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Abstract

In this chapter an introduction is given to Clifford analysis and the underlying Clifford algebras.
The functions under consideration are defined on Euclidean space and take values in the universal
real or complex Clifford algebra, the structure and properties of which are also recalled in detail.
The function theory is centered around the notion of a monogenic function, which is a null
solution of a generalized Cauchy–Riemann operator, which is rotation invariant and factorizes
the Laplace operator. In this way, Clifford analysis may be considered as both a generalization to
higher dimension of the theory of holomorphic functions in the complex plane and a refinement of
classical harmonic analysis. A notion of monogenicity may also be associated with the vectorial
part of the Cauchy–Riemann operator, which is called the Dirac operator; some attention is paid to
the intimate relation between both notions. Since a product of monogenic functions is, in general,
no longer monogenic, it is crucial to possess some tools for generating monogenic functions:
such tools are provided by Fueter’s theorem on one hand and the Cauchy–Kovalevskaya extension
theorem on the other hand. A corner stone in this function theory is the Cauchy integral formula
for representation of a monogenic function in the interior of its domain of monogenicity. Starting
from this representation formula and related integral formulae, it is possible to consider integral
transforms such as Cauchy, Hilbert, and Radon transforms, which are important both within the
theoretical framework and in view of possible applications.

Introduction

In a paper which was published posthumously, Clifford [18] defined the algebra which later
was named after him, as a generalization of both Grassmann’s exterior algebra and Hamilton’s
quaternions. His aim was to create a structure encompassing the geometric and the algebraic
properties of Euclidean space, whence he called his algebra a “geometric algebra.” This name
is justified since the universal Clifford algebra is the minimal extension of the m-dimensional
Euclidean space to an associative algebra, carrying its geometric, algebraic, and metric properties.
The importance of these algebra’s lies in the fact that they incorporate inside one single structure
both the inner product and the wedge product (also called exterior or Grassmann product) of
vectors. Classical examples of Clifford algebras are the real numbers, the complex numbers, and
the quaternions. Also the � -matrices introduced by Paul Dirac in order to linearize the Klein–
Gordon equation are in fact generators for a particular Clifford algebra.
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It was also Paul Dirac who, in his famous paper of 1928 about the spinning electron [38],
introduced the first “Dirac operator” as a “square root” of the wave operator in Minkowski
space. This definition was generalized by Brauer and Weyl in 1935 [14] to any finite dimensional
quadratic space with arbitrary signature.

In particular, constructing the universal Clifford algebra over R, one obtains the two dimensional
algebra of the complex numbers. In this framework one considers the Cauchy–Riemann operator,
which underlies the theory of holomorphic functions in the complex plane, as consisting of a real
and a vectorial part. Multiplying this operator with its complex conjugate, one obtains the two-
dimensional Laplacian. Holomorphic functions of one complex variable thus are null solutions
of a first order elliptic differential operator, which factorizes the Laplacian and may moreover be
shown to be invariant under rotations. By means of the universal Clifford algebra, this setting may
be generalized in a very natural way to higher dimension by introducing a generalized Cauchy–
Riemann operator containing a scalar and an m-dimensional vectorial part, which factorizes the
.m C 1/-dimensional Laplacian. The null solutions of this operator are generalized holomorphic
functions, more commonly called monogenic functions. A notion of monogenicity may also be
defined with respect to the m-dimensional vectorial operator, which is called the Dirac operator
and factorizes the m-dimensional Laplacian.

A first contribution to the study of monogenic functions can be found in the work of Fueter
[41]. A detailed study, constituting the foundations of the current field, is the book by Brackx et
al. [4]. Other standards are the books by Gilbert and Murray [44], Gürlebeck and Sprössig [47],
and Gürlebeck et al. [48]. In [19], the authors complement and enrich the analytic approach of
the Dirac system by the use of computers for discovering results in particular cases and for the
application of Gröbner bases as a theoretical tool. Interesting basic references also are a thorough
introduction by Ryan [55] and an extensive overview paper by Delanghe [31].

Clifford Algebras

Real Clifford Algebras
Let m 2 N and let R0;m be the real vector space Rm equipped with a non-degenerate symmetric
bilinear form B of signature .0; m/, with associated quadratic form Q. It means that, choosing an
orthonormal basis e D .e1; : : : ; em/ of R0;m w.r.t. B, one has that

B.ei ; ej / D �ıij ; i; j D 1; : : : ; m

whence in particular Q.ej / D �1, j D 1; : : : ; m. Once the orthonormal basis e is chosen, one
denotes an arbitrary vector x 2 R0;m by x D Pm

j D1 xj ej . It then holds that

B.x; y/ D �
mX

j D1

xj yj and Q.x/ D �
mX

j D1

x2
j D �jxj2

where jxj stands for the Euclidean norm of x.
The real Clifford algebra with generators .e1; : : : ; em/ is a real linear associative algebra with

identity 1, containing R and Rm as subspaces. It is obtained by imposing the condition that for each
vector x there should hold that x2 D Q.x/ D �jxj2, whence the following multiplication rules are
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obtained for the generators:

eiej C ej ei D �2ıij ; i; j D 1; : : : ; m

or more explicitly

e2
i D �1; i D 1; : : : ; m

eiej C ej ei D 0; i ¤ j; i; j D 1; : : : ; m

In view of these relations, every product of basis vectors eˇ1 : : : eˇs
, with ˇ1; : : : ; ˇs 2 f1; : : : ; mg,

can be rewritten as ˙e˛1 : : : e˛h
, with 1 � ˛1 < � � � < ˛h � m, h � m. A basis for the Clifford

algebra R0;m � Alg
R
.e1; : : : ; em/ thus is given by the elements

eA D e˛1 : : : e˛h
; A D .˛1; : : : ; ˛h/; 1 � ˛1 < : : : < ˛h � m; h � m (1)

whence the algebra is 2m dimensional. The identity element is obtained for A D ;, i.e., e; D 1.
An arbitrary Clifford number a 2 R0;m may thus be written as

a D
X

A

aAeA; aA 2 R

the sum being taken over all ordered subsets A of M D .1; : : : ; m/.
A more abstract definition of the Clifford algebra can be found in the work of Chevalley [17], as

a factor space of a tensor algebra.

Example 1. Let m D 1. The two-dimensional Clifford algebra R0;1 generated by e D .e1/ has the
basis .1; e1/, with e2

1 D �1. Identifying e1 with the imaginary unit i , one has that R0;1 ' C.

Example 2. Let m D 2. The four-dimensional Clifford algebra R0;2 generated by e D .e1; e2/ has
the basis .1; e1; e2; e12 � e1e2/, with e2

1 D e2
2 D �1, and, on account of the multiplication rules,

also e2
12 D .e1e2/

2 D �1. Making the identifications i D e1, j D e2 and k D e1e2, one has that
R0;2 ' H.

One may observe in R0;m a so-called multivector structure. Indeed, rewriting the above form of
the Clifford number a as

a D
X

A

aAeA D
mX

kD0

X

jAjDk

aAeA; aA 2 R

it is readily seen that R0;m decomposes as

R0;m D R0
0;m ˚ R1

0;m ˚ : : : ˚ Rm
0;m

where Rk
0;m is the space of so-called k-vectors in R0;m, given by
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R
k
0;m D span

R
feAjA D .˛1; : : : ; ˛k/; 1 � ˛1 < � � � < ˛k � mg

The element a may thus still be rewritten as a D Œa�0 C Œa�1 C � � � C Œa�m, where Œa�k represents
the projection of a on the space of k-vectors.

In particular, R0
0;m ' R are the scalars, R1

0;m ' Rm are the vectors, and Rm
m ' ReM is called the

space of pseudoscalars. An important role is played also by the space of bivectors, i.e.,

R
2
0;m D span

R
feiej ji < j g

since the Clifford product of two arbitrary vectors x and y decomposes as x y D x � y C x ^ y

into a scalar part

x � y D �
mX

j D1

xj yj D �hx; yi D 1

2
.x y C y x/

being, up to a minus sign, the standard Euclidean inner product and a bivector part given by

x ^ y D
X

i<j

eiej .xiyj � xj yi/ D 1

2
.x y � y x/

being called the wedge product and corresponding to the outer product in Rm.

Example 3. Let m D 3. The eight-dimensional Clifford algebra R0;3 has the basis

.1; e1; e2; e3; e12; e13; e23; e123/

consisting of the scalar 1, the vectors e1, e2, e3, the bivectors e12 D e1e2, e13 D e1e3, e12 D e1e2,
and the trivector or pseudoscalar e123 D e1e2e3 for which e2

123 D 1. Note that the cross product of
two vectors in R3 may be expressed as

x � y D �x ^ ye123

Exploring further the multivector structure of R0;m one may also write

R0;m D
X

k even

˚Rk
0;m

M X

k odd

˚Rk
0;m

splitting the Clifford algebra into its even subalgebra

R
C
0;m D

X

k even

˚Rk
0;m D R0

0;m ˚ R2
0;m ˚ R4

0;m ˚ � � �

and its odd subspace
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R
�
0;m D

X

k odd

˚Rk
0;m D R1

0;m ˚ R3
0;m ˚ R5

0;m ˚ � � �

The even subalgebra of R0;m is isomorphic with R0;m�1, since it is generated by the elements
"i D eiem, i D 1; : : : ; m � 1, which satisfy the multiplication rules "i"j C "j "i D �2ıij and
can be interpreted as an orthonormal basis for R0;m�1.

The center of the Clifford algebra is given by Rwhen m is even and by R˚ReM when m is odd.
In general the Clifford algebra will also possess zero divisors.

Example 4. Let again m D 2. It is readily verified that the center of R0;2 only consists of the
scalars, while its even subalgebra RC

0;2 may be identified with C, since it is generated by one single
element "1 D e1e2 for which it holds that "2

1 D �1

Example 5. Now reconsider m D 3. The center of R0;3 is given by R ˚ Re123. For its even
subalgebra it holds that R0; 3C ' R0;2 ' H, its generators being given by "1 D e1e3 and "2 D e2e3.
By means of the central element e123 it is easy to construct the zero divisors

"˙ D 1

2
.1 ˙ e123/

submitting to the relations "2˙ D "˙; "C"� D 0 D "�"C; "C C "� D 1. They induce a direct sum
decomposition of the Clifford algebra R0;3 as follows:

R0;3 ' "CRC
0;3 ˚ "�RC

0;3 ' H˚ H

The above example may be generalized in the sense that whenever m D 4` C 3, it holds that the
central element eM squares to C1, whence the corresponding Clifford algebra splits as

R0;4`C3 D "CRC
0;4`C3 ˚ "�RC

0;4`C3 ' R0;4`C2 ˚ R0;4`C2

by means of the zero divisors "˙ D 1
2.1 ˙ eM /, acting as projection operators. On the other hand,

whenever m D 4` C 1, the central element eM squares to �1, whence it can be identified with the
imaginary unit i and one has

R0;4`C1 ' C˝ RC
0;4`C1 ' C � R0;4`

Complex Clifford Algebras
The complex Clifford algebra CmC1 can be introduced as

Cm D C˝ R0;m

meaning that one takes the same generators .e1; : : : ; em/ as above, with the same multiplication
rules, however allowing for complex constants. As a linear associative algebra over C, Cm has
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dimension 2m, since the set (1) still constitutes a basis. Any Clifford number � 2 Cm may thus be
written as

� D
X

A

�AeA; �A 2 C (2)

or still as

� D a C ib; a; b 2 R0;m (3)

As above, consider the case where m is odd, say m D 2n C 1. The pseudoscalar
eM D e1 : : : e2nC1 then is a central element of C2nC1, with e2

M D ˙1. One thus may introduce
a central element ! whose square is +1 in all cases, by putting

! D ieM ; when e2
M D �1 i.e. when n D 2`

! D eM ; when e2
M D C1 i.e. when n D 2` C 1

Then, by means of the projection operators "˙ D 1
2.1 ˙ !/, a direct sum decomposition of C2nC1

is obtained:

C2nC1 D "C CC
2nC1 ˚ "� CC

2nC1 ' C2n ˚ C2n

since the property is inherited from the real case that the even subalgebra CC
2nC1 of the Clifford

algebra C2nC1 is isomorphic to the Clifford algebra C2n.
The whole multivector structure observed in R0;m obviously is transferred to Cm as well.

Involutions, Inner Product and Norm
Three (anti-)involutions are defined on the real Clifford algebra R0;m. They are introduced first on
the basic elements eA and extended by linearity to the whole of the Clifford algebra.

(i) The main involution a 7! Qa

eej D �ej ; j D 1; : : : ; m

fab D Qa Qb; a; b 2 R0;m

It directly follows that eeA D .�1/keA, whenever jAj D k, whence splitting an arbitrary Clifford
number a in its even and odd parts as a D Œa�C C Œa��, one has

Qa D Œa�C � Œa�� D Œa�0 � Œa�1 C Œa�2 � Œa�3 C � � �

In particular Qa D a, for a 2 RC
0;m.

(ii) The reversion a 7! a�

e�
j D ej ; j D 1; : : : ; m
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.ab/� D b�a�; a; b 2 R0;m

Here one has e�
A D e˛k

: : : e˛1 when eA D e˛1 : : : e˛k
, or still e�

A D .�1/
k.k�1/

2 eA whenever
jAj D k. Thence

a� D Œa�0 C Œa�1 � Œa�2 � Œa�3 C Œa�4 C Œa�5 � : : :

(iii) The conjugation a 7! a

ej D �ej ; j D 1; : : : ; m

ab D ba; a; b 2 R0;m

It clearly holds that the conjugation is the composition of the main involution and the reversion,
whence eA D .�1/

k.kC1/

2 eA whenever jAj D k. For an arbitrary Clifford number, one now has

a D Œa�0 � Œa�1 � Œa�2 C Œa�3 C Œa�4 � Œa�5 � : : :

The (anti-)involutions introduced on R0;m clearly may be extended to Cm, while keeping the same
notations. However, an additional anti-involution on Cm is obtained by taking the tensor product of
the conjugation on R0;m and the classical complex conjugation on C; this anti-involution is called
the Hermitian conjugation and denoted by ��; explicitly, one has for an arbitrary Clifford number
� 2 Cm:

�� D a � ib

when starting from the expression (2), or

�� D
X

A

�c
AeA

when starting from (3) and introducing the notation �c for the complex conjugation.
By means of the conjugation one may introduce an inner product and associated norm on R0;m,

respectively given by

ha; bi D Œab�0 D Œba�0

and

jaj D p
Œaa�0 D

sX

A

a2
A

Similarly, one introduces an inner product and associated norm on Cm by means of the Hermitian
conjugation:
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.�; �/ D Œ����0 D Œ����0I j�j D
p

Œ����0 D
sX

A

�Aj2

Geometric Aspects and the Spin Group
Recall the fact that the Clifford product of two vectors v D Pm

j D0 vj ej and w D Pm
j D0 wj ej

decomposes as

v w D Œv w�0 C Œv w�2 D v � w C v ^ w

where

Œv w�0 D v � w D 1

2
.v w C w v/ D �jvjjwj cos.�/

and

Œv w�2 D v ^ w D 1

2
.v w � w v/ D jvjjwj sin.�/"1 ^ "2

with � the angle between both vectors and ."1; "2/ an orthonormal basis (or frame) in the plane
spanned by both vectors, with "1 k v. When v and w are linearly dependent, one puts v ^ w D 0.

Inspired by this, a similar observation can be made for the case of the product of a vector v with
a k-vector a. This product decomposes as

va D Œva�k�1 C Œva�kC1 � v � a C v ^ a

where

v � a D Œva�k�1 D 1

2
.va � .�1/kav/

v ^ a D Œva�kC1 D 1

2
.va C .�1/kav/

Now let ¨ be a vector in Rm with norm j¨j D 1, i.e., ¨ is an element of the unit sphere
Sm�1 � Rm. Any vector x in Rm may then be decomposed as a sum of two terms, one being
parallel with ¨ and the other being perpendicular to ¨:

x D xk¨ C x?¨ D hx; ¨i¨ C ¨.x ^ ¨/

It is easily verified that the reflection of x with respect to the hyperplane perpendicular to ¨ is
given by

R¨.x/ D �xk¨ C x?¨ D �hx; ¨i¨ C ¨.x ^ ¨/ D ¨ x ¨
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Seen the fact that every rotation can be written as the composition of an even number of reflections,
there should, for a given T 2 SO.m/, exist vectors ¨1; : : : ; ¨2` in Sm such that T D R¨1

: : : R¨2`
.

Hence the image of a vector x under the action of T can be written as

T Œx� D ¨1 ¨2 : : : ¨2` x ¨2` : : : ¨2 ¨1 D s x s

where s D ¨1¨2 : : : ¨2` is a so-called spin element, belonging to the spin group of the Clifford
algebra:

Spin.m/ D fs 2 R0;mjs D ¨1¨2 : : : ¨2`; ¨2
j D �1; j D 1; : : : ; 2`g

With every spin element s thus corresponds an action h.s/ 2 SO.m/ on the vectors, given by
h.s/Œx� D sxs, and conversely, the spin group constitutes a double covering of SO.m/. The action
of a spin element s can be extended to the whole of the Clifford algebra, i.e.,

h.s/Œa� D sas; a 2 R0;m

and respects the multivector structure. On a Clifford algebra valued function f .x/, a spin element
s thus will act as sf .sxs/s.

Example 6. Consider two orthogonal vectors "1; "2 belonging to the unit sphere. Putting

s D exp
�
�

"1 "2

2

�

it holds that s is a spin element, which acts as follows:

s "1 s D cos.�/"1 C sin.�/"2

s "2 s D �sin.�/"1 C cos.�/"2

and svs D v, 8v ? ."1; "2/. The element s thus represents the rotation over � 2 R in the plane
with orthonormal basis ."1; "2/.

The above example is important, since it was proven by Hamilton that every rotation T can be
rewritten as a composition of commuting plane rotations. Identifying T with the action h.s/ of the
spin element s, every spin element may thus be written as

s D exp
�
�1

"1"2
2

�
exp

�
�2

"3"4
2

�
: : : exp

�
�`

"2`�1"2`

2

�

D exp
�

1
2.�1"1"2 C �2"3"4 C � � � C �`"2`�1"2`/

�

where ."1; : : : ; "2`/ is a frame and moreover �1 	 �2 	 � � � 	 �` > 0. Summarizing, a spin element
takes the form

s D exp.b/; with b D
X

i<j

bij eij 2 R2
0;m
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The interested reader may be referred to the book by Delanghe, Sommen, and Souček for a
thorough treatment of these group actions and their interpretation [32].

Monogenic Functions

Generalized Cauchy–Riemann Operators
The aim of this section is to introduce first order differential operators in RmC1 which linearize
�mC1, the Laplace operator in RmC1. The considered functions are defined on RmC1 and take
values in (subspace of) the real Clifford algebra R0;m or its complexification Cm. To fix the ideas,
some examples in low dimension are considered.

Example 7. Let m D 1. Consider the action of the operator @x0 Ce1@x1 on functions f W R2 ! R0;1,
i.e., consider the system

.@x0 C e1@x1/ f D 0

Identifying x0 with x, x1 with y and the basis vector e1 with the imaginary unit i , one obtains the
Cauchy–Riemann equation in the complex plane, viz. .@x C i@y/f D 0, underlying the concept of
holomorphy. Splitting the function f into its real and imaginary parts as follows: f D u C iv, the
equivalent system

@xu D @yv; @xv D �@yu

is obtained. As is well known, the standard Cauchy–Riemann operator indeed factorizes the two-
dimensional Laplacian when being multiplied with its complex conjugate.

Example 8. Now let m D 3 and consider functions f W R4 ! R0;2, submitted to the action of the
so-called Hamilton–Fueter operator:

.@x0 C e1@x1 C e2@x2 C e12@x3/ f D 0

Identification of the basis vectors .e1; e2; e12/ with the quaternionic frame .i; j; k/ yields the
equivalent form

.@x0 C i@x1 C j @x2 C k@x3/ f D 0

When being multiplied with its quaternionic conjugate, this operator is seen to factorize the four-
dimensional Laplacian.

In general, one considers functions f .x0; : : : ; xm/, i.e.,

f W R˚ Rm ' RmC1 ! Rm (or Cm)

and the generalized Cauchy–Riemann operator
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Dx D @x0 C
mX

j D1

ej @xj
D @x0 C @x

also known as the Fueter–Delanghe operator, since it was first introduced in the works of Fueter
[41] and, in full generality, of Delanghe [30]. The function f is called left-monogenic in a domain
	 � RmC1 if and only if it is in 	 a null solution of the above Cauchy–Riemann operator, i.e., if

Dxf �
0

@@x0 C
mX

j D1

ej @xj

1

A f D 0; 8.x0; : : : ; xm/ 2 	

Since multiplication in the Clifford algebra is non-commutative, the notion of right-monogenicity
can also be introduced. However, in this chapter, the focus will be on left-monogenic functions.

As indicated above, the generalized Cauchy–Riemann operator Dx splits into a scalar part @x0

and an m-dimensional vectorial part

@x D
mX

j D1

ej @xj

called the Dirac operator. This operator is the Fourier or Fischer dual of the vector variable
x D P

j D1 ej xj , and plays an important role as well, since it factorizes the m-dimensional
Laplacian:

@2
x D �

mX

j D1

@2
xj

D ��m

while the Cauchy–Riemann operator factorizes the m C 1-dimensional Laplacian:

DxDx D �
@x0 C @x

� �
@x0 � @x

� D
mX

j D0

@2
xj

D �mC1

An alternative notion of monogenicity could thus be (and has been) associated with the null
solution of this Dirac operator. It can however be shown that there exists an equivalence between
both notions, as will be explained in what follows.

To this end one needs to add a generator e0 to the framework and consider the corresponding
Clifford algebra R0;mC1. Then there are two ways of identifying RmC1 with a subspace of R0;mC1.
First, let x D .x0; x/ D .x0; x1; : : : ; xm/ correspond to

x D
mX

j D0

xj ej D x0e0 C x

i.e., x 2 R1
0;mC1. Alternatively, put
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x D x0 C
mX

j D1

xj e0ej D x0 C
mX

j D1

xj "j

i.e., x is paravector (a sum of a scalar and a vector) in R0;m ' RC
0;mC1. Now, according to the first

approach, introduce the Dirac operator @x in m C 1 dimensions, i.e.,

@x D
mX

j D0

ej @xj
D e0@x0 C @x

Multiplying this operator from the left by the vector e0 one has

e0@x D
mX

j D0

e0ej @xj
D @x0 C e0@x D @x0 C

mX

j D1

e0ej @xj
D @x0 C

mX

j D1

"j @xj

which can be interpreted as a Cauchy–Riemann operator corresponding to the paravector
form of x.

Both the Dirac operator and the Cauchy–Riemann operator are the so-called rotation invariant
operators. In the present framework this should be interpreted in the sense that both operators
commute with the action of spin elements on functions, or still: the action of a spin element on a
monogenic function will preserve its monogenicity.

In this respect it is interesting to mention the existence of the so-called quaternionic analysis,
which is not the same as Clifford analysis for quaternion-valued functions; in the paper by Bory-
Reyes and Shapiro [1], the relation is explained between quaternionic analysis, where the so-called
Fueter and the Moisil–Teodorescu operator are considered, and Clifford analysis for the Cauchy–
Riemann and the Dirac operator.

Returning to R0;m, it is also an interesting topic to study solutions of either the Cauchy–
Riemann or the Dirac equation with restricted values, i.e., functions taking values in only one
of the components of the multivector structure of the Clifford algebra. The resulting systems have
received many attention in the literature.

Example 9. Let f be a vector valued function, i.e., f D Pm

j D1 fj ej . Expressing the fact that
f should be a null solution of the m-dimensional Dirac operator results in the splitting of the
corresponding equation into the following system, called Riesz system:

@x � f D 0; @x ^ f D 0 (4)

where

@x � f D �
mX

j D1

@xj
fj D �divf

@x ^ f D
X

i<j

eij

�
@xi

fj � @xj
fi

� D rotf
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A vector valued monogenic function thus is a rotation and divergence free vector field, as
considered by Stein [61].

Example 10. The generalization of the above example is the so-called Hodge system, obtained
by restricting the values of f to an arbitrary but fixed space of k-vectors Rk

0;m. The equation
then splits into a system which formally can be written again as (4), but takes another explicit
form, respectively in R.k�1/

0;m and R.kC1/
0;m . Note that in such a case, left and right monogenicity are

equivalent, since

@xf D 0 ) @x � f D 0 and @x ^ f D 0 ) f @x

Moreover, conversely it holds that if a function is both left and right monogenic, then each of its
k-vector parts is monogenic.

Since products of monogenic functions are, in general, no longer monogenic, it is particularly
interesting to develop alternative methods for constructing examples, or even classes, of monogenic
functions. A number of these methods and approaches are briefly discussed in the remainder of this
section.

The Cauchy–Kovalevskaya Extension
The Cauchy–Kovalevskaya extension theorem [16, 51] has a long history; for a detailed account
the reader is referred to [21]. In its most simple setting, it reads as follows.

Theorem 1. If the functions F; f0; : : : ; fk�1 are analytic in a neighborhood of the origin, then the
initial value problem

@k
t h.x; t/ D F.x; t; @i

t@
˛
xh/

@
j
t h.x; 0/ D fj .x/; j D 0; : : : ; k � 1

has a unique solution which is analytic in a neighborhood of the origin, provided that j˛j C i � k.

In the case where the differential operator involved is the classical Cauchy–Riemann operator
in the complex plane, i.e., when the differential equation reduces to @th D �i@xh (with k D
1; j˛j D 1; i D 0), the theorem states that a holomorphic function in an appropriate region of the
complex plane is completely determined by its restriction to the real axis. In that case, reverting to
the traditional notations in the complex plane, one has the following construction formula for the
holomorphic Cauchy–Kovalevskaya (short: CK) extension.

Proposition 1. If the function f0.x/ is real-analytic in jxj < a, then

F.z/ D exp

�

iy
d

dx

�

Œf0.x/� D
1X

kD0

1

kŠ
ikykf

.k/
0 .x/
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is holomorphic in jzj < a and F.z/jR D f0.x/.

The CK-extension theorem has a direct generalization in Clifford analysis; it reads as follows.

Theorem 2. If f .x1; x2; : : : ; xm/ is real-analytic in an open set 	 of Rm identified with fx 2
R

mC1 W x0 D 0g, then there exists an open neighborhood Q	 of 	 in RmC1 and a unique monogenic
function F (w.r.t. Dx) in Q	 such that its restriction to 	 precisely is f . If moreover 	 contains the
origin, then in an open neighborhood of the origin this CK-extension F is given by

F.x0; x1; : : : ; xm/ D exp
��x0@x

�
f .x/ D

1X

kD0

1

kŠ
.�x0/

k@k
xf .x/

This theorem is very powerful, as it allows to generate monogenic functions starting from real-
analytic ones. An important example concerns the CK-extension of the Gaussian, leading to the
introduction of the Clifford–Hermite polynomials.

Example 11. A direct calculation yields

CK

�

exp

�

�jxj2

2

��

D
C1X

kD0

.�x0/
k

kŠ
Hk.x/ exp

�

�jxj2

2

�

where

Hk.x/ D exp

� jxj2

2

�

@k
x exp

�

�jxj2

2

�

is a polynomial of degree k, called Clifford–Hermite polynomial. Explicitly, the Clifford–Hermite
polynomials are given by

Hk.x/ D

8
ˆ̂
<

ˆ̂
:

2
k
2 


�
k

2
C 1

�

L
m
2 �1
k
2

� jxj2

2

�

; k even

2
k�1

2 


�
k C 1

2

�

L
m
2
k�1

2

� jxj2

2

�

; k odd

in terms of the Laguerre polynomials on the real line. They form a direct generalization of the real
Hermite polynomials, not only formally, but also for what concerns their properties and behavior,
and were used as kernel functions in a higher dimensional continuous wavelet transform; see,
e.g., [3].

Another important application of the CK-extension theorem is the construction of the so-called
monogenic plane waves, of which the following function is an example.

Example 12. Let f .x/ D exp.ihx; ti/, with t 2 Rm a parameter, then
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CK .exp.ihx; ti// D
�

cosh.x0jt j/ C i
t

jt j sinh.x0jt j/
�

exp.ihx; ti/

Note that in the complex plane case one has CK .exp.ixt// D exp.izt /

In general one starts from a function f W R ! R (or C), and one considers f .hx; ti/ where
t 2 Rm is a parameter. The name plane wave originates from the fact that, for a given t 2 Rm,
f .hx; ti/ is constant on planes perpendicular to t . The CK-extension of such a function is given by

CK .f .hx; ti// D f .hx; ti � x0t / D f1 .hx; ti; x0jt j/ � t

jt jf2 .hx; ti; x0jt j/

where f1 and f2 are such that f1.x; y/ C if2.x; y/ D f .x C iy/ is the holomorphic extension of
f .x/ in the complex plane. Summarizing, the monogenic CK-extension of f .hx; ti/ is obtained by
first constructing the holomorphic CK-extension f .x C iy/ of f .x/ and subsequently substituting
x by hx; ti, y by x0jt j and i by � t

jt j . Note that this is an accordance with the above example.

Example 13. Starting from the homogeneous powers f .x/ D xk one obtains the monogenic plane
waves .hx; ti � x0t /

k , k 2 N or Z.

Example 14. An important example, in view of applications, is the so-called Radon kernel. It is
obtained by starting from the Cauchy kernel in the complex plane, viz. 1

2�i
1
z and considering the

corresponding monogenic plane wave

1

2�

t

hx; ti � tx0
D 1

2�

hx; tit � x0jt j2

hx; ti2 C x2
0 jt j2

For a fixed t this function has singularities whenever x0 D 0 and hx; ti D 0.

Starting from a real analytic function f .x/ and its holomorphic extension f .z/, the above
identifications allow for the construction of two more associated monogenic functions. To this
end, consider in Rm the functions

�˙ D 1

2

�

1 ˙ i
t

jt j
�

which act as projection operators since �C C �� D 1; � 2
˙ D �˙; �C�� D 0. These functions are

called the Heaviside projectors since they generalize the Heaviside functions Y.˙t / on the real
axis. Since moreover it holds that t�˙ D �i�˙jt , it can be readily verified that the functions

f .hx; ti C x0jt j/ �˙

are monogenic. This is the way in which monogenic Fourier kernels were constructed by Qian and
Mc Intosh [52]; see also [58] and [5].
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exp.iz/ �! 1

2

�

1 ˙ i
t

jt j
�

exp .ihx; ti 
 x0jt j/

In a similar way, two alternative monogenic Radon kernels can be considered, viz.:

1

2�i

1

z
�! 1

2�

1

hx; ti ˙ ix0jt j
1

2

�

1 ˙ i
t

jt j
�

D 1

4�

jt j C i t

hx; tijt j ˙ ix0jt j2

Remark 1. One may also consider plane wave solutions of @x. Here it suffices to consider two
orthogonal real vectors t ; s 2 Rm of equal norm, and the corresponding complex vector � D t C is.
Under the present conditions it holds that

�2 D .t C is/2 D jsj2 � jt j2 � 2iht ; si D 0

whence it can be easily verified that, starting from a real-analytic function f .x/, the corresponding
plane wave f .hx; �i/� is monogenic w.r.t. @x.

Axially Symmetric Monogenics
The above examples and considerations reveal a tight connection between holomorphic functions
of one complex variable and monogenic functions in Rm or RmC1. Therefore it is important to
notice that, in general, a holomorphic function f .xCiy/ will not give rise to a monogenic function
f .x0 C x/. There is however a method to construct monogenic functions from holomorphic ones,
given by the Fueter–Sce theorem; see, e.g., [42, 57].

Theorem 3. Let m be odd and let f .x C iy/ be a holomorphic function in the complex plane.
Then the function

.�mC1/
m�1

2 f .x0 C x/

is monogenic.

In the case where m is even, the above result was extended by Qian [53] using Fourier multiplier
theory.

A particular class of monogenic functions are those with axial symmetry. Introducing spherical
co-ordinates, i.e., writing x D ¨, with  D jxj and ¨ 2 Sm�1, a function is called axial
monogenic if and only if it is a null solution of the Cauchy–Riemann operator, viz.

�
@x0 C @x

�
f .x0; x/ D 0

and it takes the form

f .x0; x/ D A.x0; / C ¨B.x0; /
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where A and B are scalar valued functions; see, e.g., [20]. The components A and B thus have to
submit to the following system:

@x0A � @B D m � 1


B

@x0B C @A D 0

also called the Vekua system. Note that in particular, the above-mentioned Fueter–Sce theorem
yields functions of this form.

A first important example is the so-called Cauchy kernel, underlying the Cauchy integral
representation formula, studied below.

Example 15. The function

C.x0; x/ D 1

amC1

x0 � x

jx0 C xjmC1
D 1

amC1

x0 � ¨
�
x2

0 C 2
�mC1

2

where amC1 is the area of the unit sphere Sm in RmC1 is the fundamental solution of the Cauchy–
Riemann operator, i.e.,

�
@x0 C @x

�
C.x0; x/ D ı.x0/ı.x/

It is thus axial monogenic in RmC1 n f0g. Note in particular that, for a given function g.x0; x/ with
compact support, the function

u.x0; x/ D ŒC � g�.x0; x/ D
Z

RmC1

C.x0 � y0; x � y/g.y0; y/ dV.y/

will solve the problem Dxu D g. Here dV(y) denotes the volume element in RmC1, see also below.

Another example concerns the Clifford–Bessel function.

Example 16. Putting E.x0; x/ D exp.x0/E.x/, the Vekua system leads to the following solution:

E.x/ D 2
m
2 �1


�m

2

�
1� m

2
�
Jm

2 �1./ C ¨Jm
2
./

�

in terms of the Bessel function of the first kind on the real line.

Finally, it is also possible to construct axial monogenics starting from plane wave solutions. To
this end, take t 2 Sm�1 and consider a monogenic plane wave of the form

G.x0; x; t/ D g1.hx; ti; x0/ � tg2.hx; ti; x0/

then the function

Page 17 of 27



Operator Theory
DOI 10.1007/978-3-0348-0692-3_29-1
© Springer Basel 2015

I.x0; x/ D
Z

Sm�1

G.x0; x; t/d t

is axial monogenic. Indeed, invoking the theorem of Funk–Hecke, it can be verified that I is
monogenic and takes the form I D A.x0; / C ¨B.x0; /, with

A.x0; / D am

Z 1

�1
g1.s; x0/ .1 � s2/

m�3
2 ds

B.x0; / D �am

Z 1

�1
g2.s; x0/ s .1 � s2/

m�3
2 ds

Example 17. Starting from G.x0; x; t/ D 1
2.1 C i t/ exp.ihx; ti � x0/, one obtains

I.x0; x/ D 1

2
am exp.�x0/ .I0./ C i¨I1.//

with

Ik./ � i k1� m
2 JkC m

2 �1./; k D 0; 1

whence I.x0; x/ equals, up to a multiplicative constant, the Clifford–Bessel function E.�x0; �x/.

An important result in this respect is the so-called Radon decomposition of the Cauchy kernel,
which then leads to the Clifford–Radon transform, as for instance derived in [59], see also below.

Theorem 4. If m is even, one has

1

amC1

x0 � x

jx0 C xjmC1
D ˙.�1/

m
2

.m � 1/Š

2.2�/m

Z

Sm�1

.hx; ti � x0t /
�m

dt

where the plus sign has to be taken whenever x0 > 0 and the minus sign whenever x0 < 0. If m is
odd, one has

1

amC1

x0 � x

jx0 C xjmC1
D .�1/

mC1
2

.m � 1/Š

2.2�/m

Z

Sm�1

.hx; ti � x0t /
�m

t d t

Cauchy Integral Formulae

Within the theory of holomorphic functions in the complex plane, Cauchy’s integral representation
formula constitutes an essential result. It expresses the fact that a holomorphic function defined on
a disk D is completely determined by its values on the boundary @D of the disk:

f .z/ D 1

2�i

Z

@D

f .�/

� � z
d�; z 2 ı

D
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and it equally provides integral formulae for all derivatives of this holomorphic function. In
Clifford analysis a generalization of this formula has been established, as is briefly summarized
in what follows; see, e.g., [4].

The present framework is the one where a generator e0 is added and the corresponding Clifford
algebra R0;mC1 is considered. The operator under consideration is the Dirac operator @x in m C 1
dimensions, although all results mentioned may easily be adapted to the case of the Cauchy–
Riemann operator Dx .

Let 	 � RmC1 be open, and let C � 	 be a compact orientable .m C 1/-dimensional manifold
with C 1 smooth boundary @C . The vector valued oriented surface element on @C is defined by
the differential form

d�x D
mX

j D0

.�1/j ej d Oxj

where d Oxj � dx0 ^: : :^Œdxj �^: : :^dxm D dx0^: : :^dxj �1^dxj C1^: : :^dxm, j D 0; : : : ; m,
while the corresponding volume element reads dV.x/ D dx0 ^ : : :^dxm. Observe that, unlike the
situation in real analysis, the ordering of the variables plays a role, since a change of order would
result into a change of sign. Denoting the outwardly pointing unit normal vector at x 2 @C by
n.x/, one may also write

d�x D n.x/dS.x/

where dS(x) denotes the elementary surface measure.
A first fundamental result is the Clifford–Stokes theorem.

Theorem 5. Let f; g 2 C1.	/. Then

Z

@C

g.x/ d�x f .x/ D
Z

C

Œ.g@x/f C g.@xf /� dV.x/

As an immediate consequence one obtains the basic theorem of Cauchy.

Theorem 6. Let the function f be (left-)monogenic w.r.t. the Dirac operator @x, then

Z

@C

d�x f .x/ D 0 D
Z

@C

n.x/f .x/dS.x/

Again, as a consequence of the non-commutative multiplication, the order of the factors in the
integrand should, in both statements above as well as in what follows, carefully be respected.

Example 18. A particular example is the following: take f � 1 and let C be the unit ball in RmC1,
i.e. @C D Sm, the unit sphere in RmC1. Then at each point ! 2 Sm, n.!/ D !, whence

Z

Sm

!dS.!/ D 0
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In Example 15 the so-called Cauchy-kernel C.x0; x/ was introduced as a fundamental solution
of the Cauchy–Riemann operator Dx . In a similar way, one can easily verify that the function

E.x/ � E.x0; x/ D 1

amC1

x

jxjmC1

is a fundamental solution of the Dirac operator @x . The function E is vector valued, locally
integrable, tends to zero at infinity, and indeed submits to @xE D E@x D ı.x/, whence it is left and
right monogenic in RmC1 nf0g. Using this function as a kernel function, i.e., taking g.�/ D E.��x/

in Theorem 5, the following Clifford–Borel–Pompeiu formula is obtained.

Theorem 7. Let f 2 C1.	/. Then

Z

@C

E.y � x/ d�y f .y/ �
Z

C

E.y � x/.@yf /dV.y/ D
(

0 if x 2 	 n C

f .x/ if x 2 ı
C

The Clifford–Cauchy integral representation formula then is nothing but a corollary of the above
statement for the case of monogenic functions.

Theorem 8. Let f be (left-)monogenic in 	. Then

Z

@C

E.y � x/ d�y f .y/ D
(

0 if x 2 	 n C

f .x/ if x 2 ı
C

Remark 2. When 	 D RmC1, one may, in all of the above, take C D RmC1
˙ (the upper or lower

half space). Then in both cases @C ' Rm, the latter being identified with the hyperplane x0 D 0.

Applications: Integral Transforms

The Clifford–Cauchy and the Clifford–Hilbert Transform
The Cauchy transform is a well-known integral operator in the complex plane, which applies
to functions defined on the boundary of a domain, and associates to them a function which is
holomorphic both in the interior and exterior of that domain. In particular, let f 2 L2.@D/, D

being the unit disk, then the Cauchy transform of f is given by

CŒf �.z/ D 1

2�i

Z

@D

f .�/

� � z
d�; z … @D

yielding a function which is holomorphic in C n @D and tends to zero when z ! 1.
Although this probably is the most well-known version, it is not the one which will be considered

here. In view of the possible applications, it is particularly interesting to consider f 2 L2.R/, R
being considered as the boundary of both the upper and lower half plane. In that case
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CŒf �.x C iy/ D CŒf �.z/ D 1

2�i

Z

R

f .t/

t � z
dt D 1

2�i

Z

R

f .t/

.t � x/ � iy
dt; z … R

yields a function which is holomorphic in the upper and lower half plane and tends to zero when
y ! 1. Looking at the jump over the real axis made by the Cauchy kernel, one has

lim
"!0C

1

2�i

�
1

x C i"
� 1

x � i"

�

D � lim
"!0

1

�

"

x2 C "2
D �ı.x/

and more in detail, looking at the upper and lower limit separately:

lim
"!0C

1

2�i

1

x ˙ i"
D 
1

2

�

ı.x/ ˙ 1

�i
Pv

1

x

�

whence it holds that

f .x/ D lim
"!0C .CŒf �.x C i"/ � CŒf �.x � i"//

while

HŒf �.x/ � lim
"!0C .CŒf �.x C i"/ C CŒf �.x � i"// D 1

�i

Z

R

f .t/

t � x
dt D

�

� 1

�i
Pv

1

� � f .�/
	

.x/

defines the so-called Hilbert transform on the real line, as the convolution with the Hilbert kernel.
This Hilbert transform is an important tool in engineering sciences, and in particular in signal
analysis, where filters are designed for obtaining information on various signal properties, based
on the notion of analytic signal, which is a linear combination of a bandpass filter and its Hilbert
transform; see [49].

The above relations between the Cauchy transform, the Hilbert transform, and the original
function may also be rewritten in the following form:

lim
y!0˙ CŒf �.x C iy/ D ˙1

2
f .x/ C 1

2
HŒf �.x/

known as the Plemelj–Sokhotski formulae. The analytic signal then is the non-tangential boundary
value of the holomorphic Cauchy integral in the upper half plane, i.e., 1

2f .x/ C 1
2HŒf �.x/.

When passing to higher dimension, the classical approach to introduce a Hilbert transform is a
tensorial one, taking the so-called Riesz transforms in each of the variables. In the intrinsically
multidimensional framework of Clifford analysis, however, a truly higher dimensional Hilbert
transform can be introduced. As above, the fundamental operator considered here is the Dirac
operator @x in m C 1 dimensions.

Let f 2 L2.R
m/, Rm being considered as the joint boundary of upper and lower half space in

R
mC1, identified as above with the hyperplane x0 D 0. Then the Clifford–Cauchy transform of f

is given by
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CŒf �.x/ � CŒf �.x0; x/ D E.x0; �/ � f .�/.x/ D � 1

amC1

Z

Rm

x0e0 � .y � x/

jx0e0 � .y � x/jmC1
f .y/ dy

where E.x0; x/ is the above introduced fundamental solution of the Dirac operator @x . This yields
a function which is monogenic w.r.t. @x in both half spaces and tends to zero at infinity.

Considering the jump of the fundamental solution over the boundary Rm one obtains

lim
"!0C E."; x/ � E.�"; x/ D 2

amC1
e0 lim

"!0

"

.jxj2 C "2/
mC1

2

D e0 ı.x/

lim
"!0C E."; x/ C E.�"; x/ D � 2

amC1
lim
"!0

x

.jxj2 C "2/
mC1

2

D � 2

amC1

x

jxjmC1

Thence, letting x0 tend to zero yields the following boundary limits:

lim
x0!0˙ CŒf �.x0; x/ D ˙1

2
e0 f .x/ C 1

2
HŒf �.x/

showing formally the same structure as the Plemelj–Sokhotski formulae in the complex plane, up
to the appearance of the additional factor e0. Here the Hilbert transform HŒf � of f is defined as
the convolution ŒH.�/ � f .�/�.x/ with the Hilbert kernel

H.x/ D � 2

amC1

x

jxjmC1

i.e.

HŒf �.x/ D 2

amC1

Z

Rm

.y � x/

j.y � x/jmC1
f .y/ dy

Observe that H 2 D 1, the identity transform. Similarly as in the complex plane, here the notion
of a monogenic signal can be introduced, as the non-tangential boundary value of the monogenic
Cauchy integral in the upper half space, i.e., 1

2 e0 f .x/ C 1
2HŒf �.x/.

Remark 3. The Cauchy and Hilbert transforms may also be considered on the smooth boundary of
a compact orientable manifold, leading to formally similar Plemelj–Sokhotski formulae as above,
when taking non-tangential boundary limits. A particularly interesting case is the one of the unit
sphere, studied in detail in [2].

The Radon Transform
The classical Radon transform is the map which assigns to a given function f the totality of
its integrals over all (hyper)planes of a given dimension. One of the main problems of integral
geometry is to reconstruct the function f from the information contained in these “sliced profiles.”
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In particular, in the case of codimension one, the Radon transform is given by

RŒf �.¨; s/ D
Z

x2Rm

ı.hx; ¨i � s/ f .x/ dV.x/ D
Z

hx;¨iDs

f .x/dV.x/ (5)

with ¨ a unit vector in Rm and s a real variable. A detailed treatment of the theory of Radon
transforms is to be found in the classical works [43] and [50], while applications are extensively
treated in [25] and the references therein.

As expected, the interaction between integral geometry and Clifford analysis leads to interesting
observations. First notice that the above definition (5) can be taken over directly in the current
Clifford framework and may still be rewritten as

RŒf �.¨; hx; ¨i/ D ı.hx; ¨i/ � f

Alternatively, inspired by the construction of a monogenic Clifford–Radon kernel as the plane
wave version of the Cauchy kernel (see Example 14), one may introduce the following Clifford–
Radon transform:

CRŒf �.¨; hx; ¨i; x0/ D � 1

2�

Z

Rm

¨f .u/

hx; ¨i � hu; ¨i � x0¨
dV.u/

or still

CRŒf �.¨; p; x0/ D � 1

2�

Z

Rm

¨f .u/

p � hu; ¨i � x0¨
dV.u/

Since now the kernel function is monogenic, it directly follows that, for a chosen unit vector ¨ the
resulting function CRŒf �.¨; p; x0/ is monogenic in RmC1 nRm. Moreover, taking boundary values,
one obtains a remarkable relation with the classical Radon transform:

lim
"!0C CRŒf �.¨; hx; ¨i; "/ � CRŒf �.¨; hx; ¨i; �"/ D RŒf �.¨; hx; ¨i/

More details on the Radon transform in Clifford analysis, more particularly on the interesting
problem of Radon inversion, can be found in [60].

Conclusions

The basic notions and results of Clifford analysis have been introduced. An intuitive approach
was chosen, illustrated with many examples, which should allow the reader to get a feeling of the
particularities and richness of this, by now well-established, multi-dimensional function theory, as
well as of its potential for applications.

More recently, however, various new branches, refinements, and generalizations of Clifford
analysis have emerged, which do merit to be briefly mentioned in this introductory chapter.
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Hermitian Clifford analysis is a refinement of the above described setting, in the sense that the
Dirac operator is split into two Hermitian conjugate Dirac operators, leading to the study of the
joint null solutions of both, called h-monogenic functions. This splitting arises in a natural way
when equipping the underlying vector space with a complex structure and leads to a reduction of
the invariance of the system to the unitary group; see [6, 7]. The first seeds of this function theory
were sown in the book by Rocha-Chavez et al. [54], and later in the papers [56] and [8]. It was
further developed in a series of papers; see, e.g., [9–11]. Hermitian Clifford analysis is the subject
of another chapter in this handbook; so the interested reader may also consult this chapter and the
references therein.

Discrete Clifford analysis was introduced following the need for numerical applications. In a
discrete higher dimensional setting, null solutions are studied of a deliberately introduced discrete
Dirac operator. Several approaches have been followed, either starting from the applications,
see e.g. [45, 46], or from a function theoretic point of view, see e.g. [33, 36, 40]. In the latter
contribution, a theoretical framework is developed, based on skew Weyl relations, which has
allowed for the development of a true discrete counterpart of Clifford analysis; the corresponding
function theory was further developed, e.g., in [34,35]. Discrete Clifford analysis also is treated as
an independent topic in this handbook.

A representation theoretic point of view on the Dirac operator has led to an important
generalization: higher spin Dirac systems. Here one considers the Dirac operator as a differential
operator mapping spinor-valued polynomials to the same space, spinor space being considered as
an irreducible representation of the Spin group. The main idea then is to replace spinor space by
another irreducible representation of the Spin group, in this way generalizing the Dirac operator.
The fundamental paper in this respect is [15], treating the Rarita–Schwinger operator, which
is important in theoretical physics for describing particles with half-integer spin, replacing the
traditional spin 1/2 of the electron. Further progress has been made in a series of papers on the
construction of the higher spin Dirac operator, its properties and the description of its kernel, see
e.g. [12, 13, 37], and recently also in the very important paper [39] where a fundamental solution
for the general higher spin Dirac operator is determined, allowing for the generalization of Stokes’
theorem, the Cauchy–Pompeiu theorem, and Cauchy’s integral formula, which lie at the very basis
of the further development of the function theory behind arbitrary elliptic higher spin operators. A
chapter on higher spin Dirac systems is included in this handbook as well.

Finally, Clifford and harmonic analysis on super space is a very promising domain, since it has
many applications in theoretical physics. The fundamental paper here is [28], where the theoretical
framework is defined, based on orthogonal and symplectic Clifford algebra generators, allowing
for the canonical introduction of a super-Dirac operator, a super-Laplace operator, and the like.
The paper [29], dealing with the fundamental solutions of the super-operators under consideration,
then enabled the further development of the corresponding function theories, see e.g. [22–24, 26],
and its physical applications, see e.g. [27].
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polynomials in Hermitian Clifford analysis. Math. Methods Appl. Sci. 34, 2167–2180 (2011)

12. Brackx, F., Eelbode, D., Van de Voorde, L.: The polynomial null solutions of a higher spin
Dirac operator in two vector variables. Adv. Appl. Cliff. Alg. 21(3), 455–476 (2011)

13. Brackx, F., Eelbode, D., Raeymaekers, T., Van de Voorde, L.: Triple monogenic functions and
higher spin Dirac operators. Int. J. Math. 22(6), 759–774 (2011)

14. Brauer, R., Weyl, H.: Spinors in n dimensions. Am. J. Math. 57, 425–449 (1935)
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