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Acoustic Signa14. Acoustic Signal Processing

Signal processing refers to the acquisition, storage,
display, and generation of signals – also to the
extraction of information from signals and the re-
encoding of information. As such, signal processing
in some form is an essential element in the practice
of all aspects of acoustics. Signal processing
algorithms enable acousticians to separate
signals from noise, to perform automatic speech
recognition, or to compress information for more
efficient storage or transmission. Signal processing
concepts are the blocks used to build models of
speech and hearing. As we enter the 21st century,
all signal processing is effectively digital signal
processing. Widespread access to high-speed
processing, massive memory, and inexpensive
software makes signal processing procedures of
enormous sophistication and power available to
anyone who wants to use them. Because advanced
signal processing is now accessible to everybody,
there is a need for primers that introduce basic
mathematical concepts that underlie the digital
algorithms. The present handbook chapter is
intended to serve such a purpose.

The chapter emphasizes careful definition of
essential terms used in the description of signals
per international standards. It introduces the
Fourier series for signals that are periodic and
the Fourier transform for signals that are not.
Both begin with analog, continuous signals,
appropriate for the real acoustical world. Emphasis
is placed on the consequences of signal symmetry
and on formal relationships. The autocorrelation
function is related to the energy and power
spectra for finite-duration and infinite-duration
signals. The chapter provides careful definitions
of statistical terms, moments, and single- and
multi-variate distributions. The Hilbert transform
is introduced, again in terms of continuous
functions. It is applied both to the development of
the analytic signal - envelope and phase - and to
the dispersion relations for linear, time-invariant
systems. The bare essentials of filtering are
presented, mostly to provide real-world examples
of fundamental concepts - asymptotic responses,

group delay, phase delay, etc. There is a brief
introduction to cepstrology, with emphasis on
acoustical applications. The treatment of the
mathematical properties of noise emphasizes the
generation of different kinds of noise. Digital
signal processing with sampled data is specifically
introduced with emphasis on digital-to-analog
conversion and analog-to-digital conversion. It
continues with the discrete Fourier transform and
with the z-transform, applied to both signals
and linear, time-invariant systems. Digital signal
processing continues with an introduction to
maximum length sequences as used in acoustical
measurements, with an emphasis on formal
properties. The chapter ends with a section on
information theory including developments of
Shannon entropy and mutual information.
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14.1 Definitions

Signal processing begins with signals. The simplest sig-
nal is a sine wave with a single spectral component, i. e.,
with a single frequency, as shown in Fig. 14.1. It is some-
times called a pure tone. A sine wave function of time
t with amplitude C, angular frequency ω, and starting
phase ϕ, is given by

x(t) = C sin(ωt +ϕ) . (14.1)

The amplitude has the same units as the waveform x, the
angular frequency has units of radians per second, and
the phase has units of radians.

Because there are 2π radians in one cycle

ω = 2π f, (14.2)

and (14.1) can be written as

x(t) = C sin(2π ft +ϕ) (14.3)

or as

x(t) = C sin(2πt/T +ϕ) , (14.4)

where f is the frequency in cycles per second (or Hertz)
and T is the period in units of seconds per cycle, T =
1/ f .

A complex wave is the sum of two or more sine
waves, each with its own amplitude, frequency, and
phase. For example,

x(t) = C1 sin(ω1t +ϕ1)+C2 sin(ω2t +ϕ2) (14.5)
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Fig. 14.1 A sine wave with amplitude C and period T . A lit-
tle more than three and a half cycles are shown. The starting
phase is ϕ = 0

is a complex wave with two spectral components having
frequencies f1 and f2. The period of a complex wave
is the reciprocal of the greatest common divisor of f1
and f2. For instance, if f1 = 400 Hz and f2 = 600 Hz,
then the period is 1/(200 Hz) or 5 ms. The fundamental
frequency is the reciprocal of the period.

A general waveform can be written as a sum of N
components,

x(t) =
N∑

n=1

Cn sin(ωnt +ϕn) , (14.6)

and the fundamental frequency is the greatest common
divisor of the set of frequencies { fn}.

An alternative description of the general waveform
can be derived by using the trigonometric identity

sin(θ1 + θ2) = sin θ1 cos θ2 + sin θ2 cos θ1 (14.7)
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so that

x(t) =
N∑

n=1

An cos(ωnt)+ Bn sin(ωnt) , (14.8)

where An = Cn sin ϕn , and Bn = Cn cos ϕn , are the co-
sine and sine partial amplitudes respectively. Thus the
two parameters Cn and ϕn are replaced by two other
parameters An and Bn .

Because of the trigonometric identity

sin2 θ + cos2 θ = 1 , (14.9)

the amplitude Cn can be written in terms of the partial
amplitudes,

C2
n = A2

n + B2
n , (14.10)

as can the component phase

ϕn = Arg(An, Bn) . (14.11)

The Arg function is essentially an inverse tangent, but
because the principal value of the arctangent function
only runs from −π/2 to π/2, an adjustment needs to be
made when Bn is negative. In the end,

Arg(An, Bn) = arctan(An/Bn) (for Bn ≥ 0)
(14.12)

and

Arg(An, Bn) = arctan(An/Bn)+π (for Bn < 0) .

The remaining sections of this chapter provide a brief
treatment of real signals x(t) – first as continuous func-
tions of time and then as sampled data. Readers who are
less familiar with the continuous approach may wish to
refer to the more extensive treatment in [14.1].

14.2 Fourier Series

The Fourier series applies to a function x(t) that is
periodic. Periodicity means that we can add any in-
tegral multiple m of T to the running time variable t
and the function will have the same value as at time t,
i. e.

x(t +mT ) = x(t) , for all integral m . (14.13)

Because m can be either positive or negative and
as large as we like, it is clear that x is periodic into the
infinite future and past. Then Fourier’s theorem says that
x can be represented as a Fourier series like

x(t) = A0 +
∞∑

n=1

[An cos(ωnt)+ Bn sin(ωnt)] . (14.14)

All the cosines and sines have angular frequencies
ωn that are harmonics, i. e., they are integral multiples
of a fundamental angular frequency ωo,

ωn = nωo = 2πn/T , (14.15)

where n is an integer.
The fundamental frequency f0 is given by

f0 = ωo/(2π). The fundamental frequency is the lowest
frequency that a sine or cosine wave can have and still
fit exactly into one period of the function x(t) because
f0 = 1/T . In order to make a function x(t) with period
T , the only sines and cosines that are allowed to enter
the sum are those that fit exactly into the same period T .
These are those sines and cosines with frequencies that
are integral multiples of the fundamental.

The factors An and Bn in (14.14) are the Fourier
coefficients. They can be calculated by projecting the
function x(t) onto sine and cosine functions of the har-
monic frequencies ωn . Projecting means to integrate the
product of x(t) and a sine or cosine function over a dura-
tion of time equal to a period of x(t). Sines and cosines
with different harmonic frequencies are orthogonal over
a period. Consequently, projecting x(t) onto, for example
cos(3ωot), gives exactly the Fourier coefficient A3.

It does not matter which time interval is used for
integration, as long as it is exactly one period in duration.
It is common to use the interval −T/2 to T/2.

The orthogonality and normality of the sine and co-
sine functions are described by the following equations:

2

T

T/2∫

−T/2

dt sin(ωnt) cos(ωmt) = 0 , (14.16)

for all m and n;

2

T

T/2∫

−T/2

dt cos(ωnt) cos(ωmt) = δn,m (14.17)

and

2

T

T/2∫

−T/2

dt sin(ωnt) sin(ωmt) = δn,m , (14.18)
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506 Part D Hearing and Signal Processing

where δn,m is the Kronecker delta, equal to one if m = n
and equal to zero otherwise.

It follows that the equations for An and Bn are

An = 2

T

T/2∫

−T/2

dt x(t) cos(ωnt) for n > 0 , (14.19)

Bn = 2

T

T/2∫

−T/2

dt x(t) sin(ωnt) for n > 0. (14.20)
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Fig. 14.2 The amplitudes A and B for the signal in (14.22)
are shown in the top two plots. The corresponding magni-
tude and phases are shown in the bottom two

The coefficient A0 is simply a constant that shifts the
function x(t) up or down. The constant A0 is the only
term in the Fourier series (14.14) that could possibly
have a nonzero value when averaged over a period. All
the other terms are sines and cosines; they are negative as
much as they are positive and average to zero. Therefore,
A0 is the average value of x(t). It is the direct-current
(DC) component of x. To find A0 we project the function
x(t) onto a cosine of zero frequency, i. e. onto the number
1, which leads to the average value of x,

A0 = 1

T

T/2∫

−T/2

dt x(t) . (14.21)

14.2.1 The Spectrum

The Fourier series is a function of time, where An and
Bn are coefficients that weight the cosine and sine con-
tributions to the series. The coefficients An and Bn are
real numbers that may be positive or negative.

An alternative approach to the function x(t) deem-
phasizes the time dependence and considers mainly the
coefficients themselves. This is the spectral approach.
The spectrum simply consists of the values of An and
Bn , plotted against frequency, or equivalently, plotted
against the harmonic number n. For example, if we have
a signal given by

x(t) = 5 sin(2π 150t)+3 cos(2π 300t)

−2 cos(2π 450t)+4 sin(2π 450t) (14.22)

then the spectrum consists of only a few terms. The pe-
riod of the signal is 1/ 150 s, the fundamental frequency
is 150 Hz, and there are two additional harmonics: a sec-
ond harmonic at 300 Hz and a third at 450 Hz. The
spectrum is shown in Fig. 14.2.

14.2.2 Symmetry

Many important periodic functions have symmetries that
simplify the Fourier series. If the function x(t) is an
even function [x(−t) = x(t)] then the Fourier series for
x contains only cosine terms. All coefficients of the sine
terms Bn are zero. If x(t) is odd [x(−t) = −x(t)], the
the Fourier series contains only sine terms, and all the
coefficients An are zero. Sometimes it is possible to
shift the origin of time to obtain a symmetrical function.
Such a time shift is allowed if the physical situation at
hand does not require that x(t) be synchronized with
some other function of time or with some other time-
referenced process. For example, the sawtooth function
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Fig. 14.3 The Fourier series of an odd function like this
sawtooth consists of sine terms only. The Fourier coeffi-
cients can be computed by an integral over a single period
from −T/2 to T/2

in Fig. 14.3 is an odd function. Therefore, only sine terms
are present in the series.

The Fourier coefficients can be calculated by doing
the integral over the interval shown by the heavy line.
The integral is easy to do analytically because x(t) is
just a straight line. The answer is

Bn = 2

π

(−1)(n+1)

n
. (14.23)

Consequently, the sawtooth function itself is given by

x(t) = 2

π

∞∑

n=1

(−1)(n+1)

n
sin(2πnt/T ) . (14.24)

A bridge between the Fourier series and the Fourier
transform is the complex form for the spectrum,

Xn = An + iBn . (14.25)

Because of Euler’s formula, namely

eiθ = cos θ + i sin θ , (14.26)

it follows that

Xn = 2

T

T/2∫

−T/2

dt x(t) eiωn t . (14.27)

14.3 Fourier Transform

The Fourier transform of a time-dependent signal is
a frequency-dependent representation of the signal,
whether or not the time dependence is periodic. Com-
pared to the frequency representation in the Fourier
series, the Fourier transform differs in several ways. In
general the Fourier transform is a complex function with
real and imaginary parts. Whereas the Fourier series rep-
resentation consists of discrete frequencies, the Fourier
transform is a continuous function of frequency. The
Fourier transform also requires the concept of negative
frequencies. The transformation tends to be symmetrical
with respect to the appearance of positive and negative
frequencies and so negative frequencies are just as im-
portant as positive frequencies. The treatment of the
Fourier integral transform that follows mainly states re-
sults. For proof and further applications the reader may
wish to consult [14.1, mostly Chap. 8].

The Fourier transform of signal x(t) is given by the
integral

X(ω) = F [x(t)] =
∫

dt e−iωt x(t) . (14.28)

Here, and eleswhere unless otherwise noted, integrals
range over all negative and positive values, i. e. −∞ to
+∞.

The inverse Fourier transform expresses the signal
as a function of time in terms of the Fourier transform,

x(t) = 1

2π

∫
dω eiωt X(ω) . (14.29)

These expressions for the transform and inverse trans-
form can be shown to be self-consistent. A key fact in
the proof is that the Dirac delta function can be written
as an integral over all time,

δ(ω) = 1

2π

∫
dt e±iωt , (14.30)

and similarly

δ(t) = 1

2π

∫
dω e±iωt . (14.31)

Because a delta function is an even function of its ar-
gument, it does not matter if the + or − sign is used in
these equations.

Reality and Symmetry
The Fourier transform X(ω) is generally complex. How-
ever, signals like x(t) are real functions of time. In that
connection (14.29) would seem to pose a problem, be-
cause it expresses the real function x as an integral
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508 Part D Hearing and Signal Processing

involving the complex exponential multiplied by the
complex Fourier transform. The requirement that x be
real leads to a simple requirement on its Fourier trans-
form X. The requirement is that X(−ω) must be the
complex conjugate of X(ω), i. e., X(−ω) = X∗(ω). That
means that

Re X(−ω) = Re X(ω) (14.32)

and

Im X(−ω) = −Im X(ω) .

Similar reasoning leads to special results for signals
x(t) that are even or odd functions of time t. If x is even
[x(−t) = x(t)] then the Fourier transform X is not com-
plex but is entirely real. If x is odd [x(−t) = −x(t)] then
the Fourier transform X is not complex but is entirely
imaginary.

The polar form of the Fourier transform is normally
a more useful representation than the real and imaginary
parts. It is the product of a magnitude, or absolute value,
and an exponential phase factor,

X(ω) = |X(ω)| exp[iϕ(ω)] . (14.33)

The magnitude is a positive real number. Negative or
complex values of X arise from the phase factor. For
instance, if X is entirely real then ϕ(ω) can only be zero
or 180◦.

14.3.1 Examples

A few example Fourier transforms are insightful.

The Gaussian
The Fourier transform of a Gaussian is a Gaussian. The
Gaussian function of time is

g(t) = 1

σ
√

2π
e−t2/(2 σ2) . (14.34)

The function is normalized to unit area, in the sense
that the integral of g(t) over all time is 1.0. The Fourier
transform is

G(ω) = e−ω2σ2/2 . (14.35)

The Unit Rectangle Pulse
The unit rectangle pulse, r(t), is a function of time that
is zero except on the interval −T0/2 to T0/2. During
that interval the function has the value 1/T0, so that
the function has unit area. The Fourier transform of this
pulse is

R(ω) = [sin(ωT0/2)]/(ωT0/2) , (14.36)
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Fig. 14.4 The Fourier transform of a single pulse with
duration T0 as a function of frequency f expressed in
dimensionless form fT0

or, in terms of frequency

R( f ) = [sin(π fT0)]/(π fT0) ,

as shown in Fig. 14.4.
The function of the form (sin x)/x is sometimes

called the sinc function. However, (sin πx)/(πx) is also
called the sinc function. Therefore, whenever the sinc
function is used by name it must be defined.

Both the Gaussian and the unit rectangle illustrate
a reciprocal effect sometimes called the uncertainty
principle. The Gaussian function of time g(t) is nar-
row if σ is small because σ appears in the denominator
of the exponential in g(t). Then the Fourier transform
G(ω) is wide because σ appears in the numerator of
the exponential in G(ω). Similarly, the unit rectangle
is narrow if T0 is small. Then the Fourier transform
R(ω) is broad because R(ω) depends on the product
ωT0. The general statement of the principle is that,
if a function of one variable (e.g. time) is compact,
then the transform representation, that is the function
of the conjugate variable (e.g. frequency), is broad,
and vice versa. The extreme expression of the uncer-
tainty principle appears in the Fourier transform of
a function that is constant for all time. According to
(14.30), that transform is a delta function of frequency.
Conversely, the Fourier transform of a delta function
is a constant for all frequency. That means that the
spectrum of an ideal impulse contains all frequencies
equally.

A contrast between the Fourier transforms of Gaus-
sian and rectangle pulses is also revealing. Because the
Gaussian is a smooth function of time, the transform has
a single peak. Because the rectangle has sharp edges,
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there are oscillations in the transform. If the rectangle
is given sloping or rounded edges, the amplitude of the
oscillations is reduced.

14.3.2 Time-Shifted Function

If y(t) is a time-shifted version of x(t), i. e.

y(t) = x(t − t0) , (14.37)

then the Fourier transform of y is related to the Fourier
transform of x by the equation

Y (ω) = exp(−iωt0)X(ω) . (14.38)

The transform Y is the same as X except for a phase shift
that increases linearly with frequency. There are two im-
portant implications of this equation. First, because the
magnitude of the exponential with imaginary argument
is 1.0, the magnitude of Y is the same as the magni-
tude of X for all values of ω. Second, reversing the logic
of the equation shows that, if the phase of a signal is
changed in such a way that the phase shift is a linear
function of frequency, then the change corresponds only
to a shift along the time axis for the function of time,
and not to a distortion of the shape of the wave. A gen-
eral phase-shift function of frequency can be separated
into the best-fitting straight line and a residual. Only the
residual distorts the shape of the signal as a function of
time.

14.3.3 Derivatives and Integrals

If v(t) is the derivative of x(t), i. e., v(t) = dx/dt, then
the Fourier transform of v is related to the transform of
x by the equation

V (ω) = iωX(ω) . (14.39)

Thus, differentiating a signal is equivalent to ideal high-
pass filtering with a boost of 6 dB per octave, i. e.,
doubling the frequency doubles the ratio of the output to
the input, as processed by the differentiator. Differentiat-
ing also leads to a simple phase shift of 90◦ (π/2 radians)
in the sense that the new factor of i equals exp(iπ/2).
The differentiation equation can be iterated. The Fourier
transform of the n-th derivative of x(t) is (iω)n X(ω).

Integration is the inverse of differentiation, and that
fact becomes apparent in the Fourier transforms. If w(t)

is the integral of x(t), i. e.,

w(t) =
t∫

−∞
dt′ x(t′) , (14.40)

then the Fourier transform of w is related to the Fourier
transform of x by the equation

W(ω) = X(ω)/(iω)+ X(0)δ(ω) . (14.41)

The first term above could have been anticipated based
on the transform of the derivative. The second term
corresponds to the additive constant of integration that
always appears in the context of an integral. The num-
ber X(0) is the average (DC) value of the signal x(t), and
if this average value is zero then the second term can be
neglected.

14.3.4 Products and Convolution

If the signal x is the product of two functions y and w,
i. e. x(t) = y(t)w(t) then, according to the convolution
theorem, the Fourier transform of x is the convolution
of the Fourier transforms of y and w, i. e.

X(ω) = 1

2π
Y (ω)∗ W(ω) . (14.42)

The convolution, indicated by the symbol *, is defined
by the integral

X(ω) = 1

2π

∫
dω′ Y (ω′) W(ω−ω′) . (14.43)

The convolution theorem works in reverse as well.
If X is the product of Y and W , i. e.

X(ω) = Y (ω) W(ω) (14.44)

then the functions of time, x, y, and w are related by
a convolution,

x(t) =
∞∫

−∞
dt′ y(t′) w(t − t′) (14.45)

or

x(t) = y(t)∗w(t) .

The symmetry of the convolution equations for mul-
tiplication of functions of frequency and multiplication
of functions of time is misleading. Multiplication of fre-
quency functions, e.g. X(ω) = Y (ω)W(ω), corresponds
to a linear operation on signals generally known as fil-
tering. Multiplication of signal functions of time, e.g.
y(t)w(t), is a nonlinear operation such as modulation.
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14.4 Power, Energy, and Power Spectrum

The instantaneous power in a signal is defined as
P(t) = x2(t). This definition corresponds to the power
that would be transferred by a signal to a unit load that
is purely resistive, or dissipative. Such a load is not at
all reactive, wherein energy is stored for some fraction
of a cycle.

The energy in a signal is the accumulation of power
over time,

E =
∫

dt P(t) =
∫

dt x2(t) . (14.46)

At this point, a distinction must be made between
finite-duration signals and infinite-duration signals. For
a finite-duration signal, the above integral exits. By
substituting the Fourier transform for x(t), one finds that

E = 1

2π

∫
dω X(ω) X(−ω) or

∫
dω E(ω) .

(14.47)

Thus the energy in the signal is written as the accumu-
lation of of the energy spectral density,

E(ω) = 1

2π
X(ω) X(−ω) = 1

2π
|X(ω)|2 . (14.48)

The symmetry between (14.46) and (14.47) is known
as Parseval’s theorem. It says that one can compute the
energy in a signal by either a time or a frequency integral.

The power spectral density is obtained by dividing
the energy spectral density by the duration of the signal,
TD,

P(ω) = E(ω)/TD . (14.49)

For white noise, the power density is constant on av-
erage, P(ω) = P0. From (14.47) it is evident that a signal
cannot be white over the entire range of frequencies out
to infinite frequency without having infinite energy. One
is therefore limited to noise that is white over a finite
frequency band.

For pink noise the power density is inversely propor-
tional to frequency, P(ω) = c/ω, where c is a constant.
The energy integral in (14.47) for pink noise also di-
verges. Therefore, pink noise must be limited to a finite
frequency band.

Turning now to infinite-duration signals, for an
infinite-duration signal the energy is not well defined.
It is likely that one would never even think about an
infinite-duration signal if it were not for the useful
concept of a periodic signal. Although the energy is
undefined, the power P is well defined, and so is the

power spectrum, or power spectral density P(ω). As ex-
pected, the power is the integral of the power spectral
density,

P =
∫

dω P(ω) , (14.50)

where P(ω) is given in terms of X from (14.27),

P(ω) = π

2

∞∑

n=0

|Xn |2[δ(ω−ωn)+ δ(ω+ωn)] .

(14.51)

It is not hard to convert densities to different units.
For instance, the power spectral density can be written
in terms of frequency f instead of ω (ω = 2π f ). By the
definition of a density we must have that

P =
∫

d f P( f ) . (14.52)

This definition is consistent with the fact that
a delta function has dimensions that are the inverse of
its argument dimensions. Therefore, δ(ω) = δ(2π f ) =
δ( f )/(2π), and

P( f ) = 1

4

∞∑

n=0

|Xn |2[δ( f − fn)+ δ( f + fn)] .

(14.53)

14.4.1 Autocorrelation

The autocorrelation function af of a signal x(t) provides
a measure of the similarity between the signal at time t
and the same signal at a different time, t +τ . The variable
τ is called the lag, and the autocorrelation function is
given by

af (τ) =
∞∫

−∞
dt x(t) x(t + τ) . (14.54)

When τ is zero then the integral is just the square of x(t),
and this leads to the largest possible value for the auto-
correlation, namely E. For a signal of finite duration, the
autocorrelation must always be strictly less than its value
at τ = 0. Consequently, the normalized autocorrelation
function a(τ)/a(0) is always less than 1.0 (τ �= 0).

By substituting (14.29) for x(t) one finds a frequency
integral for the autocorrelation function,

af (τ) = 1

2π

∞∫

−∞
dω eiωt |X(ω)|2 , (14.55)
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or, from (14.47),

af (τ) =
∞∫

−∞
dω eiωτ E(ω) . (14.56)

Equation (14.56) says that the autocorrelation function
is the Fourier transform of the energy spectral density.
This relationship is known as the Wiener–Khintchine re-
lation. Because E(−ω) = E(ω), one can write af in a way
that proves that it is a real function with no imaginary
part,

af (τ) = 2

∞∫

0

dω cos(ωτ)E(ω) . (14.57)

Furthermore, because the cosine is an even function of its
argument [af (−τ) = af (τ)], the autocorrelation function
only needs to be given for positive values of the lag.

A signal does not have finite duration if it is periodic.
Then the autocorrelation function is defined as

a(τ) = lim
TD→∞

1

2TD

TD∫

−TD

dt x(t)x(t + τ) . (14.58)

If the period is T then a(τ) = a(τ +nT ) for all integer
n, and the maximum value occurs at a(0) or a(nT ).
Because of the factor of time in the denominator of
(14.58), the function a(τ) is the Fourier transform of the
power spectral density and not of the energy spectral
density.

A critical point for both af (τ) and a(τ) is that au-
tocorrelation functions are independent of the phases
of spectral components. This point seems counterin-
tuitive because waveforms depend on phases and it
seems only natural that the correlation of a waveform
with itself at some later time should reflect this phase

dependence. However, the fact that autocorrelation is
the Fourier transform of the energy or power spectrum
proves that the autocorrelation function must be inde-
pendent of phases because the spectra are independent
of phases.

For example, if x(t) is a periodic function with zero
average value, it is defined by (14.6). Then it is not hard
to show that the autocorrelation function is given by

a(τ) = 1

2

N∑

n=1

C2
n cos(ωnτ) . (14.59)

The autocorrelation function is only a sum of cosines
with none of the phase information. Only the harmonic
frequencies and amplitudes play a role.

14.4.2 Cross-Correlation

Parallel to the autocorrelation function, the cross-
correlation function is a measure of the similarity of
the signal x(t) to the signal y(t) at a different time, i. e.
the similarity to y(t +τ). The cross-correlation function
is

ρo(τ) =
∫

dt x(t) y(t + τ) . (14.60)

In practice, the cross-correlation is usually normal-
ized,

ρ(τ) =
∫

dt x(t) y(t + τ)

[∫ dt1 x2(t1)
∫

dt2 y2(t2)]1/2
, (14.61)

so that the maximum value of ρ(τ) is equal to 1.0. Unlike
the autocorrelation function, the maximum of ρ(τ) does
not necessarily occur at τ = 0. For example, if signal
y(t) is the same as signal x(t) except that y(t) has been
delayed by Tdel then ρ(τ) has its maximum value 1.0
when τ = Tdel.

14.5 Statistics

Measured signals are always finite in length. Definitions
of statistical terms for measured signals, together with
their continuum limits are given in this section.

The number of samples in a measurement is N . The
duration of the measured signal is TD, and TD = Nδt,
where δt is the inverse of the sample rate.

The sampled signal has values xi , (1 ≤ i ≤ N), and
the continuum analog is the signal x(t), (0 ≤ t ≤ TD).

The average value, or mean, is

x = 1

N

N∑

i=1

xi or
1

TD

TD∫

0

dt x(t) . (14.62)

The variance is

σ2 = 1

N −1

N∑

i=1

(xi − x)2
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512 Part D Hearing and Signal Processing

or

1

TD

TD∫

0

dt [x(t)− x]2 . (14.63)

The standard deviation is the square root of the
variance, σ = √

σ2.
The energy is

E = δt
N∑

i=1

x2
i or

TD∫

0

dt x2(t) . (14.64)

The average power is

P = 1

N

N∑

i=1

x2
i or

E

TD
. (14.65)

The root-mean-square (RMS) value is the square
root of the average power, xRMS =

√
P.

14.5.1 Signals and Processes

Signals are the observed results of processes. A process
is stationary if its stochastic properties, such as mean
and standard deviation, do not change during the time for
which a signal is observed. Signals provide incomplete
glimpses into processes.

The best estimate of the mean of the underlying pro-
cess is equal to the mean of an observed signal. The
expected error in the estimate of the mean of the un-
derlying process, the so-called standard deviation of the
mean, is

s = σ/
√

N , (14.66)

where N is the number of data points contributing to the
mean of the observed signal.

14.5.2 Distributions

Digitized signals are often regarded as sampled data
{x}. If the data are integers or are put into bins j then the
probability that the signal has value x j is the probability
mass function PMF( j) = N j/N , the ratio of the number
of samples in bin j to the total number of samples. If data
are continuous floating-point numbers, the analogous
distribution is the probability density function PDF(x).
In terms of these distributions, the mean is given by

x =
∑

x j PMF( j) or

∞∫

−∞
dx x PDF(x) .

(14.67)

The most important PDF is the normal (Gaussian)
density G(x),

G(x) = 1

σ
√

2π
exp[(x − x)2/2σ2] . (14.68)

Like all PDFs, G(x) is normalized to unit area, i. e.
∞∫

−∞
dx G(x) = 1 . (14.69)

The probability that x lies between some value x1
and x1 + dx is PDF(x1) dx, and normalization reflects
the simple fact that x must have some value.

The probability that variable x is less than some
value x1 is the cumulative distribution function (CDF),

CDF(x1) =
x1∫

−∞
dx′ PDF(x′) . (14.70)

If the density is normal, the integral is the cumulative
normal distribution (CND),

CND(x) = 1

σ
√

2π

x∫

−∞
dx′ exp(x′2/2σ2) . (14.71)

It is convenient to think of the CND as a function of
x compared to the standard deviation, i. e., as a function
of y = (x − x)/σ , as shown in Fig. 14.5.

C(y) = 1√
2π

y∫

−∞
dy′ exp(y′2/2) . (14.72)

Because of the symmetry of the normal density,

C(−y) = 1−C(y) . (14.73)

Therefore, it is enough to know C(y) for y > 0. A few
important values follow.

�

'����!�

�

Fig. 14.5 The area under the normal density is the cumu-
lative normal. Here the area is the function C(y)
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Table 14.1 Selected values of the cumulative normal distri-
bution

C(0) 0.5000

C(0.675) 0.7500

C(1) 0.8413

C(2) 0.9773

C(3) 0.9987

C(∞) 1.0000

Table 14.1 can be used to find probabilities. For
example, the probability that a normally distributed
variable lies between its mean and its mean plus
a standard deviation, i. e., between x and x +σ , is
C(1)−0.5 = 0.3413. The probability that it lies within
plus or minus two standard deviations (±2σ) of the mean
is 2[C(2)−0.5] = 0.9546.

The importance of the normal density lies in the cen-
tral limit theorem, which says that the distribution for
a sum of random variables approaches a normal distribu-
tion as the number of variables becomes large. In other
words, if the variable x is a sum

x = x1 + x2 + x3 + . . . xN =
N∑

i=1

xi , (14.74)

then no matter how the individual xi are distributed, x
will be normally distributed in the limit of large N .

14.5.3 Multivariate Distributions

A multivariate distribution is described by a joint prob-
ability density PDF(x, y), where the probability that
variable x has a value between x1 and x1 + dx and simul-
taneously variable y has a value between y1 and y1 + dy
is

P(x1, y1) = PDF(x1, y1)dx dy . (14.75)

The normalization requirement is
∫

dx
∫

dy PDF(x, y) = 1 . (14.76)

The marginal probability density for x, PDF(x), is
the probability density for x itself, regardless of the value
of y. Hence,

PDF(x) =
∫

dy PDF(x, y) . (14.77)

The y dependence has been integrated out.
The conditional probability density PDF(x|y) de-

scribes the probability of a value x, given a specific

value of y, for instance, if y = y1, then

PDF(x|y1) = PDF(x, y1)/
∫

dx PDF(x, y1) .

(14.78)

or

PDF(x|y1) = PDF(x, y1)/PDF(y1) . (14.79)

The probability that x = x1 and y = y1 is equal to
the probability that y = y1 multiplied by the conditional
probability that if y = y1 then x = x1, i. e.,

P(x1, y1) = P(x1|y1)P(y1) . (14.80)

Similarly, the probability that x = x1 and y = y1 is
equal to the probability that x = x1 multiplied by the
conditional probability that if x = x1 then y = y1, i. e.

P(x1, y1) = P(y1|x1)P(x1) . (14.81)

The two expressions for P(x1, y1) must be the same,
and that leads to Bayes’s Theorem,

P(x1|y1) = P(y1|x1)P(x1)/P(y1) . (14.82)

14.5.4 Moments

The m-th moment of a signal is defined as

xm = 1

N

N∑

i=1

xm
i or

1

TD

TD∫

0

dt xm(t) . (14.83)

Hence the first moment is the mean (14.62) and the
second moment is the average power (14.65).

The m-th central moment is

µm = 1

N

N∑

i=1

(xi − x)m or
1

TD

TD∫

0

dt [x(t)− x]m .

(14.84)

The first central moment is zero by definition. The
second central moment is the alternating-current (AC)
power, which is equal to the average power (14.65) mi-
nus the time-independent (or DC) component of the
power.

The third central moment is zero if the signal prob-
ability density function is symmetrical about the mean.
Otherwise, the third moment is a simple way to measure
how the PDF is skewed. The skewness is the normalized
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514 Part D Hearing and Signal Processing

third moment,

skewness = µ3/µ
3/2
2 . (14.85)

The fourth central moment leads to an impression
about how much strength there is in the wings of a prob-
ability density compared to the standard deviation. The

normalized fourth moment is the kurtosis,

kurtosis = µ4/µ
2
2 . (14.86)

For instance, the kurtosis of a normal density, which has
significant wings, is 3. But the kurtosis of a rectangular
density, which is sharply cut off, is only 9/5.

14.6 Hilbert Transform and the Envelope

The Hilbert transform of a signal x(t) is H[x(t)] or
function xI(t), where

xI(t) = H[x(t)] = 1

π

∞∫

−∞
dt′ x(t′)

t − t′
. (14.87)

Some facts about the Hilbert transform are stated
here without proof. Proofs and further applications may
be found in appendices to [14.1].

First, the Hilbert transform is its own inverse, except
for a minus sign,

x(t) = H[xI(t)] = − 1

π

∞∫

−∞
dt′ xI(t′)

t − t′
. (14.88)

Second, a signal and its Hilbert transform are or-
thogonal in the sense that

∫
dt x(t) xI(t) = 0 . (14.89)

Third, the Hilbert transform of sin(ωt +ϕ) is
− cos(ωt +ϕ), and the Hilbert transform of cos(ωt +ϕ)
is sin(ωt +ϕ).

Further the Hilbert transform is linear. Consequently,
for any function for which a Fourier transform exists,

H

[
∑

n

An cos(ωnt)+ Bn sin(ωnt)

]

=
∑

n

An sin(ωnt)− Bn cos(ωnt) (14.90)

or

H

[
∑

n

Cn sin(ωnt +ϕn)

]

= −
∑

n

Cn cos(ωnt +ϕn)

=
∑

n

Cn sin(ωnt +ϕn −π/2) . (14.91)
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Fig. 14.6 A Gaussian pulse x(t) and its Hilbert transform
xI(t) are the real and imaginary parts of the analytic signal
corresponding to the Gaussian pulse

Comparing the two sine functions above makes it clear
why a Hilbert transform is sometimes called a 90-degree
rotation of the signal.

Figure 14.6 shows a Gaussian pulse, x(t), and its
Hilbert transform, xI(t). The Gaussian pulse was made
by adding up 100 cosine harmonics with amplitudes
given by a Gaussian spectrum per (14.35). The Hilbert
transform was computed by using the same amplitude
spectrum and replacing all the cosine functions by sine
functions.

Figure 14.6 illustrates the difficulty often encoun-
tered in computing the Hilbert transform using the time
integrals that define the transform and its inverse. If we
had to calculate x(t) by transforming xI(t) using (14.88)
we would be troubled by the fact that xI(t) goes to zero
so slowly. An accurate calculation of x(t) would require
a longer time span than that shown in the figure.

14.6.1 The Analytic Signal

The analytic signal x̃(t) for x(t) is given by the complex
sum of the original signal and an imaginary part equal
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to the Hilbert transform of x(t),

x̃(t) = x(t)+ i xI(t) . (14.92)

The analytic signal, in turn, can be used to calcu-
late the envelope of signal x(t). The envelope e(t) is
the absolute value – or magnitude – of the analytic
signal

e(t) = |x̃(t)| . (14.93)

For instance, if x(t) = A cos(ωt +ϕ), then xI(t) =
A sin(ωt +ϕ) and

x̃(t) = A[cos(ωt +ϕ)+ i sin(ωt +ϕ)] . (14.94)

By Euler’s theorem

x̃(t) = A exp[i(ωt +ϕ)] , (14.95)

and the absolute value is

e(t) = {A exp[i(ωt +ϕ)]A exp[−i(ωt +ϕ)]}1/2

= A . (14.96)

14.7 Filters

Filtering is an operation on a signal that is typically
defined in frequency space. If x(t) is the input to a filter
and y(t) is the output then the Fourier transforms of x
and y are related by

Y (ω) = H(ω)X(ω) , (14.97)

where H(ω) is the transfer function of the filter. The
transfer function has a magnitude and a phase

H(ω) = |H(ω)| exp[iΦ(ω)] . (14.98)

The frequency-dependent magnitude is the amplitude
response, and it characterizes the filter type – low pass,
high pass, bandpass, band-reject, etc. The phase Φ(ω)
is the phase shift for a spectral component with fre-
quency ω. The amplitude and phase responses of a filter
are explicitly separated by taking the natural logarithm
of the transfer function

ln H(ω) = ln[|H(ω)|]+ iΦ(ω) . (14.99)

Because ln |H| = ln(10) log |H|,

ln H(ω) = 0.1151Γ (ω)+ iΦ(ω) , (14.100)

where G is the filter gain in decibels, and Φ is the phase
shift in radians.

14.7.1 One-Pole Low-Pass Filter

The one-pole low-pass filter serves as an example to
illustrate filter concepts. This filter can be made from
a single resistor (R) and a single capacitor (C) with
a time constant τ = RC. The transfer function of this

filter is

H(ω) = 1

1+ iωτ
= 1− iωτ

1+ω2τ2 . (14.101)

The filter is called one-pole because there is a single
value of ω for which the denominator of the transfer
function is zero, namely ω = 1/(iτ) = −i/τ .

The magnitude (or amplitude) response is

|H(ω)| =
√

1

1+ω2τ2
. (14.102)

The filter cut-off frequency is the half-power point
(or 3-dB-down point), where the magnitude of the trans-
fer function is 1/

√
2 compared to its maximum value.

For the one-pole low-pass filter, the half-power point
occurs when ω = 1/τ .

Filters are often described by their asymptotic
frequency response. For a low-pass filter asymptotic be-
havior occurs at high frequency, where, for the one-pole
filter |H(ω)| ∝ 1/ω. The 1/ω dependence is equivalent
to a high-frequency slope of −6 dB/octave, i. e., for
octave frequencies,

L2 − L1 = 20 log

(
ω1

2ω1

)
= 20 log

1

2
= −6 .

(14.103)

A filter with an asymptotic dependence of 1/ω2 has
a slope of −12 dB/octave, etc.

The phase shift of the low-pass filter is the arctangent
of the ratio of the imaginary and real parts of the transfer
function,

Φ(ω) = tan−1
(

Im[H(ω)]
Re[H(ω)]

)
, (14.104)
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which, for the one-pole filter, is Φ(ω) = tan−1(−ωτ).
The phase shift is zero at zero frequency, and approaches
90◦ at high frequency. This phase behavior is typical
of simple filters in that important phase shifts occur
in frequency regions where the magnitude shows large
attenuation.

14.7.2 Phase Delay and Group Delay

The phase shifts introduced by filters can be inter-
preted as delays, whereby the output is delayed in time
compared to the input. In general, the delay is differ-
ent for different frequencies, and therefore, a complex
signal composed of several frequencies is bent out of
shape by the filtering process. Systems in which the de-
lay is different for different frequencies are said to be
dispersive.

Two kinds of delay are of interest. The phase delay
simply reinterprets the phase shift as a delay. The phase
delay Tϕ is given by Tϕ = −Φ(ω)/ω. The group delay Tg
is given by the derivative Tg = −dΦ(ω)/dω. Phase and
group delays for a one-pole low-pass filter are shown in
Fig. 14.7 together with the phase shift.

14.7.3 Resonant Filters

Resonant filters, or tuned systems, have an amplitude re-
sponse that has a peak at some frequency where ω = ωo.
Such filters are characterized by the resonant fre-
quency, ωo, and by the bandwidth, 2∆ω. The bandwidth
is specified by half-power points such that |H(ωo +
∆ω)|2 ≈ |H(ωo)|2/2 and |H(ωo −∆ω)|2 ≈ |H(ωo)|2/2.
The sharpness of a tuned system is often quoted as
a Q value, where Q is a dimensionless number given
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Fig. 14.7 The phase shift Φ for a one-pole low-pass filter
can be read on the left ordinate. The phase and group delays
can be read on the right ordinate

by

Q = ωo/(2∆ω) . (14.105)

As an example, a two-pole low-pass filter with a resonant
peak near the angular frequency ωo is described by the
transfer function

H(ω) = ω2
o

ω2
o −ω2 + jωωo/Q

. (14.106)

14.7.4 Impulse Response

Because filtering is described as a product of Fourier
transforms, i. e., in frequency space, the temporal repre-
sentation of filtering is a convolution

y(t) =
∫

dt′ h(t − t′)x(t′) =
∫

dt′ h(t′)x(t − t′) .

(14.107)

The two integrals on the right are equivalent.
Equation (14.107) is a special form of linear proces-

sor. A more general linear processor is described by the
equation

y(t) =
∫

dt′ h(t, t′)x(t′) , (14.108)

where h(t, t′) permits a perfectly general dependence on
t and t′. The special system in which only the difference
in time values is important, i. e. h(t, t′) = h(t − t′), is
a linear time-invariant system. Filters are time invariant.

A system that operates in real time obeys a further
filter condition, namely causality. A system is causal if
the output y(t) depends on the input x(t′) only for t′ < t.
In words, this says that the present output cannot depend
on the future input. Causality requires that h(t) = 0 for
t < 0. For the one-pole corona, low-pass filter of (14.101)
the impulse response is

h(t) = 1

τ
e−t/τ for t > 0 ,

h(t) = 0 for t < 0 ,

h(t) = 1

2τ
for t = 0 . (14.109)

For the two-pole low-pass resonant filter of (14.106),
the impulse response is

h(t) = ωo√
1−[1/(2Q)]2

e− ωo
2Q t

× sin

{
ωot

√
1−[1/(2Q)]2

}
, t ≥ 0 ,

h(t) = 0 , t < 0 . (14.110)
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14.7.5 Dispersion Relations

The causality requirement on the impulse response,
h(t) = 0 for t < 0, has implications for the transfer
function. Causality means that the real and imaginary
parts of the transfer function are Hilbert transforms
of one another. Specifically, if the real and imagi-
nary parts of H are defined as H(ω) = HR(ω)+ iHI(ω)
then

HR(ω) = 1

π
P

∞∫

−∞
dω′ HI(ω′)

ω−ω′ , (14.111)

and

HI(ω) = −1

π
P

∞∫

−∞
dω′ HR(ω′)

ω−ω′ .

The symbol P signifies that the principal value of a di-
vergent integral should be taken. In many cases, this
requires no special steps, and definite integrals from
integral tables give the correct answers.

These equations are known as dispersion relations.
They arise from doing an integral in frequency space
to calculate the impulse response for t < 0. The fact
that this calculation must return zero means that H(ω)
must have no singularities in the complex frequency
plane for frequencies with a negative imaginary part.
Similar dispersion relations apply to the natural log of
the transfer function, relating the filter gain to the phase

shift as in (14.100)

Γ (ω) = Γ (0)− ω2

0.1151π
P

∞∫

−∞
dω′ Φ(ω′)

ω′(ω′2 −ω2)

(14.112)

and

Φ(ω) = 0.1151 ω

π
P

∞∫

−∞
dω′ Γ (ω′)

ω′2 −ω2
.

Because Γ (ω) is even and Φ(ω) is odd, both integrands
are even in ω′, and these integrals can be replaced by
twice the integral from zero to infinity. The second equa-
tion above is particularly powerful. It says that, if we
want to find the phase shift of a system, we only have to
measure the gain of the system in decibels, multiply by
0.1151, and do the integral. Of course, it is in the nature
of the integral that in order to find the phase shift at any
given frequency we need to know the gain over a wide
frequency range.

The dispersion relations for gain and phase shift also
arise from a contour integral over frequencies with a neg-
ative imaginary part, but now the conditions on H(ω)
are more stringent. Not only must H(ω) have no poles
for Im(ω) < 0, but ln H(ω) must also have no poles.
Consequently H(ω) must have no zeros for Im(ω) < 0.
A system that has neither poles nor zeros for Im(ω) < 0
is said to be minimum phase. The dispersion relations in
(14.112) only apply to a system that is minimum phase.

14.8 The Cepstrum

The cepstrum (pronounced kepstrum) is the inverse
Fourier transform of the natural logarithm of the spec-
trum. Because it is the inverse transform of a function
of frequency, the cepstrum is a function of a time-like
variable. But just as the word cepstrum is an anagram
of the word spectrum, the time-like coordinate is called
the quefrency, an anagram of frequency. The field of
cepstrology is full of word fun like this.

Fig. 14.8 The cepstrum of an original signal to which is
added a delayed version of the same signal, with a delay of
2 ms (a = 1). The original signal is the sum of two female
talkers
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The complex cepstrum of complex spectrum Y (ω) is

q(τ) = 1

2π

∞∫

−∞
dω eiωτ ln[Y (ω)] , (14.113)

where τ is the quefrency. Because Y (ω) = |Y (ω)|eiϕ(ω),

q(τ) = 1

2π

∞∫

0

dω eiωτ [ln |Y (ω)|+ iϕ(ω)]

+ 1

2π

∞∫

0

dω e−iωτ [ln |Y (−ω)|+ iϕ(−ω)] .

(14.114)

For a real signal y(t), the magnitude |Y (ω)| is an even
function of ω, and ϕ(ω) is odd. Therefore,

q(τ) = 1

π

∞∫

0

dω [ln |Y (ω)|] cos(ωτ)

+ i

π

∞∫

0

dω ϕ(ω) sin(ωτ) . (14.115)

The real part of q comes from the magnitude, the imagi-
nary part from the phase. The phase must be unwrapped;
it cannot be artificially restricted to a 2π range.

It is common to deal only with the real part of the
cepstrum qR. It is evident that the calculation will fail if
|Y (ω)| is zero. The cepstrum is not applied to theoreti-
cal objects such as periodic functions of time that have
delta function spectra – hence zeros. The cepstrum is ap-
plied to measured data, where it can lead to insight into
features of the underlying processes.

The cepstrum is used in the acoustical and vibra-
tional monitoring of machinery. Bearings and other

rotating parts tend to produce sounds with interleaved
periodic spectra. These periodicities lead to peaks at the
corresponding quefrencies, revealing features that may
not be apparent in the spectrum.

The cepstrum is particularly suited to the separation
of source and filter functions. If Y is a filtered version of
X, where the transfer function is H , then

|Y (ω)| = |H(ω)| |X(ω)| . (14.116)

The logarithm operation turns the product on the right-
hand side into a sum, so that

qR(τ) = 1

π

∞∫

0

dω [ln |H(ω)|] cos(ωτ)

+ 1

π

∞∫

0

dω [ln |X(ω)|] cos(ωτ) . (14.117)

For instance, if |Y | is the spectrum of a spoken vowel,
then the term involving the formant filter |H| leads
to a low-quefrency structure, and the term involving
source spectrum |X| leads to a high-quefrency peak
characteristic of the glottal pulse period.

The cepstrum can reveal reflections. As a simple
example, we consider a direct sound X plus its reflection
with relative amplitude a and delay TD. The sum then
has a spectrum Y ,

|Y (ω)|=[1+a cos(ωTD)]|X(ω)| (a < 1) . (14.118)

The logarithm of the factor in square brackets is periodic
in ω with period 2π/TD. The corresponding term in
the cepstrum leads to a peak at quefrency τ = TD, as
shown in Fig. 14.8. The addition of more reflections with
other delays will lead to additional peaks. Maintaining
the anagram game, the separation of peaks along the
quefrency axis is sometimes called liftering.

14.9 Noise

Noise has many definitions in acoustics. Commonly,
noise is any unwanted signal. In the context of com-
munications, it is an excitation that competes with the
information that one wishes to transmit. In signal pro-
cessing, noise is defined as a random signal that can
only be defined in statistical terms with no long-term
predictability.

14.9.1 Thermal Noise

Thermal noise, or Johnson noise, is generated in a re-
sistor. An electrical circuit that describes this source of
noise is a resistor R in series with a voltage source that
depends on R, such that the RMS voltage is given by the
equation

V = √
4RkBT∆ f , (14.119)
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Acoustic Signal Processing 14.9 Noise 519

where R is the resistance in ohms, kB is Boltzmann’s
constant, T is the absolute temperature, and ∆ f is the
bandwidth over which the noise is measured.

The corresponding noise power can be defined by
measuring the maximum power that is transferred to
a load resistor connected across the series circuit above.
Maximum power occurs when the load resistor also has
a resistance R and has zero temperature so that the load
resistor produces no Johnson noise of its own. Then the
thermal noise power is given by

P = kBT∆ f . (14.120)

Because kBT has dimensions of Joules and ∆ f has
dimensions of inverse seconds, the quantity P has di-
mensions of watts, as expected. Boltzmann’s constant
is 1.38 × 10−23 J/K, and room temperature is 293 K.
Therefore, the noise power density is 4 × 10−21 W/Hz.
Because the power is proportional to the first power of
the bandwidth, the noise is white. Johnson noise is also
Gaussian.

14.9.2 Gaussian Noise

A noise is Gaussian if its instantaneous values form
a Gaussian (normal) distribution. A noise distribution is
illustrated in an experiment wherein an observer makes
hundreds of instantaneous measurements of a noise volt-
age and plots these instantaneous values as a histogram.
Unless there is some form of bias, the measured values
are equally often positive and negative, and so the mean
of the distribution is zero. The noise is Gaussian if the
histogram derived in this way is a Gaussian function.
The more intense the noise, the larger is the standard
deviation of the Gaussian function. Because of the cen-
tral limit theorem, there is a tendency for noise to be
Gaussian. However, non-Gaussian noises are easily gen-
erated. Random telegraph noise, where instantaneous
values can only be +1 or −1, is an example.

14.9.3 Band-Limited Noise

Band-limited noise can be written in terms of Fourier
components,

x(t) =
N∑

n=1

An cos(ωnt)+ Bn sin(ωnt) . (14.121)

The amplitudes An and Bn are defined only statis-
tically. According to a famous paper by Einstein and
Hopf [14.2], these amplitudes are normally distributed
with zero mean, and the distributions of An and Bn have

the same variance σ2
n . The distributions themselves can

be thought of as representative of an ensemble of noises,
all of which are intended by the creator to be the same:
same duration and power, same frequency range and
bandwidth.

Because the average power in a sine or cosine is 0.5,
the average power in band-limited noise is

P =
N∑

n=1

σ2
n . (14.122)

An alternative description of band-limited noise is
the amplitude and phase form

x(t) =
N∑

n=1

Cn cos(ωnt +ϕn) , (14.123)

where ϕn are random variables with a rectangular distri-
bution from 0 to 2π, and Cn = √

A2
n + B2

n .
Given that An and Bn follow a Gaussian distribution

with variance σn , the amplitude Cn follows a Rayleigh
distribution fRayl

fRayl(Cn) = Cn

σ2
n

e−C2
n/(2σ2

n ) (Cn > 0) . (14.124)

The peak of the Rayleigh distribution occurs at Cn =
σ . The zeroth moment is 1.0 because the distribution is
normalized. The first moment, or Cn , is σn

√
π/2. The

second moment is 2σ2
n , and the fourth moment is 8σ4

n .
The cumulative Rayleigh distribution can be calcu-

lated in closed form,

FRayl(Cn) =
Cn∫

0

dC′
n fRayl(C

′
n) = 1− e−C2

n/(2σ2
n ) .

(14.125)

14.9.4 Generating Noise

To generate the amplitudes An and Bn with normal dis-
tributions using a computer random-number generator,
one can add up twelve random numbers and subtract 6.
On the average, the amplitudes will have a normal distri-
bution, because of the central limit theorem, with a mean
of zero and a variance of 1.0.

To generate the amplitudes Cn with a Rayleigh dis-
tribution, one can transform the random numbers rn
that come from a computer random-number generator,
according to the formula

Cn = σ
√−2 ln(1−rn) . (14.126)
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520 Part D Hearing and Signal Processing

14.9.5 Equal-Amplitude
Random-Phase Noise

Equal-amplitude random-phase (EARP) noise is of the
form

x(t) = C
N∑

n=1

cos(ωnt +ϕn) , (14.127)

where ϕn is again a random variable over the range 0 to
2π.

The advantage of EARP noise is that every noise
sample has the same power spectrum. A possible disad-
vantage is that the amplitudes An and Bn are no longer
normally distributed. Instead, they are distributed like
the probability density functions for the sine or cosine

functions, with square-root singularities at An = ±C
and Bn = ±C. However, the actual values of noise are
normally distributed as long as the number of noise
components is more than about five.

14.9.6 Noise Color

White noise has a constant spectral density, which means
that the power in white noise is proportional to the band-
width. On the average, every band with given bandwidth
∆ f has the same amount of power. Pink noise has a spec-
tral density that decreases inversely with the frequency.
Consequently, pink noise decreases at a rate of 6 dB per
octave. On the average, every octave band has the same
amount of power.

14.10 Sampled data

Converting an analog signal, such as a time-dependent
voltage, into a digital representation dices the signal
in two dimensions, the dimension of the signal voltage
and the dimension of time. Dicing the signal voltage is
known as quantization, dicing with respect to time is
known as sampling.

14.10.1 Quantization
and Quantization Noise

It is common for an analog-to-digital converter (ADC)
to represent the values of input voltages as integers. The
range of the integers is determined by the number of bits
per sample in the conversion process. A conversion into
an M-bit sample (or word) allows the voltage value to be
represented by 2M bits. For instance, a 10-bit ADC that
is restricted to converting positive voltages would repre-
sent 0 V by the number 0 and +10 V by 210 −1 or 1023.

A 16-bit ADC would allow 216 or 65 536 different
values. A 16-bit ADC that converts voltages between
−10 and +10 V would represent −10 V by −32 768
and +10 V by +32 767. Conversion is linear. Thus
0.3052 V would be converted to the sample value 1000
and 0.3055 V to the value 1001. A voltage of 0.3053
would also be converted to a value of 1000, no different
from 0.3052. The discrepancy is an error known as the
quantization error or quantization noise.

Quantization noise referenced to the signal is
a signal-to-noise ratio. Standard practice makes this ra-
tio as large as possible by assuming a signal with the
maximum possible power. For the positive and nega-

tive ADC described above, maximum power occurs for
a square wave between a sampled waveform value of
−2(M−1) and +2(M−1). The power is the square of the
waveform or 1

4 × 22M .
For its part, the noise is a random variable that rep-

resents the difference between an accurately converted
voltage and the actual converted value as limited by
the number of bits in the sample word. This error is
never more than 0.5 and never less than −0.5. The
power in noise that fluctuates randomly over the range
−0.5 to +0.5 is 1/12. Consequently the signal-to-noise
(S/N) ratio is 3 × 22M . Expressed in decibels, this value
is 10 log(3 × 22M), or 20M log(2)+4.8 dB, or 6M +4.8
dB. For a 16-bit word, this would be 96+4.8 or about
101 dB. An alternative calculation would assume that
the maximum power is the power for the largest sine
wave that can be reproduced by such a system. This sine
has half the power of the square, and the S/N ratio is
then about 6M dB.

14.10.2 Binary Representation

Digitized data, like a sampled waveform are represented
in binary form by numbers (or words) consisting of digits
0 and 1. For example, an eight-bit word consisting of two
four-bit bytes and representing the decimal number 7,
would be written as

0 0 0 0 0 1 1 1 .

This number has 1 in the ones column, 1 in the twos
column, 1 in the fours column, and nothing in any other
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Acoustic Signal Processing 14.10 Sampled data 521

column. One plus two plus four is equal to 7, which is
what was desired.

An eight-bit word (M = 8) could represent decimal
integers from 0 to 255. It cannot represent 2M , which is
decimal 256. If one starts with the decimal number 255
and adds 1, the binary representation becomes all zeros,
i. e. 255+1 = 0. It is like the 100 000-mile odometer on
an automobile. If the odometer reads 99 999 and the car
goes one more mile, the odometer reads 00 000.

Signals are generally negative as often as they are
positive, and that leads to a need for a binary repre-
sentation of negative numbers. The usual standard is
a representation known as twos-complement. In twos-
complement representation, any number that begins with
a 1 is negative. Thus, the leading digit serves as a sign bit.

In order to represent the number −x in an M-bit
system one computes 2M − x. That way, if one adds x
and −x one ends up with 2M , which is zero.

A convenient algorithm for calculating the twos-
complement of a binary number is to reverse each bit, 0
for 1 and 1 for 0, and then add 1. Thus, in an eight-bit
system the number −7 is given by

1 1 1 1 1 0 0 1 .

14.10.3 Sampling Operation

The sampling process replaces an analog signal, which
is a continuous function of time, by a sequence of points.
The operation is equivalent to the process shown in
Fig. 14.9, where the analog signal x(t) is multiplied
by a train of evenly spaced delta functions to create
a sequence of sampled values y(t).

Intuitively, it seems evident that this operation is
a sensible thing to do if the delta functions come along
rapidly enough – rapid compared to the speed of the
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Fig. 14.9 An analog signal x(t) is multiplied by a train of
delta functions s(t) to produce a sampled signal y(t)
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Fig. 14.10 (a) The spectrum of the analog signal X(ω) is
bounded in frequency. (b) The spectrum of the sampled
signal, Y (ω), is the convolution of X(ω) and the Fourier
transform of the sampling train of delta functions. Conse-
quently, multiple images of X(ω) appear. Frequencies that
are allowed by the sampling theorem are included in the
dashed box. A particular frequency (circled) is followed
through the multiple imaging

temporal changes in the waveform. That concept is
most clearly seen by studying the Fourier transforms
of functions x, s and y.

The Fourier transform of the analog signal is X(ω),
with a spectrum that is limited to some highest frequency
ωmax. By contrast, the Fourier transform of the train of
delta functions is, itself, a train of delta functions, S(ω)
that extends over the entire frequency axis. Because the
delta functions in time have period Ts, the delta functions
in S(ω) are separated by ωs, equal to 2π/Ts. Because
y(t) is the product of the time-dependent analog signal
and the train of delta functions, the Fourier transform
Y (ω) is the convolution of X(ω) and S(ω), as shown
in part (b) of Fig. 14.10. Because of the convolution
operation, Y (ω) includes multiple images of the original
spectrum.

It is evident from Fig. 14.10b that, if the ωmax is less
than half of ωs, the multiple images will not overlap.
That observation has the status of a theorem known as the
sampling theorem, which says that the sampled signal
is an adequate representation of an analog signal if the
sample rate is more than twice the highest frequency in
the analog signal, i. e., ωs > 2ωmax.

As an example of a failure to apply the sampling
theorem, suppose that a 600 Hz sine tone is sampled at
a rate of 1000 Hz. The spectrum of the sampled signal
will contain 600 Hz as expected, and it will also contain
a component at 1000−600 = 400 Hz. The 400 Hz com-
ponent was not present in the original spectrum; it is an
alias, an unwanted image of the 600 Hz tone.

Part
D

1
4
.1

0



522 Part D Hearing and Signal Processing

14.10.4 Digital-to-Analog Conversion

In converting a signal from digital to analog form, one
can begin with the train of delta functions that is sig-
nal y(t) as shown in Fig. 14.9c. An electronic device to
do that is a digital-to-analog converter (DAC). However,
as shown in Fig. 14.10b, this signal includes many high
frequencies that are unwanted byproducts of the sam-
pling process. Consequently, one needs to low-pass filter
the signal so as to pass only the frequencies less than
half the sample rate, i. e., the frequencies in the dashed
box. Such a low-pass filter is called a reconstruction
filter.

Practical DACs do not produce delta-function volt-
age spikes. Instead, they produce rectangular functions
with durations pTs, where p is a fraction of a sample
period 0 < p ≤ 1. If p = 1, the output of the DAC re-
sembles a staircase function. Mathematically, replacing
the delta function train of Fig. 14.9c by the train of rect-
angles is equivalent to convolving the function y(t) with
a rectangular function. The consequence of this convolu-
tion is that the output is filtered, and the transfer function
of the filter is the Fourier transform of the rectangle. The
magnitude of the transfer function is

|H(ω)| = sin(ωpTs/2)

ωpTs/2
. (14.128)

The phase shift of the filter is a pure delay and conse-
quently unimportant. The effective filtering that results
from the rectangles, known as sin(x)-over-x filtering, can
be corrected by the reconstruction filter.

14.10.5 The Sampled Signal

This brief section will introduce a notation that will be
useful in later discussions of sampled signals. It is sup-
posed at the outset that one begins with a total of N
samples, equally spaced in time by the sampling pe-
riod Ts. By convention, the first sample occurs at time
t = 0 and the last sample occurs at time t = (N −1)Ts.
Consequently, the signal duration is TD = (N −1)Ts.

In dealing with sampled signals, it is common to
replace the time variable with a discrete index k. Thus,

x(t) = x(kTs) = xk , (14.129)

where the equation on the left indicates that the original
data exist only at discrete time values.

14.10.6 Interpolation

The discrete-time values of a sampled waveform can be
used to compute an approximate Fourier transform of
the original signal. This Fourier transform is valid up
to a frequency as high as half the sample rate, i. e., as
high as ωs/2, or π/Ts. The Fourier transform can then
be used to estimate the values of the original signal x(t)
at times other than the sample times. In this way, the
Fourier transform computed from the samples serves to
interpolate between the samples. Such an interpolation
scheme proceeds as follows.

First, the Fourier transform is

X(ω) = Ts

∑

k

xk exp(−iωTsk) , (14.130)

where, as noted above, xk is the signal x(t) at the times
t = Tsk, and the leading factor of Ts gets the dimensions
right.

Then the inverse Fourier transform is

x(t) = Ts

2π

ωs/2∫

−ωs/2

dω eiωt
∑

k

xk e−iωTsk . (14.131)

Reversing the order of sum and integral and using the
fact that Tsωs/2 = π, we find that

x(t) =
∑

k

xk
sin π(t/Ts − k)

π(t/Ts − k)
. (14.132)

The sinc function is 1.0 whenever t = Tsk, and is zero
whenever t is some other integer multiple of Ts. There-
fore, the sum on the right only interpolates; it does not
change the values of x(t) when t is equal to a sample
time.

14.11 Discrete Fourier Transform

The Fourier transform of a signal with finite duration
is well defined in principle. The finite signal itself can
be regarded as some base function that is multiplied
by a rectangular window to limit the duration. Then
the Fourier transform proceeds by convolving with the

transform of the window. For example, a truncated
exponentially decaying sine function can be regarded
as a decaying sine, with the usual infinite duration,
multiplied by a rectangular window. Then the Fourier
transform of the truncated function is the Fourier trans-
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Acoustic Signal Processing 14.11 Discrete Fourier Transform 523

form of the decaying sine convolved with a sinc function
– the Fourier transform of the rectangular window. Such
a Fourier transform is a function of a continuous fre-
quency, and it shows the broad spectrum associated with
the abrupt truncation.

In digital signal processing the frequency axis is not
continuous. Instead, the Fourier transform of a signal is
defined at discrete frequencies, just as the signal itself
is defined at discrete time points. This kind of Fourier
transform is known as the discrete Fourier transform
(DFT).

To compute the DFT of a function, one begins
by periodically repeating the function over the entire
time axis. For example, the truncated decaying sine in
Fig. 14.11a is repeated in Fig. 14.11b where it should be
imagined that the repetition precedes indefinitely to the
left and right.

Then the Fourier transform of the periodically re-
peated signal becomes a Fourier series. The fundamental
frequency of the Fourier series is the reciprocal of the
duration, f0 = 1/TD, and the spectrum becomes a set
of discrete frequencies, which are the harmonics of f0.
For instance, if the signal is one second in duration, the
spectrum consists of the harmonics of 1 Hz, and if the
duration is two seconds then the spectrum has all the
harmonics of 0.5 Hz. As expected, the highest harmonic
is limited to half the sample rate. That Fourier series
is the DFT. Using xk to define the periodic repetition
of the original discrete function, xk, the DFT X(ω) is
defined for ω = 2πn/TD, where n indicates the n-th har-
monic. In terms of the fundamental angular frequency
ωo = 2π/TD, the DFT is

X(nωo) = Ts

N−1∑

k=0

xk e−inωokTs , (14.133)

where the prefactor Ts keeps the dimensions right. The
product ωoTs is equal to ωoTD/(N −1) or 2π/(N −1),
and so

X(nωo) = Ts

N−1∑

k=0

xk e−i2πnk/(N−1) . (14.134)

Both positive and negative frequencies occur in the
Fourier transform. Because the maximum frequency is
equal to [1/(2Ts)]/(1/TD) times the fundamental fre-
quency, the number of discrete positive frequencies is
(N −1)/2, and the number of discrete negative frequen-
cies is the same. Consequently the inverse DFT can be
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Fig. 14.11a,b A decaying function in part (a) is periodically repeated
in part (b) to create a periodic signal with period TD

written

xk = 1

TD

(N−1)/2∑

n=−(N−1)/2

X(nωo) ei2πnk/(N−1) ,

(14.135)

or

x(t) = 1

TD

(N−1)/2∑

n=−(N−1)/2

X(nωo) einωot . (14.136)

A virtue of the DFT is that the information in the
DFT is exactly what is needed to create the original
truncated function x(t) – no more and no less. The fact
that the DFT spectrum actually creates the periodically
repeated function xk and not the original xk is not a prob-
lem if we agree in advance to ignore xk for k outside the
range of the original time-limited signal. However, it
should be noted that certain operations, such as time
translations, products, and convolution, that have famil-
iar characteristics in the context of the Fourier transform,
retain those characteristics only for the periodically ex-
tended signal xk and its Fourier transform X(nωo) and
not for the finite-duration signal.

14.11.1 Interpolation for the Spectrum

It is possible to estimate the Fourier transform at values
of frequency between the harmonics of ωo. The proce-
dure begins with the definition of the Fourier transform
of a finite function,

X(ω) =
TD∫

0

dt x(t)e−iωt . (14.137)

Next, the function x(t) is replaced by the inverse DFT
from (14.136), and the variable of integration t is re-
placed by t′, which has symmetrical upper and lower
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limits,

X(ω)

= 1

TD

TD/2∫

−TD/2

dt′ e−iωt′

×
(N−1)/2∑

n=−(N−1)/2

X(nωo) einωot′ e−iωTD/2 einωoTD/2 ,

(14.138)

which reduces to

X(ω) =
(N−1)/2∑

n=−(N−1)/2

X(nωo)
sin[(ω−nωo)TD/2]

(ω−nωo)TD/2

× e−iωTD/2 eiπn . (14.139)

14.12 The z-Transform

Like the discrete Fourier transform, the z-transform is
well suited to describing sampled signals. We consider
x(t) to be a sampled signal so that it is defined at discrete
time points t = tk = kTs, where Ts is the sampling period.
Then the time dependence of x can be described by an
index, xk = x(tk). The z-transform of x is

X(z) =
∞∑

k=−∞
xkz−k . (14.140)

The quantity z is complex, with amplitude A and
phase ϕ,

z = A eiϕ = A eiωTs , (14.141)

where ϕ is the phase advance in radians per sample.
In the special case where A = 1, all values of z lie

on a circle of radius 1 (the unit circle) in the complex
z plane. In that case the z-transform is equivalent to the
discrete Fourier transform. An often-overlooked alter-
native view is that the z-transform is an extension of
the Fourier transform wherein the angular frequency ω

becomes complex,

ω = ωR + iωI , (14.142)

so that

z = e−ωITs eiωRTs . (14.143)

The extended Fourier transform will not be pursued
further in this chapter.

A well-defined z-transform naturally includes a func-
tion of variable z, but the function itself is not enough.
In order for the inverse transform to be unique, the defi-
nition also requires that the region of the complex plane
in which the transform converges must also be specified.

Table 14.2 z-Transform pairs

xk X(z) Radius of

convergence

δk,k0 z−k0 all z

akuk z/(z −a) |z| > a

kakuk az/(z −a)2 |z| > a

ak cos(ωoTsk)uk
z2−az cos(ωoTs)

z2−2az cos(ωoTs)+a2 |z| > a

ak sin(ωoTsk)uk
az sin(ωoTs)

z2−2az cos(ωoTs)+a2 |z| > a

To illustrate that point, one can consider two different
functions xk that have the same z-transform function,
but different regions of convergence.

Consider first the function

xk = 2k for k ≥ 0 , (14.144)

xk = 0 for k < 0 .

This two-line function can be written as a single line by
using the discrete Heaviside function uk . The function
uk is defined as zero when k is a negative integer and as
+1 when k is any other integer, including zero. Then xk
above becomes

xk = 2kuk . (14.145)

The z-transform of xk is

X(z) =
∞∑

k=0

(2/z)k . (14.146)

The sum is a geometric series, which converges to

X(z) = 1

1−2/z
= z/(z −2) (14.147)
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Acoustic Signal Processing 14.12 The z-Transform 525

if |z| > 2. The region of convergence is therefore the
entire complex plane except for the portion inside and
on a circle of radius 2.

Next consider the function

xk = −2ku−k−1 . (14.148)

The z-transform of xk is

X(z) = −
−1∑

k=−∞
(2/z)k or −

∞∑

k=1

(z/2)k .

(14.149)

The sum converges to

X(z) = − (z/2)

1− z/2
= z

z −2
(14.150)

if |z| < 2. The function is identical to the function in
(14.147), but the region of convergence is now the por-
tion of the complex plane entirely inside the circle of
radius 2.

The inverse z-transform is given by a counterclock-
wise contour integral circling the origin

xk = 1

2πi

∮

C

dzX(z)zk−1 . (14.151)

The contour C must lie entirely within the region of
convergence of x and must enclose all the poles of X(z).

The regions of convergence when the functions x and
y are combined in some way are at least the intersection
of the regions of convergence for x and y separately.
Scaling and time reversal lead to regions of convergence
that are scaled and inverted, respectively. For instance,
if X(z) converges in the region between radii r1 and r2,
them X(1/z) converges in the region between 1/r2 and
1/r1.

14.12.1 Transfer Function

The output of a process at time point k, namely yk, may
depend on the inputs x at earlier times and also on the
outputs at earlier times. In equation form,

yk =
Nq∑

q=0

βq xk−q −
N p∑

p=1

αp yk−p . (14.152)

This equation can be z-transformed using the time-shift
property in Table 14.3,

Nq∑

q=0

βqz−q X(z) =
N p∑

p=0

αpz−pY (z) , (14.153)

where α0 = 1. The transfer function is the ratio of the
transformed output over the transformed input,

H(z) = Y (z)/X(z) , (14.154)

which is

H(z) =
∑Nq

q=0 βqz−q

∑N p
p=0 αpz−p

. (14.155)

From the fundamental theorem of algebra, the numerator
of the fraction above has Nq roots and the denominator
has N p roots, so that H(z) can be written as

H(z) = (1−q1z−1)(1−q2z−1) . . . (1−qNqz−1)

(1− p1z−1)(1− p2z−1) . . . (1− pN pz−1)
.

(14.156)

This equation and its development are of central
importance to digital filters, also known as linear time-
invariant systems. If the system is recursive, outputs
from a previous point in time are sent back to the input.
Therefore, some values of the coefficients αp are finite
for p > 1 and so are the values of some poles, such as p2.
Such filters are called infinite impulse response (IIR) fil-
ters because it is possible that the response of the system
to an impulse put in at time zero will never entirely die
out. Some of the output is always fed back into the input.
A similar conclusion is reached by recognizing that the
expansion of 1/(1− pz−1) in powers of z−1 goes on for-
ever. Because the system has poles, there are concerns
about stability.

If the system is nonrecursive, no values of the output
are ever sent back to the input. Therefore, the denom-
inator of H(z) is simply the number 1. Such filters are
called finite impulse response (FIR) filters because their
response to a delta function input will always die out
eventually as long as Nq is finite. The system is said to
be an all-zero system. The order of the filter is estab-

Table 14.3 Properties of the z-transform

Property Signal z-transform

Definition xk X(z)

Linearity axk +byk aX(z)+bY (z)

Time shift xk−ko z−ko X(z)

Scaling z ak xk X(z/a)

Time reversal x−k X(1/z)

Derivative w.r.t. z kxk −z dX(z)/dz

Convolution xk ∗ yk X(z)Y (z)

Multiplication xk yk
1

2πi

∮
C dz′/z′ X(z′)Y (z/z′)
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526 Part D Hearing and Signal Processing

lished by Nq or N p, the number of time points back to
the earliest input or output that contribute to the current
output value.

The formal z-transform,

H(z) =
∞∑

k=−∞
hkz−k (14.157)

leads to conclusions about causality and stability.
A filter is causal if the current value of the output

does not depend on future inputs. For a causal filter

hk is zero for k < 0. Then this sum has no terms with
positive powers of z, and the region of convergence of
H(z) includes |z| = ∞.

A filter is stable if

S =
∞∑

k=−∞
|hk| (14.158)

is finite. It follows, that H(z) is finite for |z| = 1, i. e., for
z on the unit circle. Thus, if the region of convergence
includes the unit circle, the filter is stable.

14.13 Maximum Length Sequences

A maximum length sequence (MLS) is a train of ones
and zeros that makes a useful signal for measuring the
impulse response of a linear system. An MLS can be gen-
erated by a bit-shift register, which resembles a bucket
brigade. To make an N-bit MLS, one needs an N-stage
shift register. Each stage can hold either a one or a zero.
The register is imagined to have a clock which synchro-
nizes the transfer of bits from each stage to the next. On
every clock tick the content of each stage of the regis-
ter is transferred to the next stage down the line. The
content of the last stage is regarded as the output of the
register, and it is also fed back into the first stage. In ad-

Table 14.4 Truth table for the exclusive or (XOR) operation

A B A XOR B

0 0 0

0 1 1

1 0 1

1 1 0

Table 14.5 Successive values in the shift register of
Fig. 14.12

Step

0 1 1 1

1 1 0 1

2 1 0 0

3 0 1 0

4 0 0 1

5 1 1 0

6 0 1 1

7 1 1 1

8 1 0 1

9 1 0 0

dition, the output can be fed back into one or more of
the other stages, and when that occurs the stage receiv-
ing the output, in addition to the content of the previous
stage, performs an exclusive OR (XOR) operation on
those two inputs. The XOR operation obeys the truth ta-
ble shown in Table 14.4. In words, the XOR of inputs A
and B is zero if A and B are the same and is 1 if A and
B are different.

A shift register with three stages is shown in
Fig. 14.12. With three stages and feedback taps to stages
1 and 2, it is defined as [3: 1,2].

At the instant shown in the figure, the register holds
the value 1,1,1. The subsequent development of the reg-
ister values is given in Table 14.5. The sequence repeats
after seven steps. The table shows that every possible
pattern of ones and zeros occurs once, and only once,
before the pattern repeats. There are 2N −1 = 23 −1 = 7
such patterns. There is one exception, namely the pattern
0,0,0. If this pattern should ever appear in the register
then the process gets stuck forever. Therefore, this pat-
tern is not allowed. The output sequence is the contents
of the stage on the right, here, 1,1,0,0,1,0,1. Because
all seven register patterns appear before repetition, this

Table 14.6 Successive values in the shift register of
Fig. 14.13

Step

0 1 1 1

1 1 0 0

2 0 1 0

3 0 0 1

4 1 1 1

5 1 0 0

6 0 1 0
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	 /�!	 	

Fig. 14.12 A three-stage shift register [3: 1, 2] in which the
output is fed back into the first and second stages

/�!	 	 	

Fig. 14.13 A three-stage shift with feedback into all the
stages does not produce an MLS

output is a maximum length sequence. There is nothing
special about the starting register value, 1,1,1. There-
fore, any cyclic permutation of the MLS is also an
MLS. For instance, the sequence, 1,0,0,1,0,1,1 is the
same sequence.

An example of a three-bit shift register that does not
produce an MLS is [3: 1,2,3], shown in Fig. 14.13. The
pattern for this shift register is shown in Table 14.6. The
pattern of register values begins to repeat after only four
steps. Therefore, the sequence of output values, namely
1,0,0,1,1,0,0,1,1,0,0,1, is not an MLS.

14.13.1 The MLS as a Signal

To make a signal from an MLS requires only one
step: every 0 in the sequence is replaced by −1.
Therefore, the MLS for the shift register in Fig. 14.12
becomes: 1, 1,−1,−1, 1,−1, 1. For this three-stage
register (N = 3) the MLS has a length of seven; there
are four +1 values and three −1 values. These results
can be generalized to an N-stage register which has
2N −1 values; 2(N−1) are +1 values and 2(N−1) −1 are
−1 values. The average value is therefore 1/(2N −1).

14.13.2 Application of the MLS

The key fact about an MLS is that its autocorrelation
function is very nearly a delta function. To express that
idea, one can write the autocorrelation function in the
form appropriate for discrete samples,

ck = 1

2N −1

∑

k1

xk1 xk1+k . (14.159)

This sum, and all sums to follow, are over the 2N −1
values of the MLS sequence x. Because the sequence is
cyclical, it does not matter where one starts the sum.

An MLS has the property that

ck =
(

1+ 1

2N −1

)
δk,0 − 1

2N −1
. (14.160)

Therefore, ck is approximately a Kronnecker delta func-
tion

ck ≈ δk,0 . (14.161)

If we would like to know the impulse response h
of a linear system, we can excite the system with the
MLS x, and record the output y. As for filters, the linear
response y is the convolution of x and h, i. e.,

yk = x ∗h =
∑

k1

xk1+k hk1 . (14.162)

To find the impulse response, one can form the quan-
tity d, by convolving the recording y with the original
MLS x, i. e.,

dk = 1

2N −1

∑

k2

xk2+k yk2 (14.163)

or from (14.162)

dk = 1

2N −1

∑

k1,k2

xk2+k xk1+k2 hk1 . (14.164)

Only x ∗ x involves the index k2, and doing the sum over
k2 leads to

dk =
∑

k1

δk,k1 hk1 (14.165)

so that dk = hk. In this way, we have found the desired
impulse response.

As applied in architectural acoustics, the MLS is
an alternative to recording the response to a popping
balloon or gun shot. Because the MLS is continuous, it
avoids the dynamic-range problem associated with an
impulsive test signal, and by repeating the sequence one
can achieve remarkable noise immunity.

Similarly, the MLS is an alternative to recording the
response to white noise (the MLS is white). However,
digital white noise, such as random telegraph noise, has
an autocorrelation function that is zero only for a long-
term or ensemble average. In practice, the white-noise
response of a linear system is much noisier than the MLS
response.

14.13.3 Long Sequences

Table 14.7 gives the taps for some MLSs generated by
shift registers with 2–20 stages, i. e., orders 2–20. The
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528 Part D Hearing and Signal Processing

Table 14.7 Taps for maximum length sequences

Number of stages Length (bits) Number of taps Number of sets Set

2 3 2 1 [2: 1,2]

3 7 2 1 [3: 1,3]

4 15 2 1 [4: 1,4]

5 31 2 1 [5: 1,4]

6 63 2 1 [6: 1,6]

7 127 2 2 [7: 1,7], [7: 1,5]

8 255 4 6 [8: 1,2,7,8]

9 511 2 1 [9: 1,6]

10 1023 2 1 [10: 1,8]

11 2047 2 1 [11: 1,10]

12 4095 4 9 [12: 1,6,7,9]

13 8191 4 33 [13: 1,7,8,9]

14 16383 4 21 [14: 1,6,9,10]

15 32767 2 3 [15: 1,9], [15: 1,12], [15: 1,15]

16 65535 4 26 [16: 1,7,10,11]

17 131071 2 3 [17: 1,12], [17: 1,13], [17: 1,15]

18 262143 2 1 [18: 1,12]

19 524287 4 79 [19: 1,10,11,14]

20 1048575 2 1 [20: 1,18]

longest sequence has a length of more than one million
bits,

For orders 2, 3, and 4, there is only one possible set
of taps. These sets have two taps, including the feedback
to stage 1. For orders 7, 15, and 17 there is more than
one set with two taps, and all of them are shown in the
table.

Beginning with order 5 there are four-tap sets as well
as two-tap sets, except that for some orders, such as 8,
there are no two-tap sets. For every order the table gives
a set with the smallest possible number of taps.

Beginning with order 7 there are six-tap sets. As the
order increases the number of sets also increases. For
order 19, there are 79 four-tap sets.

14.14 Information Theory

Information theory provides a way to quantify informa-
tion by computing information content. The information
content of a message depends on the context, and
the context determines the initial uncertainty about the
message. Suppose, for example, that we receive one
character, but we know in advance that the context is
one in which the character must be a digit between 0
and 9. Our uncertainty before receiving that actual char-
acter is described by the number of possible outcomes,
which is Ω = 10 in this case. Suppose instead, that the
context is one in which the character must be a letter of
the alphabet. Then our initial uncertainty is greater be-
cause the number of possible outcomes is now Ω = 26.
The first step of information theory is to recognize that,
when we actually receive and identify a character, the

information content of that character is greater in the
second context than in the first because in the second
context the character has eliminated a greater number of
a priori possibilities.

The second step in information theory is to con-
sider a message with two characters. If the context of
the message is decimal digits then the number of pos-
sibilities is the product of 10 for the first digit and 10
for the second, namely Ω = 100 possibilities. Compared
to a message with one character, the number of possi-
bilities has been multiplied by 10. However, it is only
logical to expect that two characters will give twice as
much information as one, not 10 times as much. The
logical problem can be solved by quantifying informa-
tion in terms of entropy, which is the logarithm of the
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number of possibilities

H = log Ω . (14.166)

Because log 100 is just twice log 10, the logical problem
is solved. The information measured in bits is obtained
by using a base 2 logarithm.

A few simple features follow immediately. If the
number of possible messages is Ω = 1 then the message
provides no information, which agrees with log 1 = 0. If
the context is binary, where a character can be only 1 or
0 (Ω = 2), then receiving a character provides 1 bit of
information, which agrees with log2 2 = 1.

If the context is an alphabet with M possible sym-
bols, and all of the symbols are equally probable, then
a message with N characters has Ω = MN possible
outcomes and the information entropy is

H = log MN = N log M , (14.167)

illustrating the additivity of information over the char-
acters of the message.

14.14.1 Shannon Entropy

Information theory becomes interesting when the proba-
bilities of different symbols are different. Shannon [14.3,
4] showed that the information content per character is
given by

Hc = −
M∑

i=1

pi log pi , (14.168)

where pi is the probability of symbol i in the given
context.

The rest of this section proves Shannon’s formula.
The proof begins with the plausible assumption that, if
the probability of symbol i is pi , then in a very long
message of N characters, the number of occurrences of
character i, mi will be exactly mi = N pi .

The number of possibilities for a message of N
characters in which the set of {mi} is fixed by the
corresponding {pi} is

Ω = N !
m1! m2! . . . mM ! . (14.169)

Therefore,

H = log N !− log m1!− log m2!− . . . log mM ! .
(14.170)

One can write log N ! as a sum

log N ! =
N∑

k=1

log k (14.171)

and similarly for log mi !.

For a long message one can replace the sum by an
integral,

log N ! =
N∫

1

dx log x = N log N − N +1 (14.172)

and similarly for log mi ! .
Therefore,

H =N log N − N +1

−
M∑

i=1

mi log mi +
M∑

i=1

mi −
M∑

i=1

1 . (14.173)

Because
∑M

i=1 mi = N , this reduces to

H = N log N +1−
M∑

i=1

mi log mi − M . (14.174)

The information per character is obtained by dividing
the message entropy by the number of characters in the
message,

Hc = log N −
M∑

i=1

pi log mi + (1− M)/N ,

(14.175)

where we have used the fact that mi/N = pi .
In a long message, the last term can be ignored as

small. Then because the sum of probabilities pi is equal
to 1,

Hc = −
M∑

i=1

pi (log mi − log N) , (14.176)

or

Hc = −
M∑

i=1

pi log pi , (14.177)

which is (14.168) as advertised.
If the context of written English consists of 27

symbols (26 letters and a space), and if all symbols
are equally probable, then the information content of
a single character is

Hc = −1.443
27∑

i=1

1

27
ln

1

27
= 4.75 (bits) , (14.178)

where the factor 1/ ln(2) = 1.443 converts the natural
log to a base 2 log. However, in written English all sym-
bols are not equally probable. For example, the most
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530 Part D Hearing and Signal Processing

common letter, ‘E’, is more than 100 times more likely
to occur than the letter ‘J’. Because equal probability
of symbols always leads to the highest entropy, the un-
equal probability in written English is bound to reduce
the information content – to about 4 bits per character.
An even greater reduction comes from the redundancy
in larger units, such as words, so that the information
content of written English is no more than 1.6 bits per
character.

The concept of information entropy can be extended
to continuous distributions defined by a probability den-
sity function

h = −
∞∫

−∞
dx PDF(x) log[PDF(x)] . (14.179)

14.14.2 Mutual Information

The mutual information between sets of variables {i}
and { j} is a measure of the amount of uncertainty about
one of these variables that is eliminated by knowing the
other variable. Mutual information Hm is given in terms
of the joint probability mass function p(i, j)

Hm =
M∑

i=1

M∑

j=1

p(i, j) log
p(i, j)

p(i)p( j)
. (14.180)

Using written English as an example again, p(i) might
describe the probability for the first letter of a word
and p( j) might describe the probability for the second.
It is convenient to let the indices i and j be integers,
e.g., p(i = 1) is the probability that the first letter is
an ‘A’, and p( j = 2) is the probability that the second
letter is a ‘B’. Then p(1, 2) is the probability that the
word starts with the two letters ‘AB’. It is evident that
in a context where the first two letters are completely
independent of one another so that p(i, j) = p(i)p( j)
then the amount of mutual information is zero because

log(1) = 0. In the opposite limit the context is one in
which the second letter is completely determined by the
first. For instance, if the second letter is always the letter
of the alphabet that immediately follows the first letter
then p(i, j) = p( j) = p(i)δ( j, i +1), and

Hm =
M∑

i=1

p(i) log
p(i)

p(i)p(i)
(14.181)

which simply reduces to (14.168) for Hc, the information
content of the first letter of the word.

In the general case, the mutual information is a differ-
ence in information content. It is equal to the information
provided by the second letter of the word given no prior
knowledge at all, minus the information provided by
the second letter of the word given knowledge of the
first letter. Mathematically, p(i, j) = p(i)p( j|i), where
p( j|i) is the probability that the second letter is j given
that the first letter is i. Then

Hm =
M∑

j=1

p( j) log
1

p( j)

−
M∑

i=1

M∑

j=1

p(i, j) log
1

p( j|i) . (14.182)

The information transfer ratio T is the degree to
which the information in the first letter predicts the in-
formation in the second. Equivalently, it describes the
transfer of information from an input to an output

T = −Hm∑M
i=1 p(i) log p(i)

. (14.183)

This ratio ranges between 0 and 1, where 1 indicates
that the second letter, or output, can be predicted from
the first letter, or input, with perfect reliability. The
mutual information is the basis for the calculation of
the information capacity of a noisy communications
channel.
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