
Until the late 1990s, auditory neuroscientists could be 
divided into two camps. In one camp, following the 
tradition of the great physicist and sensory physiologist 
Hermann von Helmholtz1, classical auditory neuro-
physiologists used simple synthetic sounds such as pure 
tones (sound waves generated by a perfect sinusoidal 
oscillator) to probe the nature of neural responses in 
the auditory system. Indeed, just as the Helmholtz reso-
nator separated multitone sounds into their frequency 
components, the principal role of the auditory portion 
of the inner ear, the cochlea, is to decompose the sound 
waveform into separate frequency bands2. Thus, it is 
not surprising to learn that auditory neurons, at least 
at the lower levels of the auditory system, have been 
described and understood in terms of their responses 
to pure tones of a given frequency3 (FIG. 1a). In this clas-
sical approach, the frequency tuning curve of auditory 
neurons takes on a central role and more complex 
responses are described in terms of specific deviations 
from the linear summation rule; these responses are 
known as non-linear responses or contextual effects 
(reviewed in REF. 4).

In the other camp, following the tradition of the great 
ethologist Konrad Lorenz, auditory neuroethologists 
studied how natural sound stimuli that lead to specific 
behaviours are represented in the auditory system. One 
of the key findings from the neuroethologists’ camp was 
the discovery of neurons that responded very strongly 
to natural and behaviourally significant sounds but not 
necessarily to their simpler components5–7 (FIG. 1b). In 
other words, the stimulus–response function describing 
the neural tuning in these neurons is dominated by the 
non-linear or context effects and not by the frequency 
tuning curve8. Moreover, it seemed that the appropri-
ate ‘auditory context’ to probe the neural system was the 
natural one. Note that these two ‘camps’ were not antago-
nistic, and we use this term to stress the differences in 

the two approaches and the contrasting shortcomings 
of each. However, there was relatively little discussion 
between researchers in each camp.

Each of these approaches has distinct merit from a 
methodological viewpoint. The reductionist approach 
of classical auditory physiologists enables a systematic 
parameterization of sound stimuli and therefore a clear 
method for synthesizing stimuli to explore specific 
mechanistic hypotheses. However, the relevance of 
results obtained from sounds that an animal rarely hears 
could always be questioned. Thus, conclusions about 
the implications of the results for processing behav-
iourally relevant complex sounds could be criticized as 
being post-hoc explanations that lack the strength of 
experimental predictions. By contrast, the behavioural 
relevance of the neuroethological approach was less 
problematic, and results showing that behaviourally rel-
evant stimuli yield the largest neural responses7 (or the 
most informative9,10) support evolutionary arguments 
and explanations, which state that the auditory system 
evolved to optimally process the sounds that matter 
the most for the survival of the species. However, the 
lack of a reductionist methodology in the neuroetholo-
gists’ approach limited the exploration of underlying 
mechanisms.

One of the recent advances in auditory sciences has 
been in the merging of these two camps. This merging 
has been facilitated both by advances in computational 
approaches used for both sound and neural data analy-
ses and by advances in experimental techniques. We 
review these recent developments. In the first section, 
we summarize what we have learned from the statistical 
analyses of natural sounds. Describing these statistics is 
important not only to define what is unique about natu-
ral sounds but also because this knowledge is needed 
to analyse the neural responses to these sounds and to 
determine whether the auditory system has evolved to 

Neural tuning
This term refers to the 
response property of brain 
cells by which they selectively 
represent a particular type of 
sensory, motor or cognitive 
information.

Neural processing of natural sounds
Frédéric E. Theunissen and Julie E. Elie

Abstract | We might be forced to listen to a high-frequency tone at our audiologist’s office or 
we might enjoy falling asleep with a white-noise machine, but the sounds that really matter 
to us are the voices of our companions or music from our favourite radio station. The auditory 
system has evolved to process behaviourally relevant natural sounds. Research has shown 
not only that our brain is optimized for natural hearing tasks but also that using natural 
sounds to probe the auditory system is the best way to understand the neural computations 
that enable us to comprehend speech or appreciate music.

Department of Psychology 
and Helen Wills Neuroscience 
Institute, University of 
California, Berkeley, 
California 94720, USA. 
e‑mails: theunissen@
berkeley.edu; julie.elie@
berkeley.edu
doi:10.1038/nrn3731

REVIEWS

NATURE REVIEWS | NEUROSCIENCE	  VOLUME 15 | JUNE 2014 | 355

© 2014 Macmillan Publishers Limited. All rights reserved

mailto:theunissen%40berkeley.edu?subject=Nature%20Reviews
mailto:theunissen%40berkeley.edu?subject=Nature%20Reviews
mailto:julie.elie%40berkeley.edu?subject=Nature%20Reviews
mailto:julie.elie%40berkeley.edu?subject=Nature%20Reviews


Nature Reviews | Neuroscience

BatTuning fork

Cricket
Finch

a  Classical analytical approach b  Neuroethological approach
Th

re
sh

ol
d 

(d
B)

100

80

60

40

20

0
4 62 5

Frequency (kHz)
1 3

M
ea

n 
ra

te
 (z

 v
al

ue
)

1.4

1.2

1.0

0.6

0.4

Stimulus type

1.0

0.2

Pu
re

 to
ne

s

C
om

po
un

d
to

ne
s

W
hi

te
no

is
e

C
on
sp
ec
ifi
c

so
ng

Frequency tuning curve

Pure tones

Fr
eq

ue
nc

y
Time

Vocalization

Machine learning
A branch of computer science 
that combines statistical 
algorithms and artificial 
intelligence to extract 
information from complex 
data sets.

process such sounds in an optimal manner. In the second 
section, we explain how the use of more recent machine 
learning techniques has enabled researchers to take into 
account this statistical structure when estimating neural 
tuning functions from responses to natural sounds. The 
third section focuses on the processing of communica-
tion calls, the vocalizations emitted by animals in the 
context of information exchange that are particularly 
well represented in the auditory system. In the last sec-
tion, we review how progress in experimental methods 
has also enabled researchers to study hearing processes 

in more natural listening conditions. Our Review does 
not cover the extensive body of research that specializes 
in human speech processing and its neural correlates 
except when general principles are considered and clear 
parallels can be made.

Statistics of natural sounds
What is a natural sound? The question is particularly 
relevant given the increased prevalence of anthropo-
morphic noise in our daily environments that was 
absent during much of evolution. Natural sounds can 
be defined as: environmental sounds that are not gener-
ated by human-made machines, such as the sounds of 
footsteps, wind, fire and rain; all animal vocalizations, 
including human speech; and other sounds generated 
for communication by animals, such as stridulation in 
crickets11, buttress drumming by chimpanzees12 and 
instrumental music by humans. We first investigate the 
properties of isolated sounds and then briefly touch on 
the statistics of sound mixtures.

Perceptually relevant physical characteristics of isolated 
natural sounds follow a power law. Although natural 
sounds defined in this broad sense have heterogeneous 
properties, they share a structure that can be quantified 
by ensemble statistical analyses (FIG. 2). Specifically, it has 
been observed that the frequency spectra of certain fluc-
tuating physical characteristics of natural sounds follow a 
1/f relationship (where f is frequency) or, more generally, 
a power law relationship. In other words, some physical 
characteristic of natural sounds (φ) varies as the power of 
the frequency such as φ(f) = αf –κ with positive constants 
α and κ. It should be clearly noted that this relationship 
does not hold for the sound spectrum itself but, instead, 
for slower-varying structures, such as loudness, measured 
in the temporal envelope of the sound (FIG. 2) or in time-
varying pitch (the ‘height’ of the sound) profiles13–15. The 
power law relationship also holds for the power spectrum 
of the log of the sound spectrum15. This transformation 
of the sound waveform, called the cepstrum16, is used to 
extract spectral structures in the sounds (structures in the 
frequency domain) such as speech formants. Moreover, it 
has been shown that the frequencies of temporal and 
spectral modulations in the spectrogram, known as 
the modulation power spectrum (FIG. 2), exhibit specific 
dependencies beyond those expected from the time–fre-
quency trade-off 17. Natural sounds and vocalizations in 
particular have higher power at joint frequencies of low-
temporal and high-spectral modulations than expected 
from the product of the marginals: the average power for 
the same temporal modulation (averaged over all spec-
tral modulation frequencies) multiplied by the average 
power for the same spectral modulation (averaged over 
all temporal modulation frequencies)15. In other words, 
many animal vocalizations are dominated by relatively 
slow sounds with fine harmonic structure.

Physical, behavioural and neural implications of the 
power law structure. What are the physical, behav-
ioural and neural implications of this naturally occur-
ring acoustical structure? First, in terms of physical 

Figure 1 | Historical approaches to auditory neurosciences.  Both the classical 
analytical approach and the neuroethological approach are based on the analysis of 
neural responses to sounds produced by particular sound sources. a | In the classical 
analytical approach, the sound sources are synthesizers or computers (symbolized by a 
man-made tuning fork in the top panel), the sounds are often pure tones (the sine waves 
shown in the middle panel), and neural responses are often described as a function of 
frequency such as in the frequency tuning curve of a neuron (bottom panel). The 
frequency tuning curve shows the minimum sound level of pure tones needed to elicit 
threshold responses. Here, we show the tuning curve of a narrow-tuned neuron from the 
avian inferior colliculus, the MLd (data replotted from REF. 3). This particular neuron is 
tuned to detect a frequency of 3 kHz and the response threshold increases sharply on 
either side of this frequency (hence, ‘narrow tuned’). b | In the neuroethological 
approach, the sound sources are often animals vocalizing or generating sounds by other 
means for communication. These natural sounds are complex signals that are best 
represented in a time–frequency plot such as the spectrogram of a bird song shown in 
the middle panel. Responses to these complex sounds are compared with responses to 
synthetic sounds, such as pure tones, compound tones (combination of pure tones), 
white noise or manipulated versions of the species vocalization. The neural data shown 
in the graph in the bottom panel are from single neurons in the avian primary auditory 
areas (data replotted from REF. 82). The average spike rates of these neurons, represented 
here as a z score (the deviation from the rate obtained in absence of a sound stimulus in 
units of the SD), show that the natural sound — here, conspecific song — is the stimulus 
type that best excites the neurons. The graph in part a is adapted with permission from 
REF. 3, The American Physiological Society.
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Sound spectrum
(Also called the frequency 
spectrum). The representation 
of a waveform in its frequency 
domain. The sound spectrum is 
short for the frequency power 
spectrum of that sound. The 
sound spectrum is obtained by 
taking the amplitude square of 
the Fourier transform of a 
waveform and shows the 
energy in a signal as a function 
of frequency.

Envelope
The smooth representation 
(low-pass filtering) of the 
amplitude of a signal as a 
function of frequency (spectral 
envelope) or time (temporal 
envelope).

Formants
The peaks in the spectral 
envelope that correspond to a 
resonance in the sound source. 
In animal vocalizations and 
human speech, formants are 
resonance in the upper vocal 
tract. Formants are also the 
distinguishing or meaningful 
frequency components of 
voiced human speech.

Spectrogram
The representation of the 
sound in the time and 
frequency domain that shows 
how the sound spectrum varies 
over time. This representation 
is often obtained by calculating 
the sound spectrum in a 
short-windowed section of 
sound and repeating this 
calculation by moving the 
window in time. This method of 
calculation is also called the 
short-time Fourier transform.

properties, the power law relationship for time-varying 
signals implies that natural sounds have correlations 
over multiple timescales, including very long ones, as 
reflected by the large energies at low frequencies. In 
this sense, natural sounds are clearly different from 
signals that are completely random or uncorrelated, 
such as white-noise signals with flat spectral and tem-
poral envelopes power spectra or, at the other end of 
this spectrum of correlations, signals that are domi-
nated by a single-correlation time, such as those cre-
ated by a perfect oscillator (for example, a sound with 
sinusoidally varying amplitude, as in some car alarms). 
It has also been argued that neither white noise nor 
a pure sine wave can qualify as complex and thus as 
information-rich or perceptually sophisticated13,18. 
Second, in terms of behaviour, it is interesting to note 
that the fluctuating physical sound characteristics that 
show the power law characteristics in natural sounds 
are those that are directly linked to perceptual attrib-
utes. Whereas we are unable to perceive the details of 
the sound pressure waveform, the time-varying ampli-
tude yields a percept of intensity fluctuations, rhythm 
and timbre; the time-varying pitch profile carries the 
melody in a musical phrase and the spectral envelope 
contains critical information for other timbral quali-
ties of sound, including speech formants19. Last, these 

observed natural statistical structures have implications 
in terms of neural coding. For example, sound stimuli 
that have such natural statistics elicit higher informa-
tion rates (measured in auditory neurons) relative to 
matched synthetic sounds that lack some of the natu-
ral statistics9,10,20. Interestingly, the spatial and tempo-
ral luminance contrasts in natural visual scenes also 
obey power law relations that have also been related 
to complexity but that are primarily the result of scale 
invariance21,22. This power law relation (1/f) implies that 
visual scenes have stronger correlations at low spatial 
and temporal frequencies than at high frequencies. It 
has also been shown that early processing in the visual 
system can reverse this relationship by attenuating low 
frequencies and boosting high frequencies, effectively 
removing the correlations that are present in the stimu-
lus images23. Such decorrelation is useful for maximizing 
information transmission through a bottleneck such 
as the optic nerve. Although the physical causes of the 
power law relationship observed in natural images and 
in natural sounds are unrelated, it is highly probable 
that similar neural efficiency principles apply to both 
sensory systems. Indeed, a similar decorrelation has 
been observed in the inferior colliculus, where the gain 
of auditory neurons emphasizes higher temporal and 
spectral modulation, which effectively counterbalances 

Figure 2 | Natural sound statistics.  Various statistical measurements can be obtained from distinct physical 
characteristics of sounds. This figure illustrates some of these measurements for a zebra finch song and highlights the 
measures that reveal common characteristics of natural sounds (green graphs) and those that are specific to each sound 
class (red graph). The sound spectrum is the power of the sound pressure waveform as a function of frequency. This basic 
spectrum (that is, obtained without any transformations) shows unique shapes depending on species and call types. 
Power–frequency curves of natural sounds (sound spectra) do not obey universal relationships that would be 
characteristic of all natural sounds. Conversely, the temporal envelope spectrum obtained by calculating the power 
spectrum of the temporal envelope obeys a 1/f (where f is frequency) relationship (solid line) that is characteristic of all 
natural sounds13: natural sounds are dominated by low frequencies of amplitude modulation. The sound spectrogram is a 
more intuitive representation obtained by decomposing the sound into time and frequency bins: at each given time point 
(x axis), the sound is represented in terms of the amplitude of its frequency components (y axis). Just as for the basic 
spectrum, measures on the spectrogram are unique for each natural sound, but the modulation power spectrum obtained 
from a two-dimensional (2D) spectral analysis of the logarithmic values of the sound spectrogram shows a coarse shape 
that is characteristic of all animal vocalizations15. The bottom  right panel is reprinted with permission from Singh, N. C. & 
Theunissen, F. E. Modulation spectra of natural sounds and ethological theories of auditory processing. J. Acoust. Soc. Am. 
114, 3394–3411 (2003)15 © 2003, Acoustic Society of America.
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Modulation power spectrum
The spectrum obtained from 
the log of the amplitude of a 
sound spectrogram. The name 
comes from the fact that each 
‘row’ in a spectrogram 
pictorially represents in a 
narrow frequency channel the 
amplitude envelope of the 
sound in that channel. These 
envelopes ‘modulate’ the 
intensity of the signals, and the 
modulation power spectrum 
shows the power of these 
modulations for different rates 
(that is, the temporal 
modulation frequencies on the 
x axis). Similarly, a column in 
the spectrogram shows the 
spectral envelope at a 
particular time point. The 
power spectrum of this spectral 
envelope shows the power at 
particular spectral modulation 
frequencies (that is, on the y 
axis). More generally, a 
spectrogram jointly tracks 
amplitude envelopes in both 
time and in frequency and the 
full modulation power 
spectrum shows the power of 
both spectral and temporal 
modulations.

Harmonic
A complex sound with a strong 
pitch percept that is made of a 
tone at a fundamental 
frequency or first frequency (f0, 
corresponding to the perceived 
pitch) and a series of overtones 
at multiples of this 
fundamental frequency.

Timbre
The quality of a sound (also 
known as tone colour or tone 
quality from psychoacoustics) 
that can be used to distinguish 
different types of sound 
production (voices or various 
musical instruments) and that 
is determined by certain 
physical properties, such as the 
sound spectrum.

Invariance
The property of something that 
does not change under a 
transformation (for example, in 
rotation-invariant face neurons, 
a particular face will elicit very 
similar responses irrespective 
of the face orientation).

Decorrelation
The process used to reduce the 
autocorrelation or the 
redundancy of information 
within a signal.

the 1/f relationship observed in the modulation power 
spectrum (and not the sound spectrum) of natural 
sounds24. At higher levels of the auditory processing 
stream, it has been shown that the population of neu-
rons has a maximum gain at intermediate modulation 
frequencies in a region that is particularly useful for 
distinguishing among different natural sounds25.

The sound spectrum is idiosyncratic for each natu-
ral sound class. As mentioned above, natural sounds 
exhibit a power law relationship in the spectrum of par-
ticular time-varying features of sounds such as inten-
sity, and this relationship has physical, perceptual and 
neural implications. This power law relationship does 
not exist for the sound spectrum itself as each natu-
ral sound class has an idiosyncratic sound spectrum. 
However, this does not mean that auditory systems are 
not sensitive to particular shapes of the sound spec-
trum of behaviourally relevant sounds. On the con-
trary, frequency tuning sensitivity has been shown 
to be one of the major factors ensuring the sender–
receiver match. The neuroethological basis of this 
matched-frequency tuning has been particularly well 
documented in insects and anurans26. Furthermore, 
more strikingly perhaps, this frequency tuning adap-
tation has even been observed in the cochlea of owls27 
and bats28, in which the region of the cochlea that is 
mechanically tuned to frequencies that are particularly 
relevant for the animal is expanded in what has been 
called an auditory fovea. As we discuss in more detail in 
the section on animal vocalizations, the adaptation of 
the auditory system to the specific structure of conspe-
cific communication calls might be equal to or maybe 
even greater than putative adaptations to more general 
natural sound statistics.

Natural sound statistics and the frequency tuning of 
mammalian auditory nerve fibres. Looking beyond 
the matched-tuning found in auditory specialists such 
as bats and owls, could general natural sound statistics 
also explain the prototypical frequency tuning that has 
been observed in the peripheral mammalian auditory 
system? Primarily as a result of its mechanical proper-
ties, the cochlea decomposes sounds into a set of signals 
that are centred at increasing frequencies by applying 
filters of different shapes: narrow-band frequency filters 
for low frequencies and large-band frequency filters for 
high frequencies2. As the frequency power spectrum 
of specific natural sounds is idiosyncratic, a simple 
frequency matched-tuning or decorrelation argument 
cannot be used to provide an adaptive explanation for 
this relationship. Instead, however, an examination 
of both the temporal and spectral statistics of differ-
ent classes of natural sounds can provide an explana-
tion. In particular, environmental sounds and animal 
vocalizations make two well-defined groups of sounds 
that have different statistical structures: animal vocali-
zations are dominated by sustained harmonic sounds, 
whereas environmental sounds are dominated by tran-
sient sounds29. It has been argued that the shape of the 
mammalian auditory frequency filters measured at the 

level of the auditory nerve is optimal at representing 
the independent components of combinations of ani-
mal vocalizations and environmental sounds: the lower-
frequency narrow-band filters efficiently represent the 
relatively long but spectrally sharp animal vocalizations, 
and the higher-frequency broad-band filters efficiently 
represent the short but broad environmental sounds. 
The human speech signal is particular in that it com-
bines sounds from these two classes. One can thus 
postulate that the physical characteristics of human 
speech have evolved to be optimally represented at the 
auditory periphery (while taking into account other 
constraints)29.

Statistics of sound mixtures. Isolated sounds have 
interesting properties, but our brains are more often 
exposed to complex auditory scenes. Sound mixtures, 
such as those created by a chorus of insects or a crowd 
in a loud restaurant, also have their own statistical 
signature: specifically, the structure that is present in 
the modulation power spectrum of isolated vocaliza-
tions is washed out in sound mixtures, whereas the 
long-time average sound spectrum of isolated sound 
signals and their mixtures remains similar. Given that 
the modulation power spectra of background sounds 
differ from those of foreground sounds, a modulation 
filter bank — a set of filters in the spectral and tem-
poral amplitude modulation domains — that is tuned 
to these differences could be used to separate signals 
from noise resulting from sound mixtures, and such 
a mechanism might be in place in secondary auditory 
cortical areas30. Because the sound spectra of mixtures 
and signals are similar, this task would be impossible 
with a simple frequency filter bank — a set of filters 
in the sound frequency domain. Sound mixtures also 
seem to be processed separately from isolated sound 
signals: whereas the short time detail of isolated sound 
signals is perceived with high accuracy (enabling, for 
example, rather extreme rates of phoneme perception), 
sound mixtures are perceived and categorized in terms 
of their long-term statistical properties, yielding per-
cepts of sound ‘texture’, which is defined as the collec-
tive result of many similar acoustic events (for example, 
rainstorms and insect swarms)31.

In summary, natural sounds have characteristic 
statistical properties that can be measured at differ-
ent levels. All natural sounds have particular slow 
physical properties, such as loudness profiles that 
obey power law relationships. The sound spectrum 
does not obey this law, but its shape is nevertheless 
an important property for the specialized processing 
of behaviourally relevant sounds. Natural sounds are 
easily categorized as either animal vocalizations or 
environmental sounds based on differences in terms 
of relevant time–frequency scales. Sound mixtures 
lose the fine spectrotemporal modulations seen in iso-
lated natural sounds and are better characterized and 
perceived in terms of long-term statistical properties. 
Both the nature of our perception of sounds and neural 
responses in the auditory system are sensitive to these 
natural sound statistics.
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Inferior colliculus
The principal auditory nucleus 
of the mammalian midbrain, 
which receives inputs from 
several peripheral brainstem 
nuclei, including direct and 
indirect inputs from the 
cochlear nucleus.

Gain
For neurons, the gain is the 
sensitivity of a neural output to 
the input signal.

Frequency filters
Devices for selectively 
transmitting specified 
frequencies of the input signal 
by attenuating, or filtering out, 
unwanted frequencies.

Spike-triggered average
(STA). A tool for estimating the 
stimulus–response function of 
a neuron by using the average 
stimulus before each spike. For 
linear neurons and for white 
noise stimuli, the STA will yield 
the neuron’s receptive field.

Spectrotemporal receptive 
field
(STRF). In the most general 
sense, the STRF is used to label 
the stimulus–response function 
of a neuron that uses any 
spectrotemporal description of 
the sound as the stimulus (for 
example, the spectrogram). 
That general STRF can be a 
linear or non-linear model.

Regularization
In statistics and machine 
learning, regularization 
methods are used for model 
selection, in particular to 
prevent overfitting by 
penalizing models with 
extreme parameter values or 
extreme number of 
parameters. For example, 
principal component analysis 
applied on a dataset can be 
used to reduce the 
dimensionality of the dataset. 
The resulting model is a 
principal component 
regression or subspace 
regression.

Stimulus–response characterizations
As explained above, natural sounds are clearly both rel-
evant and efficient stimuli to drive auditory neurons. 
Moreover, both theoretical arguments used to model pro-
cessing in the auditory periphery29,32 and information the-
oretic measures of empirical data9,10 have shown that the 
auditory system seems to have evolved for optimal pro-
cessing of sounds with such statistical properties. These 
studies, however, shed little light on the actual underlying 
mechanisms when compared with the explanations pro-
vided by the characterization of the neuronal stimulus–
response functions; that is, the mathematical formulation 
that describes how single neurons or neuronal ensembles 
respond to any given stimulus.

Estimating the stimulus–response function using synthetic 
sounds. Traditionally, stimulus–response characterizations 
had been performed with synthetic sounds that would 
enable the systematic probing of the effect of a single 
acoustical parameter (for example, frequency) on neural 
responses. System identification analysis, the functional 
description of any arbitrary input–output system, also 
heavily relied on the use of synthetic sounds and primarily 
Gaussian white noise33. Noise-like stimuli enable not only 
an efficient exploration of a large set of possible sounds (for 
example, all frequencies within the noise band) but also 
facilitate the estimation of a neuron’s stimulus–response 
function; with white noise, the average stimulus before 
each action potential or spike (the spike-triggered average 
(STA)) yields the impulse response of the neuron or, when 
stimuli are represented in spectrographic form, the neu-
ron’s spectrotemporal receptive field (STRF)34,35. For neurons 
that respond linearly to sound features as represented in 
a spectrogram, the STRF shows the spectrotemporal pat-
tern that would result in the highest firing rates. When the 
STRF is used as a model, the convolution (a mathematical 
operation akin to a running-time correlation) between 
the STRF and the sound spectrogram yields a predicted 
neural response. The STRF model can be generalized to 
model the response of any neuron by incorporating non-
linear components, as we describe in more detail below. 
At lower levels of the auditory processing stream, in which 
neurons are less sensitive to contextual effects, the white 
noise approach can yield accurate estimations of the stim-
ulus–response function36–38. In these cases, white noise 
analyses are used to estimate stimulus–response func-
tions, and these functions in turn can explain selectivity 
for specific vocalizations or the efficient representation of 
natural sounds in general29. However, at higher levels of 
the auditory system, neural responses can be dominated 
by contextual effects8,39,40. Although sound features that 
drive neurons might be present in white noise, they might 
only elicit responses when they are presented in a natural 
acoustic context: for example, following silence, or follow-
ing a sequence of specific sounds or presented jointly with 
other specific sounds. In other words, neurons become 
tuned to more complex spectrotemporal patterns that are 
characteristic of natural sounds but that are poorly sam-
pled in white noise. In those cases, stimulus–responses 
functions can only be estimated using the appropriate 
context: behaviourally relevant natural sounds.

Methods for estimating STRFs using natural sounds. 
Fortunately, advances in regression techniques and 
machine learning have enabled the estimation of 
STRFs using natural sounds (FIG. 3). Great progress has 
been made on four critical issues. First, natural sound 
ensembles occupy a limited region of the entire space of 
possible sounds. One must therefore be aware that the 
shape of the estimated STRF will depend on the subset of 
sounds being sampled and is only valid for sounds shar-
ing the same characteristics as the sampled one. In this 
case, this issue is simply solved by clearly describing the 
sampled subset in the space that is relevant for STRFs. 
For example, if the STRFs are based on spectrograms, 
the phase and amplitude of the modulation spectrum 
(that is, the spectrum of the spectrogram) will describe 
how the selected natural sounds sample the space15. In 
addition, when one compares STRFs estimated with two 
distinct sound ensembles (whether they are natural or 
synthetic), one needs to estimate the STRFs carefully by 
only using sound features that are found with sufficient 
frequency in both sound subspaces41.

Second, for natural sounds, the time-averaged energy 
of sound features (or, equivalently, the average intensity 
and frequency of occurrence of these features) is not uni-
form throughout the subset of sounds being sampled. 
For this reason, simple estimation techniques such as the 
STA, which is a straight averaging operation, will yield 
biased estimates of the STRF. This bias can be removed 
by using the appropriate normalization techniques. 
These normalization techniques can be thought of as a 
weighted average operation in which sound features that 
are sampled more infrequently are given more weight to 
compensate for this undersampling42,43.

Third, again, as natural sounds might only effec-
tively span a small subset of possible sounds, one must 
carefully match the effective dimensionality of this 
sampling to the dimensionality of the sound represen-
tation. For example, an STRF operating on the spectro-
graphic representation of sounds might have 100 slices 
in time (for example, 100 ms window with 1 ms sam-
pling) and 100 slices in frequency (for example, 100 Hz 
bands between 0 Hz and 10 kHz) for a total of 10,000 
time–frequency ‘pixels’, which constitute the param-
eters of the STRF model (FIG. 3). Natural sounds might 
sample these 10,000 dimensions very sparsely and 
thereby yield very poor estimates for all 10,000 STRF 
parameters. This is a well-known problem in statistics: 
if a model has too many parameters (here, the number 
of time–frequency pixels of the STRF) relative to the 
number of observations (here, the number of natural 
sounds and corresponding neural responses), then the 
model risks fitting not only the underlying relationship 
between the stimulus and the neural response but also 
random fluctuations of the particular data set. To pre-
vent this phenomenon, which is known as overfitting, 
regularization techniques must be used44. Regularization 
adds constraints in the form of priors on the model 
parameters that effectively impose a penalty on model 
complexity: for example, principal component regression 
(also called subspace regression) and ridge regression 
implement zero-mean Gaussian priors on the STRF 
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Probability distributions 
attached to parameters before 
certain data are observed. 
Prior is short for ‘prior 
probability’.

Principal component 
regression
The regularization procedure 
that uses principal component 
analysis in conjunction with a 
linear regression analysis to 
reduce the dimensionality of a 
data set.

Ridge regression
The combination of linear 
regression with a regularization 
procedure that assumes 
a priori that the coefficients of 
the regression are normally 
distributed around zero. By 
varying the spread of this 
normal distribution, one can 
constrain the coefficients to be 
very close to zero unless there 
is strong evidence against it in 
the data. Ridge regression is 
therefore useful when there are 
too many parameters in the 
linear regression to be fitted 
with limited data (that is, to 
prevent overfitting). In those 
cases, most parameters will be 
equal to zero and only the few 
that really matter will have 
non-zero values. It is in this 
sense, that ridge regression 
reduces the dimensionality of 
the problem. Ridge regression 
is also known as L2 
regularization and statisticians 
also call regularization 
procedures of this type 
shrinkage.

Zero-mean Gaussian
A quality of a distribution that 
is normal with a mean of zero.

Generalized linear models
(GLMs). A generalization of 
ordinary linear regression that 
allows for the random aspects 
of response variables (that is, 
the noise) to have distributions 
other than the normal 
distribution (for example, a 
Poisson distribution).

coefficients with a variable variance. By setting a small 
variance on this prior, STRF parameters will be esti-
mated to be very close to zero during the model-fitting 
procedure, unless there is robust evidence that they 
significantly contribute to the prediction of the neural 
response. Principal component regression and ridge 
regression also have analytical solutions that are com-
putationally very efficient (solutions that can be found 
by solving a mathematical equation)43,45. Regularization 
can also be implemented by using other priors on STRF 
coefficients and iterative algorithms44,46.

Fourth, the stimulus–response functions of high-
level auditory neurons are often dominated by non-
linearities that are not captured in the STRF, which, in 
its simplest form as a model, predicts neural responses 
from a linear combination of spectrotemporal features. 
Estimating the nature of the non-linearities is not only 
important to fully capture the computations performed 
by the system but also to avoid errors induced by non-
linearities for the estimation of the STRF obtained with 
natural stimuli47,48. There are many approaches to this 
problem. Input non-linearities can be incorporated in 

the chosen representation for the sound stimuli. For 
example, sound representations can include known 
non-linearities such as adaptive mechanisms49,50 or 
probabilistic expectations51. Output non-linearities, 
such as those produced by a spiking threshold, can 
be very efficiently modelled using the generalized 
linear framework52 even in combination with input 
non-linearities53. Finally, dynamical second-order or 
higher-order non-linearities have been estimated using 
techniques that yield multicomponent STRFs47,54–57.

The computations in the auditory processing stream 
revealed by the STRFs. These methodological advances 
have enabled auditory neuroscientists to make con-
siderable progress in understanding the nature of the 
auditory computations that are found in the ascending 
processing stream of both birds30,41,48,51,58–61 and mam-
mals38,62–65. Selectivity for natural sounds is already 
present at the level of the inferior colliculus in the 
sense that inferior colliculus STRFs show spectrotem-
poral features that are found in behaviourally relevant 
sounds38,41,66–68. Then, novel types of STRFs appear at 

Figure 3 | Stimulus–response characterization.  The stimulus–response function of auditory neurons can be estimated 
using natural sounds and advanced techniques in regression and machine learning. The neural response, r(t

i
) is modelled 

as a multistep transformation of the sound stimulus s(t
i
), yielding a predicted neural response (r̂(t

i
)). The three steps of this 

neural model include a pre-processing step, a filtering step and an output non-linearity. The parameters of the three steps 
are first estimated using a data set of sound stimuli and their corresponding known neural responses, and then the model 
can be used to predict the neural responses to new sound stimuli (‘sound waveform’ in the figure). In the pre-processing 
step, the sound pressure waveform is transformed into a new representation, such as the spectrogram in which the 
amplitude a is expressed as a function of time t

i
 and frequency f

j
 (shown here as an example in the ‘pre-processing’ column; 

a(t
i
, f

j
)), a cochleogram (not shown) that models the filtering and processing occurring at the level of the cochlear nuclei 

(brainstem nuclei that receive inputs from the cochleae)49 or higher-level processing such as that based on probabilistic 
expectations (not shown)51. The next step involves the estimation of a linear filter (h(τ

k
, f

j
) here). Because the new sound 

representation obtained in the pre-processing step can have many dimensions, regularization regression techniques must 
be used when estimating the filter to prevent overfitting43,44,46. When a time–frequency representation of sound is used, 
the linear filter h(τ

k
, f

j
) obtained is called the spectrotemporal receptive field (STRF h, shown here). When the x axis of the 

STRF is set up to indicate increasing delay τ
k
 from the beginning of a stimulus (shown here), then the STRF represents the 

neural response obtained to a theoretical impulse stimulus: the so-called impulse function. When the x axis is set up to 
indicate the time preceding a spike, equivalent to a vertical reflection of the previous matrix, then the STRF represents the 
spectrotemporal features that most drive the neuron (shown in FIG. 4). More advanced methods can yield multicomponent 
linear filters (not shown)55. In the last step, the output of the linear filter u(t

i
) is transformed into the predicted response 

using a static non-linearity g(u(t
i
)). Generalized linear models can be used to simultaneously estimate both the STRF and this 

non-linear output function for different noise distributions52.
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the level of the primary auditory cortex, and these 
STRF models can be considered to achieve selectivity 
for more complex and slower acoustical features com-
pared with the simpler STRFs found in the inferior 
colliculus and thalamus (the principal relay of sensory 
inputs from the sensory periphery to the cortex)59,62,63 
(FIG. 4). These changes in the STRF go hand in hand 
with increased selectivity for natural sounds9,20,25. 
Contextual effects also become more important at the 
higher levels of the auditory system40–42,48,51,69,70; these 
contextual effects manifest themselves as changes in 
the selectivity for spectrotemporal features owing to 
the presence of particular sounds ‘outside’ a classically 
estimated STRF48,71, changes due to expectations about 
stimulus statistics51, changes in the correlated prop-
erties measured in ensemble neurons41 and changes 
due to learning and behavioural relevance69,72. Again, 
it is postulated or shown that these auditory contex-
tual effects increase the efficiency of the neural rep-
resentation for behaviourally relevant natural sounds 
either at the single51,69,72 or population41,73 level. Finally, 
researchers have begun to understand how complex 
stimulus–response functions found at higher levels 

of the auditory processing stream could be used to 
achieve complex auditory tasks that go beyond ‘tem-
plate-matching’ between an STRF and an acoustical 
feature that is present in natural sounds. For example, 
the multiscale time–frequency modulation tuning of 
the auditory cortex can be used to separate bird song or 
speech from non-speech signals or noise30,74,75.

As an alternative to the estimation of linear and 
non-linear STRFs from responses to natural sounds, 
researchers have also used synthetic sounds that are 
designed to have particular natural statistics. Families 
of such synthetic natural-like sounds can then be used 
to isolate the specific natural feature that is particularly 
important for understanding behavioural or neural 
responses. This approach has been used, for example, 
to elucidate the natural sound features that are crucial 
for phonotaxis in crickets11, sound texture perception 
in humans31,76 and selectivity for conspecific songs in 
songbirds9,15.

In summary, analytical and computational advances 
have enabled auditory researchers to use natural sounds 
or synthetic natural-like sounds to estimate the stimu-
lus–response functions of high-level auditory neurons. 

Figure 4 | STRFs at different levels of the auditory system.  In each region of the auditory system, one finds multiple 
types of spectrotemporal receptive fields (STRFs), and in each region some of these types efficiently extract 
spectrotemporal features of natural sounds. The figure shows pairs of illustrative STRFs (shown in pseudocolour in the 
figure, where red represents the most intense response, and blue the lowest response) found at different levels of the 
avian auditory system, which includes: the inferior colliculus (also known as MLd), the auditory thalamus (also known as 
nucleus ovoidalis) and the avian auditory cortex (also known as field L). Note that for each STRF, the x axis is the time 
preceding the response and that therefore the sound features that excite the neuron are read from left to right, 
whereas the impulse function is read from right to left. As one follows the auditory processing stream, neurons become 
tuned to slower and more complex features. a | In the inferior colliculus, some neurons show STRFs with a brief (narrow 
in time) and large frequency band of inhibition (blue) followed by a brief and large frequency band of excitation (red); 
such fast broad-band neurons will effectively detect the onset of song syllables and encode the temporal rhythm of a 
song. b | The narrow-band neuron shown on the right is also selective for the onset of sound but at a particular 
frequency, around 2.5 kHz. c,d | The auditory neurons in the thalamus exhibit greater latencies than inferior colliculus 
neurons: they respond 10–15 ms after the peak energy in the STRF (indicated by the arrows), whereas inferior colliculus 
neuron responses have latencies of around 5–10 ms. Auditory thalamic neurons also show greater sensitivity to slower 
features. The narrow-band STRF shown in part d is more complex than the one found in the inferior colliculus (part b), 
with frequency tuning that goes down with time (indicated by the arrow). This neuron is sensitive to down-sweeps that 
are common in zebra finch song syllables. e,f | Much slower and more complex STRFs appear at the level of the auditory 
cortex. The broad-band neuron shown in part e not only decodes spectral shape at the coarse scale that is useful for 
the representation of structures such as formants but is also sensitive to a combination of low-frequency sounds 
(<3 kHz) followed by high-frequency sounds (>3 kHz). The narrow-band neuron in part f shows a sharp excitatory region 
that is flanked by two inhibitory regions. Such narrow-band neurons are exquisitely tuned to notes of a particular pitch 
either as pure tones or as harmonic complexes. In the avian auditory system, STRFs that combine excitatory and 
inhibitory regions at the same time point (as shown in these two examples) appear only at the level of the cortex. 
Additional avian STRF types and examples can be found in REFS 51,58,59. Examples in the mammalian auditory system 
can be found in REFS 24,62–64. Parts a, b, e and f republished with permission of Society for Neuroscience, from 
Woolley, S. M., Gill, P. R., Fremouw, T. & Theunissen, F. E. Functional groups in the avian auditory system. J. Neurosci. 29, 
2780–2793 (2009)58; permission conveyed through Copyright Clearance Center, Inc. Part c is based on data from REF. 59. 
Part d adapted with permission from REF. 59, The American Physiological Society.
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In doing so, they have been able not only to extract these 
functions for neurons that do not respond to white noise 
or other synthetic stimuli but they have also been able 
to investigate auditory contextual effects and the nature 
of the computations that generate selective responses for 
natural sounds.

Animal vocalizations
Animal vocalizations as a class of natural sounds 
have played and continue to play an important part 
in auditory neuroscience. Historically, the first use of 
natural sounds in auditory neuroscience came from 
neuroethologists who investigated how conspecific 
vocalizations or communication signals were selec-
tively processed in the auditory systems of auditory 
specialists. These investigations in model systems led 
to the discovery of cricket song-selective neurons and 
their contribution to female phonotaxis behaviour77, 
of call-selective neurons in frogs78 and guinea pigs79, 
of song-selective neurons in songbirds7,80–82, of neu-
rons selective for the echolocation signal in bats5 and 
of brain regions selective for conspecific calls in pri-
mates83. Selectivity for conspecific communication calls 
can be reflected not only in the mean rate of single-
neuron responses but also (and sometimes only) in 
time-varying responses84,85 or ensemble responses86,87. 
Thus, the auditory system is not only selective for natu-
ral sounds in a broad sense but also seems to exhibit 
specialized circuitry for the sole purpose of detect-
ing and processing conspecific communication calls. 
One of the striking results from this line of research 
has been the relatively high degree of selectivity that 
has been measured in these vocalization-selective neu-
rons6,88: systematic manipulations of bird song syllables 
and bat echolocation calls have shown that this selec-
tivity is achieved by non-linear mechanisms that detect 
a specific temporal or spectral combination of unique 
sound features that are present in specific conspecific 
vocalizations5,6,89.

Although such acute selectivity might be useful for 
auditory tasks that require high fidelity, such as the 
processing of echolocation pulses or guiding vocal 
commands in song learning, its utility for processing 
sounds in terms of their communicative value is more 
problematic. For example, both primates and song-
birds produce alarm calls that need to be correctly cat-
egorized in order to guide the appropriate behaviour. 
Such categorization requires invariant responses to 
all communication calls that belong to the same cat-
egory as well as recognition of category boundaries90. 
Thus, auditory processing for communication pur-
poses might require not only low-level feature detec-
tion processing but also categorization of higher-level 
structure. Such high-level categorization might involve 
hierarchical processing steps, such as the representa-
tion of particular sound features (for example, formant 
frequency) that are resistant to variation in other physi-
cal parameters of the sound (for example, azimuthal 
location), and such representations have been found 
in secondary mammalian and avian auditory areas91,92. 
In terms of higher-level categorization, research in 

starlings points to a role for the caudiomedial nido-
pallium in classifying behaviourally relevant classes 
of songs93 and research in primates suggests that both 
the superior temporal gyrus and the ventrolateral pre-
frontal cortex could be involved in semantic discrimi-
nation94–98. Similar cortical areas have been shown in a 
large body of research to be crucial for human speech 
processing99. However, it is fair to state that our under-
standing of the neural mechanisms that generate such 
high-level categorization of sounds is still in its infancy. 
Songbirds that have a large repertoire of communication 
calls that are used in distinct behavioural contexts could 
also become a powerful animal model to study the neu-
ral computations involved in the categorization that is 
needed to extract meaning from variable communication 
sounds100,101.

The ontogeny of selective neural responses for 
vocalizations has also been extensively studied. 
Although many animal communication calls are 
innate or have innate characteristics, neural selec-
tivity in the perceptual system for innate calls could 
arise during development simply as a result of experi-
ence and repeated exposure. Moreover, vocalizations 
show learning components in both production, as 
is the case for song in songbirds102, and perception, 
as is the case for the interpretation of alarm calls in 
primates103, the interpretation of pup calls in moth-
ers versus virgin mice104, the discrimination of famil-
iar versus unfamiliar contact calls in zebra finches105 
and the recognition of individual songs in starlings106. 
Not surprisingly, selective neural responses for natural 
sounds have been shown to have strong developmental 
and environmental components; this is true both for 
the low level of selectivity such as that found in pri-
mary auditory cortical areas73,107–109 as well as for the 
high level of selectivity found in sensorimotor areas of 
songbirds110–112. Experience during development can 
also affect perceptual boundaries and their putative 
neural correlates113.

In summary, on one hand, the initial study of the 
neural representation of conspecific vocalizations in 
the auditory system has played a crucial part in advanc-
ing our understanding of the nature of the non-linear 
neural responses that are found in the higher auditory 
areas and in establishing the need to use behaviour-
ally relevant sounds to decipher these computations. 
On the other hand, research on the nature of invariant 
representations for vocalization classes and on the link 
between sound and the perception of meaning is still 
in its infancy, and research in this area could further 
increase our understanding of the neural mechanisms 
involved in human speech processing. For example, 
categorization of sounds for lexical retrieval or for 
voice recognition requires a combination of filtering 
(to ignore irrelevant features) and grouping (to allow 
for variation in the coding features) that only more 
complex and non-linear STRFs could achieve. Finally, 
it is clear that selectivity for natural sound features and 
vocalizations has both innate and learned components, 
and the relative importance of each factor is an active 
area of research.
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Towards natural hearing
Most of the neurophysiology research described above 
relied on the passive playback of isolated sounds to ani-
mals that were either anaesthetized or restrained, but 
natural hearing often involves attention and action on 
the part of the sender and receiver, such as in bat echo-
location114, the interpretation of alarm calls originating 
from different individuals115 or communication between 
mates in bonding behaviours116. Moreover, natural hear-
ing also involves the processing of complex auditory 
scenes. Until recently, the natural sounds that have been 
analysed or used in laboratory experiments have been 
mostly free of natural noise or natural degradation. In 
the real world, communication signals are most often 
perceived in unfavourable listening conditions, in which 
there is background noise, distortions owing to propa-
gation and echoes117, and superimposition from other 
potential acoustical signals118. Vocal communication 
and auditory perception are also affected by the social 
context, such as in the audience effect119, or by internal 
states, such as stress levels. These social and emotional 
cues can also be mediated by other sensory modalities.

Advances in chronic neural recording techniques 
have enabled researchers to begin to examine neural 
processing in these more natural scenarios. Researchers 
have shown how responses in the primary auditory cor-
tex are influenced by both expectations of natural struc-
ture in the sound and behavioural relevance, both of 
which might involve top-down modulations72. Chronic 
recordings in awake and vocalizing animals have also 
been used to obtain neural responses in auditory areas to 
the animal’s own vocalizations. Such experiments have 
been carried out in bats120,121, primates122 and birds123. 
The experiments in bats were crucial for understand-
ing how the pulse–echo pair was processed by the audi-
tory system and are landmark experiments in that field. 
In primates and birds, these awake recordings gave us 
unique insights into how self-vocalizations are processed 
for self-monitoring and, in birds, potentially for guid-
ing vocal learning. However, neural recordings in both 
senders and receivers in the midst of vocal communica-
tion bouts, such as antiphonal calling in marmosets124 
or duets in social songbirds116,125, have not yet been 
performed. Such experiments could be carried out in 
the near future and are needed to increase our under-
standing of the computations performed by the audi-
tory system for extracting the information content of 
communication calls.

The auditory processing of communication sounds 
in noisy backgrounds or in complex auditory scenes 
is also an active research area126. For example, noise-
invariant neurons — that is, neurons that respond to 
a given stimulus without being influenced by the pres-
ence of background noise — have been described in the 
secondary auditory areas of songbirds30,127 and in pri-
mary auditory areas in humans128. Noise-invariance has 
also been shown to emerge in the auditory processing 
stream as a result of adaptive mechanisms for particular 
stimulus statistics129. Similarly, responses in the human 
auditory cortex use a gain control to emphasize the 
temporal modulations that are characteristic of speech. 

Neurophysiological studies in primates130,131 and birds132 
have also begun to unravel how multiple auditory 
streams could be represented in the auditory system.

In summary, auditory neuroscientists have mostly 
focused their attention on understanding the computa-
tions that are needed to recognize and categorize natu-
ral sounds passively, and much more research is needed 
to understand how acoustical signals are processed in 
active communication and in natural soundscapes. 
Neurophysiological research in this area is in its infancy 
but, given the increase in our knowledge achieved 
from classical playback experiments and the technical 
advances in chronic recordings, natural hearing research 
is poised to make giant leaps in the near future.

Conclusion
The use of natural sounds (and in particular conspecific 
sounds) has had a long tradition in neuroethological 
research, and the findings in these model systems have 
inspired the more recent development of analytical tech-
niques for both sound analysis and neural data analysis. 
These developments have enabled auditory neurosci-
entists to use natural sound stimuli to describe and 
understand in much greater detail the neural responses 
of higher-level auditory neurons in both specialists such 
as crickets, bats and songbirds and in generalists such 
as guinea pigs, cats, ferrets and non-human primates. 
Sounds with natural statistics seem to be optimally 
represented at multiple levels of the auditory system, 
and stimulation with natural sounds has facilitated 
the characterizations of the stimulus–response func-
tions for neurons that respond poorly to white noise or 
other simple synthetic sounds. Thus, for the systematic 
characterization of stimulus–response function, the use 
of simple synthetic sounds is no longer required and 
should even be discouraged. Conversely, complex syn-
thetic sounds that preserve particular natural statistics 
and that are designed to systematically investigate the 
importance of natural statistics provide an additional 
and powerful insight. Auditory neuroscientists have also 
been able to begin to relate auditory representations to 
specific computations that are needed for recognizing 
and categorizing behaviourally relevant sounds, such as 
communication calls.

These past successes will facilitate the design and 
interpretation of even more naturalistic experiments. In 
the near future, we see five areas of promising scientific 
explorations: non-linear computations for invariant rep-
resentation of communication calls, neurophysiological 
research in humans, auditory scene analysis, social and 
multimodal effects, and investigations of the ensemble 
neural code. First, neural recordings in animals that 
actively communicate with other animals will permit 
both the natural investigation of robust neural represen-
tation for call types and a direct assessment of the rela-
tionship between sound and meaning. Second, advances 
in both invasive133,134 and non-invasive135 neurophysiolog-
ical recordings in humans will further enable researchers 
to make links between animal work and human work. 
Given the wealth of knowledge in speech and music pro-
cessing in humans, these links will greatly help with the 
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challenge of understanding the sound-to-meaning trans-
formations that occur in the auditory system. Third, it 
is still unclear how the auditory system detects, recog-
nizes and classifies behaviourally relevant signals with 
degraded signals and multiple sound sources; neural 
recordings not only with natural sounds but in the natu-
ral environment (that is, in the field) could be performed 
to study how naturally propagated and corrupted signals 
are represented. However, this line of research will also 
require the statistical characterization of natural audi-
tory scenes, which is a particularly challenging problem. 
Fourth, we know that communication behaviour and 
auditory perception depend on the social and emotional 
context and that the physiology of the auditory system 
can be modulated by hormones136. But how the neural 
code for natural sounds is affected by naturalistic stimuli 
from other modalities such as vision or self-motion137 
or by modulatory effects from brain systems involved 
in emotional or stress responses remains in large part 
unexplored. Last, although neurophysiologists are now 
regularly recording the simultaneous activity of many 
neurons, the role of correlated activity in the ensemble 
neural code is still unknown138. One apparently insur-
mountable difficulty for studying the ensemble neural 
code is the explosion in the dimensionality of the prob-
lem as a result of combinatorial effects: the number of 

potential neural activity patterns across neurons becomes 
so large that investigating the potential role of such pat-
terns becomes impossible. For example, if a single neuron 
can reliably represent information with 10 different pat-
terns, the code from two such neurons could represent 
100 patterns, the code from three neurons 1,000 patterns, 
and so forth. For these combinatorial ensemble patterns 
to carry unique information about the stimulus (that is, 
information beyond that obtained from the individual 
responses), the response in one neuron must be corre-
lated with the response in another neuron. A recent sta-
tistical analysis of neural patterns recorded in the visual 
system under natural stimulation showed that ensemble 
neural responses are indeed correlated but very sparse139. 
In other words, natural scenes seemed to be represented 
with very few response patterns from all possible com-
binations that could be possible. These experiments and 
analyses suggest that using natural stimuli might be the 
only way to resolve this dimensionality curse. Although 
this position might be extreme, given the important role 
that natural sounds have already had in understand-
ing the auditory system and that questions in natural 
hearing will require further investigations with natu-
ral sounds, auditory neuroscientists might also be well 
placed to elucidate the nature of the ensemble neural 
code in sensory systems.
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