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Introduction

W. K. Clifford introduced the algebras named after him in 1878 (see [10]). The
importance of these algebras — which he called “geometric algebras” — essen-
tially lies in the fact that they incorporate inside one single structure as well
the inner product as the wedge product of vectors. Indeed, by defining a new
multiplication rule for vectors in Rn, he obtained — in the Euclidean setting —
that for any two vectors x and y in Rn,

x • y =
1

2
(xy + yx),

x ∧ y =
1

2
(xy − yx).

Clifford algebras were rediscovered at several occasions, in particular by physi-
cists. Let us for instance point out that the γ-matrices introduced by P. Dirac
in 1928 (see [15]) in order to linearize the Klein-Gordon equation, are in fact
generators for the Clifford algebra R1,3.

Similar observations concerning the linearization of the Laplacian in n-dimen-
sional Euclidean space led — independently — R. Fueter and Gr. Moisil and N.
Théodoresco, in the 1930’s to their first results in what is nowadays called Clifford
analysis.

We have pleasure in thanking the organizers of the fourth CMFT-Conference
held at the University of Aveiro for their kind invitation to present some basic
results in Clifford analysis to an audience which consisted for the most part of
people dealing with classical complex analysis. We do hope that the underlying
paper will encourage them to have a closer look at this function theory for the
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Dirac operator in Euclidean space and at its applicability to higher dimensional
problems.

The title of our paper may be somewhat misleading: not that much history nor
perspective are developed. Instead we have chosen for presenting those items
from Clifford analysis we think should be part of any introductory course to the
subject. For a state-of-the-art view of the actual research in Clifford analysis
and its applications we refer to [5].

Contents

Part I: Clifford algebras in geometry: geometric algebra

Part II: Clifford algebras in analysis: Clifford analysis

Part III: Clifford algebras in harmonic analysis

Part I. Clifford algebras in geometry: geometric algebra

The aim of this part is to give some preliminary definitions and properties of real
and complex Clifford algebras. For real Clifford algebras, we will restrict our-
selves to the Clifford algebra R0,m+1 constructed over the quadratic space R0,m+1

and this since it is essentially this algebra we use further on in our presentation
of some basic concepts in Clifford analysis.

1. Real Clifford algebras

1.1. Definitions. Let m ∈ N and let R0,m+1 stand for the real vector space
Rm+1 provided with a non-degenerate symmetric bilinear form B of signature
(0,m+1), i.e. for an appropriate orthonormal basis e = (e0, e1, . . . , em) of R0,m+1

w.r.t. B and any two vectors ν, w ∈ Rm+1 with [ν]e = x = (x0, x1, . . . , xm) and
[w]e = y = (y0, y1, . . . , ym), we have that

B(ν, w) = −
m∑

j=0

xj yj.

In particular,
B(ei, ej) = −δij, i, j = 0, 1, . . . ,m.

For the associated quadratic form Q we thus have that

Q(ν) = B(ν, ν) = −
m∑

j=0

xj
2.

In particular
Q(ej) = −1, j = 0, 1, . . . ,m.



1 (2001), No. 1 Clifford Analysis: History and Perspective 109

Henceforth we assume the orthonormal basis e for granted and denote an arbi-
trary element x ∈ R0,m+1 by x =

∑m
j=0 xjej.

The real Clifford algebra R0,m+1 constructed over R0,m+1 is a real linear asso-
ciative algebra with identity 1, of dimension 2m+1, containing R and R0,m+1 as
subspaces and in which for each vector x ∈ R0,m+1,

x2 = Q(x) = −
m∑

j=0

xj
2 = −|x|2

where |x| stands for the Euclidean norm of x.

It thus follows that for the elements of the basis e

ei
2 = −1, i = 0, 1, . . . ,m,

eiej + ejei = 0, i 6= j.

A basis for R0,m+1 then consists of the elements eA = ei1ei2 · · · eih where A =
(i1, i2, . . . , ih) ⊂ {0, 1, . . . ,m} is such that 0 ≤ i1 < i2 < · · · < ih ≤ m. For
A = φ, eφ = 1, the identity element of R0,m+1.

In such way, any element a ∈ R0,m+1 may be written as

a =
∑

A

aAeA, aA ∈ R.

Notice that for any two vectors x, y ∈ R0,m+1,

xy = −x • y + x ∧ y
where

x • y =
m∑

j=0

xjyj

is the standard (Euclidean) inner product and

x ∧ y =
∑

i<j

eiej(xiyi − xjyj)

is the standard outer product in Rm+1.

We may also write

x • y = −1

2
(xy + yx),

x ∧ y =
1

2
(xy − yx).

Putting for each k ∈ {0, 1, . . . ,m+ 1},

R(k)
0,m+1 =



a ∈ R0,m+1 : a =

∑

|A|=k

aAeA



 ,
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we thus have that

R0,m+1 =
m+1∑

k=0

⊕R(k)
0,m+1 =

∑

k even

⊕R(k)
0,m+1 ⊕

∑

k odd

⊕R(k)
0,m+1.

The subspace
∑

k even⊕R(k)
0,m+1 is denoted by R+

0,m+1. It is a subalgebra of R0,m+1,
called even subalgebra, and is isomorphic to R0,m. Indeed, it is generated by the
elements εj = −e0ej, j = 1, . . . ,m, which satisfy εj

2 = −1, j = 1, . . . ,m, and
εiεj + εjεi = 0, i 6= j, whence the set ε = (εj : j = 1, . . . ,m) may be regarded as
an orthonormal basis for R0,m. For a ∈ R0,m+1, we may thus write

a =
m+1∑

k=0

[a]k

where [a]k is the projection of a on R(k)
0,m+1.

An arbitrary element of R(k)
0,m+1 is called a k-vector. In such way, 0-vectors are

scalars, 1-vectors are elements of R0,m+1, 2-vectors are elements of the form∑
i<j aij eiej, and so on. An (m+ 1)-vector has the form a01...m e0e1 · · · em.

As we have seen, the product of two vectors x, y ∈ R0,m+1 splits into a scalar
part −x • y and a bivector part x ∧ y.
Example 1.1 (R0,1

∼= C). Indeed, e = {e0} with e02 = −1. Moreover dimR0,1 =
2 where (1, e0) is a basis for R0,1.

Example 1.2 (R0,2
∼= H). Indeed, e = (e0, e1) with e0

2 = e1
2 = −1. Moreover

dimR0,2 = 4 where (1, e0, e1, e0e1) is a basis for R0,2 with (e0e1)
2 = −1.

Furthermore R+
0,2
∼= C since R+

0,2 is generated by ε1 = −e0e1.
Example 1.3 (R0,3). An orthonormal basis for R0,3 is given by e = (e0, e1, e2).
As we have seen, the (Euclidean) inner product of any two vectors x, y ∈ R3 is
given by x • y = −1

2
(xy + yx). Furthermore, the cross product x × y may be

expressed as
x× y = −x ∧ y e012.

This implies that the classical vector algebra operations in R3 may be performed
inside R0,3.

We have R+
0,3
∼= R0,2

∼= H, its generators ε1, ε2 being given by εj = −e0ej,
j = 1, 2.

1.2. Involutions and norm. Three (anti)-involutions are defined on R0,m+1.
They are introduced first on the basic elements eA and are then extended by
linearity to R0,m+1.

(i) The main involution a→ â

êA = (−1)keA if |A| = k,

âb = âb̂.
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In particular â = a, for a ∈ R+
0,m+1.

(ii) The reversion a→ a∗

e∗A = eiheih−1
· · · ei1 if eA = ei1ei2 · · · eih ,

(ab)∗ = b∗a∗.

(iii) The conjugation a→ α(a)

α(eA) = (êA)
∗ = (e∗A)

∧,

α(ab) = α(b)α(a).

By means of the anti-involution α, an algebra norm |a| may be defined for each
a ∈ R0,m+1 by putting

|a|2 = 2m+1[aα(a)]0 = 2m+1
∑

A

|aA|2.

2. Subgroups of R0,m+1

One of the important features of Clifford algebras is their application to groups
of quadratic automorphisms.

2.1. The Clifford group Γ(m+ 1). First notice that for each x ∈ R0,m+1,

x2 = B(x, x)
= −x x̂
= −x̂ x.

Now let s ∈ R0,m+1 be such that it is invertible and that for all x ∈ R0,m+1,

sxŝ−1 ∈ R0,m+1.

Defining the associated linear transformation χ(s) : R0,m+1 → R0,m+1 by

χ(s)(x) = sxŝ−1,

we have that (χ(s)(x))2 = x2 whence χ(s) ∈ O(m+ 1).

We obtain that

Γ(m+ 1) = {s ∈ R0,m+1 : sxŝ
−1 ∈ R0,m+1 for all x ∈ R0,m+1}

is a group under multiplication in R0,m+1. It is called the Clifford group of R0,m+1.
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2.2. The groups Pin(m+1) and Spin(m+1). Take s ∈ R0,m+1 with s2 = −1,
i.e. s ∈ Sm, the unit sphere in Rm+1. Then χ(s) is nothing else but the orthogonal
reflection w.r.t. the hyperplane Hs = s⊥. Indeed, if we write x = λs + t with
λ ∈ R and t ⊥ s, then a straightforward calculation yields that

χ(s)(x) = −λs+ t.

Hence

Pin(m+ 1) =

{
k∏

j=1

sj : k ∈ N, sj ∈ Sm
}

describes O(m+ 1), while

Spin(m+ 1) =

{
2k∏

j=1

sj : k ∈ N, sj ∈ Sm
}

describes SO(m+ 1).

Pin(m + 1) and Spin(m + 1) are respectively called the Pin and Spin group for
R0,m+1.

Clearly Pin(m + 1) is generated by the set (e0, e1, . . . , em) while Spin(m + 1) is
generated by the set (εj : j = 1, . . . ,m). Of course

Spin(m+ 1) ⊂ Pin(m+ 1) ⊂ Γ(m+ 1).

3. Möbius transformations in Rm+1

The class of conformal mappings in R2 is very rich. In fact, one may say that
essentially it coincides with the set of holomorphic functions. An important
subclass of it consists of the so-called Möbius transformations in R2, i.e. trans-
formations of the form

f(z) =
az + b

cz + d
, z ∈ C,

where a, b, c, d ∈ C with ad− bc 6= 0.

They are obtained by composing three types of them, namely translations, di-
latations and the inversion. They send circles into circles.

It was first shown by Liouville in 1850 that in R3 the only conformal mappings
are Möbius transformations, i.e. compositions of translations, dilatations and
the inversion x → x/|x|2, or equivalently, reflections in affine hyperplanes and
inversions in spheres. The same holds in Rm+1 (m ≥ 2).

As has been proved at several occasions, Möbius transformations in Rm+1 may
be fully described by using Clifford algebras. It is essentially through the papers
of V. Ahlfors (see e.g. [1]) that this technique has got the interest it deserves.
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The Möbius transformations in Rm+1 form a group (for composition), denoted
by Mob(m + 1). The orientation preserving elements from Mob(m + 1) form a
subgroup denoted by Mob+(m+ 1).

We have

Theorem 3.1. Let g ∈ Mob(m + 1). Then there exists a matrix A = [ a b
c d

]
satisfying

(i) a, b, c, d,∈ Γ(m+ 1) ∪ {0},
(ii) ab∗, cd∗, c∗a, d∗b ∈ R0,m+1,
(iii) ad∗ − bc∗ ∈ R \ {0},
and such that for x ∈ Rm+1,

g(x) =
ax+ b

cx+ d
= (ax+ b)(cx+ d)−1.

Conversely, each such A determines a g ∈ Mob(m+ 1).

As is readily seen, the matrix A is defined up to a non-zero factor ρ ∈ R.

∆(g) = ad∗ − bc∗ is called the pseudo-determinant of g.

After normalization we may thus suppose that g corresponds to a matrix [ a b
c d

]

with ∆(g) = ±1. Furthermore we have that g ∈ Mob+(m + 1) if ∆(g) = +1. If
with g ∈ Mob(m + 1), the matrix A = [ a b

c d
] is associated, then g−1 corresponds

to A′ = [ d
∗ −b∗

−c∗ a∗
].

Example 3.2 (Möbius transformations). The basic Möbius transformations are
represented as follows:

Rotation x→ sxŝ−1
[
s 0
0 s

]
, s ∈ Spin(m+ 1)

Translation x→ x+ b

[
1 b
0 1

]
, b ∈ R0,m+1

Dilation x→ λx

[
λ 0
0 1

]
, λ ∈ R+

Inversion x→ x

|x|2
[
0 1
−1 0

]
.

Example 3.3 (The Cayley transform). Call Rm+1
+ = {x = (x0, x1, . . . , xm) :

xm > 0} and let
◦

B(1) be the open unit ball in Rm+1.

The mapping C : Rm+1
+ →

◦

B(1) such that

C(x) =
x− em
−emx+ 1
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is called the Cayley transform.

Its inverse C−1 is given by

C−1(y) =
y + em
emy + 1

.

Example 3.4 (Mob(Sm)). By Mob(Sm) we denote the set of those Möbius
transformations in Rm+1 leaving the unit sphere Sm invariant.

We have

Theorem 3.5.
(i) Let g ∈ Mob(m + 1) with associated matrix A = [ a b

c d
]. Then g leaves Sm

invariant if and only if
(i.1) a, b ∈ Γ(m+ 1) ∪ {0} with |a| 6= |b|,
(i.2) c = b̂ and d = â or c = −b̂ and d = −â.
Moreover g leaves

◦

B(1) invariant if |b| < |a|.
(ii) Mob(Sm) is generated by orthogonal transformations and Möbius transfor-

mations of the type

gα(x) =
x− α

αx+ 1

where α ∈ R0,m+1 ∪ {∞} with |α| 6= 1.
For α =∞,

g∞(x) =
x

|x|2 ,

i.e. g∞ is the inversion.

Moreover gα leaves
◦

B(1) invariant if |α| < 1.

4. Complex Clifford algebras

One way of defining the complex Clifford algebra Cm+1 is by means of

Cm+1 = R0,m+1 ⊗R C.

It follows that Cm+1 is a linear associative algebra over C, having dimension 2m+1

and basis (eA ⊗ 1 : A ⊂ {0, 1, . . . ,m}).
We still write eA = eA ⊗ 1.

An element a ∈ Cm+1 may thus be represented as

a =
∑

A

aAeA, aA ∈ C.

The (anti)-involutions introduced on R0,m+1 may be extended to Cm+1. They are
denoted the same way. The anti-involution on Cm+1 which is obtained by taking
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the tensor product of the conjugation α on R0,m+1 and the classical complex
conjugation on C is called the bar-map and denoted by a→ ā. We so have

a =
∑

A

aAeA → ā =
∑

A

āAα(eA).

It follows that for a ∈ Cm+1, its norm |a| may be defined by

|a|2 = 2m+1[aā]0 = 2m+1
∑

A

|aA|2.

5. Remarks

Let p, q ∈ N with p + q = n and let Rp,q stand for the real vector space Rn

provided with a non-degenerate symmetric bilinear form B of signature (p, q).
Then Rp,q denotes the universal real Clifford algebra constructed over Rp,q. The
case (p, q) = (1, 3) — i.e. Minkowski space — is of course of particular importance
in physics.

For the structure of real Clifford algebras, their classification and their subgroups
Γ(p, q),Pin(p, q) and Spin(p, q), we refer e.g. to [34].

A complete description of the Möbius transformations on Rp,q and their rela-
tion to Pin(p + 1, q + 1), together with a characterization of matrices in the
Pin(p+ 1, q + 1) group was given by J. Fillmore and A. Springer in [16]. A more
straightforward approach was obtained by J. Cnops in [11].

For an excellent introductory monograph on real Clifford algebras and their ap-
plicability in geometry and physics, we refer to [28].

For the classification of complex Clifford algebras, in particular the realization
of C2k, k ∈ N, as the full matrix algebra C(2k) through the so-called basic spinor
representation γ, we refer to [14].

Part II. Clifford algebras in analysis: Clifford analysis

1. Dirac and Weyl operators

The aim of this section is to introduce first order differential operators in Rm+1

which linearize ∆x, the Laplacian in Rm+1.

We shall identify Rm+1 in two ways with a subspace of R0,m+1.

Let x = (x0, x) = (x0, x1, ..., xm) ∈ Rm+1. Then

x→ x =
m∑

j=0

xjej ∈ R0,m+1,
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i.e. x is a 1-vector in R0,m+1.

x→ x = x0 +
m∑

j=1

xjεj = x0 + x

where εj = ē0ej, j = 1, ...,m, i.e. x is a paravector in R0,m
∼= R+

0,m+1. We thus
have in R0,m+1 that

x = x0 +
m∑

j=1

εjxj = ē0(
m∑

j=0

xjej).

As we already pointed out, the classical example where the second identification
is made is of course when m = 1, i.e. when x ∈ R

⊕
R0,1 is written as x =

x0 + ε1x1 ∈ R+
0,2 or, putting ε1 = i, as x = x0 + ix1 ∈ C.

Let us also recall that if

x =
m∑

j=0

xjej, then x2 = −|x|2

and

x = x0 +
m∑

j=1

εjxj, then xx̄ = x̄x = |x|2.

In a formal way we now introduce the following first order linear differential op-
erators ∂x and Dx called, respectively, the Dirac and Weyl (or Cauchy-Riemann)
operators in Rm+1.

The Dirac operator ∂x =
m∑

j=0

ej∂xj = e0∂x0
+ ∂x

where ∂x =
m∑

i=1

ei∂xi.

The Cauchy-Riemann operator Dx = ∂x0
+

m∑

i=1

εi∂xi = e0∂x = ∂x0
+ ∂x

where ∂x =
m∑

i=1

εi∂xi

In both cases ∂x may thus be considered as the Dirac operator in Rm.

They act on C1-functions defined in an open subset Ω ⊂ Rm+1 and having values
in R0,m+1 or Cm+1.

If f(x) =
∑

A fA(x)eA, where the fA’s are R-or C-valued, then the action may
be from the left, i.e. for instance in the case of ∂x:

∂xf =
∑

j,A

ejeA
∂fA
∂xj

,
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or from the right, i.e.

f∂x =
∑

A,j

eAej
∂fA
∂xj

.

Formally we have

∂x
2 = −∆x,

DxD̄x = D̄xDx = ∆x,

∆x being the Laplacian in Rm+1. Here

D̄x = ∂x0
−

m∑

j=1

εj∂xj = ∂xe0.

In the case m = 1, the paravector formalism thus leads to the classical Cauchy-
Riemann operator when putting ε1 = i:

Dx = ∂x0
+ i∂x1

,

and its conjugate
Dx = ∂x0

− i∂x1
.

Remark 1.1. From a purely algebraic point of view, identifying x = (x0, x) ∈
Rm+1 with either x =

∑m
j=0 xjej ∈ R0,m+1 or x = x0 +

∑m
j=1 εjxj ∈ R+

0,m+1, of
course makes a lot of difference. Indeed, as we saw in Part I, Section 2.2 the set
(ej : j = 0, ...,m) generates the Pin-group Pin(m + 1) of R0,m+1, while the set
(εj : j = l, ...,m) generates its Spin-group Spin(m+ 1).

From the geometrical point of view, we could say that when using the paravector
formalism, we have chosen a real axis — namely the x0-axis — by multiplying
the vector x ∈ Rm+1 on the left by e0, the square of which is −1. Of course, we
could as well have chosen e.g. as real axis the xm-axis and this by multiplying
the vector x (on the left) by em. We then would have that in R0,m+1.

x = (x0, x1, ..., xm)→ x =
m−1∑

j=0

ηjxj + xm

where ηj = emej, j = 0, ...,m− 1.

Remark 1.2. A general form of the Dirac and Weyl operators in Rm+1 is given
by

∂x =
m∑

j=0

ρ(ej)∂xj,

Dx = ∂x0
+

m∑

j=1

ρ(εj)∂xj,

where (ρ, V ) is a basic representation space of the group Pin(m + 1), respec-
tively, Spin(m + 1) or a direct sum of such representations. The functions f on
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which these operators are acting are then belonging to C1(Ω;V ). For a detailed
description of this more general context we refer the reader to [14].

2. Monogenic functions: definitions, operator equalities
and basic integral formulae

2.1. Definitions. Let Ω ⊂ Rm+1 be open and let f be a C1-function in Ω which
is Cm+1-valued. Then we say that f is left monogenic in Ω if in Ω

∂xf = 0 or Dxf = 0.

Analogously, f is called right monogenic in Ω if in Ω

f∂x = 0 or fDx = 0.

In what follows, “f monogenic in Ω” will stand for “f is left monogenic in Ω”.
The set of monogenic functions in Ω is denoted by M(Ω). It is a right Cm+1-
module, i.e. if f, g ∈M(Ω) and a, b ∈ Cm+1, than fa+ gb ∈M(Ω).

Notice that at some occasions, we will restrict ourselves to R0,m+1 valued func-
tions. In that case the elements a en b should be taken in R0,m+1. Saying that f
is monogenic in Ω thus means that its components (fA)A⊂{0,...,m} satisfy 2m+1 ho-
mogeneous first order linear partial differential equations. It may be proved that
the first order system thus obstained is strongly elliptic, whence M(Ω) ⊂ A(Ω),
the right Cm+1-module of real-analytic Cm+1-valued functions in Ω. In particular,
as

∆x = −∂2x = DxDx,

f ∈M(Ω) implies that f ∈ Harm(Ω), the set of harmonic Cm+1-valued functions
in Ω.

Example 2.1. Let f be R0,m+1-valued in Ω, i.e.

f(x) =
m∑

j=0

ejfj(x).

Then claiming that ∂xf = 0 in Ω (or f is monogenic w.r.t. the Dirac operator ∂x)
is equivalent to saying that its components fj, j = 0, ...,m, satisfy the system

(2.1)

m∑

j=0

∂fj
∂xJ

= 0

∂fi
∂xj

− ∂fj
∂xi

= 0, i < j.
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The system (2.1) is nothing else but the classical Riesz system. As is well known,
in the case Ω simply connected, it thus means that there ought to exist a func-
tion u, R-valued and harmonic in Ω such that

fj =
∂u

∂xj

, j = 0, . . . ,m.

The set (f0, f1, . . . , fm) is called a set of conjugate harmonic functions in Ω
(see [49]).

Remark 2.2. In what follows basic properties will be given for monogenic func-
tions in the case where the Dirac operator ∂x is considered. A lot of the formulas
thus established remain valid in the case of the Cauchy-Riemann operator Dx

by formally replacing e0 by 1 and ej by εj, j = 1, . . . ,m. However, notice that
in some important situations — in particular when the multiplication operator
x : f → xf is involved — this substitution cannot be done. For more details we
refer to [14].

2.2. Operator equalities. We systematically deal with the Dirac operator.

Passing to polar coordinates x = rξ, r = |x|, ξ ∈ Sm, we have:

∂x = ξ

(
∂r +

1

r
Γξ

)
.

Here Γξ = Γx acts on Sm and is called the spherical Dirac operator, with

Γx = x̄ ∧ ∂x = −
∑

i<j

eiej(xi∂xj
− xj∂xi

).

Furthermore

∆x = ∂r
2 +

m

r
∂r +

1

r2
∆ξ,

∆ξ being the Laplace-Beltrami operator on Sm, and

∆ξ = ((m− 1)1− Γξ)Γξ,

ξΓξξ = Γξ −m1.

Put

E =
m∑

j=0

xj∂xj
= r∂r

(E is called the Euler operator) Then

x̄∂x = E+ Γx,

∆xx = 2∂x + x∆x,

∂xx = −(m+ 1)1− E+ Γx,

x∂x + ∂xx = −2E− (m+ 1)1,

Γx = (m+ 1)1+E+ ∂xx.
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Using some of the above relations, we may prove

Theorem 2.3. Suppose f is monogenic in Ω. Then

(i) (E+ Γx)f = 0,
(ii) ∂x(xf) = −(m+ 1)f − 2Ef ,
(iii) ∆x(xf) = 0, i.e. xf is harmonic in Ω.

2.3. Basic integral formulae. Let Ω ⊂ Rm+1 be open, let C be a compact ori-
entable (m+1)-dimensional manifold with boundary ∂C and define the oriented
Cm+1-valued surface element dσ on ∂C by

dσx =
m∑

j=0

(−1)jejdx̂j,

where

dx̂j = dx0 ∧ · · · ∧ [dxj] ∧ · · · ∧ dxm, j = 0, 1, . . . ,m.

Then if at x ∈ ∂C, n(x) stands for the outwardly pointing unit normal,

dσx = n(x)dS(x),

dS(x) being the elementary surface measure.

Stokes’ and Cauchy’s Theorems. Suppose that f, g ∈ C1(Ω). Then
Theorem 2.4 (Stokes). For each C ⊂ Ω,

∫

∂C

f(x) dσxg(x) =

∫

C

[(f∂x)g + f(∂xg)] dx.

Theorem 2.5 (Cauchy). If f is right monogenic in Ω and g is left monogenic
in Ω, then for each C ⊂ Ω, ∫

∂C

fdσ = 0.

Corollary 2.6. If g is left monogenic (resp. f right monogenic) in Ω, then for
each C ⊂ Ω, ∫

∂C

dσg = 0 (resp.

∫

∂C

f dσ = 0).

Remark 2.7. Multiplication in Cm+1 being non-commutative, it is important
to notice the order of succession of the factors in the integrands.

Remark 2.8. As dσx = n(x)dS(x), we may thus replace dσx by this expression
in the left hand side of the above relations. However, keep in mind that n(x)
should be put at the right place since n(x) is Rm+1-valued, namely

n(x) =
m∑

j=0

ejnj(x).
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We for instance write∫

∂C

f(x)n(x)g(x) dS(x) =

∫

∂C

f(x) dσ(x)gσ(x).

Remark 2.9. It is worth noticing that Cauchy’s Theorem implies the follow-
ing well known formulae from vector analysis. Let u be an R-valued harmonic
function in Ω and put

g(x) = ∂xu(x) =
m∑

j=0

ej
∂u

∂xj
.

Then g is monogenic in Ω, whence for any C ⊂ Ω,

0 =

∫

∂C

dσxg(x) =

∫

∂C

n(x)g(x) dS(x).

But, as n(x) and g(x) are both vector-valued,

n(x)g(x) = −n(x) • g(x) + n(x) ∧ g(x)
whence ∫

∂C

n(x) • g(x) dS(x) = 0

and ∫

∂C

n(x) ∧ g(x) dS(x) = 0

Remark 2.10. A particularly important example occurs in the following case:

take f = 1 and C =
◦

B(1), the unit ball in Rm+1, i.e. ∂C = Sm, the unit sphere
in Rm+1. Then at each point ω ∈ Sm, n(ω) = ω whence

∫

Sm

ω dS(ω) = 0.

Cauchy’s integral representation theorem. Let us first point out that the
fundamental solution of the Dirac operator ∂x is given by

E(x) =
1

Am+1

x̄

|x|m+1 .

Here Am+1 is the area of the unit sphere Sm in Rm+1, i.e.

Am+1 =
2π(m+1)/2

Γ(m+1
2

)
.

We have that

(i) E is Rm+1-valued and belongs to Lloc1 (Rm+1)
(ii) E is left and right monogenic in Rm+1

0 = Rm+1\0 and limx→∞E(x) = 0.
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(iii) ∂xE = E∂x = δ(x), δ(x) being the classical δ-function in Rm+1, i.e. for each
ϕ ∈ D(Rm+1;Cm+1),

〈δ(x), ϕ(x)〉 = ϕ(0)

Theorem 2.11 (Borel-Pompeiu formula). Let f ∈ C1(Ω). Then for each C ⊂ Ω,

∫

∂C

E(y − x) dσyf(y)−
∫

C

E(y − x)∂yf(y) dy =





f(x) if x ∈
◦

C

0 if x ∈ Ω\C

Corollary 2.12 (Cauchy’s integral representation theorem). Let f be left mono-

genic in Ω, i.e. ∂xf = 0 in Ω. Then for each C ⊂ Ω and x ∈
◦

C

f(x) =

∫

∂C

E(y − x) dσyf(y).

Remark 2.13. The Borel-Pompeiu formula measures in some sense the differ-
ence between a C1-function and a monogenic function in Ω.

Remark 2.14. The complexification D of the classical Dirac operator where
D = ∂x + i∂y, ∂x and ∂y being Dirac operators in Rm, i.e. ∂x =

∑m
j=1 ej∂xj

,

∂y =
∑m

j=1 ej∂yj
, gives rise to connections between complex analysis and Clifford

analysis.

For C-valued C1-functions f in Ḡ ⊂ R2m, G being open and bounded, this
operator allows a Borel-Pompeiu type formula which may adapted to the case
G = R2m provided f(∞) = lim|(x,y)|→∞ f(x, y) exists.

As has been shown in [2], the latter may be applied to inverse scattering problems.

The Borel-Pompeiu type formula for the operator D in bounded domains G ⊂
R2m is closely related to the Bochner-Martinelli type formula established in [44].
The latter contains as a special case the classical Bochner-Martinelli formula for
holomorphic functions.

Remark 2.15. The study of null solutions of D which are moreover holomorphic
— so-called complex monogenic functions — was initiated in the beginning of
the 1980’s (see e.g. [39]). Associated Cauchy integral type formulae contain as
well integral formulae of elliptic type as of hyperbolic type (see e.g. [6])

Remark 2.16. Null solutions to a generalized complex Dirac type operator of
the form D =

∑m
j=0Φ(ej)

∂
∂zj

, Φ being a representation of Spin(m + 1), were

studied in [7]. Applications to the inverse Penrose transform are given.

Remark 2.17. Recently, a function theory has been set up for so-called hyper-
holomorphic Cauchy-Riemann operators (see [38]). It is an attempt to embrace
both several complex variable theory and Clifford analysis.
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2.4. Historical notes. As is well known, there are several approaches possible
to classical complex analysis, one of them being the Riemann approach based on
studying null-solutions f = u+ iv of the Cauchy-Riemann operator

∂ =
∂

∂x
+ i

∂

∂y

in C, thus leading to the famous Cauchy-Riemann equations combining u = Re f
and v = Im f :

∂u

∂x
− ∂v

∂y
= 0,

∂v

∂x
+
∂u

∂y
= 0,

and to the fact that, as ∂̄∂ = ∆, the real and imaginary parts of f are harmonic.
As was already pointed out by Gr. Moisil and N. Théodoresco in their 1931-paper
(see [32]), these two characteristics of holomorphic functions are easily transfer-
able to higher dimensions when considering Clifford algebra valued functions.
The example we gave in Section 2.1 is a nice illustration of this. It was M. Riesz
(see [37]) who found out that the system

div ~f = 0

curl ~f = 0,

~f = (f1, . . . fm), could be written in compact form using formally the operator
∇ =

∑m
j=1 ej∂xj

in Rm (which is in fact the Dirac operator ∂x in Rm). Gr.
Moisil and N. Théodoresco obtained the operator ∇ in quite another way. Their
starting point was the idea already worked out by D. Pompeiu in 1912 (see [33])
to measure in some sense the difference between a C-valued C1-function and a
holomorphic one. D. Pompeiu was thus led to the notion of areolar derivative.
Let f be a C1-function in Ω and let for z0 ∈ Ω,

(2.2) Df(z0) = lim
B↓z0

∫
∂B
f(z) dz

2i
∫∫

B
dxdy

where the domain B ⊂ Ω is shrinking to z0. Putting f(z) = u + iv, P (x, y) =
∂u
∂x
− ∂v

∂y
and Q(x, y) = ∂v

∂x
+ ∂u

∂y
, then using Stokes’ Theorem, we have that, if

z0 = x0 + iy0,

Df(z0) =
1

2
(P (x0, y0) + iQ(x0, y0)).

Notice that by (2.2), D = 1
2
∂ is obtained. So holomorphy of f ∈ Ω is equivalent to

Df(z0) = 0 at each z0 ∈ Ω. Putting weaker conditions on f , the Romanian school
developed systematically since the 1930’s the study of the areolar derivative D
(see e.g. [30] for a historical survey) In higher dimensional case, using Clifford
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algebras N. Théodoresco [51] introduced the operator ∇ as follows. Let Ω ⊂ Rm

be open and let f ∈ C1(Ω;R0,m). Then

∇f(x) = lim
B↓x

∫
∂B
n(y)f(y) dS(y)∫

B
dlm

where the domain B ⊂ Ω is shrinking to x. Here n(y) =
∑m

j=1 ejnj(y) is the

outward pointing unit normal to ∂B, the boundary of B. dS(y) and dlm are,
respectively, the Lebesgue measures on ∂B and in Rm. Of course the multipli-
cation n(y)f(y) is done in R0,m. By means of Stokes’ Theorem, one easily finds
that

∇ =
m∑

j=1

ej∂xj
.

Also from the 1930’s on, R. Fueter started developing quaternionic analysis. He
introduced the operator D = ∂x0

+ i∂x1
+ j∂x2

+ k∂x3
, (i, j, k) being the classical

orthonormal basis for R3 ⊂ H with i2 = j2 = k2 = −1, ij = k, jk = i, ki = j. For
Ω ⊂ R4 open, f ∈ C1(Ω;H) is called (left) regular if Df = 0 in Ω, thus giving rise
to a generalized Cauchy-Riemann system. However, as was explicitly pointed out
by R. Fueter, the main concern for introducing the operator D was to ensure the
validity of Cauchy’s Theorem for H-valued functions (see [18]) R. Fueter and his
school also studied Clifford algebra valued regular functions, but then by formally
introducing the operatorD as we did in this paragraph and also did when starting
to develop Clifford analysis from the late 1960’s on. For us, the main reason for
looking at this operator was that it linearizes the Laplacian and that for functions
satisfyingDf = 0 in Ω ⊂ Rm, Cauchy’s Theorem was valid, namely

∫
∂C
gdσf = 0

if gD = 0 and Df = 0 in Ω, C ⊂ Ω be compact and orientable. The same formal
approach was followed by V. Iftimie (see [22]). Nevertheless, within the same time
interval, D. Hestenes re-introduced Théodoresco’s ∇-operator and stressed the
important role played by Cauchy’s Theorem in classical complex function theory
(see [21]). In the 1990’s, J. Cnops (see [11]) introduced pre-Dirac operators P
on semi-Riemannian orientable manifolds M as follows. Let Ω be a domain in
the m-dimensional manifold M . A real linear operator P : C1(Ω) → C0(Ω) such
that for any f, g ∈ C1(Ω), Stokes’ Theorem holds, is called a pre-Dirac operator
on M in Ω, i.e. for any m-dimensional bounded cycle C in Ω having boundary
∂C with the inherited orientation,
∫

∂C

f(y) dMm−1g(y) =

∫

C

Pf(x) dMm(x)g(x) + (−1)m
∫

C

f(x) dMm(x)Pg(x).

By imposing a supplementary condition on P , namely that for any R-valued
function g and each x in Ω, Pg is a vector tangent to M at x, P is then called a
Dirac operator onM and is denoted by DM . In Euclidean space, it turns out that
DM =

∑m
j=1 ej∂xj

. For further references and historical notes on quaternionic

and Clifford analysis, we refer to [13], [14], [19], [20], [50]. Obviously, we do not
claim any form of completeness in giving these historical remarks.
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3. Generating monogenic functions

In classical complex analysis, the setM(Ω) of meromorphic functions in a simply
connected open subset Ω of C is a linear associative algebra. Moreover, com-
position preserves holomorphy. As monogenic functions do not enjoy of these
powerful properties, the question arises of how to construct elementary mono-
genic functions such as polynomials, an exponential function, etc. The aim of
this section is to show that there are a lot of techniques available to generate
monogenic functions and some of them will be described in more or less detail.

3.1. Cauchy-Kowalewska extension. One way of constructing monogenic
functions is by extending real-analytic functions in some open connected do-
main Ω in Rm. In fact, the problem is the following. “Given a real-analytic
function f in Ω ⊂ Rm, does there exist a monogenic function f ∗ in some open
neighbourhood Ω of Ω in Rm+1 such that f ∗|Ω = f?”

In this setting, a real axis should thus be chosen and we take the x0-axis for it,
which means that the variable in Rm is x = (x1, . . . , xm).

As to Ω, it will be an open connected and x0-normal neighbourhood Ω of Ω
in Rm+1. This means that for each x ∈ Ω, the line segment {x+ te0 : t ∈ R}∩Ω
is connected and contains exactly one point in Ω.

Finally, as to f ∗, it should thus satisfy the conditions

(i) ∂xf
∗ = 0 in Ω,

(ii) f ∗(x0, x)|x0=0 = f ∗(0, x) = f(x),

i.e. f ∗|Ω = f .

From (i) it follows that

∂x0
f ∗ = −e0∂xf ∗,

∂x being as usual the Dirac operator in Rm.

Combined with (ii), we thus obtain:

(3.1) f ∗(x0, x) =
(
e−x0e0∂x

)
f(x) =

∞∑

k=0

(−x0)k
k!

(e0∂x)
kf(x).

So the existence of f ∗ is guaranteed. The same can be proved about the existence
of Ω.

The monogenic function f ∗ in Ω thus obtained is called the Cauchy-Kowalewska
extension of f . By construction, it is unique.

When instead of the Dirac operator ∂x, the Cauchy-Riemann operator Dx is
used for defining monogenicity, it again suffices to replace e0 by 1 and ej by εj,
j = 1, . . . ,m, in the above formula (3.1) in order to obtain the corresponding
CK-extension of f .
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Example 3.1 (Homogeneous monogenic polynomials). Call P(k) the set of ho-
mogeneous polynomials of degree k in Rm, k ∈ N fixed. Then P ∈ P(k) may be
expressed as

P (x) =
∑

|α|=k

xα aα

where the multi index α = (α1, . . . , αm) ∈ Nm, aα ∈ Cm+1 and x
α = xα1

1 . . . xαm
m .

Obviously, P is real-analytic in Rm and, in view of (3.1), its CK-extension P ∗

in Rm+1 is given by

P ∗(x) =
∞∑

j=0

(−x0)j
j!

(e0∂x)
jP (x).

As for j > k, (e0∂x)
jP (x) ≡ 0, we thus have

P ∗(x) =
k∑

j=0

(−x0)j
j!

(e0∂x)
jP (x),

i.e. P ∗ is a homogeneous monogenic polynomial of degree k in Rm+1.

Conversely, if Pk is a homogeneous monogenic polynomial of degree k in Rm+1,
its restriction Pk(0, x) to Rm is a homogeneous polynomial of degree k and clearly
(Pk(0, x))

∗ = Pk(x).

Calling M+(k) the set of homogeneous monogenic polynomials in Rm+1, the
CK-extension thus establishes an isomorphism between the right Cm+1−modules
P(k) and M+(k).

In particular,

M+(0) = Cm+1.

For k = 1, consider the basic elements xj, j = 1, . . . ,m, of P(1). Then
(xj)

∗ = zj = xj − x0 e0 ej.

For k > 1, it may be shown that for |α| = k, α = (α1, . . . , αm) ∈ Nm,

(xα)∗ = α!Vα(x)

where Vα(x) can be expressed as follows.

Associate with α = (α1, . . . , αm) ∈ Nm, |α| = k, the sequence (l1, . . . , lk) ∈
{1, . . . ,m}k such that j is appearing αj times in (l1, . . . , lk), j = 1, . . . ,m. Then

Vα(x) = Vl1...lk(x) =
1

k!

∑

π(l1,...,lk)

zl1zl2 . . . zlk

the sum running over all distinguishable permutations of all of (l1, . . . , lk).

We shall return to the set M+(k) in Section 4.1.
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Example 3.2 (Radial Hermite polynomials). Consider the Gauss-distribution
in Rm:

G0(x) = e−|x|
2/2 = ex

2/2.

Obviously, G0 is real-analytic in Rm and in view of (3.1), its CK-extension w.r.t.
the Cauchy-Riemann operator Dx in Rm+1 is given by

G0(x0, x) = exp(−x0∂x)G0(x)
Putting

G0(x0, x) = ex
2/2

∞∑

n=0

xn0
n!
Hn(x),

it may be proved that the functions Hn(x) are polynomials in x having real
coefficients and satisfying the recurrence formula

Hn+1(x) = (x− ∂x)Hn(x)

The polynomials Hn(x) are called radial Hermite polynomials. They are also
determined by the Rodrigues’ Formula

Hn(x) = (−1)n e|x|2/2 ∂nx (e−|x|
2/2).

The first radial Hermite polynomials are thus given by

H0(x) = 1,

H1(x) = x,

H2(x) = x2 +m,

H3(x) = x3 + (m+ 2)x.

Remark 3.3. For further examples of monogenic functions constructed by means
of the CK-extension method and more generally for generating classes of special
functions in Rm+1, we refer to [14, Ch. III].

Remark 3.4. For applications of the radial Hermite polynomials to continuous
wavelet transforms in higher dimension and the construction of specific basic
wavelet functions, we refer to [3].

3.2. Differentiation. If f is monogenic in Ω and α = (α0, α1, . . . , αm) ∈ Nm+1,
then, as [∂α, ∂x] = 0, where ∂α = ∂α0

x0
. . . ∂αm

xm
, we of course have that ∂αf ∈M(Ω).

However, since from ∂xf = 0 it follows that

∂x0
f = −e0∂xf,

it clearly suffices to consider differential operators of the form ∂α, where α =
(α1, . . . , αm) ∈ Nm.

Obviously, for each differential operator

P

(
∂

∂x

)
=
∑

α

aα∂
α,
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aα ∈ C, we have that f monogenic in Ω implies P ( ∂
∂x
)f monogenic in Ω.

Example 3.5. Consider the fundamental solution

E(x) =
1

Am+1

x

|x|m+1

of ∂x and take α ∈ Nm with |α| = k.

Then we put

Wα(x) = (−1)|α| ∂α E(x).

By the definition itself, we thus have that Wα is a homogeneous monogenic
function of degree −(m+k) in Rm+1

0 = Rm+1\{0}. As E(x) is vector valued, the
same holds for each Wα(x).

We return to the functions Wα(x) in Section 4.1.

3.3. Monogenicity, harmonicity, and Möbius transforms. Let g be a
Möbius transform in Rm+1. Then, as we saw in Part I, Section 3, g may be
fully described by a (2× 2)-matrix over Γ(m+ 1) ∪ {0}, say

g =

[
a b
c d

]

the elements of which are submitted to some algebraic conditions.

The action of g on Rm+1 is given by

g(x) =
ax+ b

cx+ d
= (ax+ b)(cx+ d)−1.

Given a monogenic function f or harmonic function h in Ω ⊂ Rm+1 open, new
monogenic or harmonic functions, respectively denoted by γgf or ηgh, can be
constructed from it by composing it with a Möbius transformation g. We have

Theorem 3.6. Let g be a Möbius transformation in Rm+1 and let Ω ⊂ Rm+1 be
open.

(i) If h is harmonic in Ω, then

ηgh(y) =
1

|yc− a|m−1h(g
−1y)

is harmonic in gΩ.
(ii) If f is monogenic in Ω, then

γgf(y) =
−yc+ a

|yc+ a|m+1f(g
−1y)

is monogenic in gΩ.
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Example 3.7 (Inversion w.r.t. the unit sphere Sm). As we have seen, the inver-
sion w.r.t. Sm mapping x→ x

|x|2
may be described by the matrix

g =

[
0 1
−1 0

]
with g−1 =

[
0 −1
1 0

]
.

In the case of harmonic functions, we denote ηg = K (the Kelvin transform)
while in the case of monogenic functions, we put I∗ = −γg (the inversion).

For h harmonic in Ω, we thus have that

Kh(y) = 1

|y|m−1 h
(

y

|y|2
)

is harmonic in gΩ, while for f monogenic in Ω,

I∗f(y) =
y

|y|m+1 f
(

y

|y|2
)

is monogenic in gΩ.

Clearly K2 = 1 and I∗2 = −1.
In particular, if Sk is a homogeneous harmonic polynomial of degree k, k ∈ N
(i.e. a solid harmonic of degree k), then

KSk(y) =
1

|y|m−1 Sk
(

y

|y|2
)

is a homogeneous harmonic function of degree −(m+ k − 1) in Rm+1\{0}.
Analogously, if Pk is a homogeneous monogenic polynomial of degree k, k ∈ N,
(i.e. an inner spherical monogenic of degree k) then

I∗Pk(y) =
y

|y|m+1 Pk
(

y

|y|2
)

is a homogeneous monogenic function of degree −(m+ k) in Rm+1 \ {0}.
Furthermore, if h is harmonic (resp. f monogenic) in the unit ball

◦

B(1) of Rm+1,
then Kh is harmonic (resp. I∗f is monogenic) in Rm+1 \B(1).

Example 3.8 (Rotations). Let us recall that a rotation in Rm+1 admits the
vectorial representation χ(s) : x → χ(s)(x) = sxs where s ∈ Spin(m + 1). In
terms of a Möbius transformation, it may thus be described by the matrix

g =

[
s 0
0 s

]
with g−1 =

[
s 0
0 s

]
.

We put ηg = R(s) and γg = L(s).

For h harmonic,
R(s)(y) = h(sys)

is harmonic, while for f monogenic,

L(s)f(y) = sf(sys)
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is monogenic.

As is well known [∆x,R(s)] = 0 or ∆x is invariant for rotations.

As to ∂x, we have [∂x, L(s)] = 0, whence ∂x yields an example of a so-called first
order Spin(m+ 1)-invariant differential operator.

Example 3.9 (Cayley transform). Let
◦

B(1) and Rm+1
+ with Rm+1

+ = {x ∈ Rm+1 :
xm > 0} be, respectively, the unit ball and the upper half space in Rm+1. The

Möbius transform C mapping Rm+1
+ to

◦

B(1) — the so-called Cayley transform
— may be described by the matrix

g =
1√
2

[
1 −em
−em 1

]
with g−1 =

1√
2

[
1 em
em 1

]
.

So, if h is harmonic in Rm+1
+ , then

ηgh(y) =
1

|yem + 1|m−1 h
(
y + em
emy + 1

)

is harmonic in
◦

B(1), while if f is monogenic in Rm+1
+ , then

γgf(y) =
yem + 1

| − yem + 1|m+1 f
(
y + em
emy + 1

)

is monogenic in
◦

B(1).

Remark 3.10. For a systematic treatment of invariance of operators under
Möbius transformations and its applications, we refer to [11] and [40], where
the latter also deals with the case of complex Dirac operators.

Remark 3.11. In [41], it is shown how the representation of Möbius transfor-
mations by (2× 2)-matrices over Γ(m+ 1)∪ {0} may be used to deal with cross
ratio and Schwarzian derivative in higher dimensional setting.

Remark 3.12. For the role played by Möbius transformations in defining auto-
morphic forms in the upper half space Rm+1

+ , we refer to [26].

3.4. The Cauchy-Riemann system in the plane and monogenic func-
tions. It is a remarkable fact that the Cauchy-Riemann system in the plane
generates monogenic functions. This was first observed by R. Fueter in [17] in
the setting of quaternionic analysis.

Notice that in this subsection, monogenicity in Rm+1 is w.r.t. the Cauchy-Riemann
operator Dx.

Fueter’s Theorem. Assume f to be holomorphic in some open subset Ω ⊂
C+ = {z ∈ C : Im z > 0} and put f(z) = u + iv where as usual u = Re f ,
v = Im f .
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Consider first the case of H-valued functions in R4, H being the algebra of real
quaternions.

In a classical way, a vector x = (x0, x) ∈ R4 is identified with x = x0 + x =
x0 + ix1 + jx2 + kx3, where x = ix1 + jx2 + kx3 ∈ R3. The associated Cauchy-
Fueter operator Dx is given by

Dx = ∂x0
+ i∂x1

+ j∂x2
+ k∂x3

.

Passing to polar coordinates in R3, i.e. putting x = rω where r = |x| and
ω = x/|x| with ω ∈ S2, we may write x = x0 + ωr. Notice that ω2 = −1. We
thus have that for ω fixed, x0 + rω behaves like the complex variable z = x+ iy
when making the identification x → x0, y → z and i → ω. Hence for any ω
fixed, we may associate with f the H-valued function

f(x0 + ωr) = u(x0, r) + ωv(x0, r).

We have

Theorem 3.13 (Fueter). Let f be holomorphic in some open subset Ω ⊂ C+

and let f(x0 + ωr) be the associated H-valued function. Then ∆xf is as well left
as right monogenic, i.e. Dx∆xf = (∆xf)Dx = 0.

In the case of the Cauchy-Riemann operator Dx in Rm+1, this result has been
extended successively by M. Sce [42] (m odd) and T. Qian [35] (m even).

Let us comment about their result.

Considering the Clifford algebra R0,m+1, x = (x0, x) ∈ Rm+1 is identified with
the paravector x = x0 + x = x0 +

∑m
j=1 εjxj ∈ R0,m

∼= R+
0,m+1. One may then

put x = x0 + rω where r = |x| and ω = x/|x| with ω2 = −1.
For a function f = u+ iv holomorphic in Ω ⊂ C+, the corresponding paravector-
valued function f(x0+x) = u(x0, r)+ωv(x0, r) may then be defined. It was thus

obtained that ∆
(m−1)/2
x is monogenic in Ω̃ = {x0 + x : (x0, r) ∈ Ω}, i.e.

Dx∆
(m−1)/2
x f(x0 + x) = 0 in Ω̃.

Notice here that in the casem even, ∆
(m−1)/2
x is defined through Fourier multiplier

theory (see [35]).

This version of Fueter’s Theorem provides us with so-called axial monogenic
functions (see [14]), i.e. monogenic functions of the form

A(x0, r) + ωB(x0, r) = ∆(m−1)/2
x f(x0 + x),

A and B being R-valued and satisfying the Vekua-type system

∂x0
A− ∂rB =

m− 1

2
B,

∂x0
B + ∂rA = 0.
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More generally, one may consider axial monogenic functions of the type

(A(x0, r) + ωB(x0, r))Pk(x)

where Pk ∈M+(k), k ∈ N, i.e. Pk(x) = rkPk(ω) is a homogeneous polynomial of
degree k satisfying ∂xPk = 0 in Rm (Pk is monogenic in Rm).

Recently, it was proved that (see [24] and [46])

Theorem 3.14. Let f be holomorphic in an open subset Ω ⊂ C+ and let Pk be
a homogeneous monogenic polynomial of degree k in Rm. Then the function

∆k+(m−1)/2
x f(x0 + x)Pk(x)

is monogenic in Ω̃.

Remark 3.15. For k = 0, the generalized version of the classical Fueter Theorem
is of course obtained.

Remark 3.16. The result given plays a crucial role in the study of Fourier
multipliers and singular integrals on the unit sphere (see [36]).

Remark 3.17. The classical Fueter Theorem for the quaternionic case has also
been discussed in [13] and [50].

Monogenic plane waves. Once again, we consider the configuration Rm+1 =
R ⊕ Rm ⊂ R0,m

∼= R+
0,m+1 and the associated Cauchy-Riemann operator Dx =

∂x0
+
∑m

j=1 εj∂xj
.

Let g be a plane wave, i.e. g is a C-valued real-analytic function of the scalar
product 〈x, t〉, x, t ∈ Rm (see [23]).

Its CK-extension G(x0, x, t)(t ∈ Rm fixed), monogenic in an appropriate open
subset Ω ⊂ Rm+1, is then given by (see (3.1))

G(x0, x, t) =
(
e−x0∂x

)
g(〈x, t〉) =

∞∑

k=0

(−1)k
k!

xk0 ∂
k
xg(〈x, t〉).

Straightforward calculations yield:

G(x0, x, t) = g1(〈x, t〉, x0|t|)−
t

|t| g2(〈x, t, 〉, x0|t|).

Here g1 and g2 are C-valued functions in the two real variables x = 〈x, t〉 and
y = x0|t|. They satisfy the Cauchy-Riemann system in the plane, i.e.

(3.2)

∂g1
∂x

− ∂g2
∂y

= 0

∂g2
∂x

+
∂g1
∂y

= 0
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Conversely, if g1 and g2 are C-valued C1-functions in some open subset Ω̃ ⊂ C
satisfying the Cauchy-Riemann system (3.2), then for t ∈ Rm fixed, the function

G(x0, x, t) = g1(〈x, t〉, x0|t|)−
t

|t| g2(〈x, t〉, x0|t|)

is clearly monogenic in

Ωt = {(x0, x) : (〈x, t〉, x0|t|) ∈ Ω̃}.
Monogenic functions thus obtained are called monogenic plane waves.

Example 3.18. Let k ∈ N be fixed and put

gk(〈x, t〉) = (〈x, t〉)k.
Then its associated CK-extension is given by

Gk(x0, x, t) = (〈x, t〉 − tx0)
k.

It is a paravector-valued function. Its components g1 and g2 being real-valued,
it thus follows that f = g1 + ig2 is holomorphic.

Example 3.19. Consider
g(〈x, t〉) = ei〈x,t〉.

Its associated CK-extension E(x0, x, t) defines the exponential function (see [43])

E(x0, x, t) = (e−x0∂x)(ei〈x,t〉) = ei〈x,t〉
(
ch(x0|t|)− i

t

|t| sh(x0|t|)
)
.

Its components g1 and g2 are C-valued.

τ-monogenic functions. Consider Cm+1 = Rm+1 ⊕ iRm+1.

Then if Rm+1 is again identified with the set of paravectors in R0,m
∼= R+

0,m+1,

Cm+1 ⊂ C+
m+1

∼= R+
0,m+1 ⊗R C. Now take τ ∈ Cm+1 such that τα(τ) = 0, i.e. if

τ = u+ iv, α(τ) = u+ iv, then u ⊥ v and |u| = |v| in Rm+1.

Furthermore, put for x ∈ Rm+1

〈τ, x〉 = 〈u, x〉Rm+1 + i〈v, x〉Rm+1 .

Suppose ϕ is a holomorphic function in Ω ⊂ C open and associate with it the
Cm+1-valued function

Φτ (x) = τϕ(〈u, x〉Rm+1 + i〈v, x〉Rm+1).

A straightforward calculation leads to

Theorem 3.20. The function Φτ is monogenic in the associated open subset

Ω̃ = {x ∈ Rm+1 : (〈u, x〉, 〈v, x〉) ∈ Ω}.

A monogenic function thus constructed is called τ -monogenic.

Notice that if we write Φτ (x) = Φτ,1(x) + iΦτ,2(x), we have that Φτ,1 and Φτ,2

are monogenic paravector-valued functions.
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3.5. Series of meromorphic functions. Let Ω ⊂ Rm+1 be open and let
(fk)k∈N be a sequence of meromorphic functions in Ω (for the definition of mero-
morphy see Section 4).

If all fk are monogenic in Ω and the sequence (fk)k∈N converges uniformly on
each compact subset K ⊂ Ω, then if f denotes the limit of this sequence, f is
monogenic in Ω. In particular, if

∑∞
k=0 fk is a series of monogenic functions in

Ω which converges either normally or uniformly on each colpact subset K of Ω,
then its sum f is also monogenic in Ω. The results thus stated are in fact nothing
else but Weierstrass’ Theorem for the case of monogenic functions. This theorem
follows immediately from the fact that monogenic functions are real-analytic.

If instead a series of meromorphic functions in Ω is considered then, just as in
complex analysis, one should impose the series to be either compactly conver-
gent or normally convergent in Ω, meaning, respectively, that for each K ⊂ Ω
compact, there exists N(K) ∈ N such that

(i) (compactly convergent) For each k ≥ N(K), the set of poles Sk of fk satis-
fies Sk ∩K = ∅ and

∑∞
k=0 fk|K converges uniformly on K.

or
(ii) (normally convergent) For each k ≥ N(K), the set of poles Sk of fk satisfies

Sk ∩K = ∅ and
∑∞

k=0 supx∈K |fk|K(x)| < +∞.

The sum of a compactly or normally convergent series of meromorphic func-
tions in Ω is again meromorphic in Ω and for its set of poles S we have that
S ⊂ ⋃

k∈N Sk.

Example 3.21 (The cotangent function COT (m)). Let (w1, w2, . . . wm) be a set
of m linearly independent paravectors in Rm+1 and let Wm = Zw1 + · · · + Zwm

be the associated m-dimensional lattice.

Furthermore, call

q0(x) =
x

|x|m+1 = Am+1E(x).

Then the series

q0(x) +
∑

w∈W ′
m

(q0(x+ w)− q0(w))

where W ′
m = Wm \ {0}, converges normally in Rm+1 \Wm.

The meromorphic function thus defined in Rm+1 — and hence forth denoted by
COT(m)(x) — generalizes the classical normalized cotangent function

π cotg πz =
1

z
+
∑

k∈Z′

(
1

z + k
− 1

k

)
.
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It may be proved that COT(m) is odd, has poles of minimal order in the lattice
points of Wm and zeros in the points in between, namely in the set

(
Z +

1

2

)
w1 + · · ·+

(
Z +

1

2

)
wm.

It is an example of an m-periodic meromorphic function.

Remark 3.22. Besides the function COT(m), S. Kraußhar succeeded in intro-
ducing by means of generalized Eisenstein series, whole classes of p-periodic
meromorphic functions in Rm+1, 1 ≤ p ≤ m + 1, thus generalizing the classical
classes of trigonometric and elliptic functions (see [25]).

Remark 3.23. Recently, G. Laville and I. Ramadanoff introduced the class of
so-called holomorphic cliffordian functions, i.e. functions which are nullsolutions
in an open subset of R2m+1 of the operator Dx∆

m
x . In this setting they also

defined the notion of elliptic functions (see [27]).

3.6. Integral transforms. Let Ω be a domain in Rm+1 with boundary ∂Ω = Σ.
In this subsection, monogenicity is w.r.t. the Dirac operator ∂x.

The Cauchy transform CΣ. For f belonging to a suitable class of functions
defined a.e. on Σ, its Cauchy transform CΣf is given by

CΣf(x) =
∫

Σ

E(x− y)dσyf(y) =

∫

Σ

E(x− y)n(y)f(y)dS(y).

It defines a monogenic function in Rm+1 \ Σ.
This is the case e.g. if f ∈ Lp(Σ), 1 < p < +∞, (see [19]).

The Cauchy transform of distributions in Rm+1. As E ∈ Lloc1 (Rm+1), for
each distribution T ∈ E ′(Rm+1), E ∗ T is well defined and ∂x(E ∗ T ) = T . This
implies that ∂x(E ∗ T ) = 0 in Rm+1 \ [T ], [T ] being the suppport of T . Hence
E ∗ T determines a monogenic function in Rm+1 \ [T ]. It is called the Cauchy
transform of T .
Example 3.24 (Borel measures). Let µ be a Cm+1-valued regular Borel measure
in Rm+1 with compact support [µ]. Then its Cauchy transform E ∗ µ defines
an Lloc1 (Rm+1)-function which is monogenic in Rm+1 \ [µ]. Moreover, for a.e.
x ∈ Rm+1,

E ∗ µ(x) =
∫

Rm+1

E(x− y) dµ(y)

with limx→∞E ∗ µ(x) = 0.

Example 3.25 (The Théodoresco transform). Let G ⊂ Rm+1 be a bounded
domain with piecewise smooth boundary ∂G = Σ, let f ∈ Lp(G), 1 ≤ p ≤ +∞
and consider f̃ = fχG, χG being the characteristic function of G. Then its
Cauchy transform E ∗ f̃ ∈ Llocp (Rm+1) and it is monogenic in Rm+1 \G with

E ∗ f̃(x) =
∫

Rm+1

E(x− y)f̃(y) dy =

∫

G

E(x− y)f(y) dy.



136 R. Delange CMFT

It is common to call

TGf = E ∗ f̃
the Théodoresco transform of f .

Its properties have been intensively studied (see e.g. [20]). Notice e.g. that for
suitable f

∂xTGf = f,

which implies that TG is a right inverse for ∂x. Hence the inhomogeneous Dirac
equation

∂xf = g

admits the solution f = TGg.

4. Spherical monogenics and series expansions

In classical harmonic analysis on the unit circle S1, the sequence (eikθ)k∈Z forms a
generating set for L2(S

1). For each k ∈ Z, eikθ is the restriction of zk to S1, where
the sequence (zk)k∈Z is a generating set for the Laurent series of each function f
holomorphic in an open annular neighbourhood of S1. Furthermore, zk, k ∈ N,
is a holomorphic homogeneous polynomial of degree k, while z−k, k ∈ N0, is
a holomorphic homogeneous function of order −k in C \ {0}. It thus seems
natural to look for analogues of the functions zk, k ∈ Z, in Clifford analysis. We
investigate this problem in the case of the Dirac operator ∂x.

4.1. Spherical monogenics: definitions. In what follows all functions we are
considering are Cm+1-valued.

Definition 4.1. A homogeneous monogenic polynomial Pk of degree k, k ∈ N,
in Rm+1 will be called an (inner) spherical monogenic of order k. The set of all
such polynomials is denoted by M+(k).

In Section 3.1 we have seen that the polynomials Vα(x), |α| = k, are homogeneous
of degree k and monogenic, whence Vα(x) ∈M+(k).

Let us recall that for any multi index α = (α1, . . . , αm) ∈ Nm with |α| = k,

(xα)∗ = α!Vα(x).

Definition 4.2. For each k ∈ N, we put M−(k) = I∗M+(k), I∗ being the
inversion introduced in Section 3.3.

By definition, for Qk ∈M−(k) there exists Pk ∈M+(k) such that

Qk(x) =
x

|x|m+1 Pk
(

x

|x|2
)
.
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We have seen that Qk is a homogeneous monogenic function of order −(m+ k).
Each element of M−(k) is called an (outer) spherical monogenic of order k.
Notice that, as I∗2 = −1, I∗M−(k) = M+(k). Notice also that

I∗1 =
x

|x|m+1 = Am+1E(x)

and that for each multi index α = (α1, . . . , αm) ∈ Nm, the functions Wα(x) =
(−1)|α|∂αE(x) all belong to M−(k) for |α| = k.

Obviously, M+(k) and M−(k) are right Cm+1-modules.

We have

Theorem 4.3. Let k ∈ N. Then

(i) (Vα(x) : |α| = k) is a basis for M+(k).
(ii) (Wα(x) : |α| = k) is a basis for M−(k).

As M+(k) = CK(P(k)), P(k) being the right Cm+1-module of homogeneous
polynomials of degree k in x = (x1, . . . , xm), we thus obtain that

dimM+(k) = dimM−(k) = K(m; k)

with

K(m, k) =
(k +m− 1)!

k!(m− 1)!

4.2. Inner products on P(k). Let for k ∈ N fixed, P(k) be the set of all
homogeneous Cm+1-valued polynomials in Rm+1. Then P(k) contains the im-
portant submodules H(k) and M+(k) consisting of, respectively, all harmonic
and monogenic homogeneous polynomials of degree k with

M+(k) ⊂ H(k) ⊂ P(k).
As is well known, for k ≥ 2,

P(k) = H(k)⊕ r2P(k − 2)

leading to

P(k) =
[k/2]∑

j=0

⊕ r2jH(k − 2j).

We now wish to refine this important decomposition and derive a splitting of
(solid) spherical harmonics into (inner) spherical monogenics. To this end we
introduce two inner products on P(k).
The inner product 〈·, ·〉k. For P (x) =

∑
|α|=k x

αaα and Q(x) =
∑
|β|=k x

βbβ
belonging to P(k), we put

〈P,Q〉k =



∑

|α|=k

α! aαbα



0

=

[
P

(
∂

∂x

)
Q

]

0
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where

P

(
∂

∂x

)
=

∑

|α|=k

∂α aα,

i.e. P (∂/∂x) is the differential operator obtained by replacing xi by ∂xi
in P (x).

For P ∈ P(k − 1) and Q ∈ P(k), we so have that

〈xP,Q〉k = 〈P, (−∂x)Q〉k−1
whence the multiplication operator x : P(k−1)→ P(k) with P (x)→ xP (x) has
(−∂x) as its adjoint. It thus follows that

P(k) = M+(k)⊕ xP(k − 1),

the sum being orthogonal.

We have

Theorem 4.4 (Fischer decomposition). Let k ∈ N. Then

(i) P(k) = ∑k
s=0 x

sM+(k − 1),
(ii) H(k) = M+(k)⊕ xM+(k − 1).

Remark 4.5. Let Sk ∈ H(k). Then due to the Fischer decomposition (i) of
Theorem 4.4,

Sk = Pk + x pk−1

where Pk ∈M+(k) and pk−1 ∈ P(k − 1).

Part (ii) of Theorem 4.4 tells us that pk−1 in fact belongs to M+(k− 1). Indeed,
it may even be proved that

pk−1 =
−1

m+ 1 + 2k
∂xSk.

Remark 4.6. As follows directly from Theorem 4.4 (ii), pk−1 ∈ M+(k − 1)
implies that xpk−1 ∈ H(k). It may be proved that if for pk−1 ∈ P(k − 1),
xpk−1 ∈ H(k), then pk−1 ∈M+(k − 1).

Remark 4.7. For a Fischer type decomposition of homogeneous polynomials in
the case of a q-deformed Dirac equation, we refer to [45].

The inner product on L2(S
m). Let, as usual, Sm be the unit sphere in Rm+1.

For functions f, g ∈ L2(Sm), we put

(f, g) =

∫

Sm

f(ω)g(ω) dS(ω).

Considering L2(S
m) as a right Cm+1-module, we have that forf, g ∈ L2(Sm)

(f, g) = (g, f)

and for a, b ∈ Cm+1

(fa, gb) = a(f, g, )b.
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Furthermore, (·, ·) induces a norm on L2(S
m) by putting

‖f‖2 = [(f, f)]0 =

∫

Sm

[f(ω)f(ω)]0 dS(ω) =

∫

Sm

|f(ω)|2 dS(ω).

Of course, this norm is also derived from the C-valued inner product

(f, g)0 = [(f, g)]0.

Definition 4.8. Let k ∈ N. Then M+(k) and M−(k) are the spaces consisting
of the restrictions to Sm of, respectively, the elements belonging to M+(k) and
M−(k). Putting M(k) = M+(k) +M−(k), the elements of M(k) are called
spherical monogenics of degree k. Arbitrary elements of M+(k) and M−(k) are
denoted by Pk and Qk.

In a classical way, H(k) stands for the space of spherical harmonics of degree k,
i.e. the space of the restrictions to Sm of the elements belonging to H(k).

Obviously, M+(k), M−(k) and H(k) are all subspaces of L2(S
m).

From the relation
H(k) = M+(k)⊕ xM+(k − 1)

it immediately follows by restriction to Sm that

H(k) =M+(k)⊕ ωM+(k − 1).

But, taking into account that for each Pk ∈M+(k),

Qk(x) = I∗Pk(x) =
x

|x|m+1 Pk
(

x

|x|2
)
,

we find that for each Qk ∈M−(k), Qk(ω) = ωPk(ω).

Hence ωM+(k − 1) =M−(k − 1) and so for k ∈ N fixed,

H(k) =M+(k)⊕M−(k − 1).

Here it is understood that M−(−1) = {0}.
The following theorem tells us much more about the interrelationship of the
spaces considered. To this end, let us first recall that the elements Sk ∈ H(k)
are the (only) eigenfunctions of the Laplace-Beltrami operator ∆ω — considered
as an essentially self adjoint operator on L2(S

m) — with

∆ωSk(ω) = (−k)(k +m− 1)Sk(ω), k ∈ N.
But we have more, namely

Theorem 4.9. The operator Γω is essentially self-adjoint on L2(S
m). Moreover

for each k ∈ N,

(i) ΓωPk(ω) = (−k)Pk(ω), Pk ∈M+(k),
(ii) ΓωQk−1(ω) = (k +m− 1)Qk−1(ω), Qk−1 ∈M−(k − 1),
(iii) H(k) =M+(k)⊕⊥M−(k − 1).
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Remark 4.10. As is well known, each f ∈ L2(S
m) admits a decomposition in

spherical harmonics:

f(ω) =
∞∑

k=0

Skf(ω)

where Skf ∈ H(k), k ∈ N.

Denoting the decomposition of Skf in spherical monogenics by

Skf(ω) = Pkf(ω) + Qk−1f(ω)

where Pkf ∈ M+(k), Qk−1f ∈ M−(k − 1), we thus obtain for f ∈ L2(S
m) the

decomposition into spherical monogenics:

f(ω) =
∞∑

k=0

Pkf(ω) +
∞∑

k=0

Qkf(ω).

Remark 4.11. As for k 6= l, H(k) ⊥ H(l), we thus also have that M+(k) ⊥
M+(l) and M−(k) ⊥M−(l).

4.3. Series expansions. From the preceding paragraphs, it becomes clear that
the role of the sequences (eikθ)k∈N and (e−ikθ)k∈N0

in classical Fourier analysis on
the unit circle, is taken over by the sequences of spherical monogenics M+(k)
and M−(k − 1), k ∈ N, where by definition we put M−(−1) = {0}. One may
thus expect that the local behaviour of a monogenic function will be governed
by the sequences M+(k) and M−(k − 1), k ∈ N, of respectively, inner and outer
spherical monogenics.

We have

Theorem 4.12 (Taylor expansion). Let f be monogenic in
◦

B(R). Then there

exists a sequence (Pkf)k∈N of inner spherical monogenics such that in
◦

B(R)

f(x) =
∞∑

k=0

Pkf(x),

where for each k ∈ N

Pkf(x) =
1

Am+1

|x|k
rk

∫

Sm

C+m+1,k(ξ, ω)f(rω) dS(ω),

0 < r < R being arbitrarily chosen.

Moreover, this series converges normally on each B((1− ε)R).

Theorem 4.13 (Laurent expansion). Let f be monogenic in the open annular

domain G =
◦

B(R2) \B(R1). Then there exist sequences (Pkf)k∈N and (Qkf)k∈N
of inner and outer spherical monogenics respectively such that in G

f(x) =
∞∑

k=0

Pkf(x) +
∞∑

k=0

Qkf(x),
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the convergence being normal on each closed annular subdomain B(r′2) \
◦

B(r′1)
of G.

Moreover

f1(x) =
∞∑

k=0

Pkf(x) ∈M(
◦

B(R2)),

f2(x) =
∞∑

k=0

Qkf(x) ∈M(Rm+1 \B(R1))

with limx→∞ f2(x) = 0.

Furthermore

Pkf(x) =
1

Am+1

|x|k
rk

∫

Sm

C+m+1,k(ξ, ω)f(rω) dS(ω),

Qkf(x) =
1

Am+1

rm+k

|x|m+k
∫

Sm

C−m+1,k(ξ, ω)f(rω) dS(ω),

0 < R1 < r < R2 being taken arbitrarily.

Remark 4.14. For the functions appearing in the integral representations of the
projections Pkf and Qkf on M+(k) and M−(k), we have

C−m+1,k(ω, ξ)ξω = C+m+1,k(ξ, ω)

where

C−m+1,k(ω, ξ) =
1

m− 1

[
(k + 1)C

(m−1)/2
k+1 (t)

+ (1−m)C
(m+1)/2
k (t)((ξ0ω − ω0ξ)e0 + ω ∧ ξ)

]
.

Here Cν
k stands for the Gegenbauer polynomial of degree k associated to ν and

t = 〈ξ, ω〉 = ξ • ω, the Euclidean inner product between ξ, ω ∈ Sm.

Remark 4.15. As may be expected, the series expansions are obtained by ap-
plying Cauchy’s integral formula and considering appropriate expansions of the
Cauchy kernel function E(y − x). To this end, we wish to point out that for
|x| < R < |y|,

E(y − x) =
∞∑

k=0

∑

|α|=k

Vα(x)Wα(y) =
∞∑

k=o

∑

|α|=k

Wα(y)Vα(x).

Remark 4.16. It is clear that if f is monogenic in an open annular domain G

about a ∈ Rm+1, say G =
◦

B(a,R2) \ (a,R1), then f admits in G a Laurent series

f(x) =
∞∑

k=0

P(a)k f(x) +
∞∑

k=0

Qkf(x).
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If a ∈ Rm+1 is an isolated singular point of the monogenic function f , i.e. there

exists R > 0 such that f is monogenic in
◦

B(a,R)\{a}, then a is said to be a pole

of order p for f io in the Laurent series of f about a, Q(a)
k f(x) ≡ 0 for all k ≥ p.

Finally a function f is called meromorphic in an open subset Ω ⊂ Rm+1 if there
exists a subset S of Ω such that

(i) S has no accumulation point in Ω,
(ii) f is monogenic in Ω \ S,
(iii) f has a pole at each point of S.

It is clear that 0 is a pole of order k + 1 for all Qk ∈ M−(k), in particular for
Wα(x), |α| = k.

Remark 4.17. Taylor’s expansion immediately yields

Theorem 4.18 (Liouville). Let f be monogenic in Rm+1 such that for some
C > 0, |f(x)| ≤ C. Then f is a constant function.

Remark 4.19. The local behaviour (about the origin) of a monogenic function
may thus be described by the space of formal Laurent series

∞∑

k=0

⊕M+(k)⊕
∞∑

k=0

⊕M−(k).

Algebraically, the first part,
∑∞

k=0⊕M+(k) contains all possible monogenic poly-
nomials. The second part,

∑∞
k=0⊕M−(k) defines a special class of rational func-

tions, namely with poles at 0 and vanishing at ∞. Combining both parts gives
rise to the class of rational functions with poles at 0.

These function classes are of particular importance in establishing Runge approx-
imation theorems for functions monogenic on compact subsets of Rm+1 (see [4]).

Remark 4.20. The space M+(k) of spherical monogenics of degree k is an
irreducible Spin(m + 1)-module under the natural action of Spin(m + 1). The
Taylor series

∑∞
k=0⊕M+(k) thus yields the decompopsition of solutions of the

Dirac equation into elements of irreducible Spin(m+1)-modules. It gives rise to
the study of classes of conformally invariant first order operators, among which
the Rarita-Schwinger operator associated to higher Spin representations (see [7],
[8], and [9]) For an approach to Clifford analysis as a study of invariant operators,
we refer to [47].

Remark 4.21. A straightforward approach to Spin-groups and spherical func-
tions can be found in [52]. The same article also describes how, using the notion
of symmetric product, a Weierstrass’ power series approach to monogenic func-
tion theory may be obtained.
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4.4. More about formal Laurent series. The formal series
∞∑

k=0

⊕M+(k) +
∞∑

k=0

⊕M−(k)

can be put into a nice scheme.

Let us first recall that the Fischer decomposition for P(k), k ∈ N, fixed, reads:

P(k) =
k∑

S=0

⊕ xSM+(k − 1)

where
H(k) = M+(k)⊕ xM+(k − 1).

Now putting Q(k) = I∗P(k), k ∈ N fixed, we claim that

(4.1) Q(k) =
k∑

s=0

⊕ x−sM−(k − s)

where

(4.2) I∗H(k) = M−(k)⊕ x−1M−(k − 1)

Indeed, as to (4.1) it suffices to observe that

P(k) = M+(k) + xP(k − 1)

and that for P ∈ P(k − 1),

I∗(xP )(x) = −x−1I∗P (x),

whence
I∗P(k) = M−(k)⊕ x−1Q(k − 1).

Iteration on k yields the desired result.

As for (4.2), notice that if Pk−1 ∈M+(k − 1), then I∗Pk−1 = Qk−1 ∈M−(k − 1)
by definition.

For k ≥ s, a direct calculation results into

I∗(xsM+(k − s)) = x−sM−(k − s).

It should be noticed that none of the elements belonging to x−sM−(k−s), k ≥ s,
is harmonic (besides the constant zero function) and this in contrast with the
property that if Pk ∈M+(k), then xPk is harmonic and belongs to H(k + 1).

In order to preserve harmonicity, one should of course consider KH(k) instead
of I∗H(k). Notice that, as straightforward calculations show,

Kx = −I∗

and so, using the fact that K2 = 1,

(4.3) x = −KI∗.
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Observe that by means of relation (4.3), an elegant proof may be given of the
property that f monogenic in Ω implies xf harmonic in Ω.

Finally notice that

KH(k) = xM−(k)⊕M−(k − 1).

The foregoing considerations lead to the following scheme

Figure 1

Let us have a closer look at the right hand block. As for each k ∈ N fixed,

P(k) = range
(
x|P(k−1)

)
⊕ ker∂x,

P(k − 1) = range
(
∂x|P(k)

)

and

∂x(xM
+(k − 1)) = M+(k − 1),

the corresponding horizontal lines describe stepwise the injectivity of the mul-
tiplication operators x (from the left to the right), respectively, the surjectivity
of ∂x (from the right to the left).

Again for k ∈ N fixed, the corresponding vertical line gives the Fischer decom-
position of P(k) in terms of spherical monogenics. Moreover, in each vertical
line, the highest two knots yield the components of the decomposition of the
space H(k) into M+(k)⊕ xM+(k − 1).

In the left hand block, for k ∈ N fixed, each vertical line represents the decompo-
sition of Q(k) and the two highest knots in it yield the decomposition of I ∗H(k)
into M−(k)⊕ x−1M−(k − 1).
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Part III. Clifford algebras in harmonic analysis

Classical Hp-theory on the unit disc D in C has been the subject of intensive
research ever since its origin in 1915 when, following considerations made by
G. H. Hardy, F. Riesz introduced the subspace Hp(D) of O(D) — the space of
holomorphic functions in D — consisting of those F ∈ O(D) satisfying

sup
0<r<1

1

2π

∫ π

−π

|F (reiθ)|p dθ < +∞, 1 < p < +∞.

In an analogous way, the space Hp(C+) ,1 < p < +∞, consists of those F ∈
O(C+) — C+ being the upper half space in C — such that

sup
y>0

∫ +∞

−∞

|F (x+ iy)|p dy < +∞.

It turns out that Hp(Ω)-theory (Ω = C+ or D) is strongly related to Lp(∂Ω)-
boundary value theory and in particular to singular integral operator theory
in Lp(∂Ω), more precisely to the study of the Hilbert transform on Lp(∂Ω).

In the beginning of the 1980’s (see [12]), the boundedness was proved of the
Hilbert transform HΣ on L2(Σ),Σ being a Lipschitz curve in C and this was the
starting point of considering analogous higher dimensional problems within the
setting of Clifford analysis (see e.g. [19], [29], [31]).

In this section we present some basic results obtained in this context, thus con-
necting Clifford analysis and classical harmonic analysis.

For the classical real variable approach to Hp-spaces we refer to [48].

1. Hardy spaces: general situation

Unless stated otherwise, all functions considered in this section are Cm+1-valued.

Let Σ ⊂ Rm+1 be the graph of a Lipschitz function g : Rm → R and call Ω± the
domains in Rm+1 which lie above, respectively, below Σ. Let furthermore n(y)
stand for the outward unit normal on Σ at y ∈ Σ (n(y) is a.e. defined on Σ) and
dS(y) for the elementary surface element on Σ. For convenience we put Ω+ = Ω.

Let 1 < p < +∞. Then we call

Hp(Ω±) = {F ∈M(Ω±) : sup
δ>0

∫

Σ

|F (y ± δ)|p dS(y) < +∞}

the Hardy space of (left) monogenic functions in Ω±, monogenicity being w.r.t.
the Cauchy-Riemann operator Dx.

For f ∈ Lp(Σ) and x ∈ Rm+1 \ Σ,

CΣf(x) =
∫

Σ

E(x− y)n(y)f(y) dS(y)

the Cauchy transform of f .
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For f ∈ Lp(Σ) and a.e. x ∈ Σ,

HΣf(x) = 2 P.v.

∫

Σ

E(x− y)n(y)f(y) dS(y)

= 2 lim
ε→0+

∫

{y∈Σ:|x−y|>ε}

E(x− y)n(y)f(y) dS(y)

the Hilbert transform of f .

We have

Theorem 1.1. Let f ∈ Lp(Σ) ,1 < p < +∞. Then

(i) CΣf ∈ Hp(Ω±).
(ii) CΣf has non-tangential limits (CΣf)± at almost all x∗ ∈ Σ, i.e.

lim
x
non−tang
−→ x∗

x∈Ω±

CΣf(x) = (CΣf)±(x∗)

(iii) Putting

P+Σf(x
∗) = (CΣf)+(x∗),

P−Σf(x
∗) = −(CΣf)−(x∗),

then P±Σ are bounded projections in Lp(Σ).

(iv) (Plemelj-Sokhotzki Formulae) For a.e. x∗ ∈ Σ,

P+Σf(x
∗) =

1

2
(f(x∗) +HΣf(x

∗)),

P−Σf(x
∗) =

1

2
(f(x∗)−HΣf(x

∗))

whence

1 = P+Σ + P−Σ,
HΣ = P+Σ − P−Σ.

In particular HΣ is a bounded linear operator on Lp(Σ) and, putting L
±
p (Σ) =

P±ΣLp(Σ),
Lp(Σ) = L+p (Σ)⊕ L−p (Σ).

Notice also that, as for any u, v ∈ Rm+1, [uv]0 = u • v, we have that if for any
R-valued f ∈ Lp(Σ), we define for a.e. x ∈ Σ the integral transform HΣ0

f by

HΣo
f(x) = [HΣf(x)]0 =

2

Am+1

P.v.

∫

Σ

(x− y) • n(y)
|x− y|m+1 f(y) dS(y),

then HΣ0
f is also R-valued.

This gives rise to the so-called singular double-layer potential operators HΣ0
and

P+Σ0
on Σ, where P+Σ0

= 1
2
(1 + HΣ0

). Both operators HΣ0
and P+Σ0

are bounded
linear operators on Lp(Σ).
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For details concerning the proofs of the results mentioned, we refer e.g. to [29]
and [31].

Remark 1.2 (Riemann-Hilbert Problems). Let Σ and Ω+ be as before. Fur-
thermore, let a, b, and h be given in Lp(Σ). Then the following boundary value
problem is a straightforward generalization of the classical RH-problem in C:
“Find w monogenic in Rm+1 \ Σ such that on Σ, aw+ − bw− = h.”

Here, for a.e. y ∈ Σ,
w±(y) = lim

x→y
x∈Ω±

w(x).

Using the Plemelj-Sokhotzki formulae, the boundary value condition may be
reformulated as: “Find u ∈ Lp(Σ) such that on Σ, aP+u + bP−u = h”, or,
putting c = (a + b)/2 and d = (a − b)/2, as: “Find u ∈ Lp(Σ) such that on Σ,
cu+ dHΣu = h.”

This problem and related ones were intensively studied in the last years (see
e.g. [2] and its references).

2. The case Rm

Put for x = (x0, x) ∈ Rm+1 = R× Rm,

x = x0 + x = x0 +
m∑

j=1

εjxj,

and associate with it the Cauchy-Riemann operator

Dx = ∂x0
+

m∑

j=1

εj∂xj
,

with fundamental solution

E(x) =
1

Am+1

x

|x|m+1 =
1

Am+1

x0 +
∑m

j=1 xjεj(
x02 +

∑m
j=1 xj

2
)(m+1)/2 .

Moreover, put Rm+1
± = {(x0, x) : x0<>0}.

Define for f ∈ Lp(Rm) ,1 < p < +∞, its Cauchy transform Cf by

Cf(x) =
∫

Rm

E(x− y)f(y) dS(y), x ∈ Rm+1 \ Rm,

and for a.e. x ∈ Rm, its Hilbert transform Hf by

Hf(x) = lim
ε→0+

2

Am+1

∫

{y∈Rm: |x−y|>ε}

x− y

|x− y|m+1f(y) dS(y)

=
m∑

j=1

εjRjf(x),
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Rj being the j-the Riesz transform in Rm, j = 1, . . . ,m.

The Cauchy transform Cf is monogenic in Rm+1 \Rm (w.r.t. Dx) and it belongs
to Hp(Rm+1

± ). Furthermore the Hilbert transform H is bounded on Lp(Rm),
1 < p < +∞.

Writing E(x) as

E(x) =
1

Am+1

x

|x|m+1 =
1

2
Px0

(x) +
1

2
Qx0

(x)

where

Px0
(x) =

1

Am+1

2x0(
x02 +

∑m
j=1 xj

2
)(m+1)/2

is the Poisson kernel for Rm+1
+ and

Qx0
(x) =

2

Am+1

m∑

j=1

xjεj(
x02 +

∑m
j=1 xj

2
)(m+1)/2

the conjugate Poisson kernel, we thus have that e.g. for x = (x0, x) ∈ Rm+1
+ ,

Cf(x0, x) =
1

2
((Px0

∗ f)(x) + (Qx0
∗ f)(x)).

Consequently

P+f(x) = BV +Cf(x) = lim
x0→0+

Cf(x0, x) =
1

2
(f(x) +Hf(x))

and, analogously,

P−f(x) = −BV −Cf(x) = − lim
x0→0+

Cf(−x0, x) =
1

2
(f(x)−Hf(x)).

Remark 2.1. For an R-valued f ∈ Lp(Rm), we have that Cf(x0, x) is R⊕ Rm-
valued.

Putting

u0 =
1

2
Px0

∗ f,

uj =
1

2
Q(j)x0

∗ f, j = 1, . . . ,m

where

Q(j)x0
(x) =

1

Am+1

2xj

(x02 +
∑m

i=1 xi
2)
(m+1)/2

,

we so have that in Rm+1
+ ,

Cf(x) = u0(x) +
m∑

j=1

ε̄juj(x).
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It thus follows from DxCf = 0 in Rm+1
+ that (u0, u1, . . . , um) is a set of conjugate

harmonic functions in the sense of Stein-Weiss (see [49]).

Remark 2.2. Defining the principal value kernel Pv (x/|x|m+1) in Rm by

Pv

(
x

|x|m+1
)

=
2

Am+1

x

|x|m+1 ,

we thus have that for f ∈ Lp(Rm), 1 < p < +∞,

Hf = Pv

(
x

|x|m+1
)
∗ f.

In the sense of distributions we so obtain that

P+f =
1

2

(
δ + Pv

(
x

|x|m+1
))

∗ f = δ+ ∗ f.

Here δ+, with

δ+ =
1

2

(
δ + Pv

(
x

|x|m+1
))

,

generalizes the Heisenberg delta-function to Rm.

Using the fact that

F−
(

2xj
Am+1|x|m+1

)
=

1

i

yj
|y| , j = 1, . . . ,m,

putting (see also [29])

χ±(y) =
1

2

(
1± i

y

|y|

)

and noticing that

χ±
2 = χ±, χ+ + χ− = 1,

we can now formulate the following characterisation of P+Lp(Rm) = L+p (Rm).

Theorem 2.3. For f ∈ Lp(Rm) are equivalent:

(i) BV +Cf = f ,
(ii) Hf = f ,
(iii) F−f = χ+F−f ,
(iv) f = δ+ ∗ f .

This theorem should be compared with its classical version in complex analysis.
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3. The case Sm

Put for x = (x0, x) ∈ Rm+1, x =
∑m

j=0 ejxj and associate with it the Dirac

operator ∂x =
∑m

j=0 ej∂xj
, with fundamental solution

E(x) =
1

Am+1

x

|x|m+1 =
1

Am+1

∑m
j=0 xjej

|x|m+1 .

Passing to polar coordinates we have x = rξ where r = |x| and ξ ∈ Sm.

Define for f ∈ Lp(Sm), 1 < p < +∞, its Cauchy transform Cf by

Cf(x) = 1

Am+1

∫
ω − x

|ω − x|m+1ωf(ω) dS(ω), x ∈ Rm+1 \ Sm.

and for a.e. ξ ∈ Sm, its Hilbert transform Hf by

Hf(ξ) = 2 lim
ε→0+

1

Am+1

∫

{ω∈Sm: |ξ−ω|>ε}

ω − ξ

|ξ − ω|m+1ωf(ω) dS(ω)

= 2 lim
ε→0+

1

Am+1

∫

{ω∈Sm: |ξ−ω|>ε}

1 + ξω

|1 + ξω|m+1f(ω) dS(ω).

Notice that
Cf(x) = f+(x) + f−(x)

where

f+(x) = Y (1− |x|)Cf(x) ∈M(
◦

B(1)),

f−(x) = Y (|x| − 1)Cf(x) ∈M(Rm+1 \ B̄(1)),

Y being the Heaviside function.

So we have

P+f(ξ) = BV +Cf(ξ) = lim
r→

<
1
f+(rξ) =

1

2
(f(ξ)) +Hf(ξ))

P−f(ξ) = −BV −Cf(ξ) = − lim
r→

<
1
f−(rξ) =

1

2
(f(ξ))−Hf(ξ)).

Remark 3.1. We have seen in Part II, Section 4.3 that in the case p = 2, each
f ∈ L2(Sm) admits a decomposition in spherical monogenics:

f(ξ) =
∞∑

k=0

Pkf(ξ) +
∞∑

k=0

Qkf(ξ).

We then have that

P+f(ξ) =
∞∑

k=0

Pkf(ξ),

P−f(ξ) =
∞∑

k=0

Qkf(ξ).
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Putting H2(Sm) = P+L2(Sm), a closed subspace of L2(S
m) is obtained, isomor-

phic to the Hardy space H2(
◦

B(1)) consisting of those F ∈M(
◦

B(1)) such that

sup
0<r<1

∫

Sm

|F (rω)|2 dS(ω) < +∞.

The space H2(
◦

B(1)) is a Hilbert space with reproducing kernel the Szegő-kernel

S+(ω,x) =
1

Am+1

1− ωx

|1− ωx|m+1 , (ω,x) ∈ Sm ×
◦

B(1).

We have

Theorem 3.2. For f ∈ L2(Sm) are equivalent:

(i) f ∈ H2(Sm),
(ii) Hf = f ,
(iii) f =

∑∞
k=0 Pkf .
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