
Operator Theory
DOI 10.1007/978-3-0348-0692-3_18-1
© Springer Basel 2015

Discrete Clifford Analysis

Uwe Kaehler�a and Frank Sommenb

aDepartment of Mathematics, CIDMA - Center for Research and Development in Mathematics and Applications,
University of Aveiro, Aveiro, Portugal
bDepartment of Mathematical Analysis, University of Ghent, Gent, The Netherlands

Abstract

This survey is intended as an overview of discrete Clifford analysis and its current developments.
Since in the discrete case one has to replace the partial derivative with two difference operators,
backward and forward partial difference, one needs to modify the main tools for a development
of a discrete function theory, such as the replacement of a real Clifford algebra by a complexified
Clifford algebra or of the classic Weyl relations by so-called S-Weyl relations. The main results,
like Cauchy integral formula, Fischer decomposition, CK-extension, and Taylor series, will be
derived. To give a better idea of the differences between the discrete and continuous case, this
chapter contains the problem of discrete Hardy spaces as well as some discrete objects which
do not have an equivalent object in continuous Clifford analysis, such as the CK-extension of a
discrete Delta function.

Introduction

In the last two decades one can observe an increased interest in the analysis of discrete structures.
On the one hand the fact that increased computational power is nowadays available to everybody
and that computers can essentially work only with discrete values sparked an increased interest
in working with discrete structures. This is true even for persons who are originally unrelated
to the field. An outstanding example can be seen in the change of the philosophy of the Finite
Element Method. From the classical point of view of being essentially a method for discretization
of partial differential equations via a variational formulation the modern approach lifts the problem
and, therefore, the finite element modeling directly on to the mesh, resulting in the so-called Finite
Element Exterior Calculus. This means that one requires discrete structures which are equivalent to
the usual continuous structures. On the other hand, the increased computational power also means
that problems in physics which are traditionally modeled by means of continuous analysis are
more and more directly studied on the discrete level, the principal example being the Ising model
from statistical physics as opposed to the continuous Heisenberg model. But here one can observe
also the limitations of this change which is due to a lack of “understanding.” Most of the recent
advances on the 2D-Ising model by Smirnov and his collaborators are based on a clever interaction
between classic and discrete complex analysis. This is possible since discrete complex analysis
is under (more or less) constant development since the forties. Unfortunately, the same cannot be
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said about the higher-dimensional case, the 3D-Ising model being one of the major challenges
in modern Mathematics. One of the problems one faces is that most attempts to construct a
higher-dimensional analogue of discrete complex analysis are rather recent. For instance, the
construction of discrete Dirac operators (as generalizations of discrete Cauchy–Riemann operators)
goes back to Becher and Joos in 1982 [1], as earliest reference. Modern constructions using
a Hermite-type basis appeared only during the last 10 years, Faustino/Kähler/Sommen [15],
Kanamori/Kawamoto [22], Forgy/Schreiber [16], Vaz [27] being the principal references. Discrete
Clifford analysis itself started only in the end of the 1980s by combining Rjabenkij’s “method of
difference potentials” [24] with ideas from complex function theory by Gürlebeck and Sprößig.
In their work [18] Gürlebeck and Sprößig construct a function theoretical approach to discrete
Clifford analysis for a Dirac operator which only contained forward differences. This is a major
drawback since such a Dirac operator does not factorize the Star-Laplacian. Afterwards this
work was extended to a version of a “discrete Boundary Element Method” by Güerlebeck and
Hommel (c.f. [19, 20]), but also first steps were made in the direction of using a Dirac operator
which factorizes the Star-Laplacian by constructing such a Dirac operator in R3, its fundamental
solution, and the corresponding discrete integral operators [3,14,17]. The construction of a discrete
Clifford analysis from the classical point of view, i.e. studying polynomial solutions, Fischer
decompositions, Taylor series, etc. started only in 2006 with the paper of Faustino and Kähler [12],
but again for the case of a Dirac operator with only forward or only backward difference operators.
The reason is that while forward and backward difference operators are commuting with each other,
their corresponding vector variable operators do not. This could only be overcome by an idea of
Sommen [7] of using the so-called S-Weyl relations. Afterwards, this theory was quickly developed
from several angles (see, for instance, the Ph.D. thesis of Faustino [10] or the Ph.D. thesis of de
Ridder [6] and references [2, 5, 9, 13] as well as references therein). Here, one can find a short
overview of this exciting new field. The principal ingredients for a discrete Clifford analysis will
be stated, such as Cauchy integral formula, Fischer decomposition, Taylor expansion, and discrete
homogeneous monogenic polynomials. Furthermore, a short view on discrete boundary values will
be given. All this should give a nice overview for anybody interested in this field and present him
with the right tools for its application.

Complex Picture

Discrete Complex Analysis is nowadays a well-established field with a vast literature. For
references, one can recommend the expository papers [23, 25]. In fact Discrete Complex Analysis
goes back to the work of Kirchhoff on electric circuits in 1845 whose famous rules are just
stating that the electric current is a discrete harmonic function at each node. For the first time
discrete analytic functions are properly defined by Isaacs [21] in 1941. He introduced two different
definitions based on different discretizations of the Cauchy–Riemann equations. His “monodiffric
functions of the first kind” satisfy F.z C i�/ � F.z/ D i.F.z C �/ � F.z// while his “monodiffric
functions of the second kind” fulfill the equation F.zCi�/�F.zC�/ D i.F.zC�.1Ci //�F.z//.
Geometrically speaking, in the first definition the differences are taken along the axis of Zn while
in the second the differences are taken along diagonals of the lattice Zn, i.e. a kind of cross ratio
in each square. Especially, the last definition is used nowadays, for instance, for certain types
of Riemann boundary value problems which link with conformal mappings [25]. Later on other
definitions of discrete analytic functions appeared, including one based on circle packings [26]
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which is closely linked to conformal mappings. But this close link represents a problem for
generalization to higher dimensions. It is a well-known fact that the only conformal mappings
in higher dimensions are Möbius transformations which is a too restrictive class for a higher-
dimensional function theory. This also means that any type of definition of discrete analytic
functions which is linked to conformality will be difficult to generalize. As one can observe
from these remarks discrete Clifford analysis as a higher-dimensional function theory is of a quite
different nature.

Discrete Dirac Operators from Finite Difference Operators

There exists a general approach to construct discrete Dirac operators via discrete differential forms.
Details can be found in [11, 16, 22]. Since in this survey one considers the case of the grid Zn it is
enough to follow the approach in [15] where the authors constructed a discrete Dirac operator by
using an algebraic splitting ek D eC

k C e�
k .

The standard method of constructing a Dirac operator in classic Clifford analysis is to consider
a basis e1; : : : ; en of Rn. By introducing a multiplication which satisfies the Euclidean flat metric,
i.e. ej ek C ekej D �2ıjk one extends Rn to its Clifford algebra C`0;n. Now, due to the anti-
commutativity one gets for the operator D D Pn

kD1 ek@xk

D2 D
 

nX

kD1

ek@xk

! 
nX

lD1

el@xl

!

D
nX

kD1

e2
k@2

xk
D ��:

If one tries the same idea for a discrete Dirac operator one is faced with one principal problem.
While there is only one partial derivative in each space direction there are two (forward and
backward) difference operators, i.e. the operators @˙k defined by

@˙kf D � .f .m/ � f .m ˙ ek// : (1)

These forward/backward differences @˙i satisfy the following product rules

@˙k.fg/ D f .@˙kg/ C .@˙kf /.T˙kg/; (2)

@˙k.fg/ D .T˙kf /.@˙kg/ C .@˙kf /g; (3)

where T˙ku.m/ D u.m ˙ ek/ denotes the translation operator in spatial direction ˙ek . The most
common (and natural) discrete analogue to the Laplacian on the grid Zn is the so-called star-
Laplacian, i.e. the operator given by

�h D
nX

kD1

@Ck@�k

which corresponds to the usual form of the Laplacian on a grid
P

v2N.m/ u.m/ � u.v/, where the
sum is taken over all neighbors of m on the grid. In this form the Laplacian already appears in
the famous Kirchhoff circuit laws for electrical circuits. Now, if one considers a discrete Dirac
operator containing only forward or backward differences one does not get a factorization of
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the star-Laplacian, at most one obtains a factorization of the cross-Laplacian [15]. One idea to
overcome this problem is to do an algebraic splitting of the basis elements ek D eC

k C e�
k . This

new basis should generate again a Clifford algebra, but of dimension 2m with a suitable metric.
That means that the basis should satisfy

1. ei̇ ej̇ C ej̇ ei̇ D �2gi̇j

2. eC
i e�

j C e�
j eC

i D �2Mij

with two symmetric matrices .gC
ij /; .g�

ij / and one general matrix .Mij /. Since ek D eC
k C e�

k one
has the following constraint

gC
ij C g�

ij C Mij C Mj i D ıij e0:

Furthermore, since no direction of the lattice should be preferred over any other one can assume

gC
jj D �C; g�

jj D ��; Mjj D �:

Additionally, the entries should not depend on i and j , i.e. gC
ij D gC

j i D gC, g�
ij D g�

j i D g�, and
Mij D Mj i D M . Furthermore, either the C or � directions should be preferred, so that it should
hold gC D g� D g and �C D �� D �. The non-preference of the cartesian coordinates can be
seen as a discrete rotational invariance.

Now, the Dirac operator should have the form

DC�f D
nX

kD1

eC
k @C

k C e�
k @�

k ;

D�Cf D
nX

kD1

e�
k @C

k C eC
k @�

k ;

and satisfy .DC�/2 D ��h. Joining all these conditions one gets

e˙
i e˙

j C e˙
j e˙

i D �2g; i ¤ j;

eC
i e�

j C e�
j eC

i D C2g; i ¤ j;

eC
i e�

i C e�
i eC

i D 2� � 1;

.eC
i /2 D .e�

i /2 D ��:

As a special example one can use the following basis

e˙
i e˙

j C e˙
j e˙

i D 0; i ¤ j;

eC
i e�

i C e�
i eC

i D �1;

.e˙
i /2 D 0:
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which corresponds to the Witt basis of a complex Clifford algebra used in Hermitean Clifford
analysis [11].

Discrete Cauchy Integral Formula

First of all, a direct calculation leads to the Stokes’ formula for the discrete Dirac operator DC�.

Lemma 1. For any discrete functions f and g one has

X

m2Zn

.fD�C.m//g.m/ D �
X

m2Zn

f .m/.DC�g/.m/

where D�Cf D Pn
kD1.@

�kf /eC
k C .@Ckf /e�

k provided that the involved series converge.

Consider a discrete domain � � Zn and its characteristic function �� given by

��.m/ D
�

1 m 2 �

0 m … �
:

Using the characteristic function one can rewrite the sum over �:

X

x2�

f .m/.DC�g/.m/ D
X

m2Zn

f .m/��.m/.DC�g/.m/:

This leads to the corresponding Stokes’ formula for the domain � by replacing f with the function
f��. Therefore, one has to evaluate the sum

X

m2Zn

..f��/D�C.m//g.m/

Using Leibniz formula for the operator D�C one gets

.f��/D�C.m/ D f .m/.��D�C/.m/ C ��.fD�C/.m/

C
nX

j D1

�
.@Cj ��.m//.@Cj f .m//e�

j � .@�j ��.m//.@�j f .m//eC
j

�
:

Please notice that the last term can only be non-zero when @Cj ��.m/ or @�j ��.m/ is non-zero.
This defines the boundary of � and the boundary terms are given by the first and the last terms in
the above formula. Both terms can be joined together as

nX

j D1

.@�j ��/.T�j f /eC
j C .@Cj ��/.TCj f /e�

j
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where T˙j denote the shift operators in direction ˙j .
Now, this results in the following Stokes’ formula for the discrete Dirac operator

Theorem 1. For any discrete functions f and g one has

�
X

m2Zn

0

@
nX

j D1

@�j ��.m/.T�j f /.m/eC
j C @Cj ��.m/.TCj f /.m/e�

j

1

Ag.m/

D
X

m2�

.fD�C/.m/g.m/ C f .m/.DC�g/.m/

provided that the involved series converge.

To obtain a discrete Cauchy integral formula one still needs the fundamental solution of the
adjoint operator to the discrete Dirac operator DC�. There are several methods to obtain such a
fundamental solution. The most common way uses the discrete Fourier transform.

The discrete Fourier transform on lp .Zn;Cn/
�
1 � p < C1�

is given by

Fhu.�/ D
X

m2Zn

ei<m;�>u.m/; � 2 Œ�	; 	
n ;

where < x; � >D
nP

j D1
xj �j for arbitrary x D

nP

j D1
ej xj ; � D

nP

j D1
ej �j 2 Rn; xj ; �j 2 R �

j D
1; : : : ; n

�
.

Its inverse is given by F�1
h D RhF where Rh denotes the restriction to the lattice Zn and F the

(continuous) Fourier transform restricted to the cube Œ�	; 	
n

Ff .x/ D 1

.2	/n

Z

Œ�	;	
n
e�i<x;�>f .�/d�; 8x 2 Rn:

Now, using the discrete Fourier transform one has Fh.uD�C/.�/ D Fhu.�/

�
nP

j D1
�D�j eC

j C

�DCj e�
j

�

with �D˙j D ��1 � e�i�j
�

and Fh.�u/.�/ D 4
nP

j D1
sin2

�
�j

2

�
Fhu.�/. Therefore, one

denotes

Q�� D
nX

j D1

eC
j �D

�j C e�
j �D

Cj

and

d 2 D 4
nX

j D1

sin2

�
�j

2

�
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as the discrete Fourier symbol of D�C
h and �, respectively.

These observations mean that in a way similar to the continuous case the fundamental solution
can be given as a Fourier integral

E�C D RhF
 Q��

d 2

!

D
nX

j D1

eC
j RhF

��D�j

d 2

�
C e�

j RhF
��DCj

d 2

�
: (4)

Lemma 2. For the fundamental solution E�C one has

.i/ .E�CD�C/.m/ D ı0.m/; 8m 2 Zn; (5)

.i i/ E�C 2 lp

�
Z

n;Cn

��
1 � p < C1�

; (6)

where ık.m/ denotes the usual Kronecker delta, i.e. ık.m/ D 0; k ¤ m, and ım.m/ D 1.

Proof. Statement .i/ is obvious, while .i i/ follows directly from [17] where it was shown that for
each component one has

ˇ
ˇ
ˇ
ˇ

Z

Œ�	;	
n

�D˙j

d 2
e�i<x;�>d�

ˇ
ˇ
ˇ
ˇ � M

.jxj C 1/n
C M

.jxj C 1/n�1
;

with M > 0 being independent of x 2 Zn. ut
Substituting the discrete fundamental solution E�C.m � l/ into the Stokes’ formula for the

discrete Dirac operator one obtains the corresponding Borel–Pompeiu formula.

Theorem 2. For any discrete function g one has

�
X

m2Zn

0

@
nX

j D1

@�j ��.m/.T�j E�C/.m � l/eC
j C @Cj ��.m/.TCj E/�C.m � l/e�

j

1

Ag.m/

D g.l/ C
X

m2�

E�C.m � l/.DC�g/.m/

provided that the involved series converge.

As a consequence one gets the corresponding Cauchy integral formula.

Theorem 3. Let g 2 ker DC�.�/ then one has

g.l/ D �
X

m2Zn

0

@
nX

j D1

@�j ��.m/.T�j E�C/.m � l/eC
j C @Cj ��.m/.TCj E�C/.m � l/e�

j

1

Ag.m/

provided that the involved series converge.
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S-Weyl Relations and Fischer Decomposition

Nowadays, in the continuous setting there exist several approaches for the construction of function
theories, which clearly state what basic ingredients one has to look for and in which way one has
to proceed. The most common one is known under different names, in a more restricted form it is
usually called Howe dual pair technique in Clifford analysis. One starts with the so-called Weyl
relations for the basic operators, i.e.

@xk
.xlf .x// � xl@xk

f .x/ D ıklf .x/;

or in short form, Œ@xk
; xl 
 D ıklI , where Œ�; �
 denotes the commutator and I the identity operator.

Starting from these Weyl relations one establishes a super-Lie algebra generated by the Dirac
operator, the vector variable operator, and the Euler operator. The last operator is being reduced to
a multiple of the identity operator on the spaces of its eigenfunctions which reduces the super-Lie
algebra to the standard Heisenberg algebra.

Such a direct approach breaks down almost immediately in the discrete setting. The problem
resides in the fact that one has to work with forward and backward differences where the standard
Weyl relations take the form

@Cj xT�j � xT�j @Cj D I;

@�j xTCj � xTCj @�j D I:

Here, a problem arises from the fact that while Œ@Cj ; @�j 
 D 0 the same does not hold for
ŒxT�j ; xTCj 
 ¤ 0.

One way to proceed is by modifying the Weyl relations to the so-called S-Weyl relations [7]:

@Cj XC
j � X�

j @�j D 1; (7)

@�j X�
j � XC

j @Cj D 1: (8)

While there is no explicit expression for XC
j and X�

j they can be expressed by their action on
classic monomials:

Theorem 4. [7] The polynomials .P
j

kC1/
˙, resulting from the action of Xj̇ on the classical

homogeneous powers xk
j , k 2 N, can be written in terms of the Euler polynomials of even degree.

More precisely, for k odd, one has

.P
j

kC1/
C D XC

j .xk
j / D EkC1.xj /; (9)

.P
j

kC1/
� D X�

j .xk
j / D EkC1.�xj / (10)

while for k even, one has

.P
j

kC1/
C D XC

j .xk
j / D xj Ek.xj /; (11)

.P
j

kC1/
� D X�

j .xk
j / D xj Ek.�xj /: (12)
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If one would follow the usual path in classic continuous Clifford analysis the next step would be
to establish a duality between the coordinate operators XC

j ; X�
j and the finite difference operators

@Cj ; @�j via the so-called Fischer inner product. But that would work only if the algebras generated
by fXC

j ; X�
j ; j D 1 : : : ; ng and f@Cj ; @�j ; j D 1 : : : ; ng are algebraically isomorphic, which is

clearly not possible since @Cj ; @�j commute, but XC
j ; X�

j do not commute. Since one is principally
interested in the Dirac operator and the corresponding vector variable operator one can circumvent
this problem by considering the operators

ıj D eC
j @Cj C e�

j @�j

and

�j D eC
j X�

j C e�
j XC

j

For these operators it holds

ıj �j � �j ıj D 1; (13)

ıj �k C �kıj D 0: (14)

These relations can be written in a shorter form

Œıj ; �j 
 D 1 Œıj ; ıj 
 D 0; Œ�j ; �j 
 D 0;

fıj ; �kg D 0; fıj ; ıkg D 0; f�j ; �kg D 0; k ¤ j;

where f�; �g denotes the anti-commutator.
Using these operators one can write the discrete Dirac operator as DC� D Pn

j D1 ıj as well as
introduce the following operators

X D
nX

j D1

�j E D
nX

j D1

�j ıj :

All three operators satisfy the following relations

fDC�; Xg D n

2
C E;

ŒE; X
 D �;
	
DC�; E


D DC�:

Moreover, one has

E�j D �j .E C 1/:

The above formulae mean that DC�, �, and E form an algebra which is algebraically isomorphic
to osp.1j2/. In classic Clifford analysis the standard approach to construct monogenic polynomials
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consists in using the Fischer inner product. This is possible since the space of homogeneous
polynomials forms a Hilbert space under the Fischer inner product which is widely used in
Umbral calculus by considering polynomials of operators. Here, one can follow the same ideas
with homogeneity for a polynomial being replaced by being an eigenfunction of the Euler operator
E, i.e. one says Pk is a discrete homogeneous polynomial of degree k if it is a polynomial of order
k and EPk D kPk .

Since the basic polynomials are given by the action of �j on the ground state 1

�˛Œ1
 D �˛1
1 : : : �˛n

n Œ1


with the multi-index ˛ D .˛1; : : : ; ˛n/ represents a discrete homogeneous polynomial of degree j˛j
while the set f�˛Œ1
 W j˛j D kg forms a basis for the space of discrete homogeneous polynomials
of degree k. The last one is easy to see since E�˛ D j˛j�˛ .

As usual, the Fischer inner product of two polynomials P and Q, being discrete homogeneous
of the respective degrees k and m, is given by

hP; Qi D Sc
h
P.�/� Q.ı/Œ1
.0/

i
(15)

where Q.ı/ denotes the operator obtained by substituting in the polynomial Q the variable xj

by �j , and P.�/ denotes the difference operator obtained by substituting in the polynomial P the
variable xj by ıj . � denotes the hermitean conjugate, i.e. .ej̇ /� D e�

j . Both P and Q are then
acting as operators on the ground state 1, the result of which is evaluated at the point zero.

From the S-Weyl relation one obtains

ıi�
m
i Œ1
 D .�m�1

i C �i ıi�
m�1
i /Œ1


for the calculation of the Fischer inner product. A recursive application of this formula results in
the next lemma.

Lemma 3. For all m 2 N one has

ıi�
m
i Œ1
 D m�m�1

i Œ1
:

Moreover,

ım
i �m

i Œ1
 D mŠ:

This also results in the following statement.

Lemma 4. For any two multi-indices ˛ D .˛1; : : : ; ˛n/ and ˇ D .ˇ1; : : : ; ˇn/, with j˛j D jˇj, it
holds that

ı˛�ˇŒ1
 D
�

˛Š if ˛ D ˇ

0 if ˛ ¤ ˇ
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where one uses the abbreviation ˛Š D ˛1Š˛2Š : : : ˛nŠ.

The above results eventually lead to the following important property.

Proposition 1. For two discrete homogeneous polynomials Pk D P

j˛jDk

�˛Œ1
 p˛ and Qk D
P

j˛jDk

�˛Œ1
 q˛, both homogeneous of degree k, one obtains

hPk; Qki D
X

j˛jDk

˛Š Sc
	
p˛

� q˛




where �� stands for the Hermitean conjugate.

This property obviously implies that, on the space of discrete homogeneous polynomials of given
homogeneity k, the Fischer inner product is positive definite, i.e. it indeed represents an inner
product. Furthermore, the following corollary holds.

Corollary 1. For any polynomial Pk�1 of homogeneity k � 1 and any polynomial Qk of
homogeneity k, one has

hXPk�1; Qki D hPk�1; DC�Qki:

This property leads to the following theorem.

Theorem 5. For each k 2 N one has

…k D Mk C X …k�1

where …k denotes the space of discrete homogeneous polynomials of degree k and Mk denotes the
space of discrete monogenic homogeneous polynomials of degree k. Furthermore, the subspaces
Mk and X …k�1 are orthogonal with respect to the Fischer inner product (15).

Since it holds that

…k D X …k�1 C .X …k�1/
?

it suffices to prove that .X …k�1/
? D Mk�1. To this end, assume that, for some Pk 2 …k one has

hXPk�1; Pki D 0; for all Pk�1 2 …k�1:

On account of Corollary 1 one then has that

hPk�1; DC�Pki D 0; for all Pk�1 2 …k�1:

Page 11 of 19



Operator Theory
DOI 10.1007/978-3-0348-0692-3_18-1
© Springer Basel 2015

As DC�Pk 2 …k�1 one obtains that DC�Pk D 0, or that Pk 2 Mk. This means that
.X …k�1/

? � Mk. Conversely, take Pk 2 Mk . Then one has, for any Pk�1 2 …k�1, that

hX Pk�1; Pki D hPk�1; DC�Pki D hPk�1; 0i D 0

from which it follows that Mk � .X …k�1/
?, and, therefore, Mk D .X …k�1/

?.
As a result one arrives at the Fischer decomposition with respect to the discrete Dirac operator
DC�.

Theorem 6 (Fischer Decomposition). Let Pk be a discrete homogeneous polynomial of degree
k. Then

Pk D Mk C XMk�1 C X2Mk�2 C : : : C XkM0 (16)

where each Mj denotes a homogeneous discrete monogenic polynomial of degree j .

A simple combinatorial argument shows that the dimension on Mk is equal to

dimMk D .k C m � 1/Š

kŠ.m � 1/Š

For determining the monogenic projection projMk
, i.e. the projection of a discrete homogeneous

polynomial Pk onto the space of discrete monogenic homogeneous polynomials Mk one usually
makes the ansatz

r D Pk C a1XDC� C : : : C akXk.DC�/kPk:

Since it is required that DC�r D 0 one can evaluate the right-hand side and get the following
theorem.

Theorem 7. The monogenic projection of a homogeneous polynomial Pk of degree k is given by

projMk
Pk D Pk C a1XDC� C : : : C akXk.DC�/kPk

with a1 D � 1
2k�2Cn

; a2 D a1
2 ; a3 D � a2

2k�4Cn
; : : : and

�
ak D ak�1

k
k even

ak D � ak�1
k�1Cn

k odd

Amazing Action of SO.n/ on the Space of Discrete Spherical Harmonics
As one could observe in the previous section, DC�, X , and E form a super-algebra isomorphic to
osp.1j2/. Since on the space of discrete homogeneous polynomials of degree k it holds EPk D
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kPk one can reduce that algebra to the classic Heisenberg algebra H1 as the operator algebra over
this space, E basically acting as a multiple of the identity on this space.

Cauchy–Kovalevskaya Extension and Discrete Taylor Series

One of the principal tools to construct monogenic functions in classic Clifford analysis is the
so-called Cauchy–Kovalevskaya (CK-) extension. It is based on the fact that one can consider a
Cauchy problem for the Dirac operator with respect to one variable, i.e.

�
.@x0 CPn

iD1 ej @xj
/u D .@x0 C QD/u D 0

u.0; x1; : : : ; xn/ D u0

for which the solution is given in form of the usual operator power series

u.x/ D e�x0 QDu0:

To get the corresponding method in discrete Clifford analysis the authors of [8] proposed the
following CK-extension:

CKŒf 
.x1; x2; : : : ; xn/ D
1X

kD0

�k
1 Œ1
.x1/

kŠ
fk.x2; : : : ; xn/

A direct evaluation allowed the authors to obtain the following definition:

Definition 1. The CK-extension CKŒf 
 of a discrete function f 2 Zn�1 is given by

CKŒf 
.x1; x2; : : : ; xn/ D
1X

kD0

�k
1 Œ1
.x1/

kŠ
fk.x2; : : : ; xn/

where f0 D f and fkC1 D .�1/kC1@0fk .

That this extension is unique can be deduced from the following theorem.

Theorem 8. Consider a discrete function f W Zn ! Cn, monogenic over Zn. If f jx1 D 0 then
f D 0 everywhere.

Like in the continuous case the CK-extension establishes an isomorphism between the space
Mk of discrete homogeneous monogenic polynomials of degree k and the space …k�1 of discrete
homogeneous polynomials of degree k in dimension n � 1. Since a basis for …k�1 is given by

�
˛2
2 : : : �˛n

n Œ1
; j˛2j C � � � C j˛nj D k � 1

one gets that the system

fV˛ W V˛ D CKŒ�
˛2
2 : : : �˛n

n Œ1

g
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forms a basis of the space Mk of discrete homogeneous monogenic polynomials of degree k. The
elements of this basis are called discrete Fueter polynomials of degree k.

The discrete Fueter polynomials can also be obtained in a different way [6]. Consider zi D �i ��1

and Ozi D �i C �1 as well as the product .zl1 : : : zlk /
Er1 ;r2;::: where every second, fourth, sixth, : : :

occurrence of zr1 is replaced by Ozr1 , then the same with r2, and so on. Then one has

V˛1;:::;˛k
D 1

kŠ

X

	.˛1;:::;˛k/

sgn.ı/.z	.˛1/ : : : z	.˛k
//E2;:::;n :

This basis allows to obtain a power series expansion for a discrete monogenic function. For
simplicity one can restrict oneself to the case of a Taylor series with respect to the origin. The
general case can be seen in [6]. Using the basis f�˛Œ1
 W j˛j 2 N [ f0gg one can write the discrete
Taylor series of a discrete function f defined on Zn in the form

f .x/ D
1X

kD0

1

˛Š

X

j˛jDk

�˛Œ1
ı˛f .0/

For the convergence of this series one can observe that

�k
j Œ1
.xj / D 0; 8k � 2jxj j C 1:

What looks strange at first view simply means that the points inside a certain rectangle are
zeros of the corresponding coordinate polynomials starting from a certain degree. A similar fact
can be observed in classic Newton interpolation where the coefficients are given by the divided
differences and the basic polynomials are products of terms like .x � xj / which naturally means
that xj is a zero of all polynomials starting from a certain degree. In fact, in the discrete setting
Newton interpolation can be seen as a kind of Taylor series. The consequence of this observation
is that the above discrete Taylor series is in fact a finite series in each point and for a function f

defined on a bounded cube centered at the origin the discrete Taylor series of f is finite in each
point of the cube with a maximum degree Nk for all points. Furthermore, a discrete Taylor series
converges normally over any bounded domain.

If one considers now the Taylor series of a discrete monogenic function f , then one can take
the monogenic projection of each discrete homogeneous polynomial and arrive at the following
theorem.

Theorem 9 ([6]). Let � � Zn be a discrete bounded set containing the origin such that for all
x 2 � the rectangle fy W jyj j � jxj jg � � and f be defined on the set

[

x2�

fy W jyj j � jxj j C 1g:

If f is discrete monogenic in �, then f can be developed into a convergent series of discrete
homogeneous monogenic polynomials as follows:

f .x/ D
1X

kD0

X

j˛jDk

V˛ı˛f .0/:

There is also the converse theorem.
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Theorem 10 ([6]). Let � � Zn be a discrete bounded set containing the origin such that for all
x 2 � the rectangle fy W jyj j � jxj jg � � f be defined on the set

[

x2�

fy W jyj j � jxj j C 1g

given by

f .x/ D
1X

kD0

X

j˛jDk

V˛�˛; �˛ 2 Cn:

Then f represents a discrete monogenic function on the set � and �˛ D ı˛f .0/.

Discrete Boundary Values and Hardy Spaces

In [4] the authors consider the question of Hardy spaces (for spacial dimension 3). To this end they
start with the following discrete Cauchy integral formulae for the upper and lower discrete half
space:

Theorem 11. Let f be a discrete left monogenic function with respect to operator DC�, then the
upper discrete Cauchy formula

X

n2Z2

	
E�C..n � m; �m3//e

C
3 f ..n; 1// C E�C..n � m; 1 � m3//e

�
3 f .n; 0/




D
�

0; if m3 � 0;

�f .m/; if m3 > 0:
(17)

holds under the condition that the involved series converge.

In the same way the lower discrete Cauchy formula can also be given by

X

n2Z2

h
E�C..n � m; �1 � m3//e

C
3 f .n; 0/ C E�C..n � m; �m3//e

�
3 f ..n; �1//

i

D
�

0; if m3 � 0;

f .m/; if m3 < 0:
(18)

A sufficient condition for the convergence of the series is f 2 lp.Z3;C3/; 1 � p < 1. From these
Cauchy formulae they obtain the following discrete Cauchy transforms.

Definition 2. For a discrete lp-function f , 1 � p < C1, defined on the boundary layers
.n; 0/; .n; 1/ with n 2 Z2; one defines the upper Cauchy transform for m D .m; m3/ 2 Z3C as

C CŒf 
.m/ D �
X

n2Z2

	
E�C..n � m; �m3//e

C
3 f ..n; 1// C E�C..n � m; 1 � m3//e

�
3 f .n; 0/



;

(19)
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and for a discrete lp-function f , 1 � p < 1, defined on the boundary layers .n; �1/; .n; 0/ with
n 2 Z2; one defines the lower Cauchy transform at m D .m; m3/ 2 Z3� by

C �Œf 
.m/ D
X

n2Z2

	
E�C..n � m; �1 � m3//e

C
3 f .n; 0/ C E�C..n � m; �m3//e

�
3 f ..n; �1//



:

(20)

From the discrete Cauchy formulae (17) and (18) and the definition of the discrete Cauchy
transforms one can observe quite clearly the dependence of discrete monogenic functions on the
boundary values where the boundary consists of three different layers (two for each). The discrete
Cauchy transforms have the following properties:

Theorem 12. Consider the upper and lower Cauchy transforms (19) and (20), respectively. Here,
one has

.i/ C CŒf 
 2 łp
�
Z

3
C;C3

�
; C �Œf 
 2 łp

�
Z

3
�;C3

�
; 1 � p < C1; (21)

.i i/ DC�C CŒf 
.m/ D 0; 8m D .m; m3/ 2 Z3 with m3 > 1; (22)

.i i i / DC�C �Œf 
.m/ D 0; 8m D .m; m3/ 2 Z3 with m3 < �1: (23)

Furthermore, one obtains a discrete equivalent to the boundary behavior of a monogenic
function. Formula (17) means that for the boundary values (at the layer m3 D 1) of a function
which is discrete monogenic in the upper half plane it holds

�
X

n2Z2

	
E�C..n � m; �1//eC

3 f ..n; 1// C E�C..n � m; 0//e�
3 f ..n; 0//


 D f ..m; 1//; (24)

while formula (18) states that for the boundary values (m3 D �1) of a function which is discrete
monogenic in the lower half plane it holds

X

n2Z2

	
E�C..n � m; 0//eC

3 f ..n; 0// C E�C..n � m; 1//e�
3 f ..n; �1//


 D f ..m; �1//: (25)

Calculating and evaluating the Fourier symbols over the boundary one obtains the following
expression for the upper and lower Hilbert transforms

HCf D F�1
h

2

6
4

Q��
d

0

B
@eC

3

d �
q

4 C d 2

2
� e�

3

d C
q

4 C d 2

2

1

C
A

3

7
5Fhf; (26)

H�f D F�1
h

2

6
4

Q��
d

0

B
@eC

3

d C
q

4 C d 2

2
� e�

3

d �
q

4 � d 2

2

1

C
A

3

7
5Fhf; (27)
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where Fh denotes the two-dimensional discrete Fourier transform. These operators satisfy H 2C D
H 2� D I . This means that one can introduce the discrete Hardy spaces hṗ as the space of discrete
functions f 2 lp

�
hZ2;C3

�
which satisfy P˙f D 1

2

�
1 C H˙

�
f D f . The last conditions can be

thought of as the discrete equivalent to the Plemelj–Sokhotzki formulae. Please note that in the
discrete case one has P� ¤ I � PC, unlike the continuous case.

Some Genuine Discrete Objects and Properties from Discrete Function
Theory

Let us summarize some more facts about discrete function theory which are unique for the discrete
case and do not have an analogue in the continuous case.

First of all, any discrete function f W Zn 7! Cn can be expressed in terms of discrete delta
functions, i.e.

f .m/ D
X

k2Zn

ık.m/�k D
X

k2Zn

ı.k � m/�k

with ık.m/ D ı.k � m/ D 0; k ¤ m; and ım.m/ D ı.0/ D 1. One consequence of this rather
unique property of the discrete case is that the study of discrete functions can be reduced to the
study to discrete delta functions in several cases. In particular, ık has a Taylor series expansion as
well as a Cauchy–Kovalevskaya extension. The CK-extension in the case of n D 2 is given by
(c.f. [6])

CKŒı0
.m1; m2/ D
X

k2Z2

�k
1 Œ1
.m1/

kŠ
fk.x2/

with f0 D ı0 and

f2l D
2lX

j D0

.�1/j Cl

�
2l

j

�

ıl�j ;

f2lC1 D
2lC1X

j D0

.�1/j ClC1

�
2l C 1

j

�

.eC
2 ıj �l�1 � e�

2 ılC1�j /:

The Taylor series expansion of ı0 also provides another method for the calculation of discrete
fundamental solutions [6]. In section “Discrete Cauchy Integral Formula” one had an expression
for the fundamental solution in terms of a Fourier integral. Here, starting the Taylor expansion of
the delta function ı0 and determining the Fischer decomposition of each discrete homogeneous
term one gets an expansion of the form

ı0.m1; : : : ; mn/ D
X

s�0

XsM
.s/

k ;
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where M
.s/

k is a discrete homogeneous monogenic polynomial. Now, the discrete fundamental
solution will be given by

E.m/ D
X

l;k�0

1

2l C 2k C n
X2lC1M

.2l/

k C
X

l;k�0

1

2l C 2
X2lC2M

.2lC1/

k :

Specific examples of such fundamental solutions can be found in [6].

Conclusion

Discrete Clifford analysis is a quite recent research field. Even in its simplest case as the function
theory of a discrete Dirac operator over the standard lattice in several dimensions it already
provides all ingredients for an exciting theory. Main tools from standard Clifford analysis, like
Cauchy integral formula, Fischer decomposition, CK-extension, and Taylor series are available.
Some of these tools require modifications in their construction due to the nature of discrete
analysis, such as the replacement of classic Weyl relations by the so-called S-Weyl relations.
Other results like discrete boundary values and Hardy spaces are asymptotically equivalent to its
continuous counterpart, i.e. one obtains the continuous case when the lattice constants converge to
zero. There are also genuinely discrete objects, like a CK-extension of a discrete delta function,
which have no equivalent in the continuous case. Altogether, it shows that discrete Clifford analysis
is a very interesting research field with a lot of potential for future development.
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