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Abstract

This survey is intended as a mathematical overview of the monogenic signal theory, its current
developments as well as of its applications to various problems. Several approaches to the concept
of monogenic signal are given, followed by a short discussion on its advantages and drawbacks.
Among those, one highlights the definitions arising from different concepts of Hilbert transforms,
as well as the concept of the monogenic signal as a solution to a boundary value problem. In the
last part, some recent developments in the field are presented.

Introduction

In 1946 Gabor [9] introduced the concept of the (one-dimensional) analytic signal. In signal
processing, the analytic signal (linked to a real-valued function of a real variable) facilitates
many mathematical manipulations since it provides a complex extension of the 1D signal via
the well-known Hilbert transform. The basic idea is that the negative frequency components of
the Fourier transform of a real-valued function are superfluous, due to the Hermitian symmetry
of its spectrum. Hence, these negative frequency components can be discarded with no loss of
information, providing one is willing to deal with a complex-valued function instead. The complex
extension of the signal provided by the Hilbert transform turns out to be a useful tool for extracting
interesting intrinsic features and attributes of the real univariate signal from which it originates.
Mathematically, the analytic signal can be understood as a boundary value of a complex analytic
function. Since in image processing one deals with two-dimensional signals a higher-dimensional
counterpart of the analytic signal is required. Such generalizations were constructed by several
persons in the last 20 years (see Hahn [12], Bülow [2], Larkin et al. [16], Felsberg and Sommer [8]
and others). One of the most interesting of these generalizations is the so-called monogenic signal.
Since it corresponds to a boundary value of a monogenic function it inherits many of its properties,
chief of which is the rotation invariance. Originally it was introduced by two different approaches
at almost the same time. Larkin et al. [16] introduced the so-called spiral phase quadrature filter
while Felsberg and Sommer [8] introduced the monogenic signal, both based on the application of
Riesz transforms as substitutes for the 1D-Hilbert transform. One must also add that Larkin, Bone
and Oldfield, and Felsberg and Sommer worked independently of each other. At the end of their
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paper, Larkin et al. made a note in which they comment on the merits of both approaches and on
the coinage of term monogenic signal by Felsberg and Sommer, after discussions with S. Gull, A.
Lasenby, and C. Doran.

Since then, it has become a useful tool for extracting intrinsically 1D-features from images.
There are in fact several reasons for this. First and foremost, since it is quaternion-valued it provides
a meaningful concept of a phase function, which is divided into two parts: a phase direction and a
phase function. While the phase direction points in the same direction as the gradient the derivative
of the phase function (sometimes also called instantaneous frequency) gives a measure of the
change in said direction. Additionally, the abovementioned rotational invariance allows the so-
called steerability of the quaternionic Hilbert transform.

This survey tries to give an idea about the monogenic signal from a mathematical point of
view. Here, one describes its link to quaternionic and Clifford analysis together with some of its
properties which are important for applications, such as the frame property or the link with the
Radon transform. Furthermore, one will shortly describe in the end modern adaptations.

The literature on monogenic signals is rather vast, particularly from the application point of
view [4–6, 10, 15, 22–24, 30]. This also means that one is unable to cite everything or everybody
from this field a fact for which one apologizes in advance. Furthermore, the text is written with
the abovementioned mathematical connections in mind, which also means that it will be rather
short on how certain object can be interpreted/discussed in image processing, optics, and other
practical fields. One believes that this part is easier to find in the literature and also relatively easy
to grasp when the general scheme is understood. Special thanks to Bernstein, Bouchot, Reinhardt,
and Heise for allowing the use of some of their images from [1].

Hilbert Transform in Higher Dimensions

A Short Review
A fundamental problem in signal processing is the extraction of different features from a given
real modulated signal f .t/ D a.t/ cos �.t/: But it is a well-known fact that the simple extraction
of the amplitude a.t/ is an ill-posed problem in the neighborhood of cos.�.t// D 0: The standard
solution is to extend the real signal to a complex one by means of the Hilbert transform.

Hf .t/ WD 1

�
p:v:

Z C1

�1
f .�/

t � �
d�: (1)

If the amplitude a.t/ of the signal is narrowband when compared to f , then the analytic signal
Z.t/ D .I C iH/f .t/ (written in terms of its real and imaginary parts) can be expressed in polar
coordinates as

Z.t/ D f .t/ C iHf .t/

D a.t/ Œcos.�.t// C i sin.�.t//�

D a.t/ei�.t/

and the estimation of the amplitude becomes a well-posed problem, with the amplitude of the
signal being given by
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a.t/ D jZ.t/j

and its phase

�.t/ D arctan
Hf .t/

f .t/

being the angular part.
Two key points should be remarked. First, notice that

Hf .t/ D h � f .t/; (2)

with the convolution kernel h.t/ WD 1
�t

; or impulse response, being of slow decay. Moreover, for a
signal f 2 L2.R/ under the action of the Fourier transform

Ff .�/ WD
Z C1

�1
f .t/e�i�t dt; � 2 R;

one has that the symbol, or Fourier multiplier,

F.Hf /.�/ D �i sgn.�/Ff .�/ D �i
�

j�jFf .�/; (3)

is an isometry on L2.R/; that is to say,

jHf .�/j D jFf .�/j; � ¤ 0 ) kHf k2 D kf k2 .energy preservation/I
H 2f .t/ D �f .t/ ) H � D �H:

Second, the numeric calculation of the discrete counterpart of Hilbert transform requires a
truncation procedure. The scientific-computing software MATLAB has a routine (hilbert( )
function) for the computation of a band-limited discrete-in-time analytic signal Z D fr C iHfr:

The implementation of this routine uses the fast Fourier transform (FFT) in three steps:

• computation of the FFT of fr Œn�I
• elimination of the coefficients corresponding to the negative frequencies of the signal;
• performing inverse FFT.

On the basis of this routine is the fact that the Fourier transform of the complex signal obtained
via the discrete Hilbert transform, ZŒn� D fr Œn� C i.Hfr/Œn�; vanishes at all negative frequencies.
However, as the Hilbert transform has a discontinuity at the origin, the usage of FFT introduces an
aliasing phenomena due to the Gibbs effect and should be used with care.

One aims at presenting different extensions of the analytical signal to higher dimensions in the
next subsections. To this end one proceeds with the formulation of the analytic signal as a boundary
value problem for an analytic/holomorphic function. It is interesting to remark that engineers
complain that such formulation is useless as it does not provide an explicit working formula for
the Hilbert transform—a reason why one hardly sees it in recent books. Nevertheless, it becomes
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a keystone when one wants to obtain a mathematical framework which allows to understand the
common ground of the generalizations of an analytic signal to higher dimensions and desires to
establish its properties. It should be pointed out that the terminology “Riesz transform” is often
used by the engineers to designate the Hilbert transform.

Formulation of the Analytic Signal as a Boundary Value Problem
The mathematical formulation of the analytic signal as a boundary value problem relays in the
observation that a complex-valued analytic function F D ReF C i ImF in upper half complex
plane CC satisfies the Cauchy–Riemann equations

8<
:

@xReF D @yImF

@yImF D �@xReF

and, hence, it is analytic there. Conversely, given a real-valued function f the associated Riemann–
Hilbert problem with respect to the complex parameter z D x C iy;

8<
:

@zF D 0; z 2 CC;

ReF j
R

D f

(4)

provides an analytic complex-valued function F in CC which has f as its real part when restricted
to the real line. The real part ReF is uniquely obtainable via convolution with the Poisson kernel in
the upper half plane while the imaginary part ImF is recoverable by Cauchy–Riemann equations
so that we have Hf .x/ D ImF.x; 0/ which, is up to a constant, the desired Hilbert transform
of f: However, this formulation does not provide a clear insight on the properties of the Hilbert
transform.

Another solution to problem (4) is given by the Cauchy integral formula

Cf .z/ WD 1

2�i
p:v:

Z C1

�1
f .�/

� � z
d�: (5)

This solution is unique up to a constant (traditionally fixed by assigning a value to F.z0/ at a given
point z0 2 CC) but it has the advantage of further allowing the usage of the machinery of singular
integral operators. If one considers the trace of the Cauchy operator C; i.e. its non-tangential limit
of z 2 CC to x D Re.z/ 2 R

trCf .x/ D lim
CC3z

n:t:!x2�

Cf .z/; � D @CC; (6)

then one arrives at the so-called Plemelj–Sokhotzki formula

trCf D 1

2
.I C iH/f WD P�f: (7)
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Up to the factor 1
2 ; formula (7) corresponds to the initial concept of an analytic signal as Z D

.I C iH/f: Therefore, and based on this description, an analytic signal can be viewed as the
boundary value of an analytic function in the upper half plane CC and, thus, as an element of the
Hardy space H 2.CC/:

Function Spaces
As seen before, the analytic signal can be introduced either via the action of the 1D Hilbert
transform or in the form of a boundary value of a holomorphic function in the upper half plane. In
order to generalize these ideas one has to recall several concepts.

First of all, the 1D Hilbert transform is defined by a convolution with a kernel distribution
and hence, it commutes with translations. Moreover, its L2-continuity is evident since the Fourier
transform converts it into a multiplication operator. This already offers a hint that analytic signals
in higher dimensions should be linked to singular integral operators of convolution type which
enjoy similar properties.

Second of all, the approach via a boundary value problem raises the question of an appropriate
definition of “holomorphy,” as well as a more detailed study of the arising Cauchy integral operator
and the subsequent application of the trace operator to it. In this section a particular attention will be
given to the spaces of functions associated and the respective mapping properties of such operators.

Definition 1. The space Lp.Rn/; 1 � p < 1; is defined as the set of all Lebesgue mensurable
functions f W Rn ! C with finite norm

kf kLp WD
�Z
Rn

jf .x/jpdx

� 1
p

< 1: (8)

The spaces Lp.Rn/ are Banach spaces w.r.t. the above norm (8) and in the particular case of
L2.Rn/ it is a Hilbert space with scalar product

hf; gi WD
Z
Rn

f .x/g.x/dx: (9)

Definition 2. We define the Fourier transform of a function f 2 S.Rn/ as

Ff .�/ D Of .�/ WD
Z
Rn

f .x/e�ih�;xidx; � 2 Rn: (10)

The Fourier transform is a continuous and linear bijection on S; with continuous inverse

F�1u.x/ D Lu.x/ WD 1

.2�/n

Z
Rn

u.�/eih�;xid�; x 2 Rn:

The extension of the Fourier transform to S 0 is done by duality, as usual.
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Theorem 1. Let f; g 2 L2.Rn/: Then, it holds

(i) (Parseval formula) hf; gi D h Of ; OgiI
(ii) (Plancherel identity) kf kL2 D k Of kL2I

(iii) Convolution 1f � g D Of � OgI
(iv) b@xj

f .�/ D i�j
Of .�/; z@�j

u.x/ D �ixj Lu.x/:

Proof of the above results can be found in the literature, for example, in [20]. Also, the Plancherel
identity implies that the Fourier transform is an isometry on L2.Rn/:

Definition 3 ([25]). The Hardy space H p.RnC1
C /; 1 � p < 1; is defined as the space of vector

valued functions f W RnC1
C ! R

nC1, f D .f0; f1; : : : ; fn/; which satisfy the following Riesz
system

@x0f0 D
nX

j D1

@xj
fj ; @xj

fk D @xk
fj ; for j ¤ k; j; k D 1; : : : ; n; (11)

in the upper half plane RnC1
C D f.x0; x/; x0 > 0; x 2 Rng and such that

kf kH p WD sup
x0>0

Z
Rn

jf .x0; x/jpdx < 1: (12)

Hence, H p.RnC1
C / can be also viewed as the space of the boundary values on the real axis of those

vectorial functions satisfying to the Riesz system (11) and have bounded Lp-norm.
Based on these concepts one is going now to take a look at possible higher-dimensional

generalizations of the analytic signal.

Hypercomplex Signals

As one knows an analytic signal is a boundary value of an analytic or holomorphic function.
Any higher-dimensional extension should reflect that property. There are two accepted ways of
generalizing the concept of holomorphic functions to higher dimensions. One belongs to the theory
of several complex variables and the other is the focus of the Clifford analysis. As one will see,
both provide useful generalizations of the analytic signal viewed as an elements of a Hardy space.

A Riemann–Hilbert Problem in C2
C and the Partial Hilbert Transform

In the “upper half” space

C
2
C WD CC � CC D f.z1; z2/ 2 C2 W zj D xj C iyj ; yj � 0; j D 1; 2g;

consider the following Riemann–Hilbert problem
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8̂
ˆ̂̂<
ˆ̂̂̂
:

@z1F D 0; on C2C

@z2F D 0; on C2C

ReF D f; in R2 D @C2C:

(13)

At this stage, one must point out that the domain is a poly-domain in the sense of several complex
variables. Also, R2 corresponds to the Shilov boundary of the poly-domain C2C: The solution can
be expressed in the form of a Cauchy integral (c.f. [7] or [19])

Cf .z1; z2/ D F.z1; z2/ D 1

4�2
p:v:

Z
R2

f .�1; �2/

.�1 � z1/.�2 � z2/
d�1d�2: (14)

In this case the corresponding Plemelj–Sokhotzki formula is

trCf .x1; x2/ D trF.x1; x2/ (15)

D 1

4

�
f .x1; x2/ � 1

�2
p:v:

Z
R2

f .�1; �2/

.�1 � x1/.�2 � x2/
d�1d�2

Ci
1

�2

�
p:v:

Z
R

f .�1; �2/

�1 � x1
d�1 C p:v:

Z
R

f .�1; �2/

�2 � x2
d�2

��
(16)

which, up to the factor 1=4 D .1=2/2; corresponds to the definition of an analytic signal in [11]. A
close inspection on (16) reveals a complex-valued Hilbert transform in which its real part, or total
Hilbert transform, is given by

H3f .x1; x2/ D 1

�2
p:v:

Z
R2

f .�1; �2/

.�1 � x1/.�2 � x2/
d�1d�2

while the imaginary part is decomposed into the sum of two partial Hilbert transforms

H1f .x1; �/ D 1

�2
p:v:

Z C1

�1
f .�1; �/
�1 � x1

d�1; H2f .�; x2/ D 1

�2
p:v:

Z C1

�1
f .�; �2/

�2 � x2
d�2:

Notice that each partial Hilbert transform corresponds (again, up to a constant factor) to a classic
1D Hilbert transform for f .x1; �/; f .�; x2/; respectively. In Fig. 1 one observes the action of the
two partial and the total Hilbert transforms onto the checkerboard image.

Fig. 1 Checkerboard image, together with its partial, and its total Hilbert transforms

Page 7 of 22



Operator Theory
DOI 10.1007/978-3-0348-0692-3_14-1
© Springer Basel 2015

The behavior of the Plemelj–Sokhotzki formula (16) is more obvious in the Fourier domain. In
this case the Fourier symbols of each Hilbert transform are independent of each other and one gets

F.trCf /.�1; �2/ D .1 C i sgn.�1//.1 C i sgn.�2//Ff .�1; �2/

D Œ1 � sgn.�1/sgn.�2/ C i sgn.�1/ C i sgn.�2/�Ff .�1; �2/:

However, such complex Hilbert transform as constructed by Hahn has the disadvantage of
making it difficult to distinguish between directions. Based on such considerations, Bülow
developed a similar approach via quaternions (c.f. [2]) taking into account that both imaginary units
can be understood as elements of the quaternionic basis with multiplication rules ij D �ji D k;

with variables

z1 D x1 C iy1; z2 D x2 C jy2:

Then the above Riemann–Hilbert problem (14) can be rewritten as

8̂
ˆ̂̂<
ˆ̂̂̂
:

@z1F D 0; on C2C

F @z2 D 0; on C2C

ReF D f in R2;

(17)

with emphasis in the fact that the second equation should be understood as @z2 being applied from
the right (due to the non-commutative nature of the quaternions).

Again, for an arbitrary f 2 L2.R2/ the solution of (17) is given in terms of a Cauchy integral

C�f .z1; z2/ WD F.z1; z2/ D 1

4�2

Z
R2

f .�1; �2/

.�1 � z1/.�2 � z2/
d�1d�2: (18)

so that one gets the Plemelj–Sokhotzki formula

trC�f .x1; x2/ WD trF.x1; x2/

WD P�;if .x1; x2/P�;j

D 1

4
.I C iH1/f .x1; x2/.I C jH2/

D 1

4
.f C iH1f C jH2f C kH3f /.x1; x2/;

where H3 D H1H2: From this representation one can separate the previous partial Hilbert
transforms of Hahn. Although trC�f is now a quaternionic-valued function, it still corresponds
to a boundary value of a holomorphic function in two variables with an additional advantage of
allowing to distinguish between the action of the different Hilbert transforms.

For the representation in the phase-space one has to keep in mind that one has two Fourier
transforms: one with respect to the complex plane generated by i; and the second with respect to
the complex plane generated by j: Taking into account the non-commutative nature of quaternions
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(ij D �ji D k) one arrives at the so-called quaternionic Fourier transform [3].

QFf .�1; �2/ D
Z
R2

e�ix1�1f .x1; x2/e
�jx2�2dx1dx2; (19)

with a correspondent representation in terms of Fourier symbols

QF.trCf / D Œ1 C i sgn.�1/�QFf Œ1 C j sgn.�2/�: (20)

The Correspondent Riemann–Hilbert Problem in Clifford Analysis
Another approach to higher dimensions is the so-called Clifford analysis. Clifford analysis is
usually regarded as a generalization to higher dimensions of the theory of holomorphic functions in
the complex plane. But, more important, the structure of a Clifford algebra is such that it preserves
the intrinsic geometric structure of the underlying Euclidean space. In the previous approaches, the
Clifford structure was already present but it was restricted to a para-vector structure and, thus, its
full potential remained unused.

Basic Concepts in Clifford Analysis

For n 2 N; let us consider the vector space Rn spanned by an orthonormal basis fej ; j D 1; : : : ; ng:
The Clifford algebra C`0;n is the free real algebra constructed over Rn generated by the anti-
commutation relationship

ej ek C ekej D �2ıjke0; j; k D 1; : : : ; n;

where e0 is the identity of C`0;n; and ıij is the Kronecker symbol. A basis for C`0;n is given by

e; D e0; eA D efj1;:::;jsg D ej1 � � � ejs
; 1 6 j1 < � � � < js 6 n:

Hence, each element x 2 C`0;n may be written in the form x D P
A xAeA; with xA 2 R:

One defines the Clifford conjugation as the automorphism � W C`0;n ! C`0;n given by

x D
X

A

xAeA 7! x D
X

A

xAeA;

where

e0 D e0; ej D �ej ; j D 1; � � � ; n; ; eAeB D eBeA:

Definition 4 (Inner Products). Let x D P
A xAeA; y D P

B yBeB 2 C`0;n: We define

(i) the scalar inner product .�; �/ on C`0;n as
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.x; y/ WD
X

A

xAyA: (21)

This inner product induces a norm k � k in C`0;n; where

kxk2 WD
X

A

x2
A:

(ii) the Clifford-valued inner product h�; �i as

hx; yi WD xy: (22)

Obviously, the scalar part of (22) coincides with (21), that is

Schx; yi D .x; y/; x; y 2 C`0;n:

Moreover, if x D x0 C Pn
j D1 xj ej , then

kxk2 D xx D xx D
nX

j D0

x2
j D hx; xi;

corresponds to the Euclidean norm in RnC1: Furthermore, x is invertible with inverse x�1 D x
kxk2 :

The even subalgebra C`C
0;n is the subalgebra of all x 2 C`0;n of the form x D P

A;jAj even xAeA:

x 2 C`0;n may be written in the form x D P
A xAeA: The quaternionic algebra H is viewed as

being isomorphic to C`C
0;3; by the means of the relations

i D e1e2; j D e2e3; k D �e1e3:

In this case one also has for q D x0 C x1i C x2j C x3k 2 H that

q D x0 � .x1i C x2j C x3k/; kqk2 D
3X

j D0

x2
j ; q�1 D q

kqk2
:

Functions with values in C`0;n are defined as

f W � � Rn ! C`0;n; x 7! f .x/ D
X

A

fA.x/eA;

where fA are real valued. Properties such as continuity, differentiability, and so on are ascribed to
f by imposing that all its real-valued components fA fulfill such property. For f and g one defines
the scalar inner product

.f; g/ WD
Z

�

X
A

fA.x/gA.x/dx (23)
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and the Clifford inner product

hf; gi D
Z

�

f .x/g.x/dx:

For para-vector-valued functions one has .f; g/ D Schf; gi. The above defined inner product
makes L2.R

n; C`0;n/ a right Clifford Hilbert module with induced norm
R

�
kf .x/k2dx

The Dirac operator is defined as the first order differential operator

Df D
nX

j D1

@xj
ej f

which factorizes the n dimensional Laplacian 	n D Pn
j D1 @2

xj
in the sense that

	nf D D2f:

A differentiable function f W � � Rn ! C`0;n is said left-monogenic whenever Df D 0; on �:

This subsection ends with a last remark. When the signal is a para-vector, that is,

R
nC1 3 .x0; x/ 7! f .x0; x/ D f0.x0; x/ C f1.x0; x/e1 C � � � C fn.x0; x/en;

then the Riesz system (11) corresponds to

.@x0 C D/f D 0;

where @x0 C D is called the generalized Cauchy–Riemann operator.

The Riemann–Hilbert Problem in the Upper Half Plane

The correspondent Riemann–Hilbert problem for the Dirac operator can be stated in the following
form. Denote by R3C the upper half space

R
3
C WD fx 2 R3 W x3 > 0g:

Given f 2 L2.R2/; determine F W R3C ! C`0;3 such that

8<
:

DF D 0 on R3C; .monogenicity/

ReF D f in R2:

(24)

The solution to this problem follows the same lines as before, namely, it relies upon the theory of
Calderón, Zygmund, Carleson et al. Let us consider the Cauchy integral operator C� W L2.R2/ !
L2.R2/; given by
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C�f .x1; x2/ D � 1

4�

Z
R2

x � y

kx � yk3
.�e3/f .x1; x2/dx1dx2; .x1; x2/ 2 R2: (25)

By applying the trace operator to (25) one generates the singular integral S� as

trC�f .
/ D 1

2
.I C S�/f .
/

D 1

2

�
f .
1; 
2/ C 1

2�

Z
R2

e1.x1 � 
1/ C e2.x2 � 
2/

kx � 
k3
e3f .x1; x2/dx1dx2

�
: (26)

Remark that for an arbitrary f W R2 ! C`0;3 the singular integral operator S�f exists for all points
in the sense of the Cauchy principal value and that it can be continuously extended to the whole of
L2.R2/: Moreover, it is a continuous operator in L2.R

2/ (c.f. [18]).
The connection between (26) and quaternions becomes obvious when one uses the isomorphism

between C lC
0;3 and H: In fact, using the identification i D e1e2 and j D e2e3 we get

trC�f .
/ D 1

2

�
f .
1; 
2/ C 1

2�

Z
R2

i.x1 � 
1/ C j.x2 � 
2/

kx � 
k3
f .x1; x2/dx1dx2

�
; (27)

which corresponds (again, up to the factor 1=2) to the concept of monogenic signal (c.f. [8, 16]).

Enters the Riesz Transform into the Picture

In [16] one finds a brief historical survey on the development and applications of the analytic
signal, as well as an account of some of the early attempts of its extension to higher dimensions.
Shortly before, Bülow and Sommer had introduced a hyper-complex signal representation (see [3])
in which the authors combined the approach of Hahn (c.f. the previous section) and successfully
constructed a hypercomplex signal representing the full symmetry. However, and although that
representation clearly identified the Hilbert transform contribution to the signal, it reveals itself to
be depending on the directionality. In the work of Larkin et al. the authors presented the concept
of a spiral phase spectral (Fourier) operator and of an orientational phase spatial operator both
of which combined into a meaningful 2D Hilbert transform. This provided direct solutions to the
problem of closed fringe pattern demodulation but, more important, it was recognized to be linked
to Riesz transforms in classical harmonic analysis. In the next subsection one recalls properties of
the Riesz transforms and their adaptation to Clifford-valued functions.

Clifford-Valued Riesz Transforms
The definition of a Clifford-valued Riesz transform relies on the Riesz transforms (acting on real-
valued functions).

Definition 5 ([25]). We define the Riesz transforms as Rj W L2.Rn/ ! L2.Rn/; where
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Fig. 2 Checkboard image, together with its first and second components of the Riesz transform

u 7! Rj u.
/ D ��.nC1
2 /

�
nC1

2

Z
Rn

xj � 
j

kx � 
knC1
u.x/dx; j D 1; : : : ; n: (28)

Then, the Clifford-valued Hilbert transform is given by

R W L2.Rn; C`0;n/ ! L2.Rn; C`0;n/; f D
X

A

fAeA 7! Rf D
nX

j D1

ej eA.Rj fA/: (29)

The symbol of a Riesz transform is

F.Rj f /.�/ D i
�j

k�kFf .�/; j D 1; : : : ; n:

This already hints Riesz transforms as an indicator for directionality in the Fourier plane. In
other words, Riesz transforms behave similar to partial derivatives. In Fig. 2 one observes the
Riesz transforms, that is, the first and second components of the Hilbert transform, acting on the
checkerboard image.

Lemma 1. For f 2 L2.Rn/ it holds

(i) F.@xj
f / D F.Rj .�	/1=2/Ff I

(ii)
Pn

j D1 R2
j D �Id I

(iii) (Plancherel identity) k Pn

j D1 R2
j f kL2 D kf kL2:

Proof.

(i) F.@xj
f / D i�jFf D i�j

k�kk�kFf D F.Rj .�	/1=2/Ff; where .�	/1=2 WD F�1.k�k/

denotes the fractional Laplacian.

(ii) F
�Pn

j D1 R2
j f

�
D Pn

j D1

�
i�j

k�k
�2

Ff D �Ff:

(iii) immediate, due to .i i/:

ut
One of the well-known properties of the one-dimensional Hilbert transform is the so-called

Bedrosian identity. In its classic form we have that if f; g 2 L2.R/ with supp. Of / � Œa; b� and
supp. Og/ � R n Œa; b� then H.fg/ D fHg. Unfortunately, the Bedrosian identity is something
typically one-dimensional and does not hold in case for Riesz transforms. The closest to a
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Bedrosian identity one is aware of was proven in [13] via the consideration of an additional
operator which corresponds to integration over hyperplanes passing through the origin.

The Monogenic Signal
In 2001 two new approaches to analytic signals in higher dimensions appeared. Felsberg and
Sommer proposed a quaternionic Hilbert transform,

f D f .x1; x2/ 7! HHf .x1; x2/ D iR1f .x1; x2/ C jR2f .x1; x2/;

based on the directionality of the Riesz transforms.

Definition 6 ([8]). Let f 2 L2.R2/: Then the monogenic signal fM is defined as

fM D f C HHf D .Id C iR1 C jR2/f 2 L2.R2/:

Note that this embeds the 2D signal f into R3: Moreover, remark that under the action of the
2D Fourier transform (the complex imaginary unit i being scalar and, hence, commuting with
quaternions) we get

OfM D Œ.Id C iR1 C jR2/f �O
D

�
1 C i

i�1 C j�2

k�k
�

Of ; � D .�1; �2/; (30)

thus generating the transfer function

OHH.�/ D i
i�1 C j�2

k�k ; (31)

as the symbol of the quaternionic Hilbert transform in the Fourier domain. As a final remark, note
that Fourier symbol of the monogenic signal (viewed as a transform) coincides with the spectral
idempotents

�˙.�/ WD 1

2

�
e0 ˙ i

�

k�k
�

;

introduced by McIntosh in [17]. These elements are projectors in the Clifford algebra satisfying to

Œ�C.�/�2 D �C.�/; Œ��.�/�2 D ��.�/; �C.�/��.�/ D ��.�/�C.�/ D 0:

As a consequence, the monogenic signal, viewed as an operator, is a projector.
Almost in parallel, Larkin, Bone, and Oldfield proposed a spiral phase quadrature transform,

based on a complex Riesz transform in each real variable in order to obtain a steerable, or
directional, Hilbert transform. In other words, the complex Riesz transform is given by
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Rf .x; y/ WD R1f .x; y/ C iR2f .x; y/

D 1

2�

Z
R2

.x0 � x/ C i.y0 � y/

k.x; y/ � .x0; y0/k3
f .x0; y0/dx0dy0:

The resulting complex Riesz transform is a unitary mapping from L2.R2/ into itself, with symbol

F.Rf /.�1; �2/ D i�1 � �2

k.�1; �2/kFf

while the monogenic signal is defined as the vector fM D .f; Rf / D .f; R1f; R2f /: Currently,
this version is used by M. Unser and his co-authors in a series of papers under the name of Riesz–
Laplace transform.

However, one must remark that both approaches generate a para-vector (scalar plus vector)-
valued function and are equivalent. If one writes the monogenic signal as

fM D .Id C iR1 C jR2/f D f C i.R1 � ijR2f /

and identify the imaginary unit i with the unit �ij, we obtain the definition of Larkin, Bone, and
Oldfield. The same can be done the other way around by introducing a new imaginary unit i such
that

.f; Rf / D f C iRf

and identifying ii with the imaginary unit j.

Properties of the Monogenic Signal
The main idea is to present the monogenic signal as the boundary value of a certain “analytic”
function. For that, let us recall the trace operator of the Cauchy integral operator (27) applied to a
signal f 2 L2.R2/;

trC�f .x1; x2/ D 1

2

�
f .x1; x2/ C 1

2�

Z
R2

i.
1 � x1/ C j.
2 � x2/

k
 � xk3
f .
1; 
2/d
1d
2

�
:

Theorem 2. A function u D u0 C iu1 C ju2 2 L2.R2/ belongs to the Hardy space H 2.R3C/ iff

trC�u D u;

with trC� being the operator (27).
Moreover, C�u is then monogenic in the upper half space R3C; that is, it satisfies there

.@x0 C D/C�u D 0;

the 3D Riesz system (11).
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It should be remarked that under the previous identification ofHwith C`C
0;3 the monogenic signal

is a spinor-valued function. Furthermore, one knows that the Poisson kernel

Px0 WD x0

k.x0; x1; x2/k3

is an approximate identity, i.e. F D Px0 � f implies 	F D 0 and trF D f: Since Px0 is the real
part of the Cauchy kernel, its harmonic conjugate

Q WD ix1 C jx2

k.x0; x1; x2/k3
D iPx1 C jPx2

gives a new characterization for the kernel of the quaternionic Hilbert transform. In fact, one has
that

trCf D trPx0 � f C itrPx1 � f C jtrPx2 � f D fM ;

for all f 2 L2.R2/:

The main goal of the monogenic signal is to obtain its decomposition into a phase and an
amplitude.

Theorem 3. Let f 2 L2.R2/; and let fM be its associated monogenic signal

fM D f C HHf D f C iR1f C jR2f:

Then the monogenic signal admits the following polar representation

fM D kfM k
�

f

kfM k C HHf

kHHf k
kHHf k
kfM k

�
; f ¤0;

D A.cos � C ! sin �/

D Ae!�;

where A D kfM k � 0 denotes the local amplitude of the monogenic signal, � D arccos f

kfM k 2
Œ0; �� denotes its local phase, and ! D HHf

kHHf k 2 S1 denotes its local phase direction.

Let us remind that there exists a link between the gradient of the signal and its quaternionic
Hilbert transform. This can easily be seen via the symbol of the quaternionic Hilbert transform.

Lemma 2. Let f 2 L2.R2/: Then

gradf D HH.�	/1=2f:

Proof. In fact, by Lemma 1(i) we have

gradf D .i@x1 C j@x2/f D .iR1 C jR2/.�	/1=2f D HH.�	/1=2f;
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where the first equality is to be understood as an equality between a vector in .x; y/ 2 R2 and a
quaternion of type ix C jy: ut

Since .�	/1=2 is a scalar operator this means that the gradient of f and the quaternionic Hilbert
transform HH point in the same direction.

Another important point of the monogenic signal is its rotational invariance. The rotational
covariance of monogenic functions translates to the following property of our quaternionic Hilbert
transform

HHŒ�sf �.sys/ D sHHŒf �s; s 2 Spin.2/;

where �s denotes the rotation induced by s 2 Spin.2/; that is, �sf .x/ D f .sxs/: This property is
usually known as steerability of the quaternionic Hilbert transform in applications.

A principal practical problem is how to use the monogenic signal on an image. Usually, one
considers first a decomposition of the image in terms of a frame. Just let us recall the definition of
a quaternionic frame:

Definition 7. fgkg is a frame for L2.R2IH/ if there exist real constants A; B > 0 such that

Akf k2
L2 �

X
k2Z2

khf; gkik2 � Bkf k2
L2; 8f 2 L2.R2IH/: (32)

Frames are a generalization of the concept of a basis in the sense that although their elements
span the space in general they are not linearly independent, but allow a larger redundancy. In the
case of the monogenic signal we have the following observation.

Theorem 4 ([13]). Let fukg be a frame for L2.R2;R/ with frame bounds 0 < A � B < 1. Then
the following holds

• fukg is a frame for L2.R2;H/ with the same frame bounds
• fHHukg is a frame for L2.R2;H/ with the same frame bounds

In particular, one can start with real-valued frames for the original signal which are rotationally
invariant. From the above theorem one knows that the application of the quaternionic Hilbert
transform will yield rotationally invariant frames for the monogenic signal. This idea was applied
in [13, 14] to construct monogenic wavelets and in [26] to obtain monogenic curvelets. In both
cases the term monogenic is applied to further clarify that the resulting frame will be a frame for
the monogenic Hardy space H 2.R2;H/. In the case of curvelets it allows an easier detection of
edges as elements of the wave front set [26]. The monogenic wavelet transform as the wavelet
transform over H 2.R2;H/ was also explored in papers by Unser and his co-authors [28, 29] as
Riesz–Laplace Wavelet Transform.

The principal application of the monogenic signal is the detection of intrinsically one-
dimensional signals. One of the principal examples of such a signal is given by the real part of
the so-called plane wave function

u.x/ D ei.<x;!>Ct /
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which is constant along lines perpendicular to !; and has its phase function given by

i.< x; ! > Ct /:

There is a close connection between plane wave functions and monogenic functions [21]. It also
leads to the connection with the Radon transform. Consider the classic Radon transform

Rf .!; t/ D
Z
Rn

f .ı.h!; xi C t //dx

Since an intrinsically 1D-signal is in fact the real part of a plane wave function one has

Ru.!; t/ D c; c 2 R

for all directions ! D .cos �; sin �/ different from the orientation of the plane wave. Furthermore,
one can obtain the Hilbert transform in the case of the monogenic signal via the following well-
known formula

.HHf /.x/ D R�1.!H.Rf .!; �//.t//.x/;

where H1 denotes the one-dimensional Hilbert transform. Using this link instead of the usual study
via the phase of a monogenic signal in time domain one can also discuss its properties in Radon
space [33].

Further Developments

Higher-Order Riesz Transforms
In [27] the authors proposed to use higher-order Riesz transforms. The basic idea behind is that
Riesz transforms Rk form an algebra of linear bounded operators, invariant under translation and
dilation over Lp.R2/. This algebra is isomorphic to the algebra of polynomials of two variables. A
higher-order Riesz transform is then defined as any homogeneous polynomial of degree l , i.e.

P˛.Rk/ D
X
j˛jDl

R˛1
1 R˛2

2 ˛1;˛2:

Specific examples are R1R2, R2
1, R2

2 which can be linked to the Hessian of f , i.e.

Hf D
�

@2
1f @1@2f

@1@2f @2
1f

�
D

�
R2

1	f R1R2	f

R1R2	f R2
1	f

�
:

One can observe that the Hessian corresponds to a matrix operator given by second-order Riesz
transforms up to the action of the Laplacian, which is a symmetric negative definite scalar operator.
Considering the Clifford algebra C`0;3 (keep in mind that H 	 C`C

0;3 by disregarding the scalar
operator the above Hessian also resembles the even part of the so-called monogenic curvature
tensor [34]
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Teven.f / D
�

R2
1f �R1R2fe12

R1R2fe12 R2
2f

�

while the odd part is given by

Todd.f / D Teven.R1f C R2fe12/ D
�

.R3
1 C R2

1R2e12/f �R1.R2R1 C R2
2e12/fe12

R1.R2R1 C R2
2e12/fe12 .R2

2R1 C R3
2e12/f

�
:

For the application and interpretation of the monogenic curvature tensor we refer to [33, 34].
One of the drawbacks is that in general higher-order Riesz transforms are not invariant

under rotations. This leads in [13] to the consideration of higher-order Riesz transforms based
on spherical harmonics Y l

k . Taking into account that fY l
k g spans the space of homogeneous

polynomials of degree k which are invariant under rotations we can define the so-called higher-
order hypercomplex Riesz transform

Rkf D
dX

lD0

elY
l

k .R1; R2/;

where el is an orthonormal basis of Rd which generates the Clifford algebra C`0;d [13].
The function fM D f C Rkf is a boundary value of a function F which belongs to the kernel

of the higher-order Dirac operator

D D @k
0 C

dX
lD0

elY
l

k .@1; @2/:

For an interpretation of the resulting phase we refer to [13]

Conformal Monogenic Signals
In 2008 Wietzke and Sommer [31] introduced the concept of the so-called conformal monogenic
signal to introduce curvature terms into the monogenic signal. One of the key properties is the
link between the classic Radon transform and the Riesz transforms which allows the detection of
intrinsically 1D-signal like plane waves. To detect other features, such as curvature or intrinsically
2D-features, one can also start from a modification of the Radon transform, such as the circular
Radon transform. The basic idea of the conformal monogenic signal is to map the signal to the
sphere S2 conformally:

c.x; y; z/ D
�

f .C �1.x; y; z//; x2 C y2 C .z � 1
2/2 D 1

4
0; else

;

where C �1.x; y; z/ WD 1
1�z.x; y/; and to apply the 3D-Riesz transforms to c.

This results in a quaternion-valued signal with energy jjc.0; s/jj, phase �.0; s/ D
atan2.

p
.R1c/2 C .R2c/2 C .R3c/2; c/, and direction �.0; s/ D atan2.R2c; R1c/; where
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c.�; s/ denotes the evaluation of c restricted to the plane orthogonal to s 2 S2 and passing through
the origin. Moreover, it allows the consideration of a monogenic curvature

�.0; s/ D R3cp
.R1c/2 C .R2c/2

:

More details can be found in [31, 32].

Conclusion

Although rather recent, the theory of monogenic signals is steadily imposing itself as a major tool
for analysis and mathematical manipulation of signals. Their range of applications is vast, ranging
from image processing to demodulation of AM-FM signals. Their success also stems from its close
connection with monogenic functions from which they inherit several important properties such as
rotational invariance. Furthermore, being para-vector-valued the monogenic signals allow for an
easy interpretation in terms of a phase decomposition in terms of a direction and a phase value.
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