant mode
of a cylindrical air column open at one end, with particle
displacement ξn ≈ sin(nπx/L) cos(ωnt), where n is an
odd integer. Equating the peak kinetic and potential en-
ergy over the perturbed bore of the cylinder, we can then
write

ω
′2
n

L∫
0

ρ [S +∆S(x)] sin2(kx)dx

= γ P0k2
n

L∫
0

[S +∆S(x)] cos2 (kx) dx , (15.116)

where ω′
n is the perturbed frequency. This can be rewrit-

ten as

ω
′2
n

ω2
n

=
L∫

0

[S +∆S(x)] cos2 (kx) dx
/

L∫
0

[S +∆S(x)] sin2(kx)dx . (15.117)

Because the perturbations are assumed to be small, we
can rearrange (15.117) to give the fractional change in
frequency

∆ωn

ωn
= 1

L

L∫
0

∆S(x)

S

(
cos2 kx − sin2 kx

)
dx .

(15.118)

Hence, if the tube is increased in area close to
a displacement antinode, where the particle flow is
large (low pressure), the modal frequency will increase,
whereas the frequency will decrease, if constricted close
to a nodal position (large pressure) (Benade [15.133],
Sect. 22.3). This result can be generalised to a tube
of any shape. Hence, by changing the radius over an
extended region close to a node or antinode, the fre-
quencies of a particular mode can be either raised or
lowered, but at the expense of similar perturbations to
other modes. Considerable art and experience is there-
fore needed to correct for the inharmonicity of several
modes simultaneously.

Electric Circuit Analogues
It is often instructive to consider acoustical systems in
terms of equivalent electric circuit analogues, where
voltage V and electrical current I can represent the
acoustic pressure p and flow along a pipe U . For exam-
ple, a volume of air with flow velocity U in a pipe of area
S and length l has a pressure drop (ρl/S)∂U/∂t across its
length, which is equivalent to the voltage L∂I/∂t across
an inductor in an electrical circuit. Likewise, the rate
of pressure rise, ∂p/∂t = γ P0U/V , as gas flows into
a volume V, is equivalent to the rate of voltage rise,
∂V/∂t = I/C across a capacitance C ≡ V/γ P0.

As a simple example, we re-derive the Helmholtz
resonance frequency, previously considered in relation
to the principal air resonance of the air inside a violin or
guitar body (Sect. 15.2.4), but equally important, as we
will show later, in describing the resonance of air within
the mouthpiece of brass instruments.

In its simplest form, the Helmholtz resonator con-
sists of a closed volume V with an attached cylindrical
pipe of length l and area S attached, through which the
air vibrates in and out of the volume. All dimensions are
assumed small compared to the acoustic wavelength, so
that the pressure p in the volume and the flow in the pipe
U can be assumed to be spatially uniform. The volume
acts as an acoustic capacitance C = V/γ P0, which res-
onates with the acoustic inductance L = ρl/S of the air
in the neck. The resonant frequency is therefore given
by

ωHelmholtz = 1√
LC

=
√

S

ρl

γ P0

V
= c0

√
S

lV
,

(15.119)

as derived earlier.
Any enclosed air volume with holes in its con-

taining walls acts as a Helmholtz resonator, with an
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effective kinetic inductance of the hole region equiva-
lent to a tube of the same diameter with an effective
length of wall thickness plus ≈ 0.61 hole radius (Kinsler
et al. [15.140] Sect. 9.2). This is the familiar end-
correction for an open-ended pipe (Kinsler et al. [15.140]
Sect. 9.2). Open holes of different diameters will there-
fore give resonances corresponding to different musical
tones. The ocarina is a very simple musical instrument
based on such resonances, in which typically four or five
holes with different areas can be opened and closed in
combination, to give a full range of notes on a chosen
musical scale (audio ). Because the sound is
based on the single resonance of a Helmholtz resonator,
there are no simply related higher-frequency modes that
can be excited. Ocarinas appear in many ancient and
ethnic cultures around the world and are often sold as
ceramic toys.

Acoustic Transmission Line
There is also a close equivalence between acoustic waves
in wind instruments and electrical waves on transmis-
sion lines, with an acoustic pipe having an equivalent
inductance L0 = ρ/S and capacitance C0 = S/γ P0 per
unit length. For a transmission line the wave velocity
is therefore c0 = √

1/L0C0 = √
γ P0/ρ and character-

istic impedance Z0 = √
L0/C0 = ρc0/S, as expected.

The input impedance of a transmission line as a func-
tion of its characteristic impedance and terminating load
is given by (15.100).

Valves and Bends
To enable brass instruments to play all the notes of the
chromatic scale, short lengths of coiled-up tubing are
connected in series with the main bore by a series of
piston- or lever-operated air valves. The constriction of
air flow through the air channels within the valve struc-
tures and the bends in the tubing, used to reduce the size
of the instruments to a convenient size for the player
to support, will clearly present discontinuities in the
acoustic impedance of the air bore and will lead to re-
flections. Such reflections will influence the feel of the
instrument for the player exciting the instrument via the
mouthpiece and will also perturb the frequencies of the
resonant modes of the instrument.

If the discontinuities are short in size relative to the
acoustic wavelengths involved, the discontinuity can be
considered as a discrete (localised) lumped circuit ele-
ment. Using our electromechanical equivalent, a short,
constricted channel through a valve can be represented
as an inductance ρLvalve/Svalve in series with the acous-
tic transmission line, or an equivalent additional extra

b

a

d

t

L0 d /2 L0 d /2 L0 d /2 L0 d /2

Cc-hole C0 d Lo-hole C0 d

Fig. 15.80 Equivalent circuits for a short length d of cylin-
drical pipe containing a closed and an open tone hole,
shunting the acoustic transmission line with a capacitance
and inductance, respectively

length of bore tubing LvalveStube/Svalve of cross section
Stube. For all frequencies such that kLvalve � 1, the valve
simply increases the length of the acoustic air column
slightly and the frequencies of all the lower modes by the
same fractional amount. Only at very high frequencies,
outside the normal playing range, will the constricted air
channel significantly change the modal frequencies.

When a straight length of cylindrical tube of radius
a is connected to the same size tubing but bent into a cir-
cle of radius R, there will a small change in the acoustic
impedance and velocity of sound waves, which arises
because the forces acting on each element induces ro-
tational in additional to linear motion. The presence of
bends will lead to reflections and slight perturbations of
resonant frequencies, though these effects will again be
relatively small. Nederveen [15.142] showed that frac-
tional increase in phase velocity and decrease in wave
impedance of a rectangular duct is given by the factor
F1/2, where

F = B2

2

/[
1−
(

1− B2
)1/2

]

= 1− B2/4 for B � 1 , (15.120)

B = a/R, a is the half-width of the duct and R its
radius. Keefe and Benade [15.143] subsequently gen-
eralised this result to a bent circular tube, with its radius
r replacing a.

Finger Holes
In many woodwind instruments, tone holes can be
opened or closed to change the effective resonating
length of an air column and hence pitch of the sounded
note. The holes can be closed by the pad of the fin-
ger or a hinged felt-covered pad operated with levers.
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To a first approximation, opening a side hole creates
a pressure node at that position, shortening the effective
length of the instrument and raising the modal frequen-
cies. However, as described in Fletcher and Rossing
([15.5], Sect. 15.2) and in detail by Benade ([15.133],
Chaps. 21 and 22), the influence of the side holes is in
practice strongly dependent on the hole size, position
and frequency, as summarised below.

At low frequencies, when the acoustic wavelength
is considerably longer than the size and spacing of the
tone holes, one can account for the effect of the tone
holes by considering their equivalent capacitance when
closed and their inductance when open, as illustrated
schematically in Fig. 15.80.

Because the walls of wind instruments and particu-
larly woodwind instruments have a significant thickness,
the tone holes when shut introduce additional small vol-
umes distributed along the length of the vibrating air
column. Each closed hole will introduce an additional
volume and equivalent capacitance Cc-hole = πb2/γ P0,
which will perturb the frequencies of the individual par-
tials upwards or downwards by a small amount that
will depend on its position relative to the pressure
and displacement nodes and the closed volume of the
hole. In severe cases, the perturbations can be as large
as a few per cent (one semitone is 6%), which re-
quires compensating changes in bore diameter along
the length of the instrument, to retain the harmonicity
of the partials. However, this is essentially a problem

l'/l

b/a
0 1

1

0.8

0.6

0.4

0.2

0
0.80.60.40.2

Fig. 15.81 Low-frequency (kl � 1) fractional reduction of
effective length of a cylindrical end-pipe as a function of
hole to cylinder radius, for additional lengths of 10 (lower
curve) and 20 (upper curve) times the tube radius in length.
The side wall thickness is 0.4 times the tube radius

that depends on geometrical factors involving the air
column alone. Once solved, like all acoustic problems
involving the shape and detailed design, instruments can
be mass-produced with almost identical acoustic prop-
erties, quite unlike the problems that arise for stringed
instruments.

The more interesting situation is when the holes are
opened, introducing a pressure node at the exit of the
tone hole and shortening the effective acoustical length
of the instrument. An open hole can be considered as
an inductance, L ∼ ρ(t +0.6b)/πb2, where the effec-
tive length of the hole is increased by the unflanged
hole end-correction. Neglecting radiation losses from
the hole [Fletcher and Rossing [15.5], (15.21, 22)], the
effective impedance Z∗ of an open-ended cylindrical
pipe of length l and radius a shunted by the inductive
impedance of a circular hole of radius b set into the wall
of thickness t is given by

1

Z∗ ∼ πb2

iωρ(t +0.6b)
+ πa2

iρc0 tan kl

= πa2

iρc0 tan kl′
. (15.121)

Closed holes Open holes

neff

neff

neff

neff

Fig. 15.82 Schematic representation of the influence of
open holes on the first four partials of a woodwind instru-
ment, with the effective length indicated by the intercept
neff on the axis of the extrapolated incident wave (after
Benade [15.133])
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Thus can be expressed in terms of an impedance of an
effectively reduced length l′.

For kl � 1 ,
l′

l
=
[

1+ t +0.6b

l

(a

b

)2
]−1

.

(15.122)

The change in effective length introduced by the open
hole depends strongly on its area relative to that of the
cylinder, the thickness of the wall and its length from the
end. This gives the instrument designer a large amount
of flexibility in the positioning of individual holes on an
instrument. Figure 15.81 illustrates the dependence of
the effective pipe length on the ratio of hole to cylinder
radii for two lengths of pipe between the hole and end
of the instrument.

Not surprisingly, a very small hole with b/a � 1 has
a relatively small effect on the effective length of an
instrument. In contrast, a hole with the same diameter as
that of the cylinder shortens the effective added length
to about one hole diameter.

In practice, there will often be several holes open
beyond the first open tone hole, all of which can affect
the pitch of the higher partials.

Consider a regular array of open tone holes spaced
a distance d apart. The shunting kinetic inductance of
each open hole is in parallel with the capacitance as-
sociated with the volume of pipe between the holes.
At low frequencies, such that ω � 1/

√
LholeC0d, the

impedance is dominated by the hole inductance, so that

Input impedance

Frequency (Hz)
0 20001000

Pipe alone

Pipe plus
tone hole
lattice

Cutoff frequency

Fig. 15.83 Illustration of the cut-off-frequency effect, when
adding an addition length of tubing with an array of open
tone holes (after Benade [15.133])

each hole attenuates any incident wave by approximately
the ratio

∼ Lhole/ (Lhole + L0d) =
[

1+ d

t +1.5b

(a

b

)2
]−1

,

(15.123)

where L0 is the inductance of the pipe per unit length.
Incident waves are therefore attenuated with an effective
node just beyond the actual hole as discussed above.

However, for frequencies such that ω � 1/√
LholeC0d, the impedance of the shunting hole induc-

tance is much larger than that of the capacitance of the
air column, so that the propagating properties of the in-
cident waves is little affected be the presence of the open
hole. There is therefore a crossover or cut-off frequency

ω ≈ 1/
√

LholeC0d = c0
a

b

(
1

teffd

)1/2

, (15.124)

below which the incident waves are reflected to give
a pressure node just beyond the first hole of the array
and above which waves propagate increasingly freely
through the array to the open end of the instrument.

Figure 15.82 (Benade [15.133], Fig. 21.1) illustrates
the effect of an array of open holes on the first few par-
tials of a typical woodwind instrument, highlighting the
increase in acoustic length of the instrument (indicated
by the intercept of the extrapolated incident waveform)

Thumb

1

2

3

1

2

3

4

C D E F# G# A# C

Fig. 15.84 Soprano recorder fingering for the first seven
notes of a whole-tone scale (after Fletcher and Rossing
[15.5])
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with increasing frequency. The dependence of the effec-
tive length of the acoustic air column on frequency is
therefore rather similar to the influence of the flare on
the partials of a brass instrument.

A consequence of the greater penetration at high fre-
quencies of the acoustic wave through the array of open
tone holes is the greater attenuation of such waves by ra-
diation and the consequent reduction in the amplitude of
the higher resonant modes in measurements of the input
impedance. This is illustrated in Fig. 15.83 for a length
of clarinet tubing first without and then with an added
section containing an array of equally spaced tone holes
(Benade [15.133], Fig. 21.3).

Benade ([15.133], Sect. 21.1) states that “specifying
the cut-off frequency for a woodwind instrument is tan-
tamount to describing almost the whole of its musical
personality” – assuming the proper tuning and correct
alignment of resonances for good oscillation. His meas-
ured values of the cut-off frequency for the upper partials
of classical and baroque instruments are 1200–2400 Hz
for oboes, 400–500 Hz for bassoons, and 1500–1800 Hz
for clarinets.

Cross-Fingering
The notes of an ascending scale can be played by suc-
cessively opening tone holes starting from the far end of
the instrument. In addition, by overblowing, the player
can excite notes in the second register based on the
second mode. As remarked earlier, instruments like the
flute and oboe overblow at the octave, whereas the clar-
inet overblows at the twelfth (an octave plus a perfect
fifth). To sound all the semitones of the western clas-
sical scale on the flute or oboe would therefore require
12 tone holes and the clarinet 20 – rather more than
the fingers on the two hands! In practice, the player
generally uses only three fingers on the left hand and
four on the right to open and close the finger holes.
The thumb on the left hand is frequently used to open
a small register hole near the mouthpiece, which aids
the excitation of the overblown notes in the higher
register.

In practice, cross- or fork-fingering enables all the
notes of the chromatic scale to be played using the
seven available fingers and combinations of open and
closed tone holes. This is illustrated in Fig. 15.84 for
the baroque recorder (Fletcher and Rossing [15.5],
Fig. 16.21). The bottom two notes can be sharpened
by a semitone by half-covering the lower two holes and
the overblown notes an octave above are played with
the thumb hole either fully open or half closed. Cross-
fingering makes use of the fact that the standing waves

a) b)Mouthpiece Back bore Mouthpiece Back bore

Fig. 15.85a,b Cross sections of (a) trumpet mouthpiece
and (b) horn mouthpiece (after Backus [15.132])

set up in a pipe extend an appreciable distance into an
array of open tone holes (Fig. 15.82), so that opening
and closing holes beyond the first open hole can have
an appreciable influence on the effective length of the
resonating air column.

Modern woodwind instruments use a series of in-
terconnected levers operated by individual keys, which
facilitates the ease with which the various hole-opening
combinations can be made.

Radiated Sound
Although the reactive loading of an open hole deter-
mines the effective length of the resonant air column,
particularly at low frequencies, it does not follow that
all the sound is radiated from the open tone holes. In-
deed, since the intensity of the radiated sound depends
on (ka)2, very little sound will be radiated by a small hole
relative to the much wider opening at the end of an in-
strument. The loss in intensity of sound passing an open
side hole may therefore, in large part, be compensated
by the much larger radiating area at end of the instru-
ment. This also explains why the characteristic hollow
sound quality of a cor anglais, derived in part from the
egg-shaped resonating cavity near its end, is retained,
even when the tone holes are opened on the mouthpiece
side of the cavity.

In practice, the sound from the end and open tone
holes of a woodwind instrument act as independent
monopole sources. When the acoustic wavelength be-
comes comparable with the hole spacing, interesting
interference effects in the output sound can occur con-
tributing to strongly directional radiation patterns, as
discussed by Benade ([15.133], Sect. 21.4). Similarly,
reciprocity allows one to make use of such interference
effects to produce a highly directional microphone by
placing a microphone at the end of a cylindrical tube
with an array of open side holes.

Brass Mouthpiece
Brass instruments are played using a mouthpiece insert,
against which the lips are pressed and forced to vibrate
by the passage of air between them. The mouthpiece not
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Input impedance

0 20001000
Frequency (Hz)

Pipe alone

Pipe plus mouthpiece

Fig. 15.86 Input impedance of a length of cylindrical trum-
pet pipe with and without a mouthpiece attached (after
Benade [15.133])

only enables the player to vibrate their lips over a wide
range of frequency, but also provides a very important
acoustic function in significantly boosting the amplitude

Equivalent length (cm)

fp

16

12

8

4

0

1 tone

1 semi-tone

λp/4

Vcup/Apipe

Trumpet mouthpiece

Fig. 15.87 The amount by which a trumpet tube of length
137 cm would have to be lengthened to compensate for
the lowering in frequency of the instrument’s resonant fre-
quencies when a mouthpiece is attached to the input (after
Benade [15.133]). The changes in length to give a semitone
and a whole-tone change in frequency are indicated by the
horizontal lines
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Fig. 15.88 The calculated impedance of an 800 Hz
Helmholtz mouthpiece (dark brown), an attached pipe
(black) and the combination of mouthpiece and pipe (light
brown)

of the higher partials, helping to give brass instruments
their bright and powerful sounds.

Typical mouthpiece shapes are shown in Fig. 15.85.
Mouthpieces can be characterized by the mouthpiece
volume and the popping frequency characterizing the
Helmholtz resonator comprising the mouthpiece vol-
ume and backbore. The popping frequency can easily
be estimated from the sound produced when the mouth-
piece is slapped against the open palm of the hand (audio

).
By adjusting the tension in the lips, the shape of the

lips within the mouthpiece (the embouchure), and the
flow of air between the lips via the pressure in the mouth,
the skilled brass player forces the lip to vibrate at the
required frequency of the note to be played. This can eas-
ily be demonstrated by making a pitched buzzing sound
with the lips compressed against the rim of the mouth-
piece cup. The circular rim constrains the lateral motion
of the lips making it far easier to produce stable high
notes. A brass player can sound all the notes on an instru-
ment by simply blowing into the mouthpiece alone, but
the mouthpiece alone produces relatively little volume.
The instrument both stabilises the playing frequencies
and increases the coupling between the vibrating lips
and radiated sound.

Figure 15.86 illustrates the enhancement in the in-
put impedance around the popping frequency, when
a mouthpiece is attached to the input of a cylindrical
pipe, as measured by Benade [15.133]. Benade showed
that the influence of the mouthpiece on the acoustical
characteristics of a brass instrument is, to a first ap-
proximation, independent of the internal bore shape and
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can be characterized by just two parameters, the internal
volume of the mouthpiece and the popping frequency.

Benade also measured the perturbation of the res-
onant frequencies of an instrument by the addition of
a mouthpiece, as illustrated in Fig. 15.87. At low fre-
quencies, the mouthpiece simply extends the effective
input end of a terminated tube by an equivalent length
of tubing having the same internal volume as the mouth-
piece. In the measurements shown, Benade removed
lengths of the attached tube to keep the resonant frequen-
cies unchanged on adding the mouthpiece. However,
since the fractional changes in frequency are small,
the measurements are almost identical to the effective
increase in length from the addition of the mouthpiece.

At the mouthpiece popping frequency (typically in
the range 500 Hz to 1 kHz depending on the mouth-
piece and instrument considered), the effective increase
in length is λ/4. This can result in decreases in reso-
nant frequencies by as much as a tone, which could have
a significant influence on the harmonicity, and hence
the playability, of an instrument. The effective length
continues to increase above the popping frequency be-
fore decreasing at higher frequencies. In many brass
instruments, such as the trumpet, there is also a longer
transitional conical section (the lead pipe) between the
narrow bore of the mouthpiece and the larger-diameter
main tubing. This reduces the influence of the mouth-
piece on the tuning of individual resonances and the
overall formant structure of resonances.

It is straightforward to write down the input
impedance inside the cup of a mouthpiece attached to
an instrument using an equivalent electrical circuit. The
volume within the cup is represented by a capacitance
C in parallel with the inductance L and resistance R of
air flowing through the backbore, which is in series with
the input impedance of the instrument itself, so that

Zin = 1

iωC

iωL + R + Zhorn

(1/iωC)+ iωL + R + Zhorn
. (15.125)

Figure 15.88 shows the calculated input impedance
of an 800 Hz Helmholtz mouthpiece resonator, of
volume 5 cm3 with a narrow-backbore neck section re-
sulting in a Q-value of 10, before and after attachment
to a cylindrical pipe of length 1.5 m and radius 1 cm,
radiating into free space at its open end. The input
impedance of the pipe alone is also shown. Note the
marked increase in heights and strong frequency shifts
of the partials in the neighbourhood of the mouthpiece
resonance. As anticipated from our previous treatment
of coupled resonators in the section on stringed in-
struments, the addition of the mouthpiece introduces

an additional normal mode resonance in the vicinity of
the Helmholtz resonance. In addition, it lowers the fre-
quency of all the resonant modes below the popping
frequency and increases the frequency of all the modes
above.

Above the mouthpiece resonance, the input imped-
ance is dominated by the inertial input impedance of
the mouthpiece. The resonances of the air column are
superimposed on this response and exhibit the famil-
iar dispersive features already noted for narrow violin
string resonances superimposed on the much broader
body resonances. The calculated behaviour is very sim-
ilar to the measured input admittance of typical brass
instrument (Fig. 15.78) as extended to instruments with
realistic bore shapes by Caussé, Kergomard and Lur-
ton [15.144].

15.3.3 Reed Excitation

In the next sections, we consider the excitation of sound
by: (a) the single and double reeds used for many
woodwind instruments and selected organ pipes, (b) the
vibrating lips in the mouthpiece of brass instrument,
and (c) air jets used for the flute, certain organ stops and
many ethnic instruments such as pan pipes.

Reed Types
Figure 15.89 shows a number of reed types used in
woodwind and brass instruments (Fletcher and Ross-
ing [15.5], Figs. 13.1, 7).

Helmholtz [15.127] classified two main types of
reed: inward-striking reeds, which are forced shut by
an overpressure within the mouth, and outward-striking
reeds, forced open by an overpressure. Modern au-
thors often prefer to call such reeds inward-closing and

a) b)

c)

d)

Fig. 15.89a–d Examples of wind and brass instrument
reeds: (a) a single reed (clarinet), (b) a double reed (oboe),
(c) a cantilever reed (harmonium) and (d) the mouthpiece
lip-reed (horn) (after Fletcher and Rossing [15.5])
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outward-opening or swinging-door reeds. In addition
there are reeds that are pulled shut by the decreased
Bernoulli pressure created by the flow of air between
them. Such reeds are often referred to as sideways-
striking or sliding-door reeds.

A more formal classification (Fletcher and Ross-
ing [15.5], Sect. 13.3) characterises such reeds by
a doublet symbol (σ1, σ2), where the values of σ1,2 = ±1
describe the action of over- and under-pressures at the
input and output ends of the reed. When the valve is
forced open by an overpressure at either end, σ1,2 = +1;
if forced open by an under-pressure, σ1,2 = −1. The
force tending to open the valve can then be written as
(σ1 p1S1 +σ2 p2S2), where S1,2 and p1,2 are the areas
and pressures at the reed input and output. The op-
eration of reeds can therefore be classified as (+,−),
(−,+),(−,−) or (+,+). Single and double woodwind
reeds are inward-striking (−,+) valves, while the vibrat-
ing lips in a mouthpiece and the vocal cords involve both
outward-swinging (+,−) and sideways-striking (+,+)
actions.

Figure 15.90 summarises the steady-state and dy-
namic flow characteristics of the above reeds for typical
operating pressures across the valve, ∆p = pm − pins,

Frequency

Inward striking
inward swinging

Outward striking
outward swinging

(–,+) (+,–)

Pm U Pins Pm U Pins

∆p = pm – pins ∆p = pm – pins

Static response Static response

U

∆ppmax

U

∆p

∂∆p
∂U

Frequency

∂∆p
∂U

AC response AC response

Sideways striking,
sliding doors

(+,+) or (–,–)

Pm U Pins

∆p = pm – pins

Static response

U

∆p

Frequency

∂∆p
∂U

AC response

Fig. 15.90 Main classifications of vibrating reeds sum-
marising reed operation, nomenclature and the associated
static and ac conductance, with the negative resistance
frequency regimes indicated by solid shading

Vocal
tract Instrument

Mouth cavity

pmouth

pmouth

Local v vmax

pin
1/2  v 2

maxPressure

Streamlined flow Turbulent flow

ρ

Fig. 15.91 Schematic representation of vocal tract, mouth
cavity, reed and instrument, illustrating the variation of local
velocity and pressure for air flowing into and along the reed
and attached instrument

where pm and pins are the input and output pressures
in the mouth and instrument input, respectively. For the
inward-swinging (−,+) reed, the flow rate initially in-
creases for a small pressure difference across the valve,
but then decreases as the difference in pressures tends
to close the valve, leading to complete closure above
a certain pressure difference pmax. Before closure, there
is an extended range of pressures where the flow rate
decreases for increasing pressure difference across the
reed. This is equivalent to an input with a negative resis-
tance to flow. This results in positive feedback exciting
resonances of any attached air column, provided the
feedback is sufficient to overcome viscous, thermal and
radiation losses.

It is less obvious why the outward-swinging (−,+)
reed can give positive feedback, because the steady-
state flow velocity always increases with increasing
pressure across the valve. However, this is only true
at low frequencies below the mechanical resonance
of the reed. Above its resonant frequency, the reed
will move in anti-phase with any sinusoidally varying
fluctuations in pressure. This will result in a regime
of negative resistance and the resonant excitation of
any attached air column, as discussed by Fletcher
et al. [15.145].

Sideways-striking (+,+) or (−,−) reeds behave
rather like inward-striking reeds, with an extended re-
gion of negative conductance. However, such reeds will
never cut off the flow completely, so that for large
pressure differences the dynamic conductance again
becomes positive, as indicated in Fig. 15.90.
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Bernoulli Pressures
Figure 15.91 schematically illustrates the variation of
flow velocity and pressure as air flows from the mouth
into the reed and attached air column. To solve the
detailed dynamic response from first principles for a spe-
cific reed geometry would require massive computer
modelling facilities. Fortunately, the physics involved
is reasonably well understood, so that relatively sim-
ple models can be used to reproduce reed characteristics
rather well, as illustrated for the clarinet reed in the next
section.

The operation of all reed generators is controlled by
the spatial variations in Bernoulli pressure exerted by
the air flowing across the reed surfaces. Such variations
in P arise because, within any region of streamlined
flow with velocity v, P + 1

2ρv2 remains constant. Hence
the pressure will be lowered on any surface over which
the air is flowing. The flow of air is determined by
the specific reed assembly geometry and the nonlinear
Navier–Stokes equation, which also includes the effects
of viscous damping.

After passing through the narrow reed constriction,
the air emerges as a jet, which breaks down into tur-
bulent motion on the downstream side of the reed. The
turbulence leads to a rapid lateral mixing of the air,
so that the flow is no longer streamlined. As a re-
sult, the pressure on the downstream end of the reed
opening remains low and fails to recover to the ini-
tial pressure inside the mouth. The double reeds used
for playing the oboe, bassoon and bagpipe chanter
are mounted on a relatively long, narrow tube con-
nected to the wider bore of the instrument. Turbulent
flow in this region could contribute significantly to the
flow characteristics, though recent measurements by
Almeida et al. [15.146] have shown that such effects
are less important than initially envisaged, as discussed
later.

Single Reed
We first consider the clarinet reed, which is one of
the simplest and most extensively studied of all wood-
wind reeds (Benade [15.133], Sect. 21.2) Fletcher and
Rossing ([15.5], Chap. 13 and recent investigations by
Dalmont and collaborators [15.147, 148]). Figure 15.92
shows a cross section of a clarinet mouthpiece, defin-
ing the physical parameters of a highly simplified but
surprisingly realistic model.

The lungs are assumed to supply a steady flow of
air U , which maintains a steady pressure Pmouth within
the mouth. Air flows towards the narrow entrance or
lip of the reed through which it passes with velocity

Pmouth

U p

v

Fig. 15.92 Cross section of air flow through a clarinet
mouthpiece and reed assembly, illustrating the streamlined
flow into the gap with jet formation and turbulence on
exiting the reed entrance

v. Because the air flowing into the reed is stream-
lined, the pressure drops by 1

2ρv2 on entering the reed,
while the much slower-moving air on the outer surfaces
of the reed leaves the pressure on the outer reed sur-
faces largely unchanged. The air is then assumed to
stream through the narrow gap of the reed to form an
outward-going jet, which breaks up into vortices and
turbulent flow on the far side of the input constriction,
with no further change in overall pressure p in the rela-
tively wide channel on the downstream side of the reed
entrance.

The resulting pressure difference 1
2ρv2 across the

reed forces the reed back towards its closing position
on the curved lay of the mouthpiece, indicated by the
dashed line in Fig. 15.92. The pressure difference ∆p is
assumed to reduce the area of reed opening from S0 to
S0(1−∆p/pmax), where pmax is the pressure difference
required to close the reed. The net flow of air through

Flow through reed U

Pressure across reed ∆p

Loose embouchure

Tight embouchure

Reed closes

Fig. 15.93 Quasistatic flow through a clarinet single reed
as a function of pressure across it illustrating the influence
of the player’s embouchure on the shape (after Benade
[15.133])
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the reed is therefore given by

U(∆p) = α(∆p)1/2(1−∆p/pmax) . (15.126)

The player can control these characteristic by vary-
ing the position and pressure of the lips on the reed,
which is referred to as the embouchure. A lower pres-
sure is required to close the reed, if the reed is already
partially closed by pressing the lips against the reed to
constrict the entrance gap.

The flow rate U as a function of static pressure across
a clarinet reed is illustrated by the measurements of
Backus and Nederween [15.149] redrawn in Fig. 15.93.
Apart from a small region near closure, where the ex-
act details of the closing geometry and viscous losses
may also be important, the shape of these curves and
later measurements by Dalmont et al. [15.148, 150],
which exhibit a small amount of hysteresis from vis-
coelastic effects on increasing and decreasing pressure,
are in excellent agreement with the above model. The
measurements also illustrate how the player is able to
control the flow characteristics by changing the pressure
of the lips on the reed.

The reed equation can be written in the universal
form

U
(

∆p
pmax

)
Umax

= 33/2

2

(
∆p

pmax

)1/2 (
1− ∆p

pmax

)
,

(15.127)

with just two adjustable parameters: Umax the maximum
flow rate and pmax, the static pressure required to force
the reed completely shut. The maximum flow occurs
when ∆p/pmax = 1/3.

Double Reeds
Instruments like the oboe, bassoon and bagpipe chanters
use double reeds, which close against each other
with a relatively long and narrow constricted air
channel on the downstream side before entering the
instrument. The turbulent air motion in the con-
stricted air passage would result in an additional
turbulent resistance proportional to the flow velocity
squared, which would add to the pressure differ-
ence across the reed. This could result in strongly
hysteretic re-entrant static velocity flow characteris-
tics as a function of the total pressure across the
reed and lead pipe (see, for example, Wijnands and
Hirschberg [15.151]).

A recent comparison of the flow-pressure character-
istics of oboe and bassoon double reeds and a clarinet
single reed, Fig. 15.94, by Almeida [15.146]) shows no

evidence for re-entrant double-reed features. Neverthe-
less, the measurements are strongly hysteretic, because
of changes in the properties of the reeds (elasticity and
mass), as they absorb and desorb moisture from the
damp air passing through them. In the measurements
the static pressure was slowly increased from zero to
its maximum value and then back again. Under normal
playing conditions, one might expect to play on a non-
hysteretic operating characteristic somewhere between
the two extremes of the hysteretic static measurements.
Thus, although the shape of the flow-pressure curves
for the double reeds differs significantly from those of
the clarinet single reed, the general form is qualitatively
similar, with a region of dynamic negative resistance
above the peak flow. The strongly moisture dependent
properties of reeds are very familiar to the player, who
has to moisten and “play-in” a reed before it is ready for
performance.

There therefore appears to be no fundamental dif-
ference between the way single and double reeds
operate. Indeed, the sound of an oboe is apparently
scarcely changed, when played with a miniature clar-
inet reed mouthpiece instead of a conventional double
reed (Campbell and Gilbert, private communication).

Dynamic Characteristics
Fletcher [15.152] extended the quasistatic model by
assuming the reed could be described as a simple mass–

Normalized pressure flow characteristicFlow
1.2

1

0.8

0.6

0.4

0.2

0

Pressure difference
1 2 3 4 5 60

Clarinet

Oboe

Bassoon

Fig. 15.94 A comparison of the normalised, hysteric static
pressure/flow characteristics of single (clarinet) and double
(oboe and bassoon) reeds measured on first increasing and
then decreasing the flow rate of moist air through the reeds
(after [15.146])
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Re(Y)
Im(Y)

0 1

0

0 1f/f0 f/f0

a) b)

+ve

–ve

+ve

–ve

Fig. 15.95a,b Real (dark brown) and imaginary (light
brown) components of the reed admittance Y (ω) for (a) an
inward-closing reed in the negative dynamic conductance
regime and for (b) an outward-opening reed, as a function
of frequency normalised to the resonant frequency of the
reed for reeds having Q-values of 5

spring resonator resulting in a dynamic conductance
of

Y (ω) = Y (0)
1

1− (ω/ω0)
2 + iω/ω0 Q

(15.128)

where Y (0) = ∂U/∂ (∆p)|ω=0 is the quasistatic flow
conductance and the denominator describes the dynamic
resonant response of the reed. The Q-value is determined
by viscous and mechanical losses in the reed.

The resistive and reactive components of Y (ω)reed
given by (15.128) are plotted in Fig. 15.95a,b for an
inward-closing reed (−,+), in the negative flow con-
ductance regime above the velocity flow maximum,
and for the outward-closing (+,−) reed. As discussed
qualitatively above, the negative input dynamic conduc-
tance of the inward-striking reed remains negative at all
frequencies below its resonant frequency, whereas the
conductance of the outward-opening reed only becomes
negative above its resonant frequency.

For the oscillations of any attached air column to
grow, feedback theory requires that

Im(Yr +Yp) = 0

Re(Yr +Yp) < 0 , (15.129)

where Yp and Yr are the admittances of the pipe and reed,
respectively. The negative dynamic conductance of the
reed must therefore be sufficiently small to overcome
the losses in the instrument. Furthermore, the reactive
components of the reed conductance will perturb the
frequencies of the attached air column.

Fletcher and Rossing ([15.5], Chap. 13) give an ex-
tended discussion of the dynamics of reed generators
including polar plots of admittance curves for typical

outward and inward-striking reed generators as a func-
tion of blowing pressure.

For the inward-striking reeds of the clarinet, oboe
and bassoon, the real part of the reed admittance is neg-
ative below the resonant frequency of the reed. For the
oboe this is typically around 3 kHz, above the pitch of
the reed attached to its staple (joining section) alone
( ). However, when attached to an instrument,
the negative conductance will excite the lower-frequency
natural resonances of the attached tube ( ). In
this regime, the reactive load presented by the reed is rel-
atively small and positive and equivalent to a capacitive
or spring loading at the input end of the attached pipe.
This results in a slight increase in the effective length of
the pipe and a slight lowering of the frequencies of the
resonating air column.

Free reeds, like the vibrating brass cantilevers used
in the mouth organ, harmonium and certain organ reed
pipes (Fig. 15.89c), are rather weakly damped inward-
closing (−,+) reeds (Fletcher and Rossing [15.5],
Sect. 13.4). The reed is initially open. High pressure
on one side or suction on the other (as in the harmo-
nium or American organ) forces the reed back into the
aperture, controlling the air flow. Like the clarinet reed,
above a certain applied pressure the reed will close and
restrict the flow resulting in a negative conductance
regime. If the reed is forced right through the aper-
ture, it becomes an outward-opening (+,−) reed with
a positive conductance. Because of its low damping, the
blown-closed reed tends to vibrate at a frequency rather
close to its resonant frequency. In practice, as soon as
a threshold pressure is reached that is significantly below
the maximum in the static characteristics, a harmo-
nium reed starts to vibrate with a rather large sinusoidal
amplitude (typically ≈4 mm) resulting in highly non-
sinusoidal flow of air through the aperture (Koopman
et al. [15.153]). For such high-Q-value mechanical res-
onators, the vibrational frequency is strongly controlled
by the resonant frequency of the reed itself, so that
a separate reed is needed for each note, as in the pi-
ano accordion, harmonium, mouth organ and reed organ
pipes. The reeds in a mouth organ are arranged in pairs
in line with the flow of air. They are individually excited
by overpressure and suction.

In contrast, the dynamic conductance of an outward-
opening reed (+,−) is only negative above its resonant
frequency. The conductance then decreases rather
rapidly with increasing frequency, so that there may
only be a relatively narrow range of frequencies above
resonance over which oscillations can occur. The vi-
brating lips provide a possible example of such a reed,
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with an increase in steady-state pressure always in-
creasing the static flow through them. Above their
resonant frequency, the dynamic conductance becomes
negative and could excite oscillations in an attached
pipe. In such a regime, the reactive component of
the reed admittance is negative. This corresponds to
an inductive or inertial load, which will shorten the
effective length of the air column and increase its res-
onant frequencies. The influence of the reed on the
resonant frequencies of an attached instrument there-
fore provides a valuable clue to the way in which
a valve is operating, as we will discuss later in rela-
tion to the vibrations of the lips in a brass-instrument
mouthpiece.

Small-Amplitude Oscillations
We now consider the stability of the oscillations excited
by the negative dynamic conductance of the reed. In
particular, it is interesting to consider whether the os-
cillations, once initiated, are stabilised or grow quickly
in amplitude into a highly nonlinear regime. Surpris-
ingly, this depends on the bore shape of the attached air
column, as discussed by Dalmont et al. [15.154]. Sev-
eral authors have investigated such problems, including
Backus [15.155] using simple theoretical models and
measurements, Fletcher [15.156] using analytic mod-

∆p/pmax

0 1.2
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0.6

0.4
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0
0.2 0.4 0.6 0.8 1
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0

Ymax

Yinst (ω1)U(∆p)

∂p
∂U–

0.18

Fig. 15.96 Plot of normalised flow rate and differential
negative conductance of an inward-striking reed valve as
a function of pressure across the reed normalised to the pres-
sure required for closure. The intersection of the negative
conductance curve with the real part of the input admit-
tance Yinst(ω) of the instrument determines the pressure
in the mouthpiece for the onset of oscillations, illustrated
schematically for Yinst(ω) ≈ 0.78Ymax

els, Schumacher [15.157,158] in the time rather than the
frequency domain, and Gilbert et al. [15.154, 159] us-
ing a harmonic balance approach, which we will briefly
outline in the following section. Recent overviews of
the nonlinear dynamics of both wind and brass instru-
ments have been published by Campbell [15.160] and
by Dalmont et al. [15.154].

We first consider the excitation of small-amplitude
oscillations based on the reed equation, which is replot-
ted in Fig. 15.96 as a universal curve together with the
negative dynamic admittance or conductance,−∂U/∂p
above the flow-rate maximum.

The onset of self-oscillations occurs when the sum of
the real and the imaginary parts of the admittance of the
reed and attached instrument are both zero (15.129). If
losses in the reed and the attached instrument were neg-
ligible, resonances of the air column would be excited as
soon as the mouthpiece pressure exceeded 1

3 pmax. How-
ever, when losses are included, the negative conductance
of the reed has to be sufficiently large to overcome the
losses in the instrument. The onset then occurs at a higher
pressure, as illustrated schematically in Fig. 15.96.

The onset of oscillations depends not only on the
mouthpiece pressure but also on the properties of the
reed, such as the initial air gap and its flexibility, which
will depend on its thickness and elastic properties. The
elastic properties also change on the take up of moisture
during playing. It is not surprising that wind players
take great care in selecting their reeds. Furthermore,
notes are generally tongued. This involves pressing the
tongue against the lip of the reed to stop air passing
through it, so that the pressure builds up to a level well
above that required to just excite the note. When the
tongue is removed, the note sounds almost immediately
giving a much more precise definition to the start of
a note.

The transition to the oscillatory state can be consid-
ered using the method of small variations and harmonic
balance (Gilbert et al. [15.159]). For a given mouth pres-
sure defining the overall flow rate, oscillations of the flow
rate u can be written as a Taylor expansion of the ac-
companying small pressure fluctuations p at the output
of the reed, such that

u = A p+ Bp2 +C p3 + . . . . (15.130)

From the reed equation plotted in Fig. 15.96, the co-
efficient A is positive for mouthpiece pressures above
pmax/3, while B and C are positive and negative re-
spectively. We look for a periodic solution with Fourier
components that are integer multiples of the fundamental
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frequency ω, so that

p(t) =
∑

pn einωt , (15.131)

with a corresponding oscillatory flow u(t) superimposed
on the static flow U ,

u(t) =
∑

un einωt . (15.132)

At the input to the instrument, the oscillatory flow can
be expressed in terms of the Fourier components of the
input pressure and admittance, so that

u(t) =
∑

pnY (nω) einωt . (15.133)

Using the method of harmonic balance, we equate the
coefficients of the Fourier components in (15.130) with
those in having substituted for the pressure. The first
three Fourier components are then given by

p1 = ±
(

Y1 − A

2B2/ (Y2 − A)+3C

)
,

p2 =
(

B

Y2 − A

)
p2

1 ,

p3 =
(

C

Y3 − A

)1/2

p3
1 . (15.134)

For a cylindrical-bore instrument like the clarinet
at low frequencies, only the odd-n partials will be
strongly excited, so that Y2 is very large. The ampli-
tude of the fundamental component is then given by
± [(Y1 − A)/C]1/2, with a vanishingly small second har-
monic p2. The amplitude p1 of small oscillations is
then stabilised by the cubic coefficient C. Stable, small-
amplitude oscillations can therefore be excited as soon
as the negative conductance of the reed exceeds the com-
bined admittance of the instrument and any additional
losses in the reed itself.

Because the transition is continuous, p1 rises
smoothly from zero, taking either positive or negative
values (simply solutions with opposite phases). The tran-
sition is therefore referred to as a direct bifurcation. The
player can vary the pressure in the mouthpiece and the
pressure of the lips on the reed to vary the coefficients A
and C and hence can control the amplitude of the excited
sound continuously from a very quiet to a loud sound,
as often exploited by the skilled clarinet player.

In contrast, for a conical-bore instrument, the ampli-
tude of the fundamental,

p1 = ±
(

(Y1 − A)(Y2 − A)

2B2 +3C(Y2 − A)

)1/2

, (15.135)

involves the admittance of both the fundamental and
second partial. On smoothly increasing A by increasing
the pressure on the reed, Grand et al. [15.161] showed
that there can again be a direct smooth bifurcation to
small-amplitude oscillations, if 2B2 > −3C(Y2 −Y1).
However, if this condition is not met, there will be
an indirect transition, with a sudden jump to a finite-
amplitude oscillating state. This gives rise to the
hysteresis in the amplitude as the mouth pressure is first
increased and then decreased. This means that the player
may have to exert a larger pressure to sound the note ini-
tially, but can then relax the pressure to produce a rather
quieter sound. It may also explain why it is more diffi-
cult to initiate a very quiet note on the saxophone with
a conical bore than it is on the clarinet with a cylindrical
bore.

For a direct bifurcation transition, the small non-
linearities in the dynamic conductance will result in
a spectrum of partials with amplitudes varying as pn

1,
where p1 is the amplitude of the fundamental compo-
nent excited. The spectral content or timbre of wind
and brass instruments, as discussed later, therefore
changes with increasing amplitude. This is illustrated by
measurements of the amplitude dependence of the par-
tials of a trumpet, clarinet and oboe by Benade ([15.133],
Fig. 21.6c), which are reproduced for the trumpet in
Fig. 15.104. For the largely cylindrical-bore trumpet and
clarinet, nonlinearity results in partials varying as pn

1
over quite a large range of amplitudes. However, for
the oboe, with its conical bore, the relative increase
in strength of the partials is rather more complicated
(Benade [15.133], Sect. 21.3). Eventually, the small-
amplitude approximation will always break down, with
a transition to a strongly nonlinear regime. Benade as-
sociates this transition with a change in timbre and
responsiveness of the instrument for the player.

Large-Amplitude Oscillations
For a lossless cylindrical-bore instrument with only odd
integer partials, the large-amplitude solutions are partic-
ularly simple. The flow of air from the lungs and pressure
in the mouth is assumed to remain constant resulting in
an average flow rate through the instrument. The pres-
sure at the exit of the reed then switches periodically
from a high-pressure to a low-pressure state, with equal
amplitudes above and below the mean mouth pressure,
spending equal times in each. The net acoustic energy
fed into the resonating air column per cycle is therefore
zero, U

∫
p(t)dt = 0, as required for a lossless system.

Such a solution can easily be understood in terms
of the excess-pressure wave propagating to the open
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Fig. 15.97a,b Large-amplitude Helmholtz pressure fluctu-
ation of (a) a cylinder and (b) a truncated cone with length
to apex of 1/4 of its length, illustrating the dependence of
fluctuation amplitudes as a function of mouthpiece pres-
sure. For the cylinder, the mouthpiece pressure is single
valued for a given flow rate, but for the truncated cone there
are two possible solutions referred to as the standard and
inverted Helmholtz solutions

end of the instrument, where it is reflected with change
of sign. On return to the reed it reverses the pressure
difference across the reed, which switches to the re-
duced pressure state. The subsequent reflection of the
reduced pressure wave then switches the reed back
to its original high-pressure state and the process re-

Winds Strings
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p (t)

p (t)
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tp(t)
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v (t)
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Fig. 15.98 Analogy between large-amplitude pressure
waves in the bores of wind instruments and the transverse
velocity of Helmholtz waves on a bowed stretched string,
where the reed position is equivalent to the bowing position

peats indefinitely, with a periodic time of 4L/c0, as
expected.

The dependence of the square-wave pressure fluc-
tuations on the applied pressure can be obtained by the
simple graphical construction illustrated in Fig. 15.97.
The locus of the static pressure required to excite
square-wave pressure fluctuations above and below the
mouth pressure is shown by the solid line drawn from
pmouth = 1/3 to 1/2pmax, which bisects the high and
low pressures for a given flow rate. If losses are taken
into account, the horizontal lines are replaced by load
lines with a downward slope given by the real part of
the instrument’s input admittance (Fletcher and Ross-
ing [15.5], Fig. 15.9). At large amplitudes, the solutions
can then involve periods during which the reed is com-
pletely closed. The transition from small-amplitude to
large-amplitude solutions is clearly of musical impor-
tance, as it changes the sound of an instrument, and
remains an active area of research [15.154].

Analogy with Bowed String
In recent years, an interesting analogy has been noted
between the large-amplitude pressure fluctuations of
a vibrating air column in a cylindrical or truncated coni-
cal tube and simple Helmholtz waves excited on a bowed
string (Dalmont and Kergomard [15.162]). For exam-
ple, the square-wave pressure fluctuations at the output
of the reed attached to a cylindrical tube are analogous
to the velocity of the bowed Helmholtz transverse waves
of a string bowed at its centre, illustrated schematically
in Fig. 15.98. Helmholtz waves could equally well be
excited on a bowed string by a transducer with a square-
wave velocity output placed halfway along the length
of the string, in just the same way that the reed with
a square-wave pressure output excites Helmholtz sound
pressure waves into a cylinder, which acts like half the
string length.

The analogy is particularly useful in discussing the
large-amplitude pressure fluctuations in conical-bore
instruments such as the oboe or saxophone. As de-
scribed earlier, the conical tube has the same set of
resonances as a cylindrical tube that is open at both
ends. Therefore, in addition to having the same set of
standing-wave sinusoidal solutions for the transverse os-
cillations of a stretched string, a conical tube can also
support Helmholtz wave solutions. For the bowed string,
the closer one gets to either end of the string the larger
becomes the mark-to-space ratio between the regions of
high to low transverse velocity. The same is also true for
the switched fluctuations in pressure in a lossless conical
tube, shown schematically in Fig. 15.97. Hence, if one
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truncates a conical tube with a vibrating reed system, the
resonant modes of the remaining air column will be un-
changed, provided the vibrating reed produces the same
pressure fluctuations that would otherwise have been
produced by the reflected Helmholtz waves returning
from the removed apex end of the cone. Hence a conical
tube, truncated by a vibrating reed at a distance l from
the apex, can support Helmholtz wave solutions in the
remaining length L . To produce such a wave the reed has
to generate a rectangular pressure wave with a mark-to-
space ratio and pressure fluctuations about the mean in
the ratio L : l , as illustrated in Fig. 15.98, for a truncated
cone with L/l = 4.

The period of the Helmholtz wave solutions of a con-
ical bore instrument modelled as a truncated cone will
therefore be 2(L + l)/c0, with a spectrum including all
the harmonics fn = nc0/2(L + l), other than those with
integer values of n = (L + l). To determine the ampli-
tude of the rectangular pressure wave as a function of
mouthpiece pressure, a graphical construction can be
used similar to that used for the cylindrical tube, except
that the pressures have now to be in the ratio L/l, as in-
dicated in Fig. 15.97b. For the lossless large-amplitude
modes of a truncated cone, there are two possible solu-
tions involving high and low mouth pressures, which are
known as the standard and inverted Helmholtz solutions,
respectively.

Any complete model of a reed driven instrument
must include losses and departures from harmonicity
of an instrument’s partials. This leads to a rounding of
the rectangular edges of the Helmholtz waveforms and
additional structure, in much the same way that bowed
string waveforms are perturbed by frictional forces and
non-ideal reflections at the end-supports (Fig. 15.34).
Figure 15.99 shows a typical pressure waveform input
for the conical-bore saxophone, which is compared with
the Helmholtz waveform predicted for an ideal lossless
system (Dalmont et al. [15.162]).

Fig. 15.99 Measured pressure waveform at input to a sax-
ophone compared with the Helmholtz waveform expected
for a truncated cone (after Dalmont et al. [15.162])

A completely realistic model for the excitation of
sound in wind instruments must also include coupling to
the vocal tracts (Backus [15.163] and Scavone [15.164]),
since the assumption of a constant flow rate and constant
mouth pressure is clearly over-simplistic.

Register Key
This analysis implicitly assumes that the reed excites the
fundamental mode of the attached instrument. In prac-
tice, the reed will generally excite the partial with the
lowest admittance corresponding to the highest peak in
impedance measurements. For most instruments this is
usually the fundamental resonance. However, the ampli-
tude of the fundamental can be reduced relative to the
higher resonances by opening a small hole, the regis-
ter hole, positioned between the reed and first hole used
in normal fingering of the instrument. Because of the
difference in wavelengths and position of nodes, open-
ing the register hole preferentially reduces the Q-value
and shifts the frequency and amplitude of the funda-
mental relative to the higher partials. This allows the
player to excite the upper register of notes based on
the second mode, which in the case of the conical-bore
saxophone, oboe and bassoon is an octave above the
fundamental but is an octave and a perfect fifth above
the fundamental for the cylindrical-bore clarinet. The
lower and upper registers of the clarinet are sometimes
referred to as the chalumeau and chanter registers, af-
ter the earlier instruments from which the clarinet was
derived.

Figure 15.100 illustrates the lowering in amplitude
and shift in resonant frequency of the fundamental mode
on opening the register hole for the note E3 on a clarinet,
which leaves the upper partials relatively unchanged
(Backus [15.132]). The measurements also show the sig-

Mouthpiece pressure

Relative excitation frequency
151 (Hz) 112 3 4 6 8

Clarinet E3

Fig. 15.100 Resonance curves for the note E3 on a clar-
inet, showing the shift of the lowest partial on opening the
register hole (after Backus [15.132])
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nificant departures from the 1, 3, 5, 7 harmonicity of the
resonant modes of the instrument, which act as a warn-
ing not to take ideal models for the harmonicity of modes
in real wind instruments too literally. Fletcher has devel-
oped a mode-locking model to account for the excitation
of periodic waveforms on instruments with inharmonic
partials [15.165].

15.3.4 Brass-Mouthpiece Excitation

The excitation of sound by the vibrating lips in the
mouthpiece of a brass instrument cannot be described
by any of the above simple models alone, which con-
sider the reed as a simple mass–spring resonator. As
we will show, the vibrations of the lips are three-
dimensional and much more complicated. As a result,
in some regimes the lips behave rather like outward-
swinging-door valves, as first proposed by Helmholtz,
and Bernoulli pressure operated sliding-door reeds in
others. In addition the air flow is also affected by three-

f (kHz)
0 1

Steady note

Downward
slide

Upward
slide

Fig. 15.101 Time sequence (from bottom to top) of spectra
of the sound produced by a player “buzzing” into a trumpet
mouthpiece, first for an upward slide in frequency, then for
a downward slide and finally for a steady low note at high
intensity showing the excitation of a note with many Fourier
components. The dashed line is the spectrum of the popping
note excited by slapping the open end of the mouthpiece
against the palm of the hand (after Ayers [15.166])

dimensional wave-like vibrations on the surface of the
lips.

When playing brass instruments, the lips are firmly
pressed against the rim of the mouthpiece with the lips
pouted inwards. Pitched notes are produced by blow-
ing air through the tightly clenched lips to produce
a buzzing sound. The excitation mechanism can eas-
ily be demonstrated by buzzing the lips alone, though
it is difficult to produce a very wide range of pitched
sounds However, if the lips are buzzed when pressed
against the rim of a mouthpiece, the input rim pro-
vides an additional constraint on the motion of the
lips, which makes it much easier to produce pitched
notes over a wide range of frequencies ( ). The
audio demonstrates the “popping” sounds of trumpet
and horn mouthpieces followed by the sound of the
player buzzing the mouthpiece alone up to a pitch close
to the popping frequency and back again. Attaching
the mouthpiece to an instrument locks the oscillations
to the various possible resonances of the instrument
( ).

Figure 15.101 shows a series of time-sequence plots
of spectra of the sound produced by a player “buzzing”
into a trumpet mouthpiece (Ayers [15.166]), which acts
rather like a simple Helmholtz resonator. In the lower
sequence, the player excites well-defined pitched notes
from low frequencies up to slightly above the mouth-
piece popping frequency (see Sect. 15.3.3). The middle
set of traces shows the spectrum as the player starts
at a high frequency and lowers the pitch. The up-
per traces shows the spectrum of a loudly sounded,
low-frequency, note, illustrating the rich spectrum of
harmonics produced by the strongly nonlinear sound-
generation processes involved (see, for example, Elliot
and Bowsher [15.167]).

These measurements on the mouthpiece alone
strongly suggest that the lips can generate periodic
fluctuations at frequencies up to, but not significantly
beyond, the resonant frequency of any coupled acoustic
resonator. This was confirmed in an investigation of lip-
reed excitation using a simple single-resonant-frequency
Helmholtz resonator by Chen and Weinreich [15.168],
who used a microphone and loudspeaker in a feedback
loop to vary the Q-value of the Helmholtz resonator
played using a normal mouthpiece. They concluded
that a player could adjust the way they vibrated their
lips in the mouthpiece to produce notes that were
slightly higher or lower than the Helmholtz frequency,
though the most natural playing parameters generated
frequencies in the range 20–350 Hz below the resonator
frequency.
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Attached Mouthpiece
Ayers [15.166] also compared the frequencies produced
in the mouthpiece before and immediately after attach-
ment of the instrument. In these measurements the player
first excited a pitched note in the mouthpiece with the in-
strument effectively decoupled by opening a large hole
in its bore close to the mouthpiece. The hole was then
closed and the immediate change in frequency measured
before the player had time to make any adjustments to
the embouchure. The results of such measurements are
shown in Fig. 15.102, where the diagonal line represents
the pitched notes before the instrument was connected
and the discontinuous solid line through the triangu-
lar points are the modified frequencies for the same
embouchure with the instrument connected.

At the higher frequencies, the jumps between succes-
sive branches are from just above the resonant frequency
of one partial to just below the resonant frequency of the
next, with a monotonic increase in frequency on tight-
ening the embouchure in between. However, for the first
two branches, the instrument resonances initially have
a relatively small effect on the frequencies excited by the

Playing frequency (Hz)

Lip frequency (Hz)
0 800

800

600

400

200

0
200 400 600

Fig. 15.102 Frequencies produced by a trumpet mouthpiece
without (diagonal line) and with (broken line) the instru-
ment strongly coupled using an unchanged embouchure
under the same playing conditions. The solid horizontal
lines are the resonant frequencies of the assembled trumpet.
The squares and circles are predictions for the Helmholtz
outwardly opening-door and sliding-door models computed
by Adachi and Sato [15.169] for a trumpet with slightly
lower-frequency resonant modes indicated by the dashed
horizontal lines (after Ayers [15.166])

mouthpiece alone until such frequencies approach a par-
ticular partial frequency. The frequency then approaches
the resonant frequency of the instrument before jumping
to a frequency well below the next partial and the se-
quence repeats. The difference in behaviour of the lower
and higher branches suggests that more than one type of
lip-reed action is involved.

Comparison with computational models by Adachi
and Sato [15.169] appear to rule out the outward-
swinging-door model first proposed by Helmholtz,
indicated by the squares in Fig. 15.101, as the pre-
dicted frequencies are always well above those of the
instrument’s partials. The computed predictions for the
Bernoulli sliding door model, indicated by the circles,
are in better agreement with measurements, but with
predicted frequencies rather lower than those observed
and never rising above the resonant frequencies of the
instrument, in contrast to the observed behaviour for the
higher modes excited.

Any model for the lip-reed sound generator has to
explain all such measurements. Such measurements also
highlight the way that a brass player can adjust the
embouchure and pressure acting on the lips in the mouth-
piece to change the frequency of the excited mode. On
tightening the embouchure and pressure the player can
progressively excite successive modes and can “lip” the
pitch of the note up and down by surprisingly large
amounts, used with great expressive effect by jazz trum-
peters.

Vibrating Lips
In practice, the production of sound by the vibrat-
ing lips inside a mouthpiece is a highly complex
three-dimensional problem closely analogous to the pro-
duction of sound by the vocal folds – see, for example,

Fig. 15.103 High-speed photograph clips showing one cy-
cle of lip vibration in a trombone mouthpiece
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Titze [15.170]. A complete model would involve solv-
ing the coupled solutions of the Navier–Stokes equations
describing the flow of air from the mouth, through the
lips and into the mouthpiece, and the three-dimensional
motions of the soft tissues of the lips induced by the
Bernoulli pressures acting on their surfaces.

Stroboscopic and ultra-fast photography of the brass
players lips while playing reveal highly complex three-
dimensional motions (Coppley and Strong [15.171],
Yoshikawa and Muto [15.172]) suggest that the upper
lip is primarily involved in the generation of sound. Fig-
ure 15.103 and the video clip provided by
Murray Campbell show high-speed photography clips
of such motion. The lips inside the mouthpiece open
and shut rather like the gasping opening and shutting
of the mouth of a goldfish, but speeded up several hun-
dred times. Points on the surface of the upper lip exhibit
cyclic orbital motions involving the in-quadrature mo-
tions of the upper lip parallel and perpendicular to the
flow. To model such motion clearly requires at least two
independent mass–spring systems to account for the in-
duced motions of the lips along and perpendicular to
the flow (Adachi and Sato [15.169]). In addition, there
is a pulsating wave-like motion along the surface of the
lips in the direction of air flow, with the rear portion of
lips moving in anti-phase with the front. Yoshikawa and
Muto [15.172] identify such motion as strongly damped
Rayleigh surface waves travelling through the mucous
tissue of the upper lip.

The simplest possible model to describe such motion
therefore requires at least three interacting mass–spring
elements; one to describe the lip motion along the di-
rection of flow, and two to describe the motions of
the front and back surfaces of the lips. But even then,
the model will still only be an approximation to the
three-dimensional bulk tissue motions involved. Not
surprisingly, research into the lip-reed sound-excitation
mechanism remains a problem of considerable interest.

Artificial Lips
To achieve a better understanding of lip dynamics and
its effect on the sound produced by brass instrument,
several groups have developed artificial lips to ex-
cite brass instrument (e.g. Gilbert et al. [15.173] and
Cullen et al. [15.174]). These can be used to investigate
instruments under well-controlled and reproducible ex-
perimental conditions. Typically, the lips are simulated
by two slightly separated thin-walled (0.3 mm thickness)
latex tubes filled with water under a controlled pressure.
The tubes are rigidly supported from behind so that the
internal pressure forces the lips together. The tubes are

placed across an opening in an otherwise hermetically
sealed unit that represents the mouth and throat cavi-
ties. Air is fed into the mouth cavity at a constant flow
rate. A fixed mouthpiece is then pushed against the arti-
ficial lips with a measured force. By varying this force,
the applied pressure and the pressure within the artificial
lips, the experimenter can simulate the various ways in
which a player can control the dynamics of the lips (the
embouchure) to produce different sounding notes. De-
spite the considerable simplification in comparison with
the dynamics of real lips, the sound of brass instruments
played by artificial lips is extremely close to that pro-
duced by a real player. Such systems enable acoustical
studies to be made on brass instruments with a much
greater degree of flexibility, reproducibility and stability
than can be achieved by a player. Using a fixed mouth-
piece, the playing characteristics of different attached
instruments can easily be compared.

Nonlinear Sound Excitation
When played very quietly, brass instruments can produce
sounds that are quasi-sinusoidal with relatively weak
higher harmonics. However, as previously noted for vi-

Intensity of p-th partial (dB)

Intensity of fundamental tone (dB)
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Fig. 15.104 Intensity of the first four partials of the note C4
on a trumpet as a function of the intensity of the first par-
tial, measured from the minimum to the maximum playing
intensity (after Benade [15.133] Fig. 21.8). On this loga-
rithmic scale, the dashed lines through the measurements
for the second, third and fourth Fourier components have
slopes 2, 3 and 4, respectively
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brating reeds, any nonlinearity will lead to the generation
of harmonics of the fundamental frequency ω at frequen-
cies 2ω, 3ω, etc., with initially amplitudes increasing as
|p0 (ω)|n , where p0(ω) is the amplitude of the funda-
mental. However, in the strongly nonlinear region at high
amplitudes, all partials become important and increase
in much the same way with increasing driving force
(Fletcher [15.175] and Fletcher and Rossing [15.5],
Sects. 14.6 and 14.7). Such effects are illustrated in
Fig. 15.104 for measurements on a B-flat trumpet by
Benade and Worman ([15.133], Sect. 21.3). The spectral
content and resulting brilliance of the sound or timbre
of a trumpet, or any other brass instrument, therefore
depends on the intensity with which the instrument is
played. Benade noted a change in the sound and feel
of an instrument by the player in the transition re-
gion between the power-law dependence of the Fourier
component and the high-amplitude regime, where the
harmonic ratios remain almost constant. Similar char-
acteristics were observed for the clarinet though rather
different characteristics for the oboe.

Examples of the strongly non-sinusoidal periodic
fluctuations of the pressure and flow velocity within the
mouthpiece for two loudly played notes on a trombone
are shown in Fig. 15.105 (Elliot and Bowsher [15.167]).
Fletcher and Rossing ([15.5], Sect. 14.7) discuss such
waveforms in terms of the lips operating slightly above
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Fig. 15.105 Non-sinusoidal pressure fluctuations within the
mouthpiece for two notes played at large amplitudes on the
trombone (after Elliot and Bowsher [15.167])

the resonant frequency of their outward-swinging-door
resonant frequencies.

The nonlinearity of the lip-reed excitation mech-
anism enables the player to vibrate the lips at the
frequency of the missing fundamental of the quasi-
harmonic series of modes of brass instruments, illus-
trated in Fig. 15.38. This is referred to as the pedal
note and is an octave below the lowest mode nor-
mally excited on the instrument. The lips vibrate at the
pedal-note frequency but only excite the quasi-harmonic
n = 2, 3, 4, . . . modes.

The pressure fluctuations in Fig. 15.104 of ≈ 3 kPa
correspond to a sound intensity of nearly 160 dB. As the
static pressure in the mouthpiece is only a few percent
above atmospheric pressure (105 Pa), such pressure ex-
cursions are a significant fraction of the excess static
pressure. Even larger-amplitude pressure fluctuations
can be excited on the trumpet and trombone when played
really loudly, to produce a brassy sound. Long [15.176]
has recorded pressure levels in a trumpet mouthpiece as
high as 175 dB, corresponding to pressure fluctuations
of ≈ 20 kPa.

At such high amplitudes, one can no longer neglect
the change in density of a gas when considering its accel-
eration under the influence of the pressure gradient. To
a first approximation, the wave equation then becomes

∂2ξ

∂x2
=
(

1+ ∂ξ

∂x

)
1

c2
0

∂2ξ

∂t2
. (15.136)

The speed of sound will now depend on both frequency
and wave shape, with the velocity varying as

c′ = c0

〈(
1+ ∂ξ

∂x

)−1/2
〉

x,t

∼ c0

[
1+α (kξ)2

]
,

(15.137)

where the averaging is taken over both time and wave-
length giving a value for α ≈ 1/8. In practice, for waves
propagating down a tube, other terms involving momen-
tum transport, viscosity and heat transfer also have to be
included in any exact solution. However, the essential
physics remains unchanged. The net effect of the nonlin-
earity is to progressively increase the slope of the leading
edge of any wave propagating along the tube. A prop-
agating sine wave is then transformed into a sawtooth
waveform, or shockwave, with an infinitely steep leading
edge, at sufficiently large distances along the tube.

Such waves have indeed been observed in trum-
pet and trombone bores, which are long and relatively
narrow. The effect is illustrated in Fig. 15.106 by the
measurements of Hirschberg et al. [15.177], for waves
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Fig. 15.106 Internal acoustic pressure in a trombone played
at a dynamic level fortissimo (ff). Upper curve: pressure
at the input to the air column in the mouthpiece. Lower
curve: pressure at the output of the slide section, showing
the characteristic profile of a shock wave (after Hirschberg
et al. [15.177])

propagating along a trombone tube. The sound intensity
of ≈ 175 dB is considerably higher than the intensi-
ties illustrated in Fig. 15.99. As predicted, the sharpness
of the leading edge of the waveform progressively in-
creased on propagating along the bore. The discontinuity
in waveform of the fully developed shockwave dramat-
ically increases the intensities of the higher harmonics
of a continuously played note and gives the trumpet and
trombone (and trompette organ pipes) their characteris-
tic brassy sound at very high intensities ( ). The
high-frequency components of all such sounds will make
them highly directional. Campbell [15.160] reviews
nonlinear effects in woodwind and brass instruments,
with many references to recent research.

To achieve such brassy sounds, the instrument must
have a sufficiently long length of relatively narrow pipe,
like the trumpet and trombone, in which the pressure
fluctuations remain high and have time to build up into
a shock wave. Shockwaves are far more difficult to set
up in instruments like the horn and cornet, with flaring
conical bores, because the pressure drops rather rapidly
with increasing diameter along the bore.

Time-Domain Analysis
When nonlinearity is important or when the initial
transient response is of interest, it is more appropri-
ate to consider the dynamics in the time- rather than
frequency-domain, just as it was for analysing the
transient dynamics of the bowed string. Time-domain
analysis in wind and brass instruments was pioneered
by Schumacher [15.158], McIntyre et al. [15.178] and
Ayers [15.179], and is discussed in Fletcher and Ross-
ing ([15.5], Sect. 8.14). Time-delayed reflectometry
measurements are made by producing short pressure
pulses inside the mouthpiece generated by a spark or
by a sudden piezoelectric displacement of the mouth-
piece end-wall. The pressure in the mouthpiece is then
recorded as a function of time after the event.

In the linear response regime, measurement in the
time domain gives exactly the same information about
an instrument as measurements in the frequency domain,
assuming both the magnitude and phase of the frequency
response is recorded. This follows because the frequency
response Z(ω) measured in the mouthpiece is simply
the Fourier transform of the transient pressure response
p(t) for a δ- or impulse-function flow (Av) induced by
the spark or wall motion. Knowing p(t) or Z(ω) one
can obtain the other by applying the appropriate Fourier
transform

Z(ω) =
∞∫

0

p(t)e−iωt dt or

p(t) = 1

2π

∞∫
−∞

Z(ω)eiωt dω . (15.138)

Measurements of the impulse response are particularly
useful in identifying large discontinuities in the acous-
tic impedance along the bore of instruments produced
by tone holes, valves and bends, which can significantly
perturb particular partials. The position of any such dis-
continuity can be determined by the time it takes for the
reflected impulse to return to the mouthpiece.

Time-domain analysis is essential, if one wishes to
investigate starting transients, where reflections from the
end of the instrument are required to stabilise the pitch of
a note. This problem is particularly pronounced for horn
players pitching, for example, notes as high as the 12th
resonant mode of the instrument. The player must buzz
the lips a dozen or so cycles into the mouthpiece before
the first reflection from the end of the instrument returns
to stabilise the pitch. If the player gets the initial buzzing
frequency slightly wrong, the instrument may lock on to
the 11th or 13th harmonic rather than the intended 12th,
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leading to the familiar cracked note of the beginner and
sometimes even professional horn players. Furthermore,
false reflections from discontinuities along the length of
the tube, may well confuse the initial feedback, making
it more difficult to pitch particular notes. This leads to
small pitch-dependent changes in the playing character-
istics of instruments made to different designs adopted
by different manufacturers.

15.3.5 Air-Jet Excitation

Many ancient and modern musical instruments are ex-
cited by blowing a jet of air across a hole in a hollow
tube or some other acoustic resonator. Familiar exam-
ples include the flute, pan pipes, the ocarina and simple
whistle in addition to many organ pipes. Sound excita-
tion in flutes and organ pipes was first considered by
Helmholtz [15.127] in terms of an interaction between
the air jet produced by the lips or a flue channel in the
mouthpiece of an instrument and the coupled air column
resonator.

In practice, the dynamics of sound production is
a very complex aerodynamic flow problem requiring
the solution of the Navier–Stokes equations govern-
ing fluid flow in often complex geometries. Various
simplified solutions have been considered by many au-
thors since the time of Helmholtz and Rayleigh [15.3].
Fletcher and Rossing ([15.5], Sect. 16.1) provide refer-
ences to both historic and more-recent research. Fabre
and Hirschberg [15.180] have also written a recent re-
view of simple models for what are sometimes referred
to as flue instruments.

Rayleigh showed that the interface separating two
fluids moving with different velocities was intrinsically
unstable, resulting in an oscillating sinuous lateral dis-
turbance of the interface that grows exponentially with
time Fig. 15.107. This arises because, in the frame of
reference in which the two fluids move with the same

u

V

b

Fig. 15.107 Propagating sinuous instability of an air jet
emerging from a flow channel with two possible positions of
the angled labium or lip to excite resonances of an attached
air column for a given jet velocity V

speed in opposite directions, any disturbance of the in-
terface towards one of the fluids will increase the local
surface velocity on that side. This will result in a de-
crease in Bernoulli pressure on that side of the interface
and increase it on the other, creating a net force in the
same sense as the disturbance, which will therefore grow
exponentially with time. For a layer of air moving at
velocity V without friction over a stationary layer, a sinu-
soidally perturbed deflection of the jet in the laboratory
frame of reference at rest increases exponentially with
distance as it travel along the interface with velocity V /2.

Similar arguments were used by Rayleigh to describe
the instability of an air jet of finite width b and velocity
V produced by blowing through an arrow constriction
between the pouted lips when playing the flute, or by
blowing air through an air channel towards the sharp
lip of the recorder or an organ pipe. Fletcher [15.181]
showed that the lateral displacement h(x) of the jet in-
duced by an acoustic velocity field veiωt between the jet
orifice and the lip varies with position and time as

h(x) = − j
( v

ω

) [
1− cosh µx exp(−iωx/u)

]
eiωt ,

(15.139)

illustrated schematically in Fig. 15.107. The first term
simply corresponds to the jet moving with the im-
pressed acoustic field, while the second describes the
induced travelling-wave instability moving along the jet
with velocity u ≈ V/2, which dominates the jet displace-
ment at the lip of the instrument. For long-wavelength
instabilities on a narrow jet, such that the character-
istic wavevector k � 1/b, Rayleigh showed that the
phase velocity u = ω/k ∼ kbV/2 = (ωbV/2)1/2, while
the exponential growth factor µ = (k/b)1/2.

In practice, the velocity profile of the jet is never
exactly rectangular but in general will be bell-shaped.
This results in a slightly different frequency, width b
and velocity dependence of the phase velocity, with

u = 0.55(ωb)1/3V 2/3 (15.140)

and corresponding changes in the exponential growth
factor (Savic [15.182]). Typical propagation velocities
of disturbances on the jet of flute and organ pipes meas-
ured by Coltman [15.183] range from 6.7 m/s to 3.7 m/s
with velocity ratios u/V from 0.35 to 0.5 for blowing
pressures from 1 to 0.15 inches of water.

Resonances of the attached resonator can be excited
when the air-jet instability is in phase with oscillations
within the resonator, as shown for the two positions
indicated in Fig. 15.107. This corresponds to an odd
number of half-wavelengths of the propagating instabil-
ity, so that ωl/u = nπ, which is equivalent to f ∼ nV/4,
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where n is an odd integer and we have assumed u ≈ V/2.
For a given length between jet orifice and lip, different
frequencies can be excited by varying the jet velocity
V = √

2Pmouth/ρ, where Pmouth is the pressure in the
mouth creating the jet. When coupled to an acoustic res-
onator with a number of possible resonances, such as an
organ pipe or the pipe of a flute or recorder, the inter-
action between the jet and oscillating resonator causes
the frequency to lock on to a particular resonance, with
hysteretic jumps between the resonance excited as the
blowing pressure is increased and decreased, as illus-
trated schematically in Fig. 15.108 (Coltman [15.183]).
This explains why the pitch of an instrument like the
recorder or flute doubles when it is blown more strongly.
The line marked “edge tones” indicates the frequency of
the excited jet mode instability for the same orifice–lip
geometry without an attached pipe and the line marked
“ f = pipe resonance” indicates when the frequency of
the coupled jet coincides with the free vibrations of the
attached air column. In practice the instrument is played
in close vicinity to the pipe resonances.

The above model is strictly only applicable to small
perturbations in jet shape (� b) and to a nonviscous
medium. In practice, measurements of jet displace-
ment by Schlieren photography, hot-wire anemometry
(Nolle [15.185]), smoke trails Cremer and Ising [15.186]
and Coltman [15.187] and particle image velocime-
try (PIV) (Raffel et al. [15.188]) show that within an

Frequency

Jet velocity

f = pipe resonances

Edge tone

Fig. 15.108 Schematic representation of the frequency of
a jet-edge oscillator before and after coupling to a multi-
resonant acoustic resonator. The line marked f = pipe
resonator indicates the pressures when the frequencies are
the same as the modes of the uncoupled acoustic resonator
(after Coltman [15.183])

Fig. 15.109 A computed snapshot showing the breakup of
a jet and generation of vortices (Adachi [15.184])

acoustic cycle the jet moves to either side of the lip
of the instrument with large displacement amplitudes
comparable with the physical dimensions of the dis-
tance between the orifice and lip. In addition, viscous
forces lead to a change in profile of the jet as it moves
through the liquid from rectangular to bell-shaped (Sé-
goufin et al. [15.189]). Furthermore, the associated shear
forces eventually induce vorticity downstream, with in-
dividual vortices shearing away from the central axis of
the jet on alternate sides, as observed by Thwaites and
Fletcher [15.190, 191].

In recent years, major advances have also been made
in studying such problems by computation of solutions
of the Navier–Stokes equations describing the nonlin-
ear aerodynamic flow. An example is illustrated by
the simulated jet deflections by Adachi [15.184] shown
in Fig. 15.109. Adachi’s computational results are in
reasonably good agreement with Nolle’s flow meas-
urements [15.185] made with a hot-wire anemometer.
A sequence of such computations by Macherey for the
jet in a mouthpiece with flute-like geometry is included
in a recent review paper on the acoustics of wood-
wind instruments by Fabre and Hirschberg [15.192].
The computations show a relatively simple jet structure
switching from one side of the lip of a flute to the other
during each period of the oscillation.

Air-Jet Resonator Interaction
Despite the obvious limitations of any small-amplitude
linear approach to the jet–lip interaction and the exci-
tation of resonator modes, it is instructive to consider
the analytic model introduced by Fletcher [15.181],

Part
E

1
5
.3



Musical Acoustics 15.3 Wind Instruments 635

which is discussed in some detail in Fletcher and Ross-
ing ([15.5], Sect. 16.3), as it includes much of the
essential physics in a way that is not always apparent
from purely computational models. The assumed ge-
ometry is illustrated schematically in Fig. 15.110 and
can easily be generalised to model sound excitation
in air-jet-driven instruments with different mouthpiece
geometries such as the recorder, organ pipe or flute.
A uniform jet with a rectangular top-hat velocity pro-
file of width b and velocity V is assumed to impinge on
the lip or labium of the instrument, with the jet pass-
ing through a fraction A of the attached pipe area Sp.
The oscillating travelling-wave jet instability will result
in a periodic variation of the fractional area varying as
αeiωt . On entering the pipe channel, the jet will cou-
ple to all possible modes of the attached pipe, which in
addition to the principle acoustic modes excited, will in-
clude many other modes involving radial and azimuthal
variations [15.193] that are very strongly attenuated.
Much of the energy of the incident jet will therefore
be lost by such coupling with typically only a few per-
cent transferred to the important acoustic resonances of
the instrument.

To evaluate the transfer of energy to the principle
acoustic mode, we consider the pipe impedance across
the plane M. In the absence of the jet, the impedances
of the attached pipe and mouthpiece section are Zp and
Zm, where the mouthpiece section has a certain volume
and hole area, with the volume in the case of a flute
involving an adjustable length of pipe used for fine-
tuning. Fletcher simplified an earlier model introduced
by Elder [15.194], in assuming the principle of linear
superposition, with a jet flow superimposed on that of
the instrument. The oscillating incident jet then has two
principal effects: the oscillating fraction of area α of the
jet entering the pipe introduces a flow into the attached
pipe

U1 = αSp Zm/
(
Zm + Zp

)
, (15.141)

M

Zm Zp

ejωt

Sp

Instability waves Mixing region
u

V

Fig. 15.110 Model to illustrate interaction between air jet
and pipe modes (after Fletcher [15.193])

while the effective pressure acting on the plane M
derived from momentum-balance arguments results in
a pipe flow of

U2 = αρV 2/
(
Zm + Zp

)
. (15.142)

There is also an additional nonlinear term U3 mathemat-
ically arising from the nonlinear effect of the fractional
insertion area of the jet insertion at large amplitudes,
which is negligible in comparison with the many other
nonlinearities in any realistic model. This model in-
tegrates and simplifies earlier models introduced by
Cremer and Ising [15.186], Coltman [15.187] and El-
der [15.194].

It immediately follows from the above arguments
that, provided the phase of the jet instabilities are
appropriate, instabilities on the jet will excite strong
resonances of the instrument when the series impedance
(Zm + Zp) is a minimum, which is just the impedance
of the pipe loaded by the impedance of the mouth-
piece assembly. Provided the lengths involved are much
less than an acoustic wavelength, Zm = iρ∆L/Sp where
∆L is the end correction introduced by the mouthpiece
assembly. The net flow is then given by

Up = (V + iω∆L) ρVα

Sp
(
Zm + Zp

) . (15.143)

The resonances are therefore those of a pipe that is open
at both ends, but with a small end-correction for the
effective volume of the mouthpiece and any additional
closed tuning tube and flow in and out of the mouthpiece.

Because the mouthpiece impedance is reactive, the
induced vibrations in flow from direct jet flow (U1)
and that induced by the jet pressure (U2) are in phase
quadrature. In addition, the two terms have a different
dependence on jet velocity and frequency. In practice,
ω∆L is often larger than V , so that the second term usu-
ally dominates, though this will not necessarily be true
in more realistic models.

For small sinusoidally varying jet perturbations and
a top-hat velocity profile, the driving force would only
include single frequency components. However, in prac-
tice, viscous damping results in a spreading out of the
velocity profile in the lateral direction with a bell-shaped
profile that increases in width with distance along the jet.
If such a profile is offset from the lip, any sinusoidal dis-
turbance of the jet will introduced additional harmonics
at frequencies, 2ω, 3ω, etc., with increasing amplitudes
for increasing jet oscillations. In practice, the amplitudes
of jet oscillation are so large that the jet undergoes a near
switching action, alternating its position from one side
to the other of the lip. The driving force is therefore
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strongly non-sinusoidal and provides a rich spectrum of
harmonics to excite the upper partials of any sounded
note. A flute player, for example, has considerable con-
trol over the quality of the sound produced, by variation
of mouth pressure and jet velocity, its velocity profile
on leaving the lips, and its direction in relation to the
labium or lip of the instrument.

For most musical instruments excited by an air jet,
the sinuous instability is the most important, though
Chanaud [15.195] and Wilson et al. [15.196] have high-
lighted the importance of varicose instabilities (periodic
variations in area of the jet), which were also investi-
gated by Rayleigh, as in whistles and whistling, where
the air passes through an aperture rather than striking an
edge.

Regenerative Feedback
We now consider the effective acoustic impedance of
the exciting air column as we did for the vibrating reed.
Our emphasis here is to highlight the essential physics
rather than provide a rigorous treatment. More details
and references are given in Fletcher and Rossing ([15.5],
Sect. 16.4) and Fletcher [15.193].

The flow Um into the mouth of the resonator can be
expressed as

Um = vmSm = pmYm ∼ pmSp

iωρ∆L
. (15.144)

From (15.139), the lateral displacement of the jet at the
lip a distance l from the exit channel of the jet is then
given by

hl ∼ i
(vm

ω

)
cosh µl exp (−ωl/u) , (15.145)

where u is the phase velocity for disturbances travel-
ling along the jet and the implicit time variation has
been omitted. From the ratio of the net flow into the
mouthpiece-end and attached resonator to the pressure
acting on the air jet, Fletcher and Rossing derive the
effective admittance of the air-jet generator,

Yi ∼ VW

ρω2∆L

(
Sp

Sm

)
cosh µl exp

[
−i

(
ωl

u

)]
.

(15.146)

Apart from a small phase factor (φ ≈ V/ωL), which we
have omitted, the admittance is entirely real and negative
when ωl/u = π, which corresponds to the first half-
wavelength of the instability just bridging the distance
from channel exit to lip, as shown in Fig. 15.106. This
is also true for ωl/u = nπ, where n is any odd integer,
corresponding to any odd number of half-wavelengths

of the growing instability between the jet exit and lip of
the instrument.

These are just the conditions for positive feedback
and the growth of acoustic resonances in the pipe res-
onances will be excited when Im(Yp +Ym) = 0, which
is equivalent to the condition that Zs should be a mini-
mum, as expected from (15.129). As Coltman [15.183]
pointed out, the locus of Im(Yj) plotted as a function or
Re(Yj) as a function of increasing frequency is a spiral
about the origin in a clockwise direction (Fletcher and
Rossing [15.5], Fig. 16.10). The jet admittance there-
fore has a negative real component at all frequencies
when the locus point is in the negative half-plane. Res-
onances can therefore be set up over frequency ranges
from ≈ (1/2 to 3/2)ω∗, (5/2 to 7/2)ω∗, etc. where ω∗,
3ω∗, 5ω∗ are the frequencies when the admittance is
purely conductive and negative. By varying the blow-
ing pressure and associated phase velocity of the jet
instability, the player can therefore excite instabilities
of the jet with the appropriate frequencies to lock on to
the resonances of the attached air column, as illustrated
schematically in Fig. 15.108.

Measurements by Thwaites and Fletcher [15.190]
are in moderately good agreement with the above model
at low blowing pressures and reasonably high frequen-
cies, but deviate somewhat at low frequencies and high
blowing pressures. This is scarcely surprising in view of
the approximations made in deriving the above result.

Edge Tones and Vortices
Edge tones are set up when jet of air impinges on a lip or
thin wire without any coupling to an acoustic resonator.
The high flow rates in the vicinity of the lip or wire
can generate vortices on the downstream side, which
spin off on alternating sides, setting up an alternating
force on the lip or wire. If the object is itself part of
a mechanical resonating structure, such as a stretched
telegraph wire or the strings of an Aeolian harp, wind-
blown resonances can be set up, with different resonant
modes excited dependent on the strength of the wind.
In extreme cases, the excitation of vortices can result
in catastrophic build up of mechanical resonances, as in
the Tacoma bridge disaster.

Before 1970, many treatments of wind instruments
discussed air-jet sound generation in such terms. Hol-
ger [15.197], for example, proposed a nonlinear theory
for edge-tone excitation of sound in wind instruments
based on the formation of a vortex sheet, with a suc-
cession of vortices already created on alternate sides of
the mid-plane of the emerging jet before it hit the lip
or labium of the instrument. Indeed, measurements of
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the flow instabilities and phase velocity of instabilities
in a recorder-like instrument by Ségoufin et al. [15.189],
as a function of Strouhal number ωb/u, fit the Holger
theory rather better than models based on the Rayleigh
instability and refined by later authors for both short and
long jets, but the experimental errors are rather large.
However, the vortex-sheet model does not include the
growth of disturbances in the sound field with distance
(as measured by Yoshikawa [15.198]), which is a crucial
parameter for the prediction of the oscillation threshold
observed for instruments such as the recorder.

It is also clear that vortex production is important in
many wind instruments, especially where the acoustic
amplitude is large, as in the vicinity of sharp edges or
corners of both open and closed tone holes, as observed
in direct measurements of the flow field. For example,
Fabre et al. [15.199] have recently shown that vortex
generation is a significant source of energy dissipation
for the fundamental component of a flute note.

In view of the complexity of the fluid dynamics
involves, it seems likely that future progress in our un-
derstanding of jet-driven wind instruments will largely
come from computational simulations, though physi-
cal models still provide valuable insight into the basic
physics involved.

15.3.6 Woodwind and Brass Instruments

In this last section on wind instruments, we briefly de-
scribe a number of woodwind and brass instruments
of the modern classical orchestra. All such instruments
were developed from much earlier instruments, many
of which still exist in folk and ethnic cultures from
all around the World. Illustrated guides to a very large
number of such instruments are to be found in Musical
Instruments by Baines [15.200] and the encyclopaedia
Musical Instruments of the World [15.30]. The two text
by Backus [15.132] and Benade [15.133], both lead-
ing researchers in the acoustics of wind instruments,
provide many more technical details concerning the con-
struction and acoustics of specific woodwind and brass
instruments than space allows here, as does Fletcher and
Rossing ([15.5], Chaps. 13–17) and Campbell, Myers
and Greated [15.7].

Woodwind Instruments
The simplest instruments are those based on cylindrical
pipes, such as bamboo pan pipes excited by a jet of air
blown over one end, or hollow resonators, such as prim-
itive ocarinas, which act as simple Helmholtz resonators
with the pitch determined by the openings of the mouth-

piece and fingered open holes. Woodwind instruments
use approximately cylindrical or conical tubes excited
by a reed or a jet of air blown over a hole in the wall of
the tube. As we have seen, simple cylindrical and conical
tubes retain a harmonic set of resonances independent
of their length, which in principle allows a full set of
harmonic partials to be sounded when the instrument is
artificially shortened by opening the tone holes. In prac-
tice, as discussed in the previous section, the harmonicity
of the modes is strongly perturbed by a large number
of factors including the strongly frequency-dependent
end-corrections from tone holes and significant depar-
tures from simple cylindrical and conical structures.
Such perturbations can, to some extent, be controlled by
the skilled instrument maker to preserve the harmonic-
ity of the lowest modes responsible for establishing the
playing pitch of an instrument. We will describe the var-
ious methods of exciting vibrations by single and double
reeds and by air flow in the next section.

Figure 15.111 shows four typical modern orchestral
woodwind instruments. All such instruments have dis-
tinctive tone qualities and come in various sizes, which
cover a wide range of pitches and different tone-colours.

The flute, bass flute and piccolo are based on the
resonances of a cylindrical tube, with the open end and
mouthpiece hole giving pressure nodes at both ends.

Flute Oboe Clarinet Bassoon

Fig. 15.111 The modern flute, oboe, clarinet and bassoon
(not to scale)
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Like the recorder, all the chromatic notes of the musical
scale can be played by selectively opening and shutting
a number of tone holes in the walls of the instrument
using the player’s fingers (on ancient and baroque flutes)
or felted hinged pads operated by a system of keys and
levers (on modern instruments). Primitive flutes appear
in most ancient cultures.

The clarinet is based on a cylindrical tube excited
by a single reed at one end. The reed and mouthpiece
close one end of the tube, so that the odd-integer partials
are more strongly excited than the even partials, par-
ticularly for the lowest notes, when most sideholes are
closed. In addition, when overblown, the clarinet sounds
a note three times higher (an octave and a fifth). Like
all real instruments, perturbations from the tone holes,
variations in tube diameter and the nonlinear processes
involved in the production of sound vibrations by the
reed strongly influence the strength of the excited par-
tials, all of which contribute to the characteristic sound
of the instrument.

The single-reed clarinet is a relatively modern instru-
ment developed around 1700 by the German instrument
maker Denner. It evolved from the chalumeau, an earlier
simple single-reed instrument with a recorder-like body,
which still gives its name to the lower register of the
clarinet’s playing range. In the 1840s, the modern sys-
tem of keys was introduced based on the Boehm system
previously developed for the flute [15.200].

The oboe is based on a conical tube truncated and
closed at the playing end by a double reed. As described
earlier, a conical tube supports all the integer harmonic
partials giving a full and penetrating sound quality that
is very rich in upper partials. This is why an oboe note is
used to define the playing pitch (usually A4 = 440 Hz)
of the modern symphony orchestra. Like all modern
instruments, today’s oboe developed from much earlier
instruments, in this case from the double-reed shawn
and bagpipe chanters, which still exist in many ethnic
cultures in Europe, Asia and parts of Africa. In addition
to the bass oboe, the oboe d’amore and cor anglais, with
their bulbous end cavity just before the output bell, have
been used for their distinctive plaintive sounds by Bach
and many later composers. Like the flute and clarinet,
early oboes used mostly open-side holes closed by the
fingers, with only one or two holes operated by a key,
but developed an increasingly sophisticated key system
over time to facilitate the playing of the instrument.

The bassoon is a much larger instrument, producing
lower notes of the musical scale. Because of the length
of the air column, the spacing of the tone holes would be
far too wide to operate by the player’s fingers alone. To

circumvent this problem, the instrument is folded along
its length and relatively long finger holes are cut diago-
nally through the large wall thickness, so that normally
fingered holes can connect to the much wider separa-
tion of holes in the resonant air column. The bore of
the instrument is based on a largely conical cross sec-
tion, with the mouthpiece end terminated by a narrow
bent tube or crook to which a large double reed is at-
tached. Early bassoons included a single key to operate
the most distant tone hole on the instrument. Modern
instruments have an extended key system to facilitate
playing all the notes of the chromatic scale. The con-
trabassoon includes an additional folded length of tube.
Like the oboe, the sound of the bassoon is very rich in
upper partials and has a very rich, mellow sound.

Related to the bassoon is the renaissance racket
played with a crook and double reed. The instrument
looks like a simple cylinder with a set of playing holes
cut into its surface. However, in reality, it is a highly con-
voluted pipe with twelve parallel pipes arranged round
the inner diameter of the cylinder and interconnected
with short bends at their ends to produce a very long
acoustic resonator with easily accessible tone holes.
This provides a beautiful example of the centuries-old
ingenuity of instrument makers in solving the many
acoustic and ergonomic problems involved in the design
of musically successful wind instruments.

Brass Instruments
Figure 15.112 illustrates the trumpet, trombone and
horn, which like all brass instruments are based on
lengths of cylindrical, conical and flared resonant air
columns. They are excited by a mouthpiece at one end
and a bell at the open end, as described in the previous

Trombone
Positions 1  2  3  4  5  6  7

Trumpet

Horn

Fig. 15.112 The trombone, French horn and trumpet
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section. The player selects the note to be sounded by
buzzing the lips, usually at a frequency corresponding
to one of the natural resonances of the coupled air col-
umn. The essential nonlinearity of this excitation process
also excites multiples in frequency of the playing pitch.
Ideally, for ease of playing, these harmonics should co-
incide with the higher modes of the excited air column.
As already described, brass instruments are therefore de-
signed to have a full harmonic set of modes. However,
because of their shape and outward flare, it is impossible
to achieve this for the fundamental mode (Fig. 15.77).

By adjusting the pressure and the tightness of the
lips in the mouthpiece, the player can pitch notes based
on the n = 2, 3, 4 . . . modes – the n = 2 mode, a fifth
above, an octave above, an octave and a fourth above, etc.
Trumpet players typically sound notes up to the 8–10 th
mode, while skilled horn players can pitch notes up to
and sometimes above the 15th. In the higher registers,
the instruments can therefore play nearly all the notes of
a major diatonic scale. A few of the notes can be rather
badly out of tune, but a skilled player can usually cor-
rect for this by adjusting the lip pressure and flow of air
through the mouthpiece. The low notes are based on sim-
ple intervals: the perfect fifth, octave, perfect fourth, etc.
Trumpets and horns were therefore often used in early
classical music to add a sense of military excitement and
to emphasise the harmony of the key in which the music
is written. However, in later classical music and music
of the romantic period, all the notes of the chromatic
scale were required. To achieve this, brass instruments
such as the trumpet and horn were developed with a set
of air valves, which enabled the player to switch in and
out various combinations of different lengths of tube, to
change the effective resonating length of the vibrating
air column and hence playing pitch. Uniquely, the pitch
of the trombone is changed by the use of interpenetrat-
ing cylindrical sliding tubes, which change the effective
length. Modern instruments generally use a folded or
coiled tube structure to keep the size of the instrument
to manageable proportions.

The trombone can sound all the semitones of the
chromatic scale, by the player sliding lengths of closely
fitting cylindrical tubing inside each other. In the first
position, with the shortest length tube (Fig. 15.112), the
B-flat tenor trombone sounds the note B-flat at ≈115 Hz,
corresponding to the n = 2 mode, an octave below the
lowest note on the B-flat trumpet. To play notes at
successive semitones lower, the total length has to be
extended sequentially by fractional increases of 1.059.
From the shortest to longest lengths there are seven such
increasingly spaced positions. When fully extended, the

trombone then plays a note six semitones lower (E) than
the initial note sounded. One can then switch to the n = 3
mode to increase the pitch by a perfect fifth, to the note
B a semitone higher than the initial note sounded. Using
the closer positions enables the next six higher semitones
to be played. Higher notes can be excited by suitable
combinations of both position and mode excited. The
trombone is one of the few musical instruments that can
slide continuously over a large range of frequencies, sim-
ply by smoothly changing its length. This is widely used
in jazz, where it also enables the player to use a very
wide, frequency-modulated, vibrato effect and bending
of the pitch of a note for expressive effect.

The fully extended length of the vibrating air column
in the first position is ≈ 2.5 m. Two-thirds of the length
is made up of 1.3 cm-diameter cylindrical tubing with
the remaining gently flared end-section opening out to
a bell diameter of 16–20 cm.

The trumpet achieves the full chromatic range by
the use of three piston valves, which enable additional
lengths of tubing to be switched in and out of the res-
onating air column. In the inactive up position, the sound
travels directly through a hole passing directly through
the valve. When the piston is depressed, the valve en-
ables the tube on either side of the valve to be connected
to an additional length of tubing, which includes a small,
preset, sliding section for fine tuning. The pitch is de-
creased by a tone on depressing the first piston and
a semitone by the second. Pressing them down together
therefore lowers the pitch by three semitones (a minor
third). Depressing the third valve also lowers the pitch
by three semitones, so that when all three valves are
depressed the pitch is lowered by six semitones. How-
ever, the tuning is not exact, because whenever any single
valve is depressed the effective tube length is lengthened.
Therefore, when a second (or third) valve is depressed,
the fractional increase in effective length is less when
the second valve alone is used. This is related to the need
to increase the spacing of the semitone positions on the
trombone as it is extended. Similar mistuning problems
arise for all combinations of valves used.

To circumvent these difficulties, compromises have
to be made, if the instrument is to play in tune
(Backus [15.132], pp. 270–271). The added length of
tubing to produce the semitone and tone intervals are
therefore purposely made slightly too long, giving semi-
tone and tone intervals that are slightly flat, but which in
combination produce a three-semitone interval which is
slightly sharp. Similarly, the third valve is tuned to give
a pitch change of slightly more than three semitones.
This allows the full of range of semitones to be played
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with only slight fluctuations above and below the cor-
rect tuning. The error is greatest when all three pistons
are depressed. In the modern trumpet, the mistuning can
be compensated by a small length of tubing operated
by an additional small valve operated by the little fin-
ger of the playing hand. To regulate the overall tuning of
the instrument, the playing length of the instrument can
be varied by a sliding U-tube section at the first bend
away from the mouthpiece. As we will show later, the
skilled player can adjust the muscles controlling the dy-
namics of the lip-reed excitation to correct for any slight
mistuning inherent in the design of the instrument.

The bends and valves incorporated into the struc-
ture of brass instruments will clearly result in sudden
changes in acoustic impedance of the resonating air col-
umn, which will produce reflections and perturbations
in the frequency of the frequency of the excited modes.
Surprising, as shown earlier, such effects are acoustically
relatively unimportant, though for the player they may
affect the feel of the instrument and ease with which it
can be played. In particular, when a brass player is pitch-
ing one of the higher modes of an instrument such as the
horn several oscillations have to be produced before any
feedback returns from the end of the instrument to sta-
bilise the playing frequency. For example, when pitching
the 12th mode on a horn, the player has to buzz the lips
for about 12 cycles before the first reflection returns from
the end of the instrument, which demonstrated the dif-
ficulty of exact pitching of notes in the higher registers.
Note that, because of the dispersion of sound waves in
a flared tube, the group velocity determining the transit
time will not be the same as the phase velocity deter-
mining modal frequencies. Any strong reflections from
sharp bends and discontinuities in acoustic impedance
introduced by the valve structures can potentially con-
fuse the pitching of notes and the playability of an
instrument. Such transients can be investigated directly
by time-domain acoustic reflectometry (see, for exam-
ple, Ayers [15.179]). Different manufacturers choose
different methods to deal with the various tuning and
other acoustic problems involved in the design of brass
instruments and players develop strong preferences for
a particular type of instrument based on both the sound
they produce and their ease of playing.

The trumpet bore is ≈ 137 cm long with largely
cylindrical tubing with a diameter of ≈ 1.1, which tapers
down to ≈ 0.9 cm at the mouthpiece end over a distance
of ≈ 12–24 cm. It opens up over about the last third of
its length with an end bell of diameter ≈ 11 cm. To re-
duce the overall length, its length is coiled with a single
complete turn, as illustrated in Fig. 15.112.

The cornet is closely related to the trumpet but has
a largely conical rather than cylindrical bore and is fur-
ther shortened by having two coiled sections. This results
in a somewhat lower cut-off frequency giving a slightly
warmer but less brilliant sound quality. The bugle is
an even simpler double-coiled valveless instrument of
fixed length, so that it can only sound the notes of the
natural harmonics. It was widely used by the military to
send simple messages to armies and is still used today in
sounding the last post, accompanying the burial of the
military dead.

The modern French horn developed from long
straight pipes with flared ends played with a mouth-
piece. Technology then enabled horns to be made with
coiled tubes, like hunting horns, greatly reducing their
size. In early classical music, horns were only expected
to play a few simple intervals in the key in which the
music was written. For music written in different keys,
the player had to add an additional section of coiled tube
called a crook, to extend the length of the instrument
accordingly.

To extend the range of notes that a horn could play,
the player can place his hand into the end of the in-
strument. Depending how the hand is inserted, the pitch
of individual harmonics can be lowered or raised by
around a semitone, producing what is referred to as

Input impedance

Frequency  (Hz)
0 20001000

Natural horn in B

Hand in bell

Open bell

Fig. 15.113 Input impedance measurements of a natural
horn, with and without a hand in the bell (after Benade
[15.133])
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a hand-stopped note. If the hand is partially inserted into
the bell, it dramatically increases the cut-off frequency
giving the player access to a much larger number of
higher modes, as illustrated in measurements by Benade
([15.133], Fig. 20.17) reproduced in Fig. 15.113. Al-
though the associated changes in pitch may be relatively
small, inserting the hand into the end of a horn sig-
nificantly changes the spectrum of the radiated sound,
which allows the horn player some additional freedom
in the quality of the sound produced.

The modern orchestral horn produces all the notes
of the chromatic scale using rotary valves to switch in
combinations of different length tube, rather like the
trumpet. The modern instrument is a combination of
a horn in F and a horn in B-flat, which can be inter-
changed by a rotary valve operated by the thumb of the
left hand, while the first three fingers operate the three
main valves, which are common to both horns.

The total length of the F horn is about 375 cm,
a third longer than the B-flat trombone, enabling it to
play down to the note F2. The F-horn is used for the
lowest notes on the instrument, while the B-flat horn is

used to give the player a much higher degree of security
in pitching the higher notes. Like the primitive hunt-
ing horn, the modern horn is coiled to accommodate its
great length and has a bore that opens up gently over its
whole length from a diameter of ≈ 0.9 mm at the mouth-
piece end to a rapidly flared output bell with a diameter
of ≈ 30 cm.

There are many other instruments played with
a mouthpiece in both ancient and ethnic cultures around
the world. Many primitive instruments are simply
hollowed-out tubes of wood, bamboo or animal bones.
The notes that such instruments can produce are limited
to the principal, quasi-harmonic, resonances of the in-
strument. There are also many hybrid instruments played
with a mouthpiece, which use finger-stopped holes along
their length, just like woodwind instruments. Important
examples are the renaissance cornett and the now al-
most obsolete serpent, a spectacularly large, multiple
bend, s-shaped, instrument. Many modern players of
baroque-period natural trumpets have also added finger
holes to the sides of their instruments, to facilitate the
pitching of the highest notes.

15.4 Percussion Instruments

Compared with the extensive literature on stringed,
woodwind and brass instruments, the number of publi-
cations on percussion instruments is somewhat smaller.
This is largely because the acoustics of percus-
sion instruments is almost entirely dominated by the
well-understood, free vibrations of relatively simple
structures, without complications from the highly non-
linear excitation processes involved in exciting string
and wind instruments. However, as this section will
highlight, the physics of percussion instruments involves
a number of fascinating and often unexpected features
of considerable acoustic interest.

The two most important references on the acoustics
of percussion instruments are The Physics of Musical
Instruments, Fletcher and Rossing ([15.5], Chaps. 18–
21) and the Science of Percussion Instruments [15.201]
by Rossing, the general editor of this Handbook, who
has pioneered research on a very wide range of classical
and ethnic percussion instruments. James Blade’s Per-
cussion Instruments and their History[15.202] provides
an authoritative survey of the development of percussion
instruments from their primitive origins to their modern
use.

Percussion instruments are amongst the oldest and
most numerous of all musical instruments. Primitive in-

struments played by hitting sticks against each other or
against hollowed-out tree stumps or gourds are likely to
have evolved very soon after man discovered tools to
make weapons and other simple artefacts essential for
survival. The rhythmic beating of drums by Japanese
Kodo drummers, the marching bands of soldiers down
the centuries, and the massed percussion section of
a classical orchestra still instil the same primeval feel-
ings of power and excitement used to frighten away
the beasts of the forest and to raise the fighting spirits of
early groups of hunters. The beating of drums would also
have provided a simple way of communicating messages
over large distances, the rhythmic patterns providing the
foundation of the earliest musical language – the or-
ganisation of sound to convey information or emotion.
Martial music, relying heavily on the beating of drums
continues to be used, and as often misused, to instil
a sense of belonging to a particular group or nation and
to instil fear in the enemy.

In China, bells made of clay and copper were already
in use well before 2000 BC. The discovery of bronze
quickly led to the development of some of the most so-
phisticated and remarkable sets of cast bells ever made,
reaching its peak in the western Zhou (1122–771 BC)
and eastern Zhou (770–249 BC) dynasties (Fletcher
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and Rossing ([15.5], Sect. 21.15). Inscriptions on the
set of 65 tuned chime bells in the tomb of Zeng Hou
Yi (433 BC), show that the Chinese had already estab-
lished a 12-note scale, closely related to our present, but
much later, western scale. The ceremonial use of bells
and gongs is widespread in religious cultures all over the
world and in western countries has the traditional use of
summoning worshippers to church and accompanying
the dead to their graves.

In the 18th century classical symphony orchestra of
Haydn and Mozart’s time, the timpani helped emphasise
the beat and pitch of the music being played, particu-
larly in loud sections, with the occasional use of cymbals
and triangle to emphasise exotic and often Turkish in-
fluences. The percussion section of today’s symphony
orchestra may well be required to play up to 100 dif-
ferent instruments for a single piece, as in Notations
I–IV by Boulez [15.203]. This typical modern score in-
cludes timpani, gongs, bells, metals and glass chimes,
claves, wooden blocks, cowbells, tom-toms, marimbas,
glockenspiels, xylophones, vibraphones, sizzle and sus-
pended cymbals, tablas, timbales, metal blocks, log
drums, boobams, bell plates in C and B flat, side drums,
Chinese cymbals, triangles, maracas, a bell tree, etc.
Modern composers can include almost anything that
makes a noise – everything from typewriters to vac-
uum cleaners. The percussion section of the orchestra is
required to play them all – often simultaneously.

We will necessarily have to be selective in the instru-
ments that we choose to consider and will concentrate
largely on the more familiar instruments of the mod-
ern classical symphony orchestra. We will also constrict
our attention to instruments that are struck and will ig-
nore instruments like whistles, rattles, scrapers, whips
and other similar instruments that percussion players are
also often required to play.

3.16 3.50 3.60 3.65 4.06 4.15

41 22 03 51 32 61

1 1.59 2.14 2.30 2.65 2.92

01 11 21 02 31 12

Fig. 15.114 The first 12 modes of a circular membrane illus-
trating the mode nomenclature, nodal lines and frequencies
relative to the fundamental 01 mode

15.4.1 Membranes

Circular Membrane
A uniform membrane with areal density σ , stretched
with uniform tension T over a rigid circular supporting
frame, supports acoustically important transverse dis-
placements z perpendicular to the surface described by
the wave equation

T

(
∂2z

∂r2 + 1

r

∂z

∂r
+ 1

r2

∂2z

∂φ2

)
= σ

∂2z

∂t2 , (15.147)

which has solutions of the form

z (r, φ, t) = Jm(kmnr)

{
A cos mφ

+B sin mφ

}
eiωt .

(15.148)

Jm(kmnr) are Bessel functions of order m, where
n denotes the number of radial nodes and m the
number of nodal diameters. The eigenfrequencies
ωmn = kmn

√
T/σ are determined by the requirement that

Jm(kmna) = 0 on the boundary at r = a. The frequency
of the fundamental (01) mode is (2.405/2πa)

√
T/σ ,

where J0(k01a) = 0. The relative frequencies of the first
12 modes and associated nodal lines and circles are
shown in Fig. 15.114.

For ideal circular symmetry, the independent az-
imuthal cosine and sine solutions result in degenerate
modes having the same resonant frequencies. The
degeneracy of such modes can be lifted by a nonuni-
form tension, variations in thickness when calfskin
is used, and a lack of ideal circularity of the sup-
porting rim. Any resulting splitting of the frequencies
of such modes can result in beats between the
sound of given partials, which the player can elim-
inate by selectively adjusting the tension around the
perimeter of the membrane or by hitting the mem-
brane at a nodal position of one of the contributing
modes.

Unlike transverse waves on a stretched string, the
modes of a circular membrane are inharmonic. As a con-
sequence, the waveforms formed by the combination
of such partials excited when the drumhead is struck
are non-repetitive. Audio illustrates the fre-
quencies of the first 12 modes played in sequence.

illustrates their sound when played together
as a damped chord, which already produces the re-
alistic sound of a typical drum, having a reasonably
well-defined sense of pitch, despite the inharmonicity of
the modes.

Although percussion instruments may often lack
a particularly well-defined sense of pitch, one can nev-
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ertheless describe the overall pitch as being high or low.
For example, a side drum has a higher overall pitch than
a bass drum and a triangle higher than a large gong. From
an acoustical point of view, we will be particularly in-
terested in the lower-frequency quasi-harmonic modes.
However, one must never forget the importance of the
higher-frequency inharmonic modes in defining the ini-
tial transient, which is very important in characterising
the sound of an instrument.

Nonlinear effects arise in drums in much the same
way as in strings (Sect. 15.2.2). The increase in tension,
proportional to the square of the vibrational ampli-
tude, leads to an increase in modal frequencies. In
addition, nonlinearity can result in mode conversion
(Sect. 15.2.2) and the transfer of energy from initially
excited lower-frequency modes with large amplitudes to
higher partials. Although the pitch of a drum is raised
when strongly hit, this may to some extent be compen-
sated by the psychoacoustic effect of a low-frequency
note sounding flatter as its intensity increased. Changes
in perceived pitch of a drum with time can often be em-
phasised by the use of digital processing, to increase the
frequency of the recorded playback without changing
the overall envelope in time (audio ).

Air Loading and Radiation
The above description of the vibrational states of a mem-
brane neglects the induced motion of the air on either

Table 15.7 Ideal and measured frequencies of the modal frequencies of a timpani drum head normalised to the acoustically
important (11) mode before and after mounting on the kettle, and the internal air resonances of the kettle. The arrows
indicate the sense of the most significant perturbations of drum head frequencies and the asterisks indicate the resulting
quasi-harmonic set of acoustically important modes (adapted from Fletcher and Rossing)

Mode Ideal membrane Drumhead in air Coupled internal
air resonances

Drumhead
on kettle

01 0.63 82 Hz 0.53 (0,1,0) 385 Hz 127 Hz 0.85 ↑
(0,1,1)

11 1.00 160 1.0 (1,1,0) 337 Hz 150 1.00 ↓ ***

(1,1,1) 566 Hz

21 1.34 229 1.48 (2,1,0) 537 Hz 227 1.51 ↓ ***

(2,1,1) 747 Hz

02 1.44 241 1.55 (0,1,0) (0,2,0) 252 1.68 ↑
31 1.66 297 1.92 (3,1,0) (3,1,1) 298 1.99 ***

12 1.83 323 2.08 (1,2,0) (1,2,1) 314 2.09 ↓
41 1.98 366 2.36 366 2.44 ***

22 2.20 402 2.59 401 2.67

03 2.26 407 2.63 (0,1,0) 418 2.79 ↑
51 2.29 431 2.78 434 2.89

32 2.55 479 3.09 448 2.99 ***

61 2.61 484 3.12 462 3.08

side of the drum skin. At low frequencies, this adds
a mass ≈ 8

3ρa3 to the membrane (Fletcher and Ross-
ing [15.5], Sect. 18.1.2), approximating to a cylinder of
air with the same thickness as the radius a of the drum
head. The added mass lowers the vibrational frequen-
cies relative to those of an ideal membrane vibrating
in vacuum. The effect is largest at low frequencies,
when the wavelength in air is larger than or compara-
ble with the size of the drumhead. For higher-frequency
modes, with a number of wavelengths λ across the width
of the drumhead, the induced air motion only extends
a distance ≈ λ2π(� a) from the membrane. Air loading
therefore leaves the higher-frequency modes relatively
unperturbed.

Drums can have a single drum skin stretched over
a hollow body, such as the kettle drum of the tim-
pani, or two drum heads on either side of a supporting
cylinder or hollowed out block of wood, like the side
drum and southern Indian mrdanga (Fletcher and Ross-
ing [15.5], Sect. 18.5). By stretching the drum head
over a hollow body, the sound radiated from the back
surface is eliminated, just like mounting a loudspeaker
cone in an enclosure. At low frequencies, the drum
then acts as a monopole source with isotropic and
significantly enhanced radiation efficiency. This is il-
lustrated by the much reduced 60 dB decay time of
the (11) dipole mode of a stretched timpani skin,
when the drum skin was attached to the kettle –
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from 2.5 s to 0.5 s (Fletcher and Rossing [15.5], Ta-
ble 18.4).

In addition, any net change in the volume of the en-
closed air resulting from vibrations of the drum skin will
increase the restoring forces acting on it and hence raise
the modal frequencies, see Table 15.7. In this example,
the coupling raises the frequency of the (01) drumhead
mode from 82 to 127 Hz, the (02) mode from 241 to
252 Hz, and the (03) mode from 407 to 418 Hz. In con-
trast, the asymmetric, volume-conserving, (11) mode is
lowered in frequency from 160 to 150 Hz, which proba-
bly results from coupling to the higher frequency 337 Hz
internal air mode having the same aerial symmetry.

As in any coupled system in the absence of sig-
nificant damping, the separation in frequency of the
normal modes resulting from coupling will tend to be
greater than the separation of the uncoupled resonators
(Fig. 15.46b). In addition, any enclosed air will provide
a coupling between the opposing heads of a double-
sided drum. For example, the 227 and 299 Hz (01)
uncoupled (01) modes of the opposing heads of a snare
drum become the 182 and 330 Hz normal modes of
the double-sided drum (Fletcher and Rossing [15.5],
Fig. 18.7).

Excitation by Player
The quality of the sound produced by any percussion
instrument depends as much on the player’s skills as
on the inherent qualities of the instrument itself. Drums
are not simply hit. A player uses considerable manual
dexterity in controlling the way the drumstick strikes and
is allowed to bounce away from the stretched drum skin,
xylophone bar or tubular bell. It is important that contact
of the stick with the instrument is kept to a minimum;
otherwise the stick will strongly inhibit the vibrational
modes that the player intends to excite. The lift off is just
as important as the strike, and it takes years of practice to
perfect, for example, a continuous side drum or triangle
roll.

It is also important to strike an instrument in the
right place using the right kind of stick or beater to pro-
duce the required tone, resonance or loudness required
for a specific musical performance. As discussed ear-
lier in relation to the excitation of modes on a stretched
string and modal analysis measurements, one can se-
lectively emphasise or eliminate particular partials by
striking an instrument at antinodes or nodes of par-
ticular modes. A skilled timpani player can therefore
produce a large number of different sounds by hitting
the drumhead at different positions from the rim. Strik-
ing timpani close to their outer rim preferentially excites

the higher-frequency modes, while striking close to the
centre results in a rather dull thud. This is due to the
preferential excitation of the inefficient (00) mode and
elimination of the acoustically important (0n) modes.
The most sonorous sounding notes are generally struck
about a quarter of the way in from the edge of the drum.

The sound is also strongly affected by the dynamics
of the beater–drumhead interaction, which is rather soft
and soggy near the centre and much harder and springy
near the outer rim. The sound is also strongly affected
by the type of drumstick used. Light, hard wooden sticks
will make a more immediate impact with a bar or drum
skin than heavily felted beaters. Such difference are sim-
ilar to the effect of using heavy or light force hammers to
preferentially excite lower- or higher-frequency modes
in modal analysis investigations. A professional tim-
panist or percussion player will use completely different
sticks for different styles of music and obtain effects
on the same instrument ranging from the muffled drum
beats of the Death March from Handel’s Saul to the
sound of cannons firing in Tchaikovsky’s 1812 overture.

There has been much less research on the mechanics
of the drumstick–skin interaction than on the excita-
tion of piano strings by the piano hammer (Sect. 15.2.2),
though much of the physics involved is very similar. In
particular, the shortest time that the drumstick can re-
main in contact with the skin will be determined by the
time taken for the first reflected wave to return from
the rim of the drum to bounce it off. This is illustrated
schematically in Fig. 15.115, which illustrates qualita-
tively the force applied to the drumhead as a function of
time for a hard and a soft drumstick struck near the cen-
tre (solid line) and then played nearer the edge (dashed).
The overall spectrum of sound of the drum will be con-
trolled by the frequency content of such impulses. Short
contact times will emphasise the higher partials and give

Force

Time

Heavy–Loud

Light–Quiet
Rim Centre

Hard Soft

Fig. 15.115 Schematic impulses from a striking drumstick,
illustrating the effect of exciting the drum head at different
positions, with different strengths, and with a hard and soft
drumstick
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rise to a more percussive and brighter sound. Higher
partials will also be emphasised by the use of metal
beaters or drumsticks with hard-wooden striking heads
rather than leather or soft felt-covered stick heads. This
is illustrated by the second pulse, which would produce
a softer, mellower sound, without such a strong initial
attack. Clearly, the loudness of the drum note will be
proportional to the mass m of the striking drumstick
head and its impact velocity v, delivering an impulse
of ≈ mv.

Audio illustrates the change in sound of
a timpani note, as the player progressively strikes the
drum with a hard felt stick, starting from the outside
edge and moving towards the centre, in equal intervals
of ≈ one eighth of the radius. Audio illustrates
the sound of a timpani when struck at one quarter of the
radius from the edge, using a succession of drumsticks
of increasing hardness, from a large softly felted beater
to a wooden beater.

In modern performances of baroque and early clas-
sical music, the timpanist will use relatively light sticks,
with leather-coated striking heads, while for music of
the romantic period larger and softer felt-covered drum-
sticks will often be used.

Many drums of ethnic origin are played with the
hands, hitting the drum head with fingers, clenched fists
or open palms to create quite different kinds of sounds. In
some cases, the player can also press down on the drum
head to increase the tension and hence change pitch of
the note. For a double-headed drum, the coupling of the
air between the drum heads can even enable the player to
change the pitch and sound of a given note by applying
pressure to the drum head not being struck.

We now consider a number of well-known percus-
sion instruments based on stretched membranes, which
illustrate the above principles. These will include drums
with a well defined pitch, such as kettle drums (timpani)
and the Indian tabla and mrdanga, and drums with no
defined pitch, such as the side and bass drum.

Kettle Drums (Timpani)
The kettle drum or timpani traditionally used a specially
prepared calfskin stretched over a hollow, approximately
hemispherical, copper kettle generally beaten out of cop-
per sheet. Nowadays, thin (0.19 mm) mylar sheet is often
used in preference to calfskin for the drum skin, because
of its uniformity and reduced susceptibility to changes
in tension from variations in temperature and humidity.
The drum skin is stretched over a supporting ring at-
tached to the kettle, with the tension of the skin typically
adjusted using 6–8 tuning screws equally spaced around

the circumference. The player adjusts these screws to
tune the instrument and to optimise the quality of tone
produced. In modern instruments, a mechanical pedal
arrangement can be used to quickly change the tension
and thereby the tuning, by pushing the supporting ring
up against the drumhead. Typically, such an arrangement
can increase the tension by up to a factor of two, rais-
ing the pitch by a perfect fifth. In the modern classical
symphony orchestra, the timpanist will use two or three
timpani of different sizes to cover the range of pitched
notes required.

Figure 15.116 shows the waveform and spectrum of
the immediate and delayed sound of a timpani note (the
first drum note in audio ). The initial sound
includes contributions from all the modes excited. This
includes not only the vibrational modes of the drum
head, but also the air inside the kettle, the kettle itself and
even the supporting legs and vibrations induced in the
floor. Many of these vibrations die away rather quickly,
leaving a number of prominent, slowly decaying, drum-
skin modes. Note in particular, the strongly damped (01)
mode at ≈ 140 Hz and the less strongly damped modes
(02) and (03) modes at 210 Hz and 284 Hz, tuned ap-

(dB)
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Fig. 15.116 Decaying waveform of a timpani note and FFT
spectra at the start of a note (upper trace) and after 1 s (lower
trace)
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proximately to a perfect fifth and an octave above the
fundamental. As noted by Rayleigh in relation to church
bells ([15.3] Vol. 1, Sect. 394), the pitch of a note is
often determined by the higher quasi-harmonically re-
lated partials rather than the lowest partial present. This
is demonstrated by the second drum beat in ,
which has all frequency components below 250 Hz re-
moved. The perceived pitch at long times is unchanged,
though there is a considerable loss in depth or body of
the resulting sound.

Modal frequencies for a typical kettle drum have al-
ready been listed in Table 15.7, which includes a set of
nearly harmonic modes indicated by asterisks achieved,
in part, by empirical design of the coupled membrane
and kettle air vibrations. To a first approximation, the
modal frequencies are determined by the volume of the
kettle rather than its shape. The smaller the enclosed
volume, the larger its effect on the lowest-order drum-
head modes. Nevertheless, there are distinct differences
in the sounds of timpani used by orchestras in Vienna
and those used elsewhere in Europe (Bertsch [15.204]).
Such differences can be attributed to the Viennese pref-
erence for calfskin rather than mylar drum heads, a small
shape dependence affecting the coupling to the internal
air resonances, and a different tuning mechanism. The
modal frequencies of the Viennese timpani measured
by Bertsch were similar to those listed in Table 15.7,
with the (11), (21), (31) and (41) modes again forming
a quasi-harmonic set of partials, in the approximate ra-
tios 1:1.5:2.0:2.4:2.9. Rather surprisingly, the relative
frequencies of the lower two modes could be inter-
changed with tuning.

Indian Tabla and Mrdanga
Another way of achieving a near harmonic set of res-
onances of a vibrating drumhead is to add mass to
the drum head and hence change the frequencies of
its normal modes of vibration. For the single- and
double-headed Indian tabla and mrdanga drums, this
is achieved by selectively loading the drum skin with
several coatings of a paste of starch, gum, iron oxide
and other materials – see Fletcher and Rossing ([15.5],
Sect. 18.5). The acoustics of the tabla was first in-
vestigated by Raman [15.205], who obtained Chladni
patterns for many of the lower-frequency modes of the
drum head. Rossing and Sykes [15.206] measured the in-
cremental changes in frequency of the loaded membrane
as each additional layer was added. A 100 layers lowered
the fundamental mode by about an octave. The result-
ing five lowest modes were harmonically related and
including several degenerate modes derived from the

smoothly transformed modes of the original unloaded
membrane. The results were very similar to those ob-
tained earlier by Raman. Investigations by Ramakrishna
and Sondhi [15.207] and by De [15.208] showed that, to
achieve a quasi-harmonic set of low-frequency modes,
the areal density at the centre of such drums should be
approximately 10 times that of the unloaded sections.

Figure 15.117 illustrates the decaying waveform and
spectra of a well-tuned tabla drum (audio )
from 200 ms FFTs of the initial sound and after 0.5 s.
The spectra show three prominent partials at 549, 826
and 1107 Hz, in the near-harmonic ratios 1:1.51:2.02,
which results in a well-defined sense of pitch. In contrast
to the timpani, these partials dominate the sound and
determine the pitch from the very beginning of the note.
Note too the very wide spectrum of the rapidly decaying
initial transient.

Side and Snare Drum
The side or snare drum is the classical two-headed
drum of the modern symphony orchestra. It is usu-
ally played with either very short percussive beats or
as a roll, with rapidly alternating notes from two al-
ternating drumsticks. This results in a quasi-continuous

500 ms
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Fig. 15.117 Decaying waveform of a tabla drum with initial
FFT spectrum (upper trace) and after 0.5 s (lower) illustrat-
ing the weakly damped, near-harmonic, resonances of the
loaded drumhead
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noise source, which can be played over a very wide
range of intensities, from very soft to very loud, to
support, for example, a Rossini crescendo. Because
the side drum is designed to produce short percussive
sounds or a wide-band source of noise, little effort is
made to tune the partial frequencies of the two drum
heads.

Like the timpani and Indian drums, the vibrational
modes of the drumheads can be strongly perturbed in
frequency by the air coupling. When used as a snare
drum, the induced vibrations of the non-striking head
can be sufficient for it to rattle against a number of
metal cables tightly stretched a few mm above the
surface of the non-striking head. The resulting inter-
ruption of the vibrations, on impact with the snares,
leads to the generation of additional high-frequency
noise and the sizzle effect of the sound excited.
A not dissimilar effect is used on the Indian tam-
bura, an Indian stringed instrument investigated by
Raman [15.210], which has a bridge purposely designed
to cause the strings to rattle Fletcher and Rossing ([15.5],
Fig. 9.30).

Figure 15.118 shows the waveform and time-
averaged FFT of a side-drum roll (audio ). The
spectrum is lacking in spectral features other than a mod-
est peak in noise at around 100–200 Hz, associated with
the vibration of the lower head against the snares.

Although the exact placing of the vibrational modes
of the strike and snare heads are of little acoustic
importance, their coupling via the enclosed air illus-
trates the general properties of double-headed drums
of all types. The first four coupled normal modes are

2 s

(dB)

(kHz)
0 8

0

–100
1 2 3 4 5 6 7

Fig. 15.118 Time-averaged FFT spectrum and waveform of
the sound of a snared side-drum roll of increasing intensity

shown in Fig. 15.119, which is based on data from Ross-
ing ([15.211] Sect. 4.4). For a freely supported drum,
momentum has to be conserved, so that normal modes
with the two heads vibrating in the same phase will also
involve motion of the supporting shell of the drum, as
indicated by the arrows in Fig. 15.119.

As anticipated, the air coupling increases the separa-
tion of the (01) modes from 227 and 299 Hz to 182 and
330 Hz, and the (11) modes from 284 and 331 Hz to 278
and 341 Hz. The perturbations in modal frequencies will
always be largest when the coupled modes have similar
frequencies. Such perturbations becomes progressively
weaker at higher frequencies, partly because the cou-
pling from the enclosed air modes becomes weaker and
partly because the frequencies of the two drum-head
modes having the same symmetry become more widely
separated. The higher modal frequencies are therefore
little different from those of the individual drum heads
in isolation.

Figure 15.119 also illustrates the anticipated po-
lar radiation patterns for the normal modes measured
by Zhao [15.209] and reproduced in Rossing ([15.201]
Figs. 4.7 and 4.8). The coupled (10) normal modes act
as a monopole radiation source, when the heads move in
opposite directions, and a dipole source, when vibrating
in anti-phase. In contrast, the (11) modes with heads vi-
brating in phase act as a quadrupole source, and a dipole
source, when vibrating in anti-phase.

Dipole Quadrupole

Monopole Dipole

(01) 227 182 Hz (11) 284 278 Hz

(01) 299 330 Hz (11) 331 341 Hz

Fig. 15.119 Coupled motions of the two drumheads of a side
drum, indicating the change in frequency of the drumhead
modes from air coupling within the drum and the associated
polar radiation patterns (after Zhao et al. [15.209])
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Although any induced motion of the relatively heavy
supporting structure will not significantly affect the fre-
quencies of the normal modes, it can result in appreciable
additional damping. As a consequence, the sound of
a side drum can sound very different depending on how
it is supported – freely suspended on rubber bands or
rigidly supported by a heavy stand (Rossing [15.201]
Sect. 4.4). Rossing has also made detailed vibrational
and holographic studies of the free drum shell ([15.201]
Fig. 4.5). As the induced motions are only a fraction of
a percent of those of the drumhead, such vibrations will
not radiate a very large amount of sound. Nevertheless,
they may play an important role in defining the initial
sound.

Bass Drum
The bass drum is large with a typical diameter of
80–100 cm. It can produce a peak sound output of 20 W,
the largest of any orchestral instrument. Single-headed
drums are used when a well-defined sense of pitch is re-
quired, but double-headed drums sound louder because
they act as monopole rather than dipole sources. Mod-
ern bass-drum heads generally use 0.25 mm-thick mylar,
though calfskin is also used.

The batter or beating drum head is normally tuned
to about a fourth above the carry or resonating head
(Fletcher and Rossing [15.5], Sect. 18.2). The change
in modal frequencies induced by the enclosed air is il-
lustrated in Table 15.8 (Fletcher and Rossing [15.5],
Table 18.5). Note the strong splitting of the lowest fre-
quency (01) and (11) normal modes, when the two heads
are tuned to the same tension. In this example, the fre-
quencies of the first five modes are almost harmonic,
giving a sense of pitch to the sound (audio il-
lustrates the rather realistic synthesised sound of the first
six modes of the batter head tuned to the carry head with
equal amplitude and decay times). Drums with heads
tuned to the same pitch have a distinctive timbre.

Table 15.8 Modal frequencies in Hz of the batter head of a
82 cm bass drum (after Fletcher and Rossing [15.5])

Mode Batter head with carry
head at lower tension

Batter head with heads
at same tension (Hz)

(01) 39 44 , 104
split normal modes

(11) 80 76, 82
split normal modes

(21) 121 120

(31) 162 160

(41) 204 198
(51) 248 240

15.4.2 Bars

This section is devoted to percussion instruments based
on the vibration of wooden and metallic bars, both
in isolation and in combination with resonating air
columns. Such instruments are referred to as idiophones
– bars, plates and other structures that vibrate and
produce sound without having to be tensioned, unlike
the skins of a drum (membranophones). Representative
instruments considered in this section include the glock-
enspiel, celeste, xylophone, marimbas, vibraphone and
triangle.

The vibrations of thick and thin plates have al-
ready been considered in the context of the vibrational
modes of the wooden plates of stringed instruments
(Sect. 15.2.6). The most important acoustic modes of
a rectangular plate are the torsional (twisting) and flexu-
ral (bending) modes, both of which involve acoustically
radiating displacements perpendicular the surface of the
plate.

The torsional vibrations of a bar are discussed by
Fletcher and Rossing ([15.5], Sect. 2.20). For a bar
of length L , the frequency of the twisting modes is
given by fn = ncθ/2L , where cθ is the dispersion-
less velocity of torsional waves. For a rectangular
bar with width w significantly larger than its thick-
ness h, by cθ ∼ 2t/w

√
E/2ρ(1+ν), where E is the

Young’s modulus and ν the Poisson ratio. For a bar
with circular, cross-section, like the sides of a triangle,
cθ = √

E/2ρ(1+ν).
Musically, the most important modes of a thin bar

are the flexural modes involving a displacement z per-
pendicular to their length, which for a rectangular bar
satisfies the fourth-order wave equation

E

12(1−ν2)
h2 ∂4z

∂x4 +ρ
∂2z

∂t2 = 0 , (15.149)

with standing-wave solutions of the general form

z(x, t) = (A sin kx + B cos kx

+C sinh kx + D cosh kx)eiωt , (15.150)

where

ω =
√

E

12ρ(1−ν2)
hk2 . (15.151)

As discussed in the earlier section on the vibrational
modes of soundboards and the plates of a violin or guitar,
the sinh and cosh functions decay away from the ends of
the bar or from any perturbation in the geometry, such
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1 : 2.76 : 5.40

1 : 3.9 : 9.23

1 : 3 : 6

1 : 4 : 8

1 : 4 : 9

Fig. 15.120 Ratio of the frequencies of the first three partials
of a simple rectangular bar for three selectively thinned
xylophone bars and a typical marimba bar (after Fletcher
and Rossing [15.5])

as local thinning or added mass, over a distance

k−1 ∼
(

E

12ρ
(
1−ν2

)
)1/4√

h

ω
.

Well away from the ends of a bar, the standing-wave
solutions at high frequencies are therefore dominated
by the sinusoidal wave components.

The lowest flexural modes of a freely supported
thin rectangular bar are inharmonic, with frequencies
in the ratios 1:2.76:5.40:8.93. However, by selec-
tively thinning the central section, the frequency of
the lowest mode can be lowered, to bring the first
four harmonics more closely into a harmonic ratio,
as illustrated schematically for a number of longitudi-
nal cross-sections in Fig. 15.120, which also includes
the measured frequencies of a more-complex-shaped
marimba bar (Fletcher and Rossing [15.5], Figs. 19.2
and 19.7).

Pitch Perception
The audio contrasts the synthesised sounds
of the first four modes of a simple rectangular bar, fol-
lowed by a note having the same fundamental but with
partials in the ratio 1:3:6, while the final note has the in-
harmonic (1:8.96) fourth partial of the rectangular bar
added. Despite the inharmonicity of the partials, the syn-
thesised sound of a rectangular bar has a surprisingly
well-defined sense of pitch. The main effect of replac-
ing the second and third partials with partials in the ratio
1:3:6 is to raise the perceived pitch by around a tone,
even though the first partial is unchanged at 400 Hz.
This again emphasises that the perceived pitch is deter-
mined by a weighted average of the partials present and

not by the fundamental tone alone. Adding the fourth
inharmonic partial gives an increased edge or metallic
characteristic to the perceived sound, without changing
the perceived pitch.

The metal or wooden bars of tuned percussion in-
struments are usually suspended on light threads or rest
on soft pads at the nodal positions of their fundamen-
tal mode, which reduces the damping to a minimum.
The resulting 60 dB decay time for an aluminium vi-
braphone bar can be as long as 40 s (Rossing [15.201]
Sect. 7.3) compared with a few seconds for the lower-
frequency notes on the wooden bars of a marimba
(Rossing [15.201], Sect. 6.4). The damping of vibrat-
ing bars is therefore highly material dependent and is
largely determined by internal damping losses rather
than radiation. This accounts for the very different
sounds of wooden and metal bars on instruments like
the glockenspiel and xylophone.

Glockenspiel and Celeste
The simplest of all idiophones are those instruments
based on the vibrations of freely supported thin rectan-
gular plates. Such instruments include the glockenspiel
played with a variety of hard and soft round-headed ham-
mers and the celeste played with strikers operated from
a keyboard, with a sustaining pedal to control the damp-
ing. The playing range of the glockenspiel is typically

Transverse

a

b

c

d

Torsional

f1 = 1.00

f2 = 2.71

fa = 3.57

f3 = 5.15

fb = 7.07

f4 = 8.43

fc = 10.61

f5 = 12.21

fd = 13.95

1

2

3

4

5

Fig. 15.121 Measured flexural and torsional modes of
a glockenspiel bar (after Fletcher and Rossing [15.5])
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two and a half octaves from G5 to C8, while the celeste
has a range of 4–5 octaves, with a separate box-resonator
used for each note.

Both instruments produce a bright, high-pitched,
bell-like, sparkling sound, as in the Dance of the Sugar
Plum Fairy in Tchaikovsky’s Nutcracker Suite. No at-
tempt is made to adjust the thickness of the plates to
achieve a more nearly harmonic set of modes.

Figure 15.121 illustrates the lowest order flexural
and torsional modes and measured ratios of frequencies
for a C6 glockenspiel bar (Fletcher and Rossing [15.5],
Fig. 19.1). A typical wave-envelope and spectrum of
a glockenspiel note is shown in Fig. 15.122. FFT spectra
are shown for 200 ms sections from the initial transient
and after 200 ms. There are two strongly contributing
weakly damped partials at 1045 Hz and 2840 Hz (in
the ratio 1:2.72), which can be identified as the first
two flexural modes of the bar. The lower of the two
long sounding partials gives the sense of pitch, while
the strong inharmonic upper partial gives the note its

(dB)

(kHz)
0 5

0

–100
1 2 3 4

0.34 s

Fig. 15.122 The waveform envelope and FFT spectra of the
prompt sound (upper) and the sound after ≈ 0.2 s (lower)
of a typical glockenspiel note illustrating the long-time
dominance of a few slowly decaying, inharmonic partials

“glockenspiel” character. Audio compares the
recorded glockenspiel note with synthesised tones at
1045 and 2840 Hz, first played separately then together.
In this case, the inharmonicity of the strongly sounded
partials plays a distinctive role in defining the character
of the sound. The spectrum is typical of all the notes on
a glockenspiel, which demonstrates that only a few of
the modes shown in Fig. 15.121 contribute significantly
to the perceived sound.

Xylophone, Marimba and Vibraphone
We now consider a number of acoustically related idio-
phones, with bars that are selectively thinned to produce
a more nearly harmonic set of resonances and well-
defined sense of pitch.

The modern xylophone has a playing range of typ-
ically 3 to 4 octaves and uses wooden bars, which are

(dB)

(kHz)
0 10

0

–100
2 4 6 8

60 ms

Fig. 15.123 The initial 60 ms of a xylophone waveform
showing the rapid decay of high-frequency components
and FFT spectra at the start of the note (upper trace) and
after 0.2 s (lower trace), highlighting the persistence of the
strong low-frequency air resonances excited

Part
E

1
5
.4

hb07-e15_RS411.wav


Musical Acoustics 15.4 Percussion Instruments 651

undercut on their back surface to improve the harmonic-
ity of the lower frequency modes (Fig. 15.120). Each bar
has an acoustic resonator immediately below it, consist-
ing of a cylindrical tube, which is closed at the far end.
Any of the flexural and torsional modes can contribute
to the initial sound, when the bar is struck by a hammer;
however, most modes die away rather quickly so that at
longer times the sound is dominated by the resonances
of the coupled pipe resonator.

Figure 15.123 shows the initial part of the waveform
and spectrum of a typical xylophone note ( ),
illustrating the initial large amplitudes and rapid decay of
the higher frequency bar modes excited and the strongly
excited but slowly decaying resonances of the first two
modes of the air resonator. All modes contribute to the
initial sound but the sound at longer times is dominated
by the lowest-frequency bar modes and resonantly tuned
air resonators.

The marimba is closely related to the xylophone, but
differs largely in its playing range of typically two to
four and a half octaves from A2 (110 Hz) to C7 (2093),
though some instruments play down to C2 (65 Hz). In
contrast to xylophone bars, which are undercut near their
centre to raise the frequency of their second partial from
2.71 to 3.0 above the fundamental, marimba bars are
often thinned still further to raise the frequency of the
second partial to four times the fundamental frequency
(Fig. 15.119).

Marimbas produce a rather mellow sound and are
usually played with much softer sticks than traditionally
used for the xylophone. Although the marimba is nowa-
days used mostly as a solo percussion instrument, in the
1930s ensembles with as many as 100 marimbas were
played together. In many ways, such ensembles were
the forerunners of today’s Caribbean steelbands, to be
described later in this section.

The vibraphone is similar to the marimba, but uses
longer-sounding aluminium rather than wooden bars and
typically plays over a range of three octaves from F3 to
F6. Like the marimba, the bar thickness is varied to give
a second partial two octaves above the fundamental.
They are usually played with soft yarn-covered mallets,
which produce a soft, mellow tone. In addition, the vi-
braphone incorporates electrically driven rotating discs
at the top of each tuned air resonator, which periodically
changes the coupling. This results in a strong amplitude-
modulated vibrato effect. The wave envelope of audio

is shown in Fig. 15.124 for a succession of
notes played on the vibraphone with vibrato, which are
then allowed to decay freely. The vibrato rate can be
adjusted by changing the speed of the electric motor.

10 ms

Strikes Free decay

Fig. 15.124 Envelope of a succession of notes on the vi-
braphone, which freely decay with modulated coupling to
tuned air resonators to produce an amplitude modulated
vibrato effect

Note the very long decay of the sound, which can be
controlled by a pedal-operated damper.

Triangle
The triangle is a very ancient musical instrument formed
from a cylindrical metal bar bent into the shape of a trian-
gle, with typical straight arm lengths of 15–25 cm. They
are usually struck with a similar-diameter metal rod.
Although the instrument is small and therefore a very
inefficient acoustic radiator, it produces a characteris-
tic high-frequency ping or repetitive high-pitched rattle,
which is easily heard over the sound of a large sym-
phony orchestra (audio ). The quality of the
sound can be varied by beating at different positions
along the straight arms. The triangle is usually sup-
ported be a thread around the top bend of the hanging
instrument.

The flexural modes of a freely suspended bar of cir-
cular cross section are fn ∼ (a/2)

√
E/ρ(2n +1)2π/8L2,

with frequencies in the ratios 32:52:72:92:112:132 (see
Sect. 15.2.4). Transverse flexural vibrations can be ex-
cited perpendicular or parallel to the plane of the
instrument. For vibrations perpendicular to the plane, the
bends are only small perturbations. Transverse modes in
this polarisation are therefore almost identical to those of
the straight bar from which the triangle are bent (Ross-
ing [15.212] Sect. 7.6). However, for flexural vibrations
in the plane, there is a major discontinuity in impedance
at each bend, because the transverse vibrations within
one arm couple strongly to longitudinal vibrations in
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(dB)

(kHz)
0 10

0

–100

2.5 s

Fig. 15.125 The decaying waveform and FFT spectra at the
start (upper trace) and after 1 s (lower trace) of a struck
triangle note

the adjacent arms. Hence each arm will support its own
vibrational modes, which will be coupled to form sets
of normal-mode triplets, since each arm is of similar
length.

Figure 15.125 illustrates the envelope and 50 ms
FFTs of the initial waveform and after 1 s, illustrating
the very well-defined and only weakly attenuated high-
frequency modes of the triangle. Note the wide-band
spectrum at the start of the note from the initial impact
with the metal beater.

Chimes and Tubular Bells
We include orchestral chimes and bells in this sec-
tion because their acoustically important vibrations
are flexural modes, just like those of a xylophone or
triangle. The radius of gyration of a thin-walled cylin-
drical tube of radius a is ≈ a/

√
2. The frequency

of the lowest flexural modes is then be given by
fn ∼ a

√
E/2ρ(2n +1)2π/8L2.

Orchestral chimes are generally fabricated from
lengths of 32–38 mm-diameter thin-walled tubing, with
the striking end often plugged by a solid mass of brass
with an overhanging lip, which provides a convenient
striking point.

Fletcher and Rossing ([15.5], Sect. 19.8) note that
the perceived pitch of tubular bells is determined by the
frequencies of the higher modes, excited with frequen-
cies proportional to 92, 112, and 132, in the approximate
ratios 2:3:4. The pitch should therefore sound an oc-
tave below the lowest of these. Readers can make there
own judgement from audio , which compares
the rather realistic sound of a tubular bell synthesised
from the first six equal amplitude modes of an ideal
bar sounded together, followed by the 92, 112, and 132

modes in combination, and then by a pure tone an oc-
tave below the 92 partial. Such comparisons highlight
the problem of subjective pitch perception in any sound
involving a combination of inharmonic partials.

15.4.3 Plates

Flexural Vibrations
This section describes the acoustics of plates, cym-
bals and gongs, which involve the two-dimensional
flexural vibrations of thin plates described by the
two-dimensional version of (15.149). Unlike stringed
instruments, we can usually assume that the plates of
percussion instruments are isotropic. Well away from
any edges or other perturbing effects such as slots
or added masses, the standing-wave solutions at high
frequencies will be simple sinusoids. However, close
to the free edges, and across the whole plate at low
frequencies, contributions from the exponentially decay-
ing solutions will be equally important over a distance
∼ (E/12ρ(1−ν2))1/4(h/ω)1/2. The nodes of the sinu-
soidal wave contributions will be displaced a distance
∼ 1/4λ from the edges. Hence, the higher frequency
modes of a freely supported rectangular plate of length
a, width b and thickness h will be given, to a first
approximation, by

ωmn ∼ h

(
E

12ρ
(
1−ν2

)
)1/4

π2

[(
m +1/2

a

)2

+
(

n +1/2

b

)2
]

. (15.152)

A musical instrument based on the free vibrations of
a thin rectangular metal plate is the thunder plate, which
when shaken excites a very wide range of closely spaced
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modes, which can mimic the sharp clap followed by the
rolling sound of thunder in the clouds.

Before the age of digital sound processing, such
plates were often used in radio and recording companies
to add artificial reverberation to the recorded sound. The
plate was suspended in a chamber along with a loud-
speaker and pick-up microphone. The sound to which
reverberation was to be added was played through the
loudspeaker, which excited the weakly damped vibra-
tional modes of the plate, which were then re-recorded
using the microphone to give the added reverberant
sound. As described earlier (Sect. 15.2.4), the density
of vibrational modes of a flat plate of area A and thick-
ness h is given by 1.75A/cLh. This can be very high
for a large-area thin metal sheet, giving a reverberant
response with a fairly uniform frequency response.

Most percussion instruments which involve the flex-
ural vibrations of thin sheets are axially symmetric, such
as cymbals, gongs of many forms, and the vibrating
plate regions of steeldrums or pans used in Caribbean
steelbands. Such instruments have many interesting
acoustical properties, many derived from highly nonlin-
ear effects when the instrument is instrument is struck
strongly.

The displacements of the flexural modes of an axially
symmetric thin plate in polar coordinates are given by

z(r, φ, t) = [AJm (kmnr)+ BIm (kmnr)]

[C cos (mφ)+ D sin(mφ)] eiωmnt ,

(15.153)

where Jm(kr) and Im(kr) are ordinary and hyperbolic
Bessel functions, the equivalent of the sinusoidally vary-
ing and exponentially damped sinh and cosh functions
used to describe flexural waves in a rectangular geome-
try. The hyperbolic Bessel functions are important near
the edges of a plate or at any perturbation, but decay
over a length scale of ∼ k−1

mn . The values of kmn are de-
termined from the boundary conditions, in just the same
way as considered earlier for rectangular plates.

The first six vibrational modes for circular plates
with free, hinged and clamped outside edges are shown
in Fig. 15.126, with frequencies expressed as a ratio rel-
ative to that of the fundamental mode (Fletcher and
Rossing [15.5], Sect. 3.6). In each case, for large val-
ues of m and n, the frequency is given by the empirical
Chladni’s Law (1802),

ωmn ∼
√

E

12ρ
(
1−σ2

) π2h

4a2 (m +2n)2 , (15.154)

justified much later by Rayleigh ([15.3] Vol. 1,
Chap. 10). For arched plates, Rossing [15.213] showed

(2,0) (0,1) (3,0) (1,1) (4,0) (5,0)

1 1.73 2.33 3.91 4.11 6.30

(0,1) (1,1) (2,1) (0,2) (1,2) (2,2)

1 2.8 5.15 5.98 9.75 14.09

(01) (1,1) (2,1) (0,2) (3,1) (1,2)

1 2.08 3.41 3.89 5.00 5.95

Free

Hinged

Clamped

cLh
a2

f01= 0.229

cLh
a2

f01= 0.469

cLh
a2

f20= 0.241

Fig. 15.126 The vibrational modes of circular plates with
free, hinged and clamped outer edges, with the lowest fre-
quencies and ratio of frequencies of higher modes indicated

that the frequencies are more closely proportional to
(m +bn)p, where p is somewhat less than 2 and b is in
the the range 2–4.

All the axially symmetric modes involving nodal
diameters are doubly degenerate, with a complemen-
tary solution with nodal diameters bisecting those drawn
in Fig. 15.126. Any perturbation of the structure from
cylindrical symmetry will split the degeneracy of such
modes. Modes with a nodal diameter passing through
the point at which the plate is struck will not be excited.

Instruments like the cymbal are slightly curved over
their major surfaces but with a sudden break to a more
strongly arched central section, to which the leather
holding straps or support stand are attached. The outer
edges can therefore be treated as free surfaces with the
transition to the central cupped region providing an
additional internal boundary condition, which will be
intermediate between clamped and hinged. In contrast,
gongs tend to have a relatively flat surface but with their
edges turned though a right angle to form a cylindrical
outer rim. The rim will add mass to the modes involving
a significant radial displacement at the edge, but will also
increase the rigidity of any mode having an azimuthal
dependence. Thus, although the modes of an ideal cir-
cular plate provide a guide to modal frequencies and
waveforms, we would expect significant deviations in
modal frequencies for real percussion instruments. Any
sudden change in plate profile on a length scale smaller
than an acoustic wavelength will involve a strong cou-
pling between the transverse flexural and longitudinal
waves resulting in reflections from the discontinuity in
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acoustic impedance. This is why, for example, the in-
dented region on the surface of a steeldrum pan can
support localised standing waves on the indented re-
gions. Indented areas of different sizes can then be used
to produce a wide range of different notes on a sin-
gle drum head with relatively little leakage in vibrations
between them.

Nonlinear Effects
Figure 15.127 illustrates the cross section of some typ-
ical axially symmetric cymbals, gongs and a steelpan.
Nonlinear effects in such instruments can be important
when excited at large amplitudes. Such effects are par-
ticularly marked for gongs with relatively thin plates.
For Chinese opera gongs, the nonlinearity can result in
dramatic upward or downward changes in the pitch of
the sound after striking. In addition, nonlinearity results
in mode conversion, with the high-frequency content
of cymbal and large gong sounds increasing with time,
giving a characteristic shimmer to the sound quality.

The shape dependence of the nonlinearity arises
from the arching of the plate. For the lowest mode
of a flat plate, the potential energy initially increases
quadratically with displacement, though the energy in-
creases more rapidly at large-amplitude excursions from
stretching, as indicated schematically in Fig. 15.128a.
Although the energy of an arched plate initially also in-
creases quadratically with distance about its displaced
equilibrium position, the energy will first increase then
decrease when the plate is pushed through the central
plane, (Fig. 15.128b). If the plate were to be pushed
downwards with increasing force, it would suddenly
spring to a new equilibrium position displaced about
the central plane by the same initial displacement, but in
the opposite direction. In combination with a Helmholtz
radiator, this is indeed how some insects such as ci-

Cymbal
Lowering pitch

Rising pitch

Large gong or tam-tam

Steel pan Chinese opera gongs

Fig. 15.127 Schematic cross sections of axially symmetric
plate instruments and a steelpan, with arrows indicating the
principal areas producing sound

cadas generate such strong acoustic signals – as high as
1 mW at 3 kHz (see Chap. 19 by Neville Fletcher). The
nonlinear bistable flexing of a belled-out plate can be
disastrous, turning a cheap pair of thin cymbals inside
out, when crashed together too strongly.

The central peak in potential energy of an arched
plate, like the gently domed Chinese gong illustrated
in Fig. 15.127, therefore leads to a reduced restoring
force for large-amplitude vibrations and a lower pitch. In
contrast, the restoring force of a flat plate, like the central
playing region of the upper of the two Chinese gongs,
increases with vibration amplitude. This arises from the
additional potential energy involved in stretching the
plate, in just the same way as we considered earlier for
the large-amplitude vibrations of a stretched string.

For a flat plate of thickness h, Fletcher [15.214]
has shown that the increase in frequency of the low-
est axisymmetric mode increases with the amplitude of
vibration a approximately as

ω ∼ ω0

[
1+0.16

(
a/h)2)] . (15.155)

The nonlinearity also generates additional components
at three times the frequency of any initial modes present
and at multiples of any new modes excited. In add-
ition it produces cross-modulation products when more
than one mode is present. For example, for modes with
frequencies fi and f2 initially present, the nonlinearity
will generate inter-modulation products at 2 f1 ± f2 and
2 f2 ± f1.

a) b)x x

E

x

E

x

F

x

F

x

Fig. 15.128a,b Potential energy and restoring force of
(a) a clamped flat and (b) arched circular plate as a function
of displacement from the central plane
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Grossmann et al. [15.215] and Fletcher [15.214]
have considered the vibrations of a spherical-cap shell
of height H and thickness h. Interestingly, the change in
frequency of the asymmetric vibrations about the equi-
librium point depends only on the ratio of the amplitude
to the arching height, a/H , as illustrated in Fig. 15.129.
When the height of the dome is much less than the
thickness, the frequency increases approximately as a2,
as expected from the induced increase in tension with
amplitude. However, when the arching becomes compa-
rable with and greater than the thickness, the asymmetry
of the potential energy dominates the dynamics and re-
sults in an initial decrease in frequency, which increases
strongly with the ratio of arching height to thickness. At
very large amplitude, a � H , the frequency is dominated
by the increase in tension and therefore again increases
with amplitude like a flat plate. At large amplitudes,
Legge and Fletcher [15.216] have shown that changes
in the curvature of the plate profile result in a large
transfer of energy to the higher-frequency plate modes.

We now show how many of the above properties
relate to the sounds of cymbals, gongs of various types
and steelpans.

Cymbals
Many types of cymbals are used in the classical sym-
phony orchestra, marching bands and jazz groups. They
are normally made of bronze and have a diameter of
20–70 cm. The low-frequency modes of a cymbal are
very similar to those of a flat circular plate and can
be described using the same (mn) mode nomenclature

ω/ω0

a/H0

1.4

1.2

1.0

0.8

0.6

0.4
1 2

h/H 2.0
1.2

1.0
0.8

0.6

0.4

0.2

0.2

Fig. 15.129 Vibration amplitude a dependence of frequency
of lowest axisymmetric mode of a spherical cap of dome
height H as a function of thickness h to H ratio

(Fletcher and Rossing [15.5], Fig. 20.2). However, small
changes in curvature across a cymbal will results in
modes that are linear combinations of ideal circular-plate
modes.

Cymbals are usually played by striking with
a wooden stick or soft beater or a pair can be crashed to-
gether, each method producing a distinctive sound. They
can even be played by bowing with a heavy rosined bow
against the outer rim. Rossing and Shepherd showed
that the characteristic 60 dB decay time of the excited
modes of a large cymbal varies approximately inversly
proportional with frequency, with a typical decay time
for the lowest (20) mode as long as 300 s (Fletcher and
Rossing [15.5], Fig. 20.5)

Figure 15.130 shows the waveform envelope and
spectra of the initial sound of a cymbal crash and af-
ter 1 s. Audio illustrates a recorded cymbal
crash followed by the same sound played first through a
0–1 kHz and then a 1–10 kHz band-pass filter, illustrat-
ing the decay of the low- and high-frequency wide-band
noise.

When a cymbal is excited with a drumstick, waves
travel out from the excitation point with a dispersive
group velocity proportional to k, inversely proportional
to the dimensions of the initial flexural indention of the
surface made by the drumstick. The dispersive pulse
strikes and is reflected from the edges of the cymbal

(dB)

(kHz)
0 10

0

–20

–40

–60
1 2 3 4 5 6 7 8 9

3s 60 ms

0 s

1 s

Fig. 15.130 Wave envelope and spectrum at start and after
1 s of a cymbal clash illustrating wide-band noise at all
times
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and the transitional region to the central curved cup, so
that eventually the energy will be dispersed across the
whole vibrating surface. This has been investigated us-
ing pulsed video holography by Schedin et al. [15.217].
On reflection there will also be considerable mixing of
modes. In addition, because the plates are rather thin
and are often hit extremely strongly, nonlinear effects
are important. On large cylindrical plates this results
in the continuous transfer of energy from strongly ex-
cited low-frequency modes to higher modes. Many of
the nonlinear effects can be investigated in the lab-
oratory using sinusoidal excitation. Measurements by
Legge and Fletcher [15.216] have revealed a wide range
of nonlinear effects including the generation of har-
monic, bifurcations and even chaotic behaviours at large
intensities.

When a plate is struck by a beater, the acoustic en-
ergy is distributed across a very wide spectrum of closely
spaced resonances of the plate. To distinguish individ-
ual partials requires the sound to be sampled over a time
of at least ≈ 1/∆ f , where ∆ f is the separation of the
modes at the frequencies of interest. However, because
the modes of a large cymbal are so closely spaced, the
times involved can be rather long. Unlike the sound of
pitched instruments such as the glockenspiel and xylo-
phone, there are no particular resonances of the cymbal
that dominate the sound, which is characterised instead
by the sizzle produced by the very wide spectrum of very
closely spaced resonances almost indistinguishable from
wide-band high-frequency noise.

Large Gongs and Tam-Tams
Gongs are also very ancient instruments, which have
a very characteristic sound when strongly struck by a soft
beater, notably as a prelude to classic films by the Rank
organisation. A typical tam-tam gong used in a sym-
phony is a metre or even larger in diameter. It is made
of bronze and, like cymbals, is sufficiently ductile not
to shatter when strongly hit. The damping is very low,
so the sound of large gongs can persist for very long
times.

When initially struck strongly by a soft beater,
the initial sound is largely associated with the lower-
frequency partials that are strongly excited. However,
on a time scale of a second or so, the sound can ap-
pear to grow in intensity, as nonlinear effects transfer
energy from lower- to higher-frequency modes (audio

). This is illustrated in Fig. 15.131 (Fletcher
and Rossing [15.5], Fig 20.8), which shows the build up
and subsequent decay of acoustic energy in the higher-
frequency bands at considerable times after the initial

0.4 s

162 (Hz)

850

1000

2000

3000

4000

6000

Fig. 15.131 Buildup and decay in intensity of a struck tam-
tam sound in frequency bands centred on the indicated
frequencies (after Fletcher and Rossing [15.5])

impact. The fluctuations in intensity within these bands
were taken as evidence for chaotic behaviour. How-
ever, even in a linear system, interference between the
large number of very closely spaced inharmonic partials
would also result in apparently random fluctuations in
amplitude.

Chinese Opera Gongs
Chinese gongs provide the most dramatic illustration of
nonlinearity in percussion instruments, with upwards or
downwards pitch glides of several semitones over a size-
able fraction of a second after being strongly struck. The
direction of the pitch glide depends on the profile of the
vibrating surface as previously described.

Figure 15.132 shows the decaying waveforms of the
sound of three Chinese gongs with a downward pitch
glide (audio ) played in succession. The initial
spectrum of the third note played is followed by spectra
at 0.75 and 1.5 s after striking, illustrating the transfer
of energy to lower-frequency modes. The much broader
width of the initial spectrum reflects the decrease in
lifetime of the initial modes struck resulting from the
nonlinear loss of energy to higher-frequency modes. The
two well-defined peaks between the two major peaks are
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(Hz)
200 500300 400
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C

0
0.75 s
1.50 s

Fig. 15.132 The wave envelope of sounds from three
downward-sliding Chinese gongs followed by the spectrum
of the third gong at the start, after 0.75 and 1.5 s illustrating
the nonlinear frequency shifts

from the long-ringing principal partials of the first two
gongs.

Steelpans
Finally, in this section on percussion instruments based
on vibrating plates, we consider steelpans originating
from the Caribbean, which were initially fabricated by
indenting the top of oil cans left on the beaches by the
British navy after World War II. They have become a im-
mensely popular instrument in that part of the world and
are just as interesting from a musical acoustics view-
point (see Fletcher and Rossing [15.5], Sect. 20.7 for
further details).

Pitched notes on a given drum are produced by ham-
mered indentations of different sizes on the top face
of the drum. Different ranges of notes are produced by
drums or pans of different sizes (e.g. lead tenor, dou-
ble tenor, alto, cello and bass). Typical indented regions
on a double-tenor steelpan are shown in Fig. 15.133,
adapted from drawings for a full set of pans in Fletcher
and Rossing ([15.5], Fig. 20.17). The various indented
areas on the drum head can be considered as an array of
relatively weakly coupled resonators. An individual in-

E4
B4

B1

F4

A1

A4

C#4

G4

G5
Eb5

B5

F5

A5

C#5

C#6

Fig. 15.133 Typical indentation areas in a tenor steelpan
(after Fletcher and Rossing [15.5])

dented area on an infinite sheet would have very similar
acoustic modes as those of a hemispherical cap indented
in an infinite plate. The frequency of the modes would
be determined by the size and arching of the indented
areas. The effective cap size would be defined by the
rate of change of the curvature of the plate and the as-
sociated change in the acoustic impedance at the edge
of the indented region. However, all such regions on
a steelpan will be coupled together by the relatively
weak transfer of acoustic energy between them, to form
a set of coupled modes. Hitting one particular region

(kHz)
0 21

0.28 s

0.1s

0 s

Fig. 15.134 Waveform and initial and time-delayed spectra
of the note C#4 on a steeldrum
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will therefore excite other regions, especially those that
have closely matching partials. The coupling between
such regions has been investigated holographically by
Rossing ([15.201] Fig. 20.20).

Audio illustrates a succession of notes
played on a steeldrum. Figure 15.134 shows a typical de-
caying waveform with initial and time-delayed spectra
of a single note. A relatively large number of well-
defined modes can easily be identified. However, the
subjective absolute pitch of the note is not particularly
well defined and there is a strong sense of pitch circu-
larity in the sound of an ascending scale (Sect. 15.1.3
and audio ), sometimes making it difficult to
identify the octave to which a particular note should be
attributed. Note the increase in the amplitude of the sec-
ond partial with time, which could result from nonlinear
effects in such thin-walled structures, or possibly from
interference beats between degenerate modes split in fre-
quency by the lack of axial symmetry of the hand-beaten
indentations.

15.4.4 Shells

Blocks and Bells
Finally, we consider the acoustics of three-dimensional
shell-like structures. This could include percussion in-
struments such as the wooden-block and hollow gourd
instruments like the maracas. However, the physics
of such instruments is essentially the same as that of
the soundbox of stringed instruments and involves lit-
tle of additional acoustic interest. In this section, we
will therefore concentrate on the acoustics of bell-like
structures, which are usually axially symmetric struc-
tures, closed at one end, and of variable thickness and
radius along their length. We will also consider non-
axisymmetric bells with a quasi-elliptical cross section,
which produce two different pitched notes, depending on
where the bell is struck. All such structures have a rich
spectrum of modes, which are generally tuned to give
long-ringing notes with a well-defined sense of pitch.
The bronze used in their construction is typically an al-
loy of 80% copper and 20% tin and has to be sufficiently
ductile not to crack under the impact of the beater or
clapper. Metallurgical treatment is required to produce
a grain structure producing little damping at acoustic
frequencies.

Some of the oldest bells are to be found in China.
Such bells are supreme examples of the art of bronze
casting dating to the fifth century BC. Bells in church
towers have traditionally marked the passage of time,
while peals of bells with internal swinging clappers con-

(n, m) bell modes

0 0 1 2 3m

0 1 2 3n

Extensional Torsional Radially flexural

Fig. 15.135 Nomenclature of the (m, n) modes of a bell
illustrating displacements of rim for given m-values

tinue to summon the faithful to worship. In more recent
times, carillons with up to 77 tuned bells have been
developed to play keyboard music from the top of spe-
cially constructed bell towers, notably in the centres of
Dutch and American towns and college campuses. Bells
come in all sorts of shapes and sizes ranging from small
hand bells to the giant church bells on display inside the
Kremlin walls. However, the acoustics of all bells is es-
sentially the same, so no attempt will be made to provide
a comprehensive coverage of every type, [for such in-
formation, see Fletcher and Rossing ([15.5], Chap. 21),
and Rossing [15.201]].

Bell modes can be related to the longitudinal, tor-
sional and flexural modes of a cylindrical disc that is
axially deformed into a bell-shaped domed structure.
Although the modal frequencies will clearly be strongly
perturbed by such a transformation, the modal shapes
will remain unchanged, as illustrated in Fig. 15.135,
where m represents the number of radial nodal lines
and n the number of nodal circles between the (fixed)
centre and free edge.

The first example in Fig. 15.135 illustrates the rim
displacements of the (0, n) extensional modes. Although
such “breathing” modes would be efficient sound radi-
ators the energy involved in stretching the surfaces of
the bell leads to very high modal frequencies, so that
such modes are not strongly excited. Likewise, the tor-
sional (0, n)–modes involve no motion perpendicular
to the bell surfaces, and therefore generate a negligi-
ble amount of sound. With the bell rigidly supported at
its top, the m = 1 swinging modes again involve large
elastic strains and cannot be strongly excited. The first
modes to produce a significant amount of sound are
therefore the m = 2 and above flexural modes, which
involve the transverse motions of the outer edges with
negligible extension in circumferential length for small
amplitude vibrations. When the wavelength of the flex-
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ural waves is much smaller than the overall curvature,
the vibrational modes will be closely related to the flex-
ural waves of a circular disc, with frequencies satisfying
Chladni’s generalised empirical law, fmn ∼ c(m +2n)p,
as confirmed by Perrin et al. [15.218].

The flexural modes involve radial displacements
proportional to cos(mφ). Continuity requires that there
must also be a tangential displacement, such that u +
∂v/∂φ = 0, where u and v are the radial and tangen-
tial velocities respectively. Coupling to the tangential
motion explains why it is possible to feed energy into
a vibrating wine glass or the individual glass resonators
of a glass harmonica (Rossing [15.201] Chap. 14), by
rubbing a wetted finger around the rim. The excitation is
very similar to the slip–stick mechanism used to excite
the bowed string (Sect. 15.2.4).

Figure 15.136 illustrates a set of holographic meas-
urements by Rossing ([15.201], Fig. 12.4), which is
typical of most bell shapes. The (m, 1) and (m, 2)
modes can immediatly be related to the (m, n) modes
of a cupped disc. However, there is a distinct change
in character for n > 0, with an additional node ap-
pearing close to the rim – referred to as a (m, 1#)
mode. Some insight is provided by the finite ele-
ment solutions for a typical large English church bell
illustrated in Fig. 15.137 [15.221]. The three modes
illustrated are very similar to the (3, 0), (3, 1) and
(3, 2) modes expected from the simple cupped disc
model, except for the lowest frequency (3, 0) mode,

2,1 3,1 4,1 5,1 6,1

2,0 3,0 4,1# 5,1# 6,1#

2,2 3,2 4,2 5,2 6,2

Fig. 15.136 Holographic interferograms and nomenclature
for vibrational modes of a hand bell (after Rossing [15.201])

(3,1) (3,1#) (3,2)

Fig. 15.137 Finite-element solutions for the lowest-order m
= 3 modes of an English church bell (after Perrin et al.
[15.219]) illustrating the (3,1), (3,1#) and (3,2) modes

in which the top surfaces of the bell move in an-
tiphase with the rim, to give a nodal line about
half-way along the length. Similarly, the anticipated
(4, 0), (5, 0) and (6, 0) modes of the handbell in-
vestigated by Rossing [15.201] acquire an additional
nodal line close to the end rim denoted as (4, 1#),
(5, 1#) and (6, #) modes. Such features can gener-
ally only be accounted for by detailed computational
analysis.

Bell Tuning
Figure 15.138 shows the frequencies and associated
modes of a well-tuned traditional church bell (Rossing
and Perrin [15.220]), ordered into groups based on mode

Group I

Group 0

Group II

Group III

End view

Tierce Nominal (Twelfth) (Upper octave)
(2,0) 0.5

Prime

Quint (Major third)1.0

0.30

0.19
0.54

0.19

0.54

(3,1) 1.2 (4,1) 2.0 (5,1) 3.0 (6,1) 4.2

(3,1#) 1.5 (4,1#) 2.5 (5,1#) 3.7 (6,1#) 5.0

(3,2) 2.6 (4,2) 3.3 (5,2) 4.5 (6,2) 5.9(2,2) 2.7

Fig. 15.138 Measured frequencies for a typical D5 church bell,
indicating the relative frequencies of the observed mode, with the tra-
ditional names associated with such modes indicated (after Rossing
and Perrin [15.220])
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shapes, which enable correlations to be made between
bells of different shapes and sizes.

Fine-quality bells are carefully tuned by the bell
maker, so that the lowest modes have harmonically
related frequencies, thereby achieving a well-defined
sense of pitch. This is achieved by selective thinning
of the thickness of the bell on a very large lathe after
its initial casting. In an ideally tuned bell, the principal
modes are designated as the hum (2,0) mode, an octave
below the prime or fundamental (2,1#) mode. A minor
third above the prime (ratio 5:4) is the tierce (3,1) mode,
a perfect fifth above that (ratio 3:2) is the quint or fifth
(3,1#) mode, and an octave above is the nominal (4,1)
mode. Fletcher and Rossing ([15.5], Table 21.1) com-
pare these and higher modes with measured values for
a particular bell.

The art of tuning the partials of bells to achieve
a well-sounding note was initially developed in the
seventeenth century in the low countries (what is now
Holland and the northern parts of Germany and France).
Many fine bells from this period by François and
Pieter Hemony are still in use in carillons today (Ross-
ing [15.201]). However, the art of bell tuning then
appears to have been lost until the end of the 19th
century, when it was rediscovered by Canon Arthur
Simpson in England, following Lord Rayleigh’s pio-
neering research on the sound of bells ([15.3] Vol. 1,
Sect. 235).

Acoustic Radiation
The strongest-sounding partials of most bells are the
group I (m,1) modes, with a nodal circle approxi-
mately halfway up the bell (Fletcher and Rossing [15.5],
Sect. 21.11). Such modes have 2m antinodal areas
providing spatially alternating sound sources in anti-
phase. The radiation efficiency of such modes increases
rapidly with size of bell and frequency. If the acoustic
wavelength is much larger than the separation of such
antinodes, the sound from such sources will tend to can-
cel out. However, above a crossover frequency, such that
the velocity of sound is equal to that of the flexural waves
on the surface of the bell, vflex = √

1.8cLh f , the spac-
ing between the antinodes will exceed the wavelength
in air and the modes will radiate more efficiently. For
large church bells, this condition is satisfied for almost
all but the very lowest partials, so almost all partials ra-
diate sound rather efficiently. In contrast, hand bells with
rather thin walls are significantly less efficient. There is
also a small intensity of sound radiated axially at double
the modal frequencies, from the induced fluctuations in
the volume of air enclosed within the bell.

When a bell is struck, usually by a cast or wrought-
iron, ball-shaped, clapper, the first sound heard, the
strike note, contains contributions from the very large
range of largely inharmonic partials of the bell. Nev-
ertheless the listener can usually identify a pitch to
the initial note, determined by the prominent partials
excited. However, it is not always easy to attribute
the pitch of a note to a particular octave, which is
a common feature of many struck percussion instru-
ments (e.g. notes on a xylophone, steeldrum and even
timpani). The pitch of the strike note appears to be
determined principally by the excited partials with fre-
quencies in the ratios 2:3:4. The ear attributes the
pitch to be that of the missing fundamental an octave
below the lowest of the partials principally excited,
which does not necessarily correspond to the pitch
of the lowest partial excited, unless the bell is well
tuned.

The majority of the higher partials decay rather
quickly, with the long-term sound dominated by the
hum note. For a 70 cm church bell, Perrin et al. [15.218]
measured T60 decay times of 52 s for the (2,0) hum
mode, 16 s for the (2.1#) and (3,1) prime and minor third
modes, 6 s for the (4,1) octave and 3 s for the (4,1#) up-
per major third, with progressively shorter decay times

(kHz)
0 0.80.6 10.40.2

5 s

Fig. 15.139 Decaying vibrations and spectrum of Big Ben,
London
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for the higher modes. Audio illustrates the
synthesised sound of the above harmonic modes excited
with equal amplitudes. This is followed by a synthe-
sised bell with a major rather than a minor third partial.
Such a bell has recently been realised (1999) based
on FEA studies at the Technical University in Eind-
hoven in collaboration with the Eijsbouts Bell foundry.
It produces a less mournful sound when played in the
major scale music in a carillon. In both cases the syn-
thesised sound reproduces the gentle sound of a bell
rather well, though it lacks the initial clang that results
from the higher-frequency inharmonic modes of a real
bell.

As an example of the waveform and spectrum of
a large bell, in Fig. 15.139 and audio signal ,
we illustrate the sound and rich spectrum of partials of
one of the most famous large bells in the world, Big Ben,
hung high above the Houses of Parliament in London.
This bell is broadcast each day following the Westmin-
ster Chimes, marking the hours and end of broadcasting
on the BBC each night for UK listeners.

Non-Axial Symmetry
Bell modes with m > 1 are doubly degenerate with or-
thogonal modes varying as cos mφ and sin mφ and nodal
lines in the azimuthal directions that bisect each other.
Any departures from axial symmetry will lift the degen-

eracy and give rise to a split pair of orthogonal modes. If
both modes are excited together, the two frequencies will
beat against each other, as already evident in the sound
of Big Ben and in the sound ( ) of a slightly
asymmetrical glass beaker with a pouring spout, which
lifts the degeneracy of the otherwise axially symmetric
modes.

Bells with strongly distorted or elliptical cross sec-
tions can have two completely different pitches, which
can be sounded independently by beating at the antin-
odal positions of one set of modes mode and nodes of
the other. Drums with quasi-elliptical cross sections will
therefore sound a single note when struck at the narrow-
est and widest cross-sectional radii, and a second note,
when struck at appropriate positions in between.

A dramatic example of axially asymmetric bells is
provided by the 65 ancient bells from the tomb of Zeng
Hou Yi found at Sui Xiang from around 433 BC. These
bells from the second millennium BC are masterpieces
of Chinese art and bell casting. They have oval cross
sections and range from small hand bells to well over
1.5 m in height. When struck at different positions along
the flattened surfaces, two quite distinct tones can be
excited, which were designed to be about a major or
minor third apart. For further details of these and other
Chinese and other eastern bells see Rossing ([15.201]
Chap. 13) and [15.222].
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