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Clifford Analysis

John Ryan

ABSTRACT We introduce the basic concepts of Clifford analysis . This analysis
started many years ago as an attempt to generalize one variable complex analysis
to higher dimensions . Most of the basic analysis was initially developed over the
quatemions which are a division algebra. However, it was soon realized that virtu­
ally all of this analysis extends to all dimensions using Clifford algebras. Here we in­
troduce a generalized Cauchy-Riemann operator, often called a Dirac operator, and
the analogues of holomorphic functions. These functions are called Clifford holo­
morphic functions or monogenic functions. We give a generalization of Cauchy's
theorem and Cauchy's integral formula. Using Cauchy's theorem, we can establish
the Mobius invariance of monogenic functions. We will also introduce the Plemelj
formulas and operators , and Hardy spaces.

3.1 Introduction

In this chapter we regard Clifford algebras as natural generalizations of the com­
plex number system. First, note that if z is a complex number, then zz = Ilz112.
For a quaternion q, we also have qq = IIql12, Quaternions in this way may be
regarded as a generalization of the complex number system. It seems natural to
ask if one can extend basic results of one complex variable analysis on holomor­
phic function theory to four dimensions using quaternions. The answer is yes.
This was developed by the Swiss mathematician Rudolph Fueter in the 1930s and
1940s and also by Moisil and Theodorescu [29]. See for instance [12]. An excel­
lent review of this work is given in the survey article "Quaternionic analysis" by
Sudbery, see [47], There is also earlier work of Dixon [11]. However, in previous
lectures we have seen that for a vector x E jRn, when we consider jRn embedded
in the Clifford algebra GRn , then x 2 = -llxl1 2, So it is reasonable to ask if all
that is known in the quaternionic setting further extends to the Clifford algebra
setting, Again the answer is yes. The earlier aspects of this study were developed
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by among others, Richard Delanghe [9], Viorel Iftimie [16] and David Hestenes
[15]. The subject that has grown from these works is now called Clifford analysis.

In more recent times, Clifford analysis has found a wealth of unexpected appli­
cations in a number of branches of mathematical analysis, particularly classical
harmonic analysis. See, for instance, the work of Alan McIntosh and his collabo­
rators [21,22], Marius Mitrea [27,28] and papers in [37]. Links to representation
theory and several complex variables may be found in [14, 34-36] and elsewhere.

The purpose of this paper is to review the basic aspects of Clifford analysis.
Alternative accounts of much of this work, together with other related results,

can be found in [5, 10, 13, 14,20,31,37,38].

3.2 Foundations of Clifford analysis

We start by replacing the vector x = xlel +.. .+xnen by the differential operator
D = L:?=l ej a~j' One basic, but interesting, property of D is that D2 = -t:::.n ,

the Laplacian L:?=l~ in R" . The differential operator D is called a Dirac op-
]

erator.
This is because the classical Dirac operator constructed over four-dimensional

Minkowski space squares to give the wave operator.

Definition 1. Suppose that U is a domain in R" and f and 9 are Cl-functions
defined on U and taking values in cen. Then f is called a left monogenic function
if D f = 0 on U, while 9 is called a right monogenic function on U if gD = 0,
where gD = L:?=l #!;ej.

Left monogenic functions are also called left regular functions and, perhaps
most appropriately, left Clifford holomorphic functions. The term Clifford holo­
morphic functions, or Clifford analytic functions appears to be due to Semmes,
see [41] and elsewhere. We shall most often use the term Clifford holomorphic
functions.

Examples of such functions include the gradients of real valued harmonic func­
tions on U. If h is harmonic on U, and if it is also real valued, then Dh is a vec­
tor valued left monogenic function. It is also a right monogenic function. Such a
function is commonly referred to as a conjugate harmonic function, or a harmonic
I-form. See for instance [46]. An example of such a function is G(x) = 1I~ln.

It should be noted that if f and 9 are left monogenic functions then, due to the
lack of commutativity of the Clifford algebra, it is not in general true that their
product f(x)g(x) is left monogenic.

To introduce other examples of left monogenic functions, suppose that J.l is a
cen valued measure with compact support [J.l] in R", Then the convolution

r G(x - y)dJ.l(Y)
i l,..]
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defines a left monogenic function on the maximal domain lying in jRn\[lll . The
previously defined integral is the Cauchy transform of the measure [Ill.

Another way of constructing examples of left monogenic functions was intro­
duced by Littlewood and Gay in [23], for the case n = 3, and independently re­
introduced for all n by Sommen [43]. Suppose U' is a domain in jRn-l , spanned
by e2, . . . , en ' Suppose also that f'( x') is a Ct'n-valued function such that at each
point x' E U' there is a multiple series expansion in X 2 , . . . , X n that converges
uniformly on some neighborhood of x ' in U' to 1'.Such a function is called a real
analytic function . The series

00 1L k!xt( -e1D,)k I'(x') = exp(- xl e1D')I'(x'),
k=O

where D' = 'L.7=2 ej 8~j , defines a left monogenic function f in some neighbor­

hood U(J') in jRn of U' . The left monogenic function f is the Cauchy-Kowa­
lewska extension of 1'.

It should be noted that if f is a left monogenic function, then 7and j are both
right monogenic functions' .

We now turn to analogues of Cauchy's Theorem and Cauchy's integral formula.

Theorem 1 (Clifford-Cauchy Theorem). Suppose that f is a left Clifford holo­
morphic function on U, and g is a right Clifford holomorphic function on U.
Suppose also that V is a bounded subdomain of U with piecewise differentiable
boundary S lying in U. Then

is g(x)n(x)f(x) da(x) = 0 (2.1)

where n(x) is the outward pointing normal vector to S at x and a is the Lebesgue
measure on S.

Proof The proof follows directly from Stokes' Theorem. One important point to
keep in mind is that, since Ct'n is not a commutative algebra, the order of the
quantities g , n( x) and f must be maintained. One then has that

is g(x)n(x)f(x) da(x) = i ((g( x)D)f(x) + g(x)(Df(x))) dx" = O.

Suppose that g is the gradient of a real valued harmonic function and f = 1. Then
the real part of Equation 1 gives the following well-known integral formula:

J< grad g(x) , n( x) > da(x) = O.

1Here, I denotes the Clifford conjugate of f while j is the reversion of a Cin -valued function f.



56 John Ryan

We now turn to the analogue of a Cauchy integral formula.

Theorem 2 (Clifford-Cauchy Integral Formula). Suppose that U, V, S, f and
9 are all as in Theorem J and that y E V. Then

f(y) = ~ ( G(x - y)n(x)f(x) d(1(x)
W n l»

and

g(y) = ~ ( g(x)n(x)G( x - y) d(1(x)
W n Js

where W n is the surface area ofthe unit sphere in IRn .

Proof The proof follows very similar lines to the argument in one variable com­
plex analysis . We shall establish the formula for f(y) , the proof being similar
for g(y) . First, let us take a sphere sn-l (y ,r) centered at y and of radius r,

The radius r is chosen sufficiently small so that the closed disc with boundary
sn-l (y, r) lies in V. Then, by the Clifford-Cauchy theorem,

( G(x - y)n( x)f(x) d(1(x) = ( G(x - y)n( x)f(x) d(1(x).
J s J s n-l(y,r)

However,onSn-l(y,r)thevectorn(x) = \I;=~\I .SoG(x-y)n(x) = r}- l and

( G(x - y)n( x)f(x) d(1(x)
J s n-l(y,r)

= ( n
1
_ l (f(x) - f(y)) d(1(x) + ( f~:~ d(1(x) .

J s n - l(y ,r ) r J s n -l(y,r) r

The right side of the previous expression reduces to

( (f(x) n~((Y)) d(1( x) + f(y) ( d(1(x).
Jsn-l(y ,~ r Jsn-l

Now fs n - l d(1(x) = Wn, and by continuity

1· 1 (f( x) - f(y) d ( ) - 0
1m 1 (1 X - •

r->O S n-l(y ,r) rn -

The result follows. o
One important feature to note is that Kelvin inversion, X - I = \I~~2 whenever x

is nonzero, plays a fundamental role in this proof. Moreover, the proof is almost
exactly the same as the proof of Cauchy's Integral Formula for piecewise 0 1_

curves in one variable complex analysis.
Having obtained a Cauchy Integral Formula in IRn , a number of basic results

that one might see in a first course in one variable complex analysis carryover
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more or less automatically to the context described here. This includes Liouville's
Theorem and Weierstrass' Convergence Theorem. We leave it to the interested
reader to set up and establish the Clifford analysis analogues of these results.
Their statements and proofs can be found in [5].

Theorems 1 and 2 show us that the individual components of the equations
Df = 0 and gD = 0 comprise generalized Cauchy-Riemann equations. In the
particular case that f is vector valued, f = 2:.7=1 fJej, the generalized Cauchy-

Riemann equations become ~ = ~, whenever i t- i, and 2:.7=1 ~ = O.
This system of equations is often referred to as the Riesz system.

Having obtained an analogue of Cauchy's integral formula in Euclidean space,
we now exploit this result to show how many consequences of the classical Cauchy
integral carryover to the context described here. We begin with the Mean Value
Theorem.

Theorem 3 (The Mean Value Theorem). Suppose that D(y, R) is a closed disc
centered at y, ofradius R and lying in U. Then.for each left Clifford holomorphic
function f on U

f(y) = Rw
1 r II f(~?n_l dx" ,

n }D(y,R) x - y

Proof We have already seen that for each r E (0, R),

f(y) = ~ r f(x)n_l da(x),
W n }sn-l(y,r) Ilx - yll

where sn-l (y, r) is the (n - 1)-dimensional sphere centered at y and of radius r.
We obtain the result by integrating both sides of this expression with respect to
the variable r, and dividing throughout by R. 0

Let us now explore the real analyticity properties of Clifford holomorphic func­
tions. First note that when n is even,

G(x - y) = (-1) n2"2 (x _ y)-n+1 .

Also

( )- 1 _ -1(1 -1)-1 _ (1 -1 )-1 -1 II -1 II _II -111_ Ilyllx-y - x -yx - -x y x , x y - yx - Ilxll'

So for, Ilyll < Ilxll,
(x - y)-1 = x- 1(1+ yx- 1+ ... + yx- 1 . .. yx-1+ ...)

(1 -1 + -1 -1 + )-1= +x y+ ... x y .. . x y ... x .

Hence, these two sequences converge uniformly to (x - y)-1 provided

lIyll ~ r < Ilxll,
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and they converge pointwise to (x - y)-l provided lIyll < IIxll . One now takes
(-1) n;-2 times the (n - l.j-fold product of the series expansions of (x _ y)-l
with itself to obtain a series expansion for G(x - y). In the process of multiplying
series together, in order to maintain the same radius of convergence, one needs
to group together all linear combinations of monomials in Y1 , . .. ,Yn that are of
the same order. Thus, we have deduced that when n is even, the multiple Taylor
series expansion

converges uniformly to G(x - y) provided Ilyll < r < IIxll ,and converges point­
wise to G(x - y) provided Ilyll < Ilxli .

A similar argument holds when n is odd.
Returning to Cauchy 's integral formula, let us suppose that f is a left Clif­

ford holomorphic function defined in a neighborhood of the closure of some ball
B(O, R). Then

f(y) = 2- r G(x - y)n(x)f(x) dCF(X)
Wn J 8B(0,R)

=2- r f( L y.{l, "'~~~ ~jG(X)jn)n(x)f(X)dCF(X)
Wn J8B(0 ,R) ' - 0 .. }1 ·· " }n' aX1 .. .aXn

)- J l ·· ·]n
jl+.. .+jn=j

provided Ilyll < Ilxll .Since this series converges uniformly on each ball B(O, r),
for each r < R, this last integral can be re-written as

2-f r (L yr
1

•• • ~~~ ~jG(x) j n n(x)f(x)) dCF(X).
Wn ' - 0 } 8B(0 ,R) . . }1 · .. . }n' aX1 ... aXnJ- JI ·· ·J n

j l + .. ·+ j n = j

Since the summation within the parentheses is a finite summation, this last ex­
pression easily reduces to

2-f ( L Yr, . .. ~~~ r ~jG(x) j n(X)f(X)) dCF(X).
Wn j=O it i« }l · · ··}n· J8B(0 ,R) ax{ . . . axnn

jl+ +jn=j

On placing

1 1 ajG(x)- . . n(x)f(x) dCF( X) = aj} ...i«
Wn 8B(0,R) ax{l . .. a:drt

it may be seen that on B(O,R) the series

00

L( L
j=O it · · ·jn

jl+... +jn=j
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converges pointwise to f (y). Convergence is uniform on each ball B (O ,r ), pro­
vided r < R .

Similarly, if 9 is a right Clifford holomorphic function defined in a neighbor­
hood of the closure of B (O , R) , then the series

00 ( 11 j,, )b Yl ' " YnL L jl ···j,, · I . I
j =O it i « Jl· · · ·In·

jl+ +j ,,=j

converges pointwise on B (O,R) to g(y) and converges uniformly on B (O, r) for
r < R, where

1 1 aj G(x)
bj l ...i« = - g(x)n(x) 11 j" da(x).

Wn 8 B(O, R) a X I . . . aXn

By translating the ball B (O, R) to the ball B(w, R) , where

one may readily observe that for any left Clifford holomorphic function [ , defined
in a neighborhood of the closure of B (w, R), the series

00

L( L
j =O it ...i «

j l+ ···j,,=j

(Yl - WI)jl .. . (Yn - wn)j" a
'
. . )

jl !" . jn! 11..·1n

converges pointwise on B(w, R) to f(y), where

I 1 1 ajG(x - w)
aj j = - . . n(x)f(x) da(x).

I · · · " Wn 8 B(w,R) axIl ... x?,"

Again , the series converges uniforml y on B (w,r ) for each r < R. A similar series
may be readily obtained for any right Clifford holomorph ic function defined in a
neighborhood of the closure of B(w,R).

The types of power series that we have developed for left Clifford holomor­
phic functions are not entirely satisfactory. In particular, unlike their complex
analogues, the homogeneous polynomials

;t · · ·jn
jl+ ...+j,,=j

are not expressed as a linear combination of left Clifford holomorphic polynomi­
als. To rectify this situation, let us first take a closer look at the Taylor expans ion
for the Cauchy kernel G(x - y) where all the Taylor coefficients are real. Let us
first look at the first order terms in the Taylor expansion. This is the expression

aG(x) aG(x)
YI-Q- - + ...+Yn-n-- ·

UXI uXn
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Since G is a Clifford holomorphic function,

Therefore, the first order terms of the Taylor expansion for G(x - y) can be re­
expressed as

~ -1 8G(x)
~(Yj - e l ejYl)~'
j=2 J

Moreover, for 2 ::; j ::; n, the first order polynomial Yj - ellejYl is a left Clifford
holomorphic polynomial. Let us now go to second order terms . Again, we replace
the operator 8~1 by the operator

whenever it arises. Let us consider the term ~:~J:; ,where i =I j =I 1. We end up
with the polynomial

-1 -1
YiYj - YiYl el ej - YjYl el ei

= ~((Yi - Ylellei)(Yj - Ylellej) + (Yj - Ylellej)(Yi - Ylellei).

Similarly, the polynomial attached to the term 828~~x) is (Yi - Yl ell ei)2. Us­

ing the Clifford algebra anticommutation relations e~ej + ejei = -28ij , and on
replacing the differential operator 8~1 by the operator

the power series we previously obtained for G(x - y) can be replaced by the series

00

L( L
j=O h ·· .in

h+···+jn=j

where Ilyll < Ilxll and

p.. 8 jG(x)

J2 ...Jn(Y)8 h 8 jn)'x2 .. • X n

Here, a( i) E {2, .. . , n} and the previous summation is taken over all permuta­
tions of the monomials (Yu(i) - Yl e1leu(i») without repetition. The quaternionic
monogenic analogues for these polynomials were introduced by Fueter [12], while
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the Clifford analogues, Ph ..in , were introduced by Delanghe in [9]. It should be
noted that each polynomial Ph ...in (y) takes its values in the space spanned by
{I , e le2, . .. , e len } . Also, each such polynom ial is homogeneous of degree j .
Similar arguments to those just outlined give

provided Ilyll < Il xll ·
Proposition 1. Each ofthe polynomials Ph ...in (y) is a left Clifford holomorphic
polynomial.

Proof Calculating

we then consider the expression

This term is equal to

This is equal to

L (Yu(l) - e11 eu(1)Y1) . . . (Y u(i-1 ) - e1 1eu(i_ 1)Y1)( - e11 eu (i ))

x (YU(i+l) - e1 1eu(i+l )y t} . .. (Yu(j) - e1 1eu(j )Y1)

""' -1 ( -1 ) ( -1 )+~ e 1 eU(i ) YU(l) - e1 eu(1)Y1 .. . YU(i-1 ) - e1 eu(i- 1)Y1

x (Yu (i+1 ) - e1 1eU(i+ 1)y t} ... (YU(j) - e1 1eU(j ) y t} .

If we multiply the previous term by Y1 , and add to it the following term, which is
equal to zero,

L (Yu (l ) - e1 1eu( 1)y t} . . . (Yu (i-1 ) - e1 1eu(i- 1)Y1)(Yu(i) - YU(i ))

X (Yu(i+ 1) - e1 1eu(i+ 1)y t} .. . (Yu (j) - e1 1eu(i) Y1)
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we get, after regrouping terms,

L (YU(l) - e1leu(l)Yd . .. (Yu(i-l) - e1leu(i-l)Yl)(Yu(i) - e1leu(i)Yl)

x (Yu(i+l) - e1leu(i+l)Yl) ... (Yu(j) - e1leu(j)yd

- L (YU(i) - e1leu(i)Yl)(Yu(l) - e1leu(l)Yl) ... (Yu(i-l) - e1leu(i_l)yd

x (Yu(i+l) - e1leu(Hl)Yl)'" (Yu(j) - e1leu(j)Yj).

Since the summation is taken over all possible permutations, without repetition,
the last term vanishes. 0

Using Proposition 1 and the results we previously obtained on series expan­
sions, we can obtain the following generalization of Taylor expansions from com­
plex analysis.

Theorem 4 (Taylor Series). Suppose that! is a left Clifford holomorphic func­
tion defined in an open neighborhood ofthe closure ofthe ball B(w, R). Then

where

00

!(Y)=L( L
j=O h ...in

h+···+jn=j

p . . (y-w)a · .)
}2"'}n }2"'}n

1 l ajG(x-w)
aJ2. ..t; = z;- h jn n(x)f(x) da(x)

n 8B(w,R) aX2 . . . aXn

and Ily - wll < R. Convergence is uniform provided Ilx - wll < r < R.

A simple application of Cauchy's theorem tells us that the Taylor series that
we obtained for f in the previous theorem remains valid on the largest open ball
on which! is defined, and on the largest open ball on which g is defined. Also,
the previous identities immediately yield the mutual linear independence of the
collection of the left Clifford holomorphic polynomials

{Ph ,..jn : j2 + .. .i« = j , 0::; j < oo} .

3.3 Other types of Clifford holomorphic functions

Unlike the classical Cauchy-Riemann operator £ = tx + i ty ' the generalized
Cauchy-Riemann operator D that we have introduced here does not have an iden­
tity component. Instead, we could have considered the differential operator

a n-l a
D' = ax + Lejax .·

o j+l }
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Also for U' a domain in IR EB IRn
- 1, spanned by {I , el , . .. , en - d ,one can con­

sider Gin_I-valued differentiable functions f' and g' defined on U' such that
D'f' = 0 and g'D' = 0, where

{)' n - l {) ,

'D' 9 L 99 =~+ ~ej.
uXo ox:

j=1 J

Traditionally, such funct ions are also called left monogenic and right monogenic
functions. To avoid confusion, we shall call such functions unital left monogenic
and unital right monogenic, respectively. In the case where n = 2, the opera­
tor D' corresponds to the usual Cauchy-Riemann operator, and unital monogenic
functions are the usual holomorphic function s studied in one variable complex
analysis . The function

G'(x) = ~ = x-1\\xll-n+2

- II;flln - -

is an example of a function which is both unital left monogenic and unital right
monogenic. It is a simple matter to observe that l' is unital left monogenic if and

- ~

only if l' is unital right monogenic. However, f is not unital right monogenic
whenever I' is unital left monogenic. Instead , 7' satisfies the equation 7'D' = O.

The function theory for unital left monogenic functions is much the same as for
left monogenic functions. For instance, if f' is unital left monogenic on U', and g'
is unital right monogenic on the same domain, and 8' is a piecewise smooth,
compact surface lying in U' and bounding a subdomain V' , then

where n(;f) is the outward pointing normal vector to 8' at g. Also, for each '1L E V'
there is the following version of Cauchy's integral formula:

To get from the operator D to the operator D', one first rewrites D as

On multiplying on the left by en, and changing the variable X n to xo, we get the
operator

{) n-l {)

D" + '"" -1=~ ~en ej~ '
uxo j=1 UX j
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This operator takes its values in the even subalgebra ce; of een . Applying the
isomorphism

it immediately follows that B(D') = D". So if f' is unital left monogenic, then
D" B(J) = O. If we change the variable Xo of the function B(J(;rJ) to X n , we get
a left monogenic function, which we denote by B'(J)(x), where

if and only if

It should be noted that D' D' = D'D' = !':::.n .
When n = 3, the algebra ee3 is split by the two projection operators

into the direct sum

and each of these subalgebras is isomorphic to the quaternion algebra lHI. In this
setting, the differential operator E±D' can best be written as

and the operator E±D can best be written as

We shall denote the first of these two operators by Dllir and the second by DIHI . The
operator Dllir is sometimes referred to as the Cauchy-Riernann-Fueter operator.
The function theory associated to the differential operators DIHI and Dllir is much
the same as that associated to the operators D and D'. In fact, historically the
starting point for Clifford analysis was to study the function theoretic aspects of
the operators Dllir and DIHI , see for instance [9, 12] and the excellent review article
of Sudbery [47].

It is a simple enough matter to set up analogues of Cauchy's theorem and
Cauchy's integral formula for the quaternionic valued differentiable functions that
are either annihilated by Dllir or DIHI, either acting on the left or on the right. When
dealing with the operator Dllir, such functions are called quaternionic monogenic.
The quaternionic monogenic Cauchy kernel is the function q-11Iqll-2. Conse­
quently, for each quaternionic left monogenic function f(q) defined on a domain
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U" C 1HI, and each qo lying in a bounded subdomain with piecewise CI-bound­
ary S",

f(qo) = ~ r (q - qo)-Illq - qoll-2n(q)f(q) dcJ(q).
W3 is"

Similarly, if 9 is right quaternionic monogenic on U" , then

g(qo) = ~ r g(q)n(q)(q - qo)-Illq - qoll-2da(q). (3.2)
W3 is"

3.4 The equation Dkf = 0

It is reasonably well known that if h is a real valued harmonic function defined
on a domain U C IRn, then for each y E U and each compact, piecewise CI-sur­
face S lying in U such that S bounds a subdomain V of Sand y E V,

h(y)

= ~ r(H(x - y) < n(x), grad h(x) > - < G(x - y), n(x) > h(x)) da(x),
W n is

where
1

H(x - y) = (n _ 2)llx _ yl/n-2 '

This is Green's formula for a harmonic function, and it heavily relies on the stan­
dard inner product on R" . Introducing the Clifford algebra Cin, the right side of
Green's formula is the real part of

~ r(G(x - y)n(x)h(x) - H(x - y)n(x)Dh(x)) da(x).
W n is

Assuming that the function h is 0 2 , then on applying Stokes' theorem, the
previous integral becomes

~ r (G(x - y)n(x)h(x) - H(x - y)n(x)Dh(x)) da(x),
W n isn-l(y,r(y))

where sn-I(y, r(y)) is a sphere centered at y, of radius r(y) and lying in V. On
letting the radius r(y) tend to zero, the first term of the integral tends to h(y),
while the second term tends to zero. Consequently, the Clifford analysis version
of Green's formula is

h(y) = ~n1(G(X - y)n(x)h(x) - H(x - y)n(x)Dh(x)) da(x).

We obtained this formula under the assumption that h is real valued and C2 •

The fact that h is real valued can easily be seen to be irrelevant, and so we can
assume that h is Ci n valued. From now on, we shall assume that all harmonic
functions take their values in Cin. If h is also a left monogenic function, then the
Clifford analysis version of Green's formula becomes Cauchy's integral formula.
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Proposition 2. Suppose that f is a Clifford holomorphic function on some do­
main U. Then xf(x) is harmonic.

Proof

Now
8f(x) n 8f(x)

I>keker-a;:- = L L xkekera;:-'
i .k J k=l j-:Jk J
j#

As f is left monogenic, this last expression simplifies to I:Z=l Xk 8t;:) . More­

over, D(I:j=l Xj 8t£;)) = 0. Consequently, D2xf(x) = 0. 0

The previous proof is a generalization of the statement: "if h(x) is a real valued
harmonic function, then so is < x , grad h(x) > ".

In fact, in the previous proof, we determine that

n 8f(x)
Dxf(x) = -nf(x) - 2L Xj~.

j=l J

In the special case where f(x) = Pk(X), a left Clifford holomorphic polynomial
of order k, this equation simplifies to

Suppose now that h(x) is a harmonic function defined in a neighborhood of the
ball B(O, R). Then Dh is a left Clifford holomorphic function, and there is a series
I:~o F'l(x) of left Clifford holomorphic polynomials with each PI homogeneous
of degree l, such that the series converges locally uniformly on B(O, R) to Dh(x) .
Now consider the series

Since
1

n + 2l"F'l(x)11 < IIP/(X)II,
this new series converges locally uniformly on B(O, R) to a left Clifford holomor­
phic function h(x). Moreover, Dxh(x) = Dh(x) on B(O, R). Consequently,
h(x) - xh(x) is equal to a left Clifford holomorphic function 12(x) on B(O, R).
We have established:

Proposition 3. Suppose that h is a harmonic function defined in a neighborhood
of B(O, R). Then there are left Clifford holomorphicfunctions hand 12 defined
on B(O, R) such that h(x) = xh(x) + 12(x) for each x E B(O, R).
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This result remains invariant under translation. As a consequence, it shows us
that all harmonic functions are real analytic functions. So there is no need to spec­
ify whether or not a harmonic function is C":The result also provides an Almansi
type decomposition of harmonic functions in terms of Clifford holomorphic func­
tions over any ball in R".

It should be noted that Proposition 3 remains true only if h is real valued.
Proposition 3 gives rise to an alternative proof of the Mean Value Theorem for

harmonic functions.

Theorem 5. For any harmonic function h defined in a neighborhood of a ball
B(a, R) and any r < R,

h(a) = ~ r h(x) da(x) .
Wn JaB(a,r)

Proof Proposition 3 tells us that there is a pair of left Clifford holomorphic func­
tions !I and 12 such that

h(x) = (x - a)!I(x) + 12(x)

on B(a, R) . So h(a) = 12(a), and we have previously shown that

~ r 12(x) da(x) = 12(a) .
Wn JaB(a ,r)

Now

r (x - a)!I(x) da(x) = r r n(x)!I(x) da(x) = O.
JaB(a,r) JaB(a,r)

The following is an immediate consequence of Proposition 3.

Proposition 4. Ifhl(X) is a harmonic polynomial homogeneous ofdegree l, then

hl(X) =Pl(X) +XPl-l(X)

where Pl is a left Clifford holomorphic polynomial homogeneous ofdegree l while
Pl-l is a left monogenic polynomial which is homogeneous ofdegree l - 1.

It is well known that pairs of homogeneous harmonic polynomials of differing
degrees of homogeneity are orthogonal with respect to the usual inner product
over the unit sphere. Proposition 4 offers a further refinement to this. Suppose
that f and g are ein -valued functions defined on s-:: ,and each component of f
and g is square integrable. If we define the ein inner product of f and g to be

11 -< I ,s >= - f(x)g(x) da(x) ,
W n Sn-l
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then if f and 9 are both real valued, this inner product is equal to

~n hn-l f(x)g(x) da(x),

which is the usual inner product for real-valued square integrable functions de­
fined on sr:' .Now

< XPl-I(X),Pl(X) > = _2- r Pl-I (X)XPl (x) da(x)
W n }sn-l

= _2- r Pl-I (x)n(x)Pl(X) da(x) = 0.
W n }sn-l

The evaluation of the last integral is an application of Cauchy's theorem .
Let us denote the space of Cin-valued functions defined on sv:), and such

that each component is square integrable, by L2(sn-l, CRn) . Clearly, the space
of real valued square integrable functions defined on sr:' is a subset of L2(sn-I ,
CRn-I). The space L2(sn-l, Cin) is a CRn-module.

We have shown that by introducing the module tus-:», CRn), Proposition 4
provides a further orthogonal decomposition of harmonic polynomials, using left
Clifford holomorphic polynomials. We shall return to this theme later. This de­
composition was introduced for the case n = 4 by Sudbery [47], and indepen­
dently extended for all n by Sommen [43].

Let us now consider higher order iterates of the Dirac operator D. In the same
way that DH(x) = G(x) , there is a function G3(x) defined on IRn\{O} such that
DG3(x) = H(x). Specifically,

for some dimensional constant C(n ,3) . Continuing inductively, we may find a
function Gk(x) on IRn\{O} such that DGk(x) = Gk-l(X) . Specifically,

where when n is odd, so is k.

where when n is odd, k is even.

where when n is even, k is odd and k < n .
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where when n is even, k is even and k < n.

Gk(x) = C(n, k)(xk- n log II x II + A(n, k)xk-n
)

where when n is even, k 2': n. In the last expression, A(n, k) is a real constant
dependent on nand k, and C (n, k) is a constant dependent on nand k throughout.

It should be noted that G1(x) = G(x) and G2(x) = H(x) . It should also be
noted that DkGk(x) = O.

Here is a simple technique for constructing solutions to the equation D k 9 = 0
from left Clifford holomorphic functions. The special case k = 2 was illustrated
in Proposition 2.

Proposition 5. Suppose that f is a left Clifford holomorphicfunction on U. Then
Dkxk- 1f(x) = o.

Proof The proof is by induction . We have already seen the result to be true in the
case k = 2 in Proposition 2. If k is odd, then

DXk- 1f( x) = (k - 1)xk- 2 f( x).

If k is even, then

DXk- 1f( x) = -n(k - 1)xk- 2 f(x) + xk- 2~ ejx af(x) .
Z:: ax 'j=1 J

By arguments presented in Proposition 5, this expression is equal to

-n(k - 1)xk- 2f( x) + xk- 2 t Xj a;;x).
j=1 J

The induction hypothesis tells us that the only term we need consider is

k-2 L:n
af(x )x Xj - ",- -'

u X 'j=1 J

However, 2:,7=1 Xjott) is a left Clifford holomorphic function . So the proof by
induction is now complete. 0

We shall refer to a function 9 : U ----; CRn , which satisfies the equation Dkg =
0, as a left k-monogenic function. Similarly, if h : U ----; CRn satisfies the equation
st» = 0, then h is a right k-monogenic function . In the case where k = 1, we
return to the setting of left, or right, Clifford holomorphic functions, and when
k = 2 we return to the setting of harmonic functions. When k = 4, the equations
D4g = 0 and gD4 = 0 correspond to the equations L.~g = 0 and L.~ h = O. So
left or right 4-monogenic functions are in fact biharmonic functions.

More generally, if k is even, then a left or right k-monogenic function f auto-
k

matically satisfies the equation L.J f = o.
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Proposition 6. Suppose that p is a left k-monogenic polynomial homogeneous of
degree q. Then there are left Clifford holomorphic polynomials I» , .. . , fk-l such
that

p(x) = fo(x) + ... + xk- 1fk-l(X),

and each polynomial !J is homogeneous ofdegree q - j, whenever q - j ~ 0,
and identically zero otherwise.

Proof. The proof is via induction on k. The case k = 2 is established immedi­
ately after the proof of Proposition 2. Let us now consider Dp(x). This is a left
(k -1)-monogenic polynomial homogeneous of degree q - 1. So by the induction
hypothesis,

Dp(x) = gl(X) + ... + xk- 2gk_l(X),

where each gj is a left Clifford holomorphic polynomial homogeneous of degree
q - i ,whenever q - j ~ 0, and is equal to zero otherwise. Using Euler 's lemma,
and the observations made after the proof of Proposition 5, one may now find left
Clifford holomorphic polynomials it (x) , . . . , ik - l (x) such that

D(xit (x) + ... + xk- 1ik-l (x)) = Dp(x),

and
!J( x) = Cj gj (x)

for some Cj E JR , and where 1 :s: j :s: k - 1. It follows that

k-l
p(x) - L xJ!J(x)

j=l

is a left Clifford holomorphic polynomial I» ,homogeneous of degree q. D

One may now use Proposition 6, and the arguments used to establish Proposi­
tion 3, to deduce :

Theorem 6. Suppose that f is a left k-monogenic function defined in a neighbor­
hood of the ball B(O, R). Then there are left monogenic functions fo, .. . , fk-l
defined on B(O , R) such that f(x) = fo(x) + ...+ xk- 1fk-l(X) on B(O , R).

Theorem 6 establishes an Almansi decomposition for left k-monogenic func­
tions in terms of left Clifford holomorphic funct ions over any open ball. It also
follows from this theorem that each left k-monogenic function is a real analytic
function. It is also reasonably well known that if h is a biharmonic function de­
fined in a neighborhood of B(O, R), then there are harmonic functions hi and h2

defined on B (O, R) such that

h(x) = h1(x) + IlxI1 2h
2 (x).

In the special case where k = 4, Theorem 6 both establishes this result and re­
fines it.
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Since each left k-monogenic function is a real analytic function , we can imme­
diately use Stokes' theorem to deduce the following Cauchy-Green type formula.

Theorem 7. Suppose that f is a left k-monogenic function defined on some do­
main U, and suppose that S is a piecewise C 1 compact surface lying in U and
bounding a bounded subdomain V ofU. Then for each y E V,

k

f(y) = 2.. r(2::(-1)j- 1Gj(x - y)n(x)Dj-1 f(x)) da(x).
W n is j=l

3.5 Conformal groups and Clifford analysis

Here we examine the role played by the conformal group within parts of Clifford
analysis . Our starting point is to ask what type of diffeomorphisms acting on sub­
domains of ~n preserve Clifford holomorphic functions . If a diffeomorphism ¢
can transform the class of left Clifford hoiomorphic functions on one domain U
to a class of left Clifford holomorphic functions on the domain ¢(U ) and do the
same for the class of right Clifford holomorphic functions on U, then it must
preserve Cauchy's theorem. If f and 9 are left and right Clifford holomorphic
on U, respectively, and these functions are transformed to l' and s', left and right
Clifford holomorphic functions on ¢(U) , then

rg(x)n(x)f(x) da(x) = 0 = r g'(y)n(y)f'(y) da(y)
is i</>(s)

where S is a piecewise C1-compact surface lying in U and y = ¢(x). An impor­
tant point to note here is that we need to assume that ¢ preserves vectors orthog­
onal to the tangent spaces at x and ¢(x). As the choice of x and S is arbitrary,
it follows that the diffeomorphism ¢ is angle preserving. In other words , ¢ is a
conformal transformation. A theorem of Liouville [24] tells us that for dimen­
sions 3 and greater the only conformal transformations on domains are Mobius
transformations.

In order to deal with Mobius transformations using Clifford algebras, we have
seen in a previous chapter that one can use Vahlen matrices. We now proceed
to show that each Mobius transformation preserves monogenicity. Sudbery [47],
and also Bojarski [3], have established this fact. We will need the following two
lemmas.

Lemma 1. Suppose that ¢(x) = (ax+b)(ex+d)-l is a Mobius transformation;
then

G(u - v) = J(¢, x)-lG(x _ y)J(¢, y)-l,

where u = ¢(x), v = ¢(y) and

----(ex + d)
J(¢,x) = Ilex+ dll n
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Proof The proof essentially follows from the fact that

Consequently,

Ifone breaks the transformation down into terms arising from the generators of
the Mobius group, using the previous set of equations, then one readily arrives at
the result. 0

Lemma 2. Suppose that y = ¢(x) = (ax + b)(cx + d)-l is a Mobius transfor­
mation, andfor domains U and V we have ¢(U) = V. Then

( f(u)n(u)g(u)da(u) =1 f('l/;(x))i('l/;,x)n(x)J('l/;,x)g('l/;(x))da(x)is 1/;-I(S)

whereu = 'l/;(x), S is a orientable hypersurface lying in U, and

---ex+d
J('l/;, x) = Ilex + dlln

Proof Outline. On breaking 'l/; up into the generators of the Mobius group, the
result follows by noting that

ax- 1
-1-1-- =-x e-xax - J

J

It follows from Cauchy's Theorem that if g(u) is a left Clifford holomorphic
function in the variable u, then J('l/;,x)f('l/;(x)) is left Clifford holomorphic in
the variable x.

When ¢(x) is the Cayley transformation

y = (enx + l)(x + en)-l,

we can use this transformation to establish a Cauchy-Kowalewska extension in a
neighborhood of the sphere. If f (x) is a real analytic function defined on an open
subset U of s-:' \{en}, then

is a real analytic function on the open set V = ¢-I(U). This function has a
Cauchy-Kowalewska extension to a left Clifford holomorphic function L(y) de­
fined on an open neighborhood V (g) c R" of V. Consequently,
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is a left Clifford holomorphic defined on an open neighborhood

of U. Moreover FlU = f. Combining with similar arguments for the other Cayley
transformation

one can deduce:

Theorem 8 (Cauchy-Kowalewska Theorem). Suppose that f is a Cfn-valued
real analytic function defined on sn-l . Then there is a unique left Clifford holo­
morphic function F defined on an open neighborhood U(f) of sn-l such that
F1sn-l = f.

In fact , if f (u) is defined on some domain and satisfies the equation D k f = 0,
then the function Jk ( 'l/J ,x)f ('l/J (x)) satisfies the same equation, where

--------cx+d
Jk('l/J ,x) = Ilcx+dlln-k+l '

Theorem 9 (Fueter-Sce Theorem). Suppose that f = U + iv is a holomorphic
function on a domain nee and that n = nand f (z) = f (z). Then the function

,
F(;£) = U(XI ' Il x'll) + el l 11:'11 V(XI , Ilx'll)

is a unitalleft(n - I)-monogenic function on the domain {;£ : Xl + illx'il E Sl}
whenevern is even. Here x' = X2e2 + ... + x nen.

Proof First let us note that x - le I is left n - 1 monogenic whenever n is even. It
follows that

ak
-1 -k-l

a kX e l =CkX e l
xl

is n - 1 left monogenic for each positive integer k. Here Ck is some nonzero real
number. Using Kelvin inversion, it follows that xkel is left n - 1 monogenic for
each positive integer k. By taking translations and Taylor series expansions for
the function f , the result follows. 0

This result was first established for the case n = 4 by Fueter [12], see also Sud­
bery [47] . It was extended to all even dimensions by Sce [40], though the methods
used do not make use of the conformal group. This result has been applied in [32,
33] to study various types of singular integral operators acting on LP spaces of
Lipschitz perturbations of the sphere.
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3.6 Conformally flat spin manifolds

The invariance of monogenic functions under Mobius transformations, described
in the previous section , makes use of a conformal weight factor J ('ljJ, x). This in­
variance can be seen as an automorphic form invariance , which leads to a natural
generalization of the concept of a Riemann surface to the Euclidean setting. A
manifold M is said to be conformally flat if there is an atlas A of M whose tran­
sition functions are Mobius transformations. For instance, via the Cayley trans­
formations

(en+lx + l)(x + en+d- l and (- en+lx + l)(x - en+d- l,

one can see that the sphere S" C jRn+l is an example of a conformally flat man­
ifold . Another way of constructing conformally flat manifolds is to take a simply
connected domain U of R", and consider a Kleinian subgroup I' of the Mobius
group at acts discontinuously on U. Then the factorization U\r is a conformally
flat manifold. For instance , let U = jRn and let I' be the integer lattice

Zk = Zel +...+Z ek

for some positive integer k :::; n . In this case, jRn\zk gives the cylinder Ck, and
when k = n we get the n-torus. Also, if we let

U = jRn\{o} and I' = {2k : k E Z} ,

the resulting manifold is SI X sr:' ,
We locally construct a spinor bundle over M by making the identification

(u, X) with either (x , ±J('ljJ, x)X), where

u = 'ljJ(x) = (ax + b)(ex + d)-1 = (-ax - b)(-ex - d)-I .

If we can compatibly choose the signs, then we have created a spinor bundle over
the conformally flat manifold . Note, it might be possible to create more than one
spinor bundle over M. For instance, consider the cylinder Ck. If we make the
identification (x, X) with (x + m, (_1)m1+ +ml X), where l is a fixed integer
with l :::; k, and m = ml el + + truei + + mkek , then we have created k
different spinor bundles El , , Ek over Ck.

We have used the conformal weight function J ('ljJ , x) to construct the spinor
bundle E. It is easy to see that a section f : M --+ E could be called a left
monogenic section if it is locally a left monogenic function. It is now natural to
ask if one can construct Cauchy integral formulas for such sections . To do this,
we need to construct a kernel over the Euclidean domain U that is periodic with
respect to I' , and then use the projection map p : U --+ M to construct from this
kernel a Cauchy kernel for U. In [19], we show that the Cauchy kernel for Ck,
with spinor bundle E1, is constructed from the kernel

cotk,I(X,y) = L (_1)m1+ ...+m1G(x_y+m+!!),
mEZ1,!!EZk- 1
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where 11: = nIH el+l + ...+ nnen' While for the conform ally flat spin manifold
Sl X sr:' with trivial bundle eRn, the Cauchy kernel is constructed from the
kernel

= -=L G(2kx - 2ky) + 22- 2nG(x)( L G(Tkx- 1 - 2-ky-l))G(y) .
k=O k=-l

See [17-19] for more details and related results.
It should be noted that one may set up a Dirac operator over arbitrary Rieman­

nian manifolds, see for instance [4], and one may set up Cauchy integral formulas
for functions annihilated by these Dirac operators [6,28].

3.7 Boundary behavior and Hardy spaces

Possibly the main topic that unites all that has been previously discussed here
on Clifford analysis is its applications to boundary value problems. This, in tum,
leads to a study of boundary behavior of classes of Clifford holomorphic func­
tions and Hardy spaces. Let us look first at one of the simplest cases . Previously,
we noted that if 8 is a square integrable function defined on the sphere sv:) ,
then there is a harmonic function h defined on the unit ball in IRn with bound­
ary value 8 almost everywhere. Also, we have seen that h(x) = II (x) + xh(x)
where II and h are left Clifford holomorphic. However, on sn-l the function
G(x) = x. One can see that on sr:' we have 8(x) = lI(x) + g(x) almost
everywhere. Here, II is left monogenic on the unit ball B(O, 1) and g is left Clif­
ford holomorphic on IRn\B(O, 1), where B(O, 1) is the closure of the open unit
ball. Let H 2(B(O , 1)) denote the space of Clifford holomorphic functions defined
on B(O, 1), with extensions to a square integrable functions on sn-l , and let
H 2(lRn \ B (O, 1) denote the class of left Clifford holomorphic functions defined
on IRn\B(O , 1) , with square integrable extensions to sr:' , What we have so far
outlined is that

where £2(sn-l) is the space of eRn valued Lebesgue square integrable functions
defined on sr:' , This is the Hardy 2-space decomposition of £2(sn-l). It is
also true if we replace 2 by p where 1 < p < 00. We will not go into more details
here, since it is beyond the scope of the material presented here.

Let us now take an alternative look at a way of obtaining this decomposition.
This method will generalize to all reasonable surfaces. We will clarify what we
mean by a reasonable surface later. Instead of considering an arbitrary square
integrable function on sn-l , let us instead assume that 8 is a continuously differ­
entiable function. Let us now consider the integral

~n In-l G(x - y)n(x)8(x) da(x)
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where y E B(O,1). This defines a left Clifford holomorphic function on B(O,1).
Now let the point y approach a point z E s n-l along a differentiable path y(t).
Let us also assume that d~~t) is evaluated at t = 1, so that y(t) = z is not
tangential to sn-l at z. We can essentially ignore this last point at a first read. We
want to evaluate

lim ~ r G(x - y(t))n(x)O(x) da(x).
t-+l Wn }sn-l

We do this by removing a small ball on B(O, 1) from s-:' .The ball is centered
at z and is of radius E. We denote this ball by b(z, E). The previous integral now
splits into an integral over b(z, E) and an integral over sn-l\b(z, E). On b(z,E),
we can express O(x) as (O(x) - O(z)) +O(z). As 0 is continuously differentiable,

IIO(x) - O(z)11 < Gllx - z]

for some G E IR+. It follows that

lim lim r IIG(x - y(t))n(x)(O(x) - O(z)) II da(x) = O.
€-+O t-+l }b(z ,€)

Moreover, the term

lim lim ~ r G(x - y(t))n(x)O(z) da(x)
€-+ Ot-+l Wn }b(z ,€

can be replaced by the term

lim lim r G(x - y(t))n(x)O(z) da(x) ,
€-+ Ot-+l}B(0,1)n8B(z,€)

since O(z) is a Clifford holomorphic function. By the residue theorem the limit of
this integral evaluates to !O(z).

We leave it to the interested reader to note that the singular integral or principal
valued integral

lim lim ~ r G(x - y(t))n(x)O(x) da(x)
€-+ Ot -+ l Wn }sn-l \b(z ,€)

= P.v.~ r G(x - z)n(x)O(x) da(x)
Wn } s n- l

is bounded.
We have establ ished that

l~hn-l G(x - y(t))n(x)O(x) da(x)

= !O(z) + P.v.~ r G(x - z)n(x)O(x)da(x).
Wn }sn- l
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If we now assumed that yet) is a path tending to z on the complement of
B (O , 1), then similar arguments give

E~l h n-l G(x - y(t))n(x)B(x) da(x)

= -~B(z ) + P.v.~ r G(x - z )n(x )B(x) da(x) .
W n i sn-l

We will write these expressions as

If we consider the limit

lim ~ r G(x - y(t))n(x)( V + Gsn-l )B(x) da(x) ,
t-+ l W n i sn-l

we may determine that

Furthermore,

(V + Gsn- l)( - V + Gsn-l ) = 0 and (- V + Gs n_ l)2 = -V + Gsn-l.

It is known that each function 'l/J E L 2 (s n- l ) can be approximated by a sequence
of functions, each with the same properties as B. This tells us that the previous
formulas can be repeated, but this time simply for B E L2 (s n- l ). It follows that
for such a Bwe have

() = ( ~I + Gsn- l )() + ( ~ I - Gsn-l) () .

This formula gives the Hardy space decomposition of U (sn-l ). In fact, if one
looks more carefully at the previou s calculations used to obtain these formulas we
see that it is not so significant that the surface used is a sphere, and we can redo
the calculations for any "reasonable" hypersurface S . In this case, we get

B= (~I + Gs)B + (~I - Gs)B

where Bnow belongs to L2(S), and

GsB = P.V.~ rG(x - y)n(x )B(x) da(x).
W n i s

This gives rise to the Hardy space decomposition

where S± are the two domains that complement the surface S (we are assuming
that S divides IRn into two complementary domains).
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Lastly, one should address the smoothness of S . In some parts of the litera­
ture, one simply assumes that S is compact and C2. More recently, one assumes
that S has rougher conditions, usually that the surface is Lipschitz continuous,
see for instance [21, 22, 27]. The formulas given above, involving the singular
integral operator Cs , are called Plemelj formulas . It is a simple exercise to show
that these formulas are conformally invariant. Using Kelvin inversion, or even a
Cayley transformation, one can show that these formulas and the Hardy space de­
compositions are also valid on unbounded surfaces and domains. A great deal of
recent Clifford analysis has been devoted to the study of such Hardy spaces and
singular integral operators. This is due to an idea of R. Coifman, that various hard
problems in classical harmonic analysis, studied in Euclidean space, might be
more readily handled using tools from Clifford analysis , particularly the singular
Cauchy transform and associated Hardy spaces .

In particular, Coifman speculated that a more direct proof of the celebrated
Coifman-McIntosh-Meyer Theorem [7], could be derived using Clifford analy­
sis. The Coifman-McIntosh-Meyer Theorem establishes the £2 boundedness of
the double layer potential operator for Lipschitz graphs in IRn . Coifrnan's obser­
vation was that the double layer potential operator is the real or scalar part of the
singular Cauchy transform arising in Clifford analysis and discussed earlier. If
one can establish the £2 boundedness of the singular Cauchy transform for a Lip­
schitz graph in IRn , then one automatically has the £2 boundedness for the double
layer potential operator for the same graph. The £2 boundedness of the singular
Cauchy transform was first established for Lipschitz graphs with small constant
by Murray [30], and extended to the general case by Mclntosh, see [26,27]. One
very important reason for needing to know that the double layer potential operator
is £ 2 bounded for Lipschitz graphs is to be able to solve boundary value problems
for domains with Lipschitz graphs as boundaries. Such boundary value problems
would include the Dirichlet problem and Neuman problem for the Laplacian. See
[26,27] for more details . In [49] Clifford analysis , and more precisely the Hardy
space decomposition mentioned here, is specifically used to solve the water wave
problem in three dimensions.

3.8 More on Clifford analysis on the sphere

In the previous section, we saw that £2(sn-1) splits into a direct sum of Hardy
spaces for the corresponding complementary domains B(O, 1) and IRn\B(O, 1).
In an earlier section, we saw that any left Clifford holomorphic function f(x) can
be expressed as a locally uniformly convergent series 2:;:0 h(x) , where each
h (x) is left Clifford holomorphic and homogeneous of degree j . Now following
[47], consider the operator

1 1L: a a L:n

aD = x" xD = x" ( eiek(xi- - Xk- - Xj-)).
aXk ax · ax ·

i-c k • j=l J



Lecture 3: Clifford Analysis 79

By letting the last term in this expression act on homogeneous polynomials, one
may determine from Euler's lemma that

is the radial operator r t. So r %r f j (X) = jli(x). Since each polynomial fk is
Clifford holomorphic, it follows that each Ii is an eigenvector of the spherical
Dirac operator

with eigenvalue k. Now using Kelvin inversion, we know that fk is homogen­
eous of degree k and left Clifford holomorphic if and only if G(x)!k(x-1) is
homogeneous of degree -n + 1 - k and is left Clifford holomorphic. On re­
stricting G(X)fk(X-1) to the unit sphere, this function becomes x!k(x-1) and
this function is an eigenvector for the spherical Dirac operator xAn - l . Since each
f E H2(lRn\B(O, 1)) can be written as

00

L G(X)fk(X- 1) ,
k=O

where each fk is homogeneous of degree k and is left Clifford holomorphic, it
follows that if hE L2(sn-1), then

An_1xh(x) = (1 - n)xh(x) - xAn_1h(x).

Similarly, if we replace sn-1 by the n-sphere S" embedded in lRn +1, then we
have the identity

Anxh(x) = -nxh(x) - xAnh(x)

for each h E L2(sn) . As all Coo functions defined on S" belong to L2(sn), this
identity holds for all such functions too.

It should be noted that for each x E S"; if we restrict the operator xAn to the
tangent bundle T Sr;, then we obtain the Euclidean Dirac operator acting on this
tangent space .

By using the Cayley transformation

from R" to sn\{en+I}, one can transform left Clifford holomorphic functions
from domains in lRn to functions defined on domains lying on the sphere. If
f (y) is left Clifford holomorphic on the domain U lying in lRn

, then we obtain a
function j'(x) = J('l/J-1, x)f('l/J-1(x) defined on the domain U' = 'l/J(U) lying
on s-. Here

-1 x+ 1
J('l/J ,x)=llx+1 I1 n
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Similarly, if g(y) is right Clifford holomorphic on U, then

is a well-defined function on U'. Moreover for any smooth, compact hypersur­
face S bounding a subdomain V of U, we have from the conformal invariance of
Cauchy's Theorem,

r g'(x)n(x)j'(x) da'(x) = 0lSI
where S' = 'IjJ(S), and n(x) is the unit vector lying in the tangent space TS~
of S" at x and outer normal to S' at x . Furthermore a' is the Lebesgue measure
onS'.

From Lemma 1, it now follows that for each point y' E V' = 'IjJ(V), we have
the following version of Cauchy's Integral Formula:

j'(y') = 2- r G(x - y')n(x)j'(x)da(x),
W n ls'

where, as before,
, x-y'

G(x - y ) = Ilx _ y'lln '

but now x and y' E S" , It would now appear that the functions l' and g' are
solutions to some spherical Dirac equations. We need to isolate this Dirac opera­
tor. We shall achieve this by applying the operator xAn to the kernel Gs(x, y') =
G(x - y'). Since x and y' E S";

Ilx - y'I1 2 = 2 - 2 < x, y' >,

where < x, y' > is the inner product of x and y'. So

- n X - y'
Gs(x,y') = 2""2 (1- < x,y' »~.

In calculating xAnGs(x, y'), we need to know what An < x , y' > evaluates to.
It is a simple exercise to determine that

An < x , y' >= xy'+ < x ,y' >,

which is the wedge product x 1\ y' of x with y'.
Now let us calculate xAnGs(x, y') :

- n X y'
xAnGs(x,y') = 2""2 (xAn ( , )11 -xAn( )n)=

1- < x, Y > 2 1- < x, y' > 2

n nx 1 1,)
22 (-x n + An n - xAn n y .

(1- < x ,y' »2 (1- < x,y' »""2 (1- < x ,y' »2
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First,

so

1
An n

(1- < x,y' »2"
n X 1\ y'

= - n+2'
2 (1- < x ,y' »-2-

-n n
= 22 !!H (2(1- < X , y' » + X 1\ y' - x(x 1\ y')y').

2(1- < x ,y » 2

The expression

2(1- < X , y' » + X 1\ y' - x(x 1\ y')y'

is equal to

2 - 2 < x, y' > +xy'+ < x,y' > -x(xy+ < x,y' »y'.

This expression simplifies to

1- < x, y' > +xy' - xy' < x,y' >,

which in turn simplifies to

(1- < X, y' >)(1 + xy') = -x(l- < X, y' > )(x - y').

So

Hence
x(An + i)Gs(x, y') = 0,

so the Dirac operator, D s , over the sphere is x(An + I)' It follows from our
Cauchy integral formula for the sphere that Dsf'(x) = O. For more details on
this operator, related operators and their properties see [8,25, 38, 39, 48].

Besides the operator D s v we also need a Laplacian 6 s acting on functions
defined on domains on S" : To do this, we will work backwards and look for a
fundamental solution to 6 n . A strong candidate for such a fundamental solution
is the kernel

( ' ) 1 1
Hs x,y = n _ 2[[ x _ y'lln-2 '

By similar considerations to those made in the previous calculation , we find that

So
(D s + x)Hs(x , y') = c.u,y').

Therefore we may define our Laplacian 6 s to be Ds(Ds + x ).
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Definition 2. Suppose h is a cen valued function defined on a domain U' ofS" :
Then h is called a harmonic function on U' if 6 sh = O.

In much the same way as one would derive Green's Theorem in R", one now
has

Theorem 10. Suppose U' is a domain on S" and h : U' --+ cen is a harmonic
function on U' . Suppose also that S' is a smooth hypersurface lying in U' and
that S' bounds a subdomain V' ofU' and that y' E V'. Then

h(y') = ~ r (Gs(x, y')n(x)h(x) + Hs(x, y')n(x)Dsh(x)) da' (x) .
W n lSI

See [25] for more details.

3.9 The Fourier transform and Clifford analysis

Closely related to Hardy spaces is the Fourier transform. Here we will consider
jRn as divided into the upper and lower half spaces jRn+ and jRn- , where

jRn+ = {x = Xlel + ...+xnen: X n > O}

and
jRn- = {x = Xlel + .. .+ xnen : X n < O}.

These two domains have jRn-l = span < el, . . . , en-l > as a common bound­
ary. As before,

L2(jRn-l) = H2(jRn+) E9 H2(jRn-).

Let us now consider a function 'l/J E L2(jRn-l). Then

'l/J(y) = (~'l/J(y) +~P.V. r G(x' - y)en'l/J(x') dxn- l)
W n lRn-l

+ (~'l/J(y) - ~P.V. r G(x' - y)en'l/J(x') dxn- l)
W n lRn-l

almost everywhere. Here

~'l/J(y) + ~P.v. r G(x' - y)en'l/J(x') dxn- l
W n lRn-l

is the nontangential limit of

11-- G(x' - y(t))en'l/J(x') dxn
1,

W n Rn-l

as y(t) tends to y nontangentially through a smooth path in the upper half space,
and 11-~'l/J(y) - -p.v. G(x' - y)en'l/J(x') dx" 1

W n Rn-l
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is the nontangentiallimit of

-1 1- G(x' - y(t))en 1/J(x') dxn
- 1

W n IRn - 1

as yet) tends nontangentially to y through a smooth path in lower half space.

Consider now the Fourier transform, :F(1/J) = .J;, of 1/J. In order to proceed, we
need to calculate

In particular, we need to determ ine

Following [26], it may be determined that this is

:F(~ 1/J ± 2- r G(x' - y)en1/J(x' ) do- ex' )) = ~ (1 ± i -II'IIen).
Wn J Rn- l c

Now, as observed in [26],

and

Taking the Cauchy-Kowalewska extension of ei<x' .o- , we get

defined on some neighborhood in lRn of lRn
-

l .

Now cons ider

which simplifies to

ei <x' ,( > - X n ll( 1I 1 (1 + i~e )
2 11 ' 11 n
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if X n > 0, and to

ei<x' ,<:>+xnll<:11 ~(1 - i II~II en)

if X n < O. The first of these series converges locally uniformly on the upper half
space while the second series converges locally uniformly on the lower half space.
We denote these two functions by e±(x, () , respectively. The integrals

define the left monogenic functions \IJ±(x) on the upper and lower half spaces,
respectively. Moreover,

\IJ± E H 2(JRn±)

explicitly gives the Hardy space decomposition of 'ljJ E L2(JRn- l ). The links
between the Fourier transform and Clifford analysis were first found in [44], and
later independently rediscovered and applied in [22].

The integrals

can be expressed in polar coordinates as

where (' = iftTI. In [22], Chun Li observed that the integrals

are Laplace transforms of the function f (R) = Rn- 2 • So the integral

evaluates to

Hence the integral

becomes
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For any complex number a + ib , the product (a + ibH( 1 + ien(') is equal to
(a - ben ) ~ (1 + i en(') . Thus , the previous integral becomes

~ { (-it« x ' ,(' > -Xnen(')-n+l ~ (1 +ien(')dS
n-2 .

Wn }sn-2

The imaginary, or iCl!n part of this integral is the integral of an odd funct ion, so
when n is even, the integral becomes

and when n is odd , the integral becomes

-1 { (n - 2)! asr:".
Wn }sn-2 « x', ( ' > - x nen(,)n-l

These integrals are the plane wave decompositions of the Cauchy kernel for
the upper half space , described by Sommen in [45]. It should be noted that while
introdu cing the Fourier transform and exploring some of its links with Clifford
analysis, we have also been forced to complexify the Clifford algebra Cl!n to the
complex Clifford algebra Cl!n(C) . Furthermore, the functions ~( 1 ± i~) are
defined on spheres lying in the null cone

{ ." lTlln- 1 2 II '112 O}xnen + lW : W E Jl'. , Xn - W = .

This leads naturall y to the question: What domains in en do the funct ions q (x, ()
extend to?

Here we are replacing the real vector variable x E JRn by a complex vector
variable ± = Zlel +... + Znen E en, where Zl, . .. , Zn E Co Lett ing ± = x + iy
where x and yare real vector variables, the term

e- <<.y' >- x n ll( 1I

is well defined for xnll(11> I < ( ,y' > [. In this case, i y' + xnen varies over the
interior of the forward null cone

{iy' +xne n : Xn > 0 and Xn > Ily'II} ,
so e., (±, () is well defined for each

± = x + i y = x' + i y' + (x n + iYn)e n E e n,

where x ' E JRn-l , Yn E JR, Xn > 0 and I!y' li < Xn . Similarly, e., (x, ( ) holomor­
phically extends to

{± = x ' + iy' + (xn + iYn)en : x ' E JRn- l , Xn < 0, Yn E JR, lI y'li < Ix nl}·

We denote these domains by C±, respecti vely. It should be noted that w± holo­
morphically continue to C±, respectively. We denote these holomorphic continu­
ations of w±by w'±. The doma ins C± are examples of tube domains.
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3.10 Complex Clifford analysis

In the previous section, we showed that any left Clifford holomorphic function
I E H2(JRn,+) can be holomorphically continued to a function It defined on
a tube domain C+ in en. In this section, we will briefly show how this type of
holomorphic continuation happens for all Clifford holomorphic functions defined
on a domain U C JRn .

Let S be a compact smooth hypersurface lying in U, and suppose that S bounds
a subdomain Y of U. Cauchy's integral formula gives

I(y) = ~ rG(x - y)n(x)/(x) da(x)
W n is

for each y E V. Let us now complexify the Cauchy kernel. The function G(x)
holomorphically continues to

(±2)¥ .

In even dimensions this is a well-defined function on en\N(O), where N(O) =
{± E en : ±2 = O}. In odd dimensions this lifts to a well-defined function on
a complex n-dimensional Riemann surface double covering en\N(O). Though
things work out well in odd dimensions, for simplicity we will work with the
cases where n is even. In holomorphically extending G(x - y) in the variable y,
we obtain a funct ion

t _ x-±
G (x-~) - ( (x-±)2) ~'

This function is well defined on en\N(x) , where

N(x) = {± E en : (x - ±)2 = O}.

It follows that the integral

~ rGt(x -±)n(x)/(x)da(x)
W n is

is well defined provided ± is not in N (x) for any xES. The set

is an open set in en. We shall take the component of this open set which con­
tains Y and denote it by vt. It follows that the left Clifford holomorphic function
I (y) has a holomorphic extension It (z) to yt . Furthermore, this function is given
by the integral formula

I t(±) = ~ rGt(x - ±)n(x)/(x)da(x) .
W n is
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The holomorphic function ft is a solution to the complex Dirac equation Dtft
= 0, where

n {)

Dt = Lej {)z .·
j=l J

By allowing the hypersurface to deform and move out to include more of U in its
interior, we see that ft is a well-defined holomorphic function on ut, where Ut
is the component of

Cn
\ UxEU\U N(x)

which contains U. In the special cases where U is either of JRn,±, then ut = C±.
See [34-36] for more details.
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