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Introduction

This book covers a topic that combines two branches of mathematical theory to
provide practical tools for the analysis and processing of signals (or images) with
three- or four-dimensional samples (or pixels). The two branches of mathematics are
not recent developments, but their combination has occurred only within the last
25–30 years, and mostly since just before the millennium.

I.1. Fourier analysis

Fourier analysis was, in 1822, with Joseph Fourier’s development of techniques,
the first to analyze mathematical functions into sinusoidal components. In signal and
image processing, Fourier’s ideas underpin the two fundamental representations of a
signal: one in the time (or image) domain where the signal (or image) is represented
by samples (or pixels) with amplitudes and the other in the frequency domain where
the signal (or image) is represented by sinusoidal frequency components, each with
an amplitude and a phase. Mathematically, these concepts are not limited to time and
frequency: one can use Fourier analysis on a function of any variable, resulting in a
representation in terms of sinusoidal functions of that variable. However, this book is
concerned with signal and image processing, and we will therefore use the terms time
and frequency rather than more general concepts. It should be understood throughout
that when we talk of images, the concept of time is replaced by the two spatial
coordinates that define pixel position within an image.

Today, Fourier analysis is classically taught to mathematicians, scientists and
engineers in several related ways, each applicable to a specific subset of
mathematical functions or signals:

1) Fourier series analysis [SNE 61] in which continuous periodic functions of
time, with infinite duration, are represented as sums of cosine and sine functions,
each with infinite duration;
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– Fourier integrals or transforms [BRA 00, ROB 68] in which continuous
(but aperiodic) functions of time are represented as continuous functions of frequency
(or vice versa);

2) Discrete Fourier transforms in which signals defined at discrete intervals in time
are represented in the frequency domain by cosine and sine functions. This topic is
broken down into:

– discrete-time Fourier transforms, in which discrete-time signals of limited
duration are represented as continuous frequency-domain distributions;

– discrete Fourier transforms, in which discrete-time, discretized (that is
digital) signals of finite duration are represented by a finite-length array of digital
frequency coefficients. (These are usually computed numerically using the fast Fourier
transform (FFT)).

The key to all of the above ideas is the representation of a signal using complex
exponentials, often known as harmonic analysis, although this term has a somewhat
wider meaning in mathematics than its usage in signal and image processing. The
complex exponential with angular frequency ω and phase φ: f(t) = A exp(ωt +
φ) = A (cos(ωt+ φ) + I sin(ωt+ φ)) has cosine and sine components in its real
and imaginary parts, respectively. Since, in this book, we are concerned with signals
that have three- or four-dimensional samples, it is helpful to consider classical Fourier
analysis in terms of complex exponentials rather than in terms of separate cosines and
sines.

Figure I.1 shows a real-valued signal (on the left-hand side of the plot, with time
increasing away from the viewer). The signal is a sawtooth waveform reconstructed
from its first five non-zero harmonics, which are plotted in the center of the figure
as helices. (The horizontal spacing between the helices is introduced simply to make
them clearer: there is no mathematical significance to it). The five helices on the left
are the positive frequency complex exponentials and the five helices on the right are
the negative frequencies. Note that the positive and negative frequency exponentials
have opposite directions of rotation. The real parts of the harmonics are projected onto
the right-hand side of the figure (these sum to give the reconstructed waveform on the
left) and the imaginary parts of the harmonics are projected onto the base of the figure
(these cancel out because the exponentials occur in complex conjugate pairs at positive
and negative frequencies, a symmetry due to the original signal being real-valued).

In general, with a complex signal analyzed into complex exponentials in the same
way, there would be no symmetry between the positive and negative frequency
exponentials. This case is a useful model for what follows in this book, where we
consider signals and images with three- and four-dimensional samples. Figure I.2
shows a complex signal constructed by bandlimiting a random complex signal.



Introduction xv

Time is plotted on the right, increasing to the right, and at each time instant the
signal has a complex value. The signal evolution over time traces out a path in the
complex plane, and the figure renders this path as a three-dimensional view by
plotting the signal values, in effect, on a stack of 2,000 transparent complex planes
perpendicular to the time axis. The real and imaginary parts of the signal are also
plotted on the base of the axes, and on the rear plane of the axes. Analysis of a
complex signal into positive and negative frequency complex exponentials is not
conceptually different from the real case depicted in Figure I.1: each complex
exponential will have an amplitude and phase, and their sum will reconstruct the
original signal.
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Figure I.1. Analysis of a real signal into complex exponential harmonics

The time and frequency domain representations of a signal are not mutually
exclusive: the field of time-frequency analysis [FLA 98] is concerned with
intermediate representations that combine aspects of time and frequency. The need
for intermediate representations arises due to the variation of frequency content in a
signal over time. This is not an easy concept to understand, but it follows from the
uncertainty principle or Gabor limit: a signal cannot be bandlimited (i.e. with
frequency content limited to a finite range of frequencies) and simultaneously be of
limited time duration. A pure sinusoidal signal with unlimited duration (infinite
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extent) can be represented in the frequency domain as an impulse (that is a function
with zero value everywhere except at one frequency point). Conversely, an impulse in
the time domain has infinite bandwidth. However, a signal that contains a specific
frequency for a limited time requires a time-frequency representation. Examples of
such signals occur widely in the real world: speech and music contain frequencies
that are present for a short time (one note played on a musical instrument, for
example, which lasts for the duration of the note, plus some reverberation time
afterward). An in-depth discussion of these ideas is outside the scope of this book,
but is assumed to be understood; although much of the contents of the book relates to
Fourier transforms, the quaternion approach can easily be applied to time-frequency
concepts, such as fractional and short-time Fourier transforms, by combining
quaternion transform formulations with existing knowledge from classical signal
processing.
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Figure I.2. A bandlimited complex signal showing real and imaginary parts
projected onto the base and rear of the grid box

I.2. Quaternions

In this book, we are concerned with signals and images that have vector-valued
samples (that is samples with three or more components), and their processing using
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Fourier transforms based on four-dimensional hypercomplex numbers (quaternions).
In Chapter 4 (section 4.3), we show that quaternion Fourier transforms also have
applications for the processing of complex signals, exploiting the symmetry
properties of a quaternion Fourier transform that are missing from a complex Fourier
transform.

A vector-valued signal (in three dimensions, for example) evolves over time and
traces out a path in three-dimensional space. To render a plot of such a signal requires
four dimensions, and therefore we cannot produce a graphical representation like the
one in Figure I.2. Decomposition of a vector-valued signal into harmonic components
requires a Fourier transform in an algebra with dimension higher than 2, and this is
the motivation for the use of quaternions, which, as we will see, are the next available
higher-dimensional algebra after the complex numbers.

Quaternions followed the work of Fourier just over 20 years later, Sir William
Rowan Hamilton in 1843 to generalize the complex numbers to three dimensions,
was forced to resort to four dimensions in order to obtain what we now call a normed
division algebra, that is, an algebra where the norm of a product equals the product
of the norms, and where every element of the algebra (except zero) has a
multiplicative inverse [WAR 97]. Hamilton opened a door in mathematics to
hypercomplex algebras in general [STI 10, Chapter 20], [KAN 89], leading to the
octonions [CON 03, BAE 02] in less than a year, and the Clifford algebras about 30
years later [LOU 01, POR 95].

I.3. Quaternion Fourier transforms

Quaternion Fourier transforms, the subject of this book, are a generalization of
the classical Fourier transform to process signals or images with three- or
four-dimensional samples. Such signals arise very naturally in the physical world
from the three dimensions of physical space. Quite independently, for very different
(physiological) reasons connected with the trichromatic nature of human color vision
[MCI 98], color images have three components per pixel. The fourth dimension of
the quaternions plays a role in at least two ways: the frequency-domain
representation of a signal with three-dimensional samples requires four dimensions
(just as in the complex case, two dimensions are required in the frequency domain,
even if the original signal has one-dimensional samples). But more generally, the
four dimensions of the quaternions can be used to represent a most general set of
geometric operations in three dimensions using homogeneous coordinates, which are
explored in a later chapter (see section 2.3) and in [SAN 13a]. Of course,
generalizations to higher dimensions are possible, and there is a wide range of work
on Clifford Fourier transforms, which is outside the scope of this book (we refer the
readers to a recent volume for further details [HIT 13], and in particular the historical
introduction contained within [BRA 13]).
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I.4. Signal and image processing

Fourier transforms are a fundamental tool in signal and image processing. They
convert a signal or image from a representation based on sample or pixel amplitudes
into a representation based on the amplitudes and phases of sinusoids. The latter
representation is said to be in the frequency domain, and the original signal is said to
be in the time domain for a signal which is a time series, or in the image domain for
an image captured with a camera or scanner. Of course, signals may be encountered
that are not time series, for example, measurements of some physical quantity made
at (regular) intervals in space; in this book, we will use the terminology of time series
for simplicity, since the processing of other signals is mathematically no different.

The Fourier transformation is invertible, which means that the original signal or
image may be recovered from the frequency domain representation. More
interestingly, the frequency domain representation may be modified before inversion
of the transform, so that the recovered signal or image is a modified version of the
original, for example, with some frequencies or bands of frequencies suppressed,
attenuated or amplified. In some applications, inversion of the transform is not
needed: the processing performed in the frequency domain directly yields
information that can be immediately utilized. An example is computer vision, where
a decision based on analysis of an image may result in an action without any need to
construct an image from the processed frequency domain representation. At a more
detailed level, another example includes correlation, where the signal or image is
processed in the frequency domain to yield information about the location of a
known object within an image (the same applies in signal processing to find a known
signal occurring within a longer, noisy signal).

The classical Fourier transform is inherently based on complex numbers. This is
obvious from the fact that the frequency domain representation must represent both
the amplitude and the phase of each frequency present in the signal or image. The
symmetry of the transform means that the signal may be complex without any
modification of the transform. (There are some specialized variants of the Fourier
transform that handle only real signals, for example the Hartley transform
[BRA 86]). Given a signal with three components (representing, for example,
acceleration in three mutually perpendicular directions), how can a frequency domain
representation be calculated? The question is very similar if one considers a color
image: is it possible to construct a holistic frequency-domain representation of the
entire image? Obviously one can compute separate classical (i.e. complex) Fourier
transforms of the three components in both of these cases, but one then has three
separate frequency-domain representations, each representing one aspect of the
original image (the frequency content of one of the color or luminance/chrominance
channels). Processing of separate representations is sometimes known as marginal
processing, for reasons connected with techniques in the hand computation of
marginal distributions in statistics [TRU 53, section 1.22]. It is axiomatic in this book
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that marginal processing is not the best way to handle signals and images with more
than two components per sample, but we will attempt to justify this belief throughout
the book, by showing how holistic approaches with quaternions yield better results.

There is another reason for using a quaternion Fourier transform in some
applications, and it provided the motivation for the earliest published work on
quaternion Fourier transforms (in the field of nuclear magnetic resonance (NMR)).
When a two-dimensional signal is captured (that is samples are measured over a
two-dimensional grid, like an image), it is sometimes necessary to regard the two
dimensions of the sampling grid as independent time-like axes. Processing such a
signal with a classical two-dimensional complex transform mixes the two
dimensions, whereas a suitably formulated quaternion transform does not. This is
because it is possible to associate each of the time-like dimensions with a different
dimension of the four-dimensional quaternion space, thus keeping the
frequency-domain representations of the first and second time-like axes apart. There
were two independent (as far as we are aware) early formulations of quaternion
Fourier transforms, by Ernst [ERN 87, section 6.4.2] and Delsuc [DEL 88,
equation 20], which are almost equivalent (they differ in the relative placement of the
exponentials and the signal, and in the signs, inside the exponentials):

F (ω1, ω2) =
∞

−∞

∞

−∞
f(t1, t2)e

iω1t1ejω2t2dt1dt2 [I.1]

Note that the two-dimensional signal f(t1, t2), is scalar-valued (i.e. not
quaternion-valued as in most of the cases discussed in this book). The two time-like
axes t1 and t2 are treated using separate quaternion roots of −1 (i and j), and
therefore they are not mixed. This may also be regarded as being due to the
orthogonality of the imaginary parts of the two exponentials.

Similar considerations motivated Thomas Bülow [BÜL 99, BÜL 01] when he
processed grayscale images using a quaternion Fourier transform. By using a
transform with samples of dimension greater than 2, Bülow was able to study
symmetries present in certain images in a way that is not possible with the
two-dimensional complex Fourier transform.

I.5. Other hypercomplex algebras

Of course, there are alternatives to quaternions for the construction and
computation of Fourier transforms for the type of applications suggested so far in this
introductory chapter, and it is worth briefly reviewing them here in order to provide a
full picture. As already noted, the quaternion algebra is not the only hypercomplex
algebra. In fact, the quaternion algebra is a specific example of a more general class
of hypercomplex algebras discovered by William Kingdon Clifford in 1876 (about 30
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years after Hamilton’s discovery of quaternions) and known as Clifford algebras. The
Clifford algebras include the complex numbers and quaternions, but not the
octonions, curiously. However, as already mentioned, the quaternions share with the
real numbers and the complex numbers a very specific property that sets them aside
from all other Clifford algebras: every non-zero quaternion, q = 0, has a
multiplicative inverse such that q q−1 = q−1q = 1. Furthermore, the quaternion
algebra is normed. This means that it is possible to define a norm (representing the
squared length of the quaternion in four dimensions) such that the norm of a product
of two quaternions equals the product of the norms of the two quaternions taken
separately: pq = p q . This is discussed in section 1.2 (see [1.14]).
Hypercomplex algebras in general have other troublesome properties. Many contain
values that are idempotent or nilpotent. An idempotent value q squares to give itself:
q2 = q; and a nilpotent value squares to give zero: q2 = 0. Such values obviously
have the potential to cause problems in numerical algorithms [ALF 07], and the
choice of the quaternion algebra avoids these problems entirely, because there are no
nilpotent or idempotent quaternions other than 0 and 1, respectively.

The one property of the quaternions that cannot be avoided is that multiplication
of quaternions is not commutative. This means that pq gives a different result in
general from qp for two arbitrary quaternions p and q. The reason for this can be
stated quite simply – the vector (or cross) product in three dimensions is not
commutative, and the product of two quaternions contains a vector product. It is
important to understand that this is an inherent property of three-dimensional
geometry and is not specific to the quaternions. This is again discussed in Chapter 1.
Non-commutative multiplication can be avoided by choosing a different
hypercomplex algebra, but since any hypercomplex algebra which is commutative
contains divisors of zero (a consequence of the Frobenius [DIC 14, section 11] ), any
attempt to avoid non-commutative multiplication will inevitably lead to other
problems, which may well be more troublesome than non-commutativity.
Non-commutative multiplication also occurs in linear algebra, of course, where the
product of matrices is dependent on ordering; so it should not cause undue concern to
anyone contemplating using quaternions.

I.6. Practical application

The ideas and concepts in this book are realisable in practice in several different
ways, particularly using software.

I.6.1. Software libraries

The library [SAN 13b] permits experimentation with transforms and other
algorithms operating on three- and four-dimensional data in MATLAB®. Since
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MATLAB® can generate C and C++ code (with some restrictions on supported
language features), quaternion code can, in principle, be used to generate code for
stand-alone applications, subject to licensing1.

Alternatively, code can be custom-written, using a quaternion library such as the
Boost library for C++, which contains some quaternion functions in the Math toolkit
[BRI 13]. This is discussed again in section 3.3, particularly with respect to the use of
decompositions into complex transforms to avoid the need to code elaborate
algorithms directly in quaternion code.

Both the QFTM and Boost libraries adopt the approach of directly coding
quaternion operations, that is they represent quaternions as quadruplets of real (or
complex) values, and provide elementary functions to add and multiply quaternions,
implementing the famous rules for ijk given in section 1.1, directly in code.

I.6.2. Matrix representations

An alternative to the use of quaternion libraries is possible, using matrix
representations, which we discuss here, and will return to with a very practical
application (to verification) in section 3.3.3.1.

Hypercomplex algebras (with the exception of the octonions [CON 03, BAE 02],
which are not associative) have matrix representations. What this means is that for a
given algebra, there exists a matrix algebra with real or complex elements that is
equivalent to the given hypercomplex algebra, in the sense that multiplication (and
addition of course) of the matrix representations is equivalent to multiplication in the
hypercomplex algebra. There are also other equivalences, for example the norm of a
hypercomplex value may be equivalent to the determinant of the matrix
representation. The matrix algebra using the given representation is said to be
isomorphic to the hypercomplex algebra. Matrix representations for the quaternions
are discussed in section 1.4.3, but we discuss the ramifications here.

Given the existence of a matrix representation of quaternions, it is theoretically
possible to substitute matrix representations for quaternions, both in algebraic
manipulation and in computer coding (the same is true for other hypercomplex
algebras except the octonions). Doing so can be a useful technique in theoretical
development because it can reduce a hypercomplex problem to a problem involving
real (or complex) matrices, and thus provide a deep insight into the relation between
the hypercomplex case and the well understood real and complex cases. However,
there are disadvantages of using a matrix representation compared to a direct
quaternion approach, in practice:

1 QTFM is licensed under the GNU General Public License.
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1) Computation with matrices is numerically inefficient, and it requires four times
as much memory as a direct quaternion representation storing only four values.
A quaternion product requires 16 multiplications and 12 additions, whereas the
equivalent 4 × 4 matrix product requires 64 multiplications and 48 additions, an
increase by a factor of 4. This disadvantage effectively rules out the use of matrix
representations for implementation, even for computer simulations (as run-time is four
times less using a quaternion library that directly calculates quaternion products than
using a general matrix package and a matrix representation for each quaternion).

2) The result of a sequence of arithmetic operations in matrix form may not be an
accurate representation of a quaternion matrix. This disadvantage again rules out the
use of matrix representations for implementation (a quaternion library will yield more
accurate results).

3) The matrix representation provides little geometric insight. As will be shown
in Chapter 2, the quaternion algebra provides a remarkably intuitive link with the
geometry of three or four dimensions. It is possible to manipulate quaternion symbols
algebraically in order to derive expressions for geometric operations. This is the
central idea in geometric algebras [SOM 01]. Geometric algebras, as might be
expected from the preceding text, are not division algebras; so there is a price to be
paid for their additional geometric utility in the form of divisors of zero, which make
them less attractive for applications in digital signal and image processing.

The matrix representation is certainly useful, and it is helpful in any quaternion
library to have the ability to convert between a direct quaternion representation and
the matrix representation. In the QTFM library [SAN 13b], for example, functions
called adjoint2 and unadjoint are provided to perform the conversion, even for
matrices of quaternions (the adjoint in the latter case is a block matrix with each
block representing one quaternion).

I.7. Overview of the remaining chapters

The rest of the book is divided into four chapters. Chapter 1 covers the quaternion
algebra, and provides the mathematical definitions and concepts necessary for the
later chapters. Chapter 2 presents the geometric applications of quaternions, and
provides the ideas necessary to understand how quaternions can be used to represent
both three- and four-dimensional values and geometric operations applied to them.
Chapter 3 gives a detailed and comprehensive account of quaternion Fourier
transforms, including their definitions, operator formulas and how they may be
computed. Chapter 4 shows how quaternion Fourier transforms can be applied in
signal and image processing.

2 The “adjoint” terminology was taken from Zhang’s 1997 paper [ZHA 97].
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Quaternion Algebra

This chapter introduces the quaternion algebra H and presents some properties that will be useful
in later chapters.

1.1. Definitions

Quaternions are one of the four existing normed division algebras over the real
numbers. Classically denoted by H in honor of Sir W.R. Hamilton who discovered
them in 1843, they form a non-commutative algebra. A quaternion q ∈ H is a four-
dimensional (4D) hypercomplex number and has a Cartesian form given by:

q = a+ ib+ jc+ kd [1.1]

where a, b, c, d ∈ R are called its components. The three imaginary units i, j,k are
square roots of −1 and are related through the famous1 relations:

i2 = j2 = k2 = ijk = −1

ij = −ji = k

ki = −ik = j

jk = −kj = i

[1.2]

A quaternion q ∈ H can be decomposed into a scalar part S(q) and a vector part
V(q):

q = S(q) +V(q) [1.3]

1 These relations defining the three imaginary units of an element of H were carved by Sir W. R.
Hamilton on a stone of the Broome bridge in Dublin on 16 October 1843.
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where S(q) = a and V(q) = q − S(q) = ib+ jc+ kd. Obviously, S(q) ∈ R and we
will also refer to it as the real part of q, i.e. (q) = a. Now, q ∈ H will be called a
pure quaternion if its real part is null, i.e. if S(q) = 0. The set of pure quaternions will
be denoted as V(H), while the set of quaternions with a null vector part are trivially
identified with elements of R, i.e. S(H) ≡ R. If q has a null vector part, V(q) = 0,
then q is simply an element of R. To identify the different imaginary components of a
quaternion q = a+ ib+ jc+ kd, we will use the following notations:⎧⎪⎪⎨⎪⎪⎩

i(q) = b

j(q) = c

k(q) = d

[1.4]

so that a quaternion q ∈ H can be written as:

q = (q) + i i(q) + j j(q) + k k(q) [1.5]

The Cartesian notation for a quaternion q ∈ H is, in fact, its expression in a specific
4D basis of the algebra H, namely in the basis {1, i, j,k}. Recall that, as an algebra,
H possesses a vector space structure that allows the expression of any of its elements
in terms of its components in a basis of H. The basis {1, i, j,k} is the most common
and popular basis to express a quaternion. However, we may encounter some other
bases later on in this book, leading to alternate notations for a quaternion q ∈ H.
Before introducing these notations, we first review some remarkable properties of
quaternions.

1.2. Properties

Here, we list some of the properties of quaternions that will be used throughout
the book.

From the algebra structure of H, the sum of two quaternions is trivial. Given two
quaternions q and p, we have:

q + p = S(q) + S(q) +V(p) +V(q) [1.6]

Expressing the two quaternions in their Cartesian forms, q = a+ ib+jc+kd and
p = e+ if + jg + kh, their sum is:

q + p = (a+ e) + i(b+ f) + j(c+ g) + k(d+ h) [1.7]
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and their product takes the form:

qp = (a+ ib+ jc+ kd) (e+ if + jg + kh)
= ae− (bf + cg + dh)+

a (if + jg + kh) + e (ib+ jc+ kd)+
i (ch− dg) + j (df − bh) + k (bg − cf)

[1.8]

Using the scalar/vector notation, this product takes the following form:

qp = S(q) S(p)− V(q) ,V(p) +S(q)V(p)+S(p)V(q)+V(q)×V(p)[1.9]

where ., . is the scalar product and × is the vector cross product. These are
understood in the classical sense of the three-dimensional (3D) vector cross and inner
products, which means that:

V(q) ,V(p) = bf + cg + dh [1.10]

which is scalar valued, i.e. V(q) ,V(p) ∈ R, and that:

V(q)×V(p) = i(ch− dg) + j(df − bh) + k(bg − cf) [1.11]

where the result is a pure quaternion, i.e. (V(q)×V(p)) ∈ V(H).

A very noticeable property is that the product of two quaternions is not
commutative so that in general:

qp = pq [1.12]

This can be inferred from the presence of the non-commutative cross product in
[1.9]. Note, however, that the product of quaternions is associative so that for any three
quaternions q, p, r ∈ H, the following is true:

(qp) r = q (pr) [1.13]

The norm of a quaternion q is defined as:

q = a2 + b2 + c2 + d2 [1.14]

A quaternion q ∈ H with q = 1 is said to be a unit quaternion. As previously
mentioned, H is one of the four existing normed division algebras. As a result, given
any two quaternions p, q ∈ H , then:

qp = q p [1.15]
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It can also be easily checked that qp = pq . A related quantity that will be
used in the following is the modulus of a quaternion. It is defined as the length of the
quaternion in Euclidean 4D space. The modulus of q ∈ H is denoted by |q| and is
expressed as:

|q| = a2 + b2 + c2 + d2 = q
1
2 [1.16]

Obviously, |q| ∈ R+ and |q| = 0 if and only if q = 0. Like the norm, the modulus
of a product of two quaternions p and q has the following property:

|pq| = |p| |q| = |qp| [1.17]

Just as with the complex numbers, the conjugate of a quaternion q is obtained by
negating its imaginary part. However, in H the imaginary part is 3D and consists of
the entire vector part V(q). Denoted by q, the conjugate of q is thus defined as:

q = a− ib− jc− kd = S(q)−V(q) [1.18]

It follows that the scalar and vector parts of any quaternion q ∈ H can be obtained
by:

S(q) = 1
2 (q + q) and V(q) = 1

2 (q − q) [1.19]

Conjugation in H has the following property:

q = q [1.20]

In contrast to the complex case, conjugation is not an involution2 but an anti-
involution, such that for q, p ∈ H:

qp = p q [1.21]

that is, the order of the factors in a quaternion product is reversed by the conjugation
operator. Note that the modulus (and also the norm) of a quaternion q can be expressed
using the conjugate of q as:

|q| = qq and q = qq [1.22]

2 An involution f : H → H is such that for q, p ∈ H:

f(f(q)) = q

f(p+ q) = f(p) + f(q)

f(pq) = f(p)f(q)
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It is also possible to define involutions over H. Involutions are defined with respect
to a pure unit quaternion μ (μ ∈ V(H) and |μ| = 1). The most general case (together
with many properties) is presented in [ELL 07d]. As special cases, one can choose μ
as one of the standard basis elements of H, i.e. i, j or k. Involutions with respect to
these three unit pure quaternions can be called canonical. Given a quaternion q, its
three canonical involutions are:

q i = a+ ib− jc− kd = −iqi
q j = a− ib+ jc− kd = −jqj
q k = a− ib− jc+ kd = −kqk

[1.23]

Clearly, q and its three canonical involutions allow us to recover the four
components a, b, c, d of q by linear combination. Now, the most general definition for
involution is:

q μ = −μqμ [1.24]

where μ ∈ V(H) and |μ| = 1.

Involutions in H possess many properties (see [ELL 07d] for details) among
which, for q, p ∈ H and μ ∈ V(H) and μ2 = −1 (i, j and k are possible choices
for μ):⎧⎪⎪⎨⎪⎪⎩

qpμ = q μpμ

q μ μ
= q

q i
j

= q k

[1.25]

As H is a division algebra, any non-null quaternion possesses an inverse. The
inverse of a given quaternion q ∈ H is given by:

q−1 =
q

q
[1.26]

where it can be easily checked that qq−1 = 1 because of [1.22]. Note that for a pure
unit quaternion μ, ( μ = 1 and S(μ) = 0), the following holds: μ−1 = −μ.

Now that we have introduced the inverse of a quaternion, we are ready to look at
the ratio of two quaternions p and q. Ratios must be handled with care in H (indeed,
in any non-commutative algebra), and it is preferable to avoid the p/q notation when
possible, as it is ambiguous, since p/q can be interpreted as the product of p by q−1;
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the notation p/q does not specify the order of the product so that it leaves the
possibility for pq−1 and q−1p. The ambiguity arises from the fact that in general:

pq−1 = q−1p [1.27]

The above non-equality arises from the fact that:

pq−1 =
pq

q
while q−1p =

qp

q
[1.28]

Thus, it is important to consider ratios as products with the inverse and to take care
of the order of the product.

Now, the modulus of a ratio is an interesting quantity to consider, as it does not
suffer from the order in the multiplication, due to the property of the modulus given
in [1.17]. It thus follows that:

q−1p = pq−1 =
|p|
|q| [1.29]

It can be useful to write a given quaternion q ∈ H as a product of a scalar positive
number (its modulus) and a unit quaternion. This can be done in the following way:

q = |q| q̃ = |q| a

|q| + i
b

|q| + j
c

|q| + k
d

|q| [1.30]

where we used the notation q̃ for the unit modulus version of q, i.e. q̃ = q/ |q| so
that |q̃| = 1. Note that the decomposition of q into the product of its modulus and
its normalized version is unique. The normalized version of q, denoted by q̃, is also
sometimes called a versor. Finally, it must be emphasized that if q is a pure quaternion,
i.e. q ∈ V(H), then it is uniquely written as q = |q|μ where we have denoted q̃ = μ
to highlight the fact that it is a pure unit quaternion.

In [1.5], we introduced the Cartesian form of a quaternion q ∈ H, in which it is
expressed using the sum of a real part (q), an i−imaginary part i(q), a
j−imaginary part j(q) and a k−imaginary part k(q). This expression is a special
case of the expansion of a quaternion over a 4D basis. The specific basis used in [1.5]
is {1, i, j,k}. This is the classical basis used by most authors. Now, it is possible to
use a different basis and it turns out that there is an infinite amount of choices for a
basis in H. Given two pure unit quaternions μ and η, i.e. μ2 = η2 = −1, which are
orthogonal to each other: μ⊥η, the set {1,μ,η,μη} is a basis of H. The infinite
number of possibilities arises from the infinite number of possible choices for the
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pair of orthogonal pure unit quaternions μ and η. Note that the orthogonality
between pure unit quaternions should be understood as:

S(μη) = μ,η = 0 [1.31]

which is the scalar part of the quaternion product of two pure quaternions (see the
expression for the quaternion product in [1.9]). Also note that the orthogonality
condition does not mean that the quaternion product between μ and η is equal to
zero. On the contrary, as can be seen from [1.9], we have:

μη = V(μη) = μ× η [1.32]

which is indeed a pure unit quaternion orthogonal to both μ and η. This makes μη the
third pure unit quaternion that, together with 1, μ and η, forms the quaternion basis.
Quaternion bases play an important role in the quaternion notation as well as in the
computation of quaternion Fourier transforms (QFT) with arbitrary axis, as will be
presented in Chapter 3.

The list of quaternion properties presented in this section is not intended to be
exhaustive. More properties can be found in various references [CON 03, KAN 89,
WAR 97, KUI 02, HAN 06].

1.3. Exponential and logarithm of a quaternion

Among the functions with quaternion-valued arguments that will be considered in
the sequel, two will be of major importance: the exponential and logarithm functions.
The former will be central to the study and use of QFTs in subsequent chapters.

1.3.1. Exponential of a pure quaternion

The exponential function exp : V(H) → H can be defined through its power
series expansion; thus, for a given (non-null) pure quaternion ξ ∈ V(H) written as
ξ = |ξ| ξ with ξ a pure unit quaternion3 (i.e. ξ ∈ V(H) and ξ2 = −1) and |ξ| ∈ R+,
we can write:

eξ =
+∞

n=0

ξn

n!
=

+∞

n=0

|ξ|n ξn
n!

[1.33]

3 Just like any quaternion, a pure quaternion ξ ∈ V(H) can be uniquely written as ξ = |ξ| ξ. ξ
is unit quaternion (in this case, pure) and |ξ| is its modulus.
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where we make use of the fact that |ξ| and ξ commute as any quaternion commutes
with a real number. Now, just like the familiar complex imaginary number I does, a
pure unit quaternion behaves, when it is raised to an integer power of n, as:

ξn =
(−1)k if n = 2k

(−1)kξ if n = 2k + 1
[1.34]

With this in mind, the exponential eξ simply is:

eξ =
+∞

n=0

(−1)k
|ξ|2k
(2k)!

+ ξ

+∞

n=0

(−1)k
|ξ|2k+1

(2k + 1)!
[1.35]

In this equation, the right-hand side terms are the series expansions of the classical
cos and sin functions. We have established that for a pure quaternion ξ = |ξ| ξ, the
exponential of ξ is:

e|ξ|ξ = cos |ξ|+ ξ sin |ξ| [1.36]

This shows that the exponential of a pure quaternion can be expressed easily in
terms of cosine and sine functions just as in the complex case. The difference lies in
the axis ξ which is a unit pure quaternion, while the argument is the modulus of ξ.
Thus, the exponential of a pure quaternion is a full quaternion, with real/scalar part
cos |ξ| and vector part ξ sin |ξ|.

It must also be noticed that the exponential of a pure quaternion is always of unit
modulus:

eξ = 1, ∀ξ ∈ V(H) [1.37]

which is easily verified using [1.36] as well as property [1.34] with n = 2.

Thus, we conclude that the exponential of a pure quaternion is a full unit
quaternion. Now, the reciprocal property is interesting: any full unit quaternion can
be expressed as the exponential of a pure quaternion4. This is a remarkable property
that will be tackled in section 1.3.3 for the expression of the logarithm of a
quaternion, and especially for the polar form and Euler formula over H
(sections 1.4.1 and 1.4.1.1).

4 A full unit quaternion q is uniquely expressed as the exponential of a pure quaternion, i.e. q =
exp(ξ) with ξ = |ξ| ξ, iff |ξ| ∈ [0, 2π[.



Quaternion Algebra 9

Another important property, which differs drastically from the complex
exponential case, is that the product of two exponentials of pure quaternions5 is not
an exponential with argument equal to the sum of the arguments of the original
exponentials. This means that for α, β ∈ R+ and any two distinct pure unit
quaternions μ,ν, we have:

eναeμβ = eνα+μβ [1.38]

One should note that in the special case where μ = ν, the equality is fulfilled,
meaning that for α, β ∈ R+ and μ a pure unit quaternion, one has
exp (μα) exp (μβ) = exp (μ (α+ β)). In fact, this is a well-known property of
exponential functions over non-commutative algebras (for example, the exponentials
of matrices) and a consequence of the Baker–Campbell–Hausdorff formula (see, for
example, [GIL 08] for illustrations of this formula).

The exponential function of a pure quaternion will be of use when considering
polar representations of quaternions as well as when defining QFTs.

1.3.2. Exponential of a full quaternion

We have already introduced the exponential of a pure quaternion in section 1.3.1
for use later in the definition of Fourier transforms. Here, we consider the exponential
of full quaternions, i.e. the function exp : H → H. Just as in section 1.3.1, the
exponential function is directly defined through its series expansion that is absolutely
convergent. Thus, for a quaternion q ∈ H, its exponential is given by:

eq =
+∞

n=0

qn

n!
[1.39]

Now, recalling that any quaternion can be written as q = S(q) +V(q), it follows
directly that:

eq = eS(q)eV(q) [1.40]

leading to the special case of the exponential of a pure quaternion if S(q) = 0. Now,
it is also possible to expand the eV(q) part into cos and sin, as V(q) ∈ V(H), leading
to the following expression for the exponential of q:

eq = eS(q) cos |V(q)|+V(q) sin |V(q)| [1.41]

5 This generalizes to the exponential of full quaternions.
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with V(q) = |V(q)|V(q), where V(q) is the normalized vector part of q, i.e. the
versor associated with V(q). Note that due to the fact that eS(q) is real-valued, it
commutes with the exponential of the vector part V(q). Finally, note that given a
quaternion q ∈ H and a complex number z ∈ C, their exponentials eq and ez are
isomorphic, provided that |q| = |z| and S(q) / |V(q)| = (z)/ (z).

1.3.3. Logarithm of a quaternion

The logarithm of a quaternion q is simply defined as the inverse of the exponential
function, so that for q, p ∈ H, we have:

p = ln q [1.42]

which means that ep = q. However, it is possible to obtain an expression for the
logarithm of q in terms of its elements. First, we recall that q ∈ H can be expressed
as q = |q| q̃, where q̃ is the normalized version of q. Now, it follows directly that the
logarithm of q is:

ln q = ln |q|+ ln q̃ [1.43]

Now, the second term on the right-hand side of the equation can be found to have
an interesting literal expression. There is no doubt that ln |q| ∈ R; now, we are going
to show that ln q is a pure quaternion. First, remember from section 1.3.1 that, as q
is a full unit quaternion, it can be expressed as the exponential of a pure (non-unit)
quaternion ξ :

q̃ = eξ = e|ξ|ξ = eφqμq [1.44]

where we used the following notation:

φq = |ξ| ∈ R+

μq = ξ ∈ V(H)
[1.45]

This notation was chosen as φq and μq will be identified later in section 1.4.

Now, with this notation, and by direct substitution of [1.44] into [1.43], we have:

ln q = ln |q|+ μqφq [1.46]

where we use the fact that μqφq = φqμq as φq is real-valued. This expression of the
logarithm of a quaternion can be seen as a generalization of the well-known logarithm
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of a complex number. In particular, the fact that we fixed the range of values to be
taken by the argument φq between 0 and 2π ensures that the logarithm function with
a quaternion argument is not multivalued.

1.4. Representations

Here we describe several existing representations of quaternions that will be used
throughout the book.

1.4.1. Polar forms

1.4.1.1. Euler formula

In addition to the Cartesian form of q given in [1.1], there are several other
representations for quaternions that have been introduced since their discovery. One
of the most important notations, which was introduced by Hamilton himself and is
called the polar form of a quaternion q, is the quaternion equivalent of what Richard
Feynman called the “jewel” of complex numbers, namely the Euler formula. It
encapsulates the link between geometry and algebra. For a quaternion q ∈ H, it reads
as:

q = |q| eμqφq = |q| cosφq + μq sinφq [1.47]

where |q| is the modulus, μq is called the axis and φq is the phase/argument of q. The
elements of the polar form are given in terms of the Cartesian components as:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

|q| =
√
a2 + b2 + c2 + d2

μq =
bi+ cj + dk√
b2 + c2 + d2

φq = arctan

√
b2 + c2 + d2

a

[1.48]

where μq ∈ V(H) and μq = 1. From this notation, it follows that unit quaternions
have a modulus equal to 1, and pure quaternions (i.e. with a = 0) have a phase equal
to π/2. The polar form allows us to link geometrical concepts such as rotations in 3D
and 4D to the algebra of quaternions. This will be elaborated upon in Chapter 2. It is
interesting to look at the special case of quaternions with unit modulus. In such a case,
the Euler form simply reads as:

eμφ = cosφ+ μ sinφ [1.49]
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still with μ ∈ V(H) and |μ| =1. Note that cosφ ∈ R and μ sinφ is the vector part of
this quaternion. As a result, taking its conjugate consists of simply negating the vector
part, giving the following identity:

cosφ− μ sinφ = e−μφ [1.50]

where one can see that conjugating a unit quaternion consists of either reversing its
axis or negating its phase. Note that this could have been guessed from the fact that
for unit quaternions q ∈ H, i.e. |q| = 1, then q = q−1. Now, due to expressions [1.49]
and [1.50], we can express the sin and cos functions in the following way:

cosφ = 1
2 eμφ + e−μφ

sinφ = − 1
2μ eμφ − e−μφ

[1.51]

which will prove to be useful later in the study of QFTs in Chapter 3.

1.4.1.2. The Euler angle parameterization polar form

Another polar form that was used in [BÜL 01] has a direct connection to Euler
angles [ALT 86]. As there are 12 possible conventions when using Euler angles, there
are equivalently 12 possible polar forms. Here, we illustrate the polar form with the
XY Z convention as used in [BÜL 01]. With this convention, a quaternion q ∈ H can
be expressed as:

q = |q| eηieκjeφk [1.52]

The three angles of q, i.e. η ∈ [0, 2π), κ ∈ [0, π), φ ∈ [0, 2π), can be identified as
three phases, which are related to Euler angles when |q| = 1.

1.4.1.3. The Cayley–Dickson form

It can also be useful to consider a quaternion as a pair of complex numbers with
specific multiplication rules. This is the idea behind the Cayley–Dickson (CD) form of
a quaternion q, which can be obtained using the doubling procedure [KAN 89]. Thus,
a quaternion q ∈ H has a CD form that reads:

q = z1 + z2j [1.53]

where z1 = a+ ib ∈ Ci and z2 = c+ id ∈ Ci. Obviously, there is an infinite number
of CD forms, depending on the unit pure quaternion that is used to split the quaternion
into two different planes. This will be detailed in section 1.4.1.4. All the quaternion
properties could be rephrased by this notation. However, we will not do so as it is
not of use in the following. As an example, we give the expression of the quaternion
conjugation in the CD notation, which is:

q = z1 − z2j [1.54]

where denotes the classical complex conjugation.



Quaternion Algebra 13

1.4.1.4. The ortho-split or symplectic form

A more general representation exists, in the spirit of the CD form, that allows
the interpretation of a quaternion in terms of two complex numbers found in two
non-intersecting two-dimensional (2D) planes in 4D space6. Consider a basis in H:
{1,μ,ν,μν}, where μ2 = ν2 = −1 and S(μν) = 0, i.e. μ ⊥ ν. μ and ν are pure
unit quaternions (square roots of −1). As a result, μν ⊥ μ and μν ⊥ ν. Then, any
quaternion q ∈ H can be written as:

q = (a + b μ) + (c + d μ)ν [1.55]

where the two above-mentioned planes are spanned by {1,μ} and {ν,μν}. This
representation of a quaternion is sometimes referred to as its ortho-split
representation or symplectic form7 as in [ELL 07c]. It is also known as the
decomposition of q into its simplex part and perplex part. Using the quantities defined
in [1.55] the simplex part of q is (a + b μ) and the perplex part of q is (c + d μ).
Later in this book, we will sometimes make use of the notation:

q = qs + qpν [1.56]

with notations qs ∈ Cμ for the simplex part of q ∈ H and qp ∈ Cμ for its perplex
part, both understood with respect to the axis ν satisfying μ⊥ν. Using this symplectic
notation, a quaternion q can be written as:

q = q+ + q− [1.57]

where:

q+ = 1
2 (q + μ q ν)

q− = 1
2 (q − μ q ν)

[1.58]

which can be seen as a generalization of the expressions in [1.19] using a quaternion
q and its conjugate.

We also mention here the swap-rule for the symplectic notation, which will be
of use in the even-odd split study of the QFT in section 3.1.3. If, in a symplectic

6 The two planes are called non-intersecting even though it is not strictly true as they intersect
at the origin. However, as this is the only point in 4D space where the planes intersect, we will
keep the terminology “non-intersecting”.
7 Note that the terminology symplectic used here is different from the classically used term
“symplectic” used in differential geometry, topology or group theory where it designates a
special non-degenerate 2-form.
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decomposition, one needs to have the imaginary axis ν to be placed on the left, then
one can simply write q as:

q = (a + b μ) + (c − d μ)ν = qs + νqp [1.59]

where the complex conjugation is used on qp despite its quaternionic nature as it is
isomorphic to a complex number, i.e. qp ∈ Cμ.

Note finally that choosing a basis in H to express a quaternion q induces a choice
of symplectic representation. The symplectic form is thus a generalization of the CD
form presented in section 1.4.1.3.

1.4.1.5. The polar Cayley–Dickson form

Recently, a new representation was introduced for elements of H, called the polar
Cayley–Dickson representation [SAN 10]. Given a quaternion q ∈ H, its polar CD
form is:

q = ρqe
Φqj [1.60]

with ρq ∈ C the complex modulus of q and Φq ∈ C its complex phase. This
representation of a quaternion is unique. Its construction is given in detail in
[SAN 10]. Here, we present the main expressions of the polar CD form, without
details of the sign ambiguity that is known to exist during the construction of the
polar CD form of a quaternion from its Cartesian form. For a complete discussion of
this sign issue, one should refer to [SAN 10]. Now, given a quaternion q ∈ H, with
CD form q = z1 + z2j, its complex modulus and phase ρq and Φq are obtained by:⎧⎪⎪⎨⎪⎪⎩

ρq = z1
|q|
|z1|

Φq = − ln
z1 q

z1
j

[1.61]

Note that in the expression for Φq , the argument of the logarithm is a product
between a complex number and a quaternion, meaning that the order is important and
that q should be multiplied from the left by z1 . Note also that the product z1q is rather
special in that if we replace q by its CD form, we get z1q = |z1|2 + z1z2j, which
is a degenerate quaternion having a real part, an j part and an k part, but its i

part is null. As a result, taking the logarithm of such a degenerate quaternion leads to
a quaternion with only a j and a k part. The negation and right multiplication by
j finally lead to the fact that Φq is a complex number from Ci. It is also interesting
to note that any ortho-split form as introduced in section 1.4.1.3 will lead to another
possible polar CD form based on the axis used for the split.

An illustration of the usefulness of the polar CD form is made in section 4.3.4.
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1.4.2. The Cj-pair notation

In the style of the ortho-split notation or CD form, it is possible to think of a
quaternion as an ordered pair of complex numbers and to manipulate them as such.
Here, we mention this notation, called the Cj-pair associated with a quaternion, as it
highlights a very special product, namely the bicomplex product of two quaternions.
This product will be of use when studying convolution for the one-dimensional (1D)
QFT in Chapter 4.

Consider the quaternion q = a+ib+jc+kd ∈ H and let us write it as q = q1+iq2.
In this way, q can be considered as the pair q = (q1, q2) with q1 = a + jc and
q2 = b + jd being elements of Cj . Obviously, it is a special case of an ortho-split
decomposition, with axis i, where the quaternion q is simply understood as a pair of
complex numbers.

Now, with this notation, we could rewrite anything related to quaternion algebra.
For example, the conjugate of q is q = (q1 ,−q2). More interestingly, if we consider
the two quaternions q = (q1, q2) and p = (p1, p2), then their (quaternion) product is:

qp = (q1p1 − q2p2 , q2p1 + q1p2) [1.62]

and the inverse of q is simply:

q−1 =
q1

|q|2 ,
−q2

|q|2 [1.63]

Now, the involutions of q with respect to the canonical axis of H can be expressed
as: ⎧⎪⎨⎪⎩

q i = (q1 , −q2)

q j = (q1 , q2)

q k = (q1 , −q2)

[1.64]

Indeed, all the quaternion operations can be handled with this notation, but we
will make special use in the following of one particular operation that comes in a very
useful form when using the complex pair notation: the bicomplex product denoted by

. Given two quaternions in their complex pair forms q = (q1, q2), p = (p1, p2) ∈ H,
their bicomplex product is:

q p = (q1p1 − q2p2 , q2p1 + q1p2) [1.65]
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where we can see the difference with the standard quaternion product in [1.62]. A
very remarkable property of the bicomplex product of two quaternions is that it is
commutative. This can be easily seen from the expression of p q:

p q = (p1q1 − p2q2 , p2q1 + p1q2) [1.66]

and by remembering that p1,2 and q1,2 are complex numbers and thus piqj = qjpi for
any pair i, j = 1, 2. This leads to the following interesting property:

q p = p q ∀p, q ∈ H [1.67]

Note that the commutativity of this product is associated with the Cj-pairing
notation. If we use a different way to divide a quaternion into two complex numbers
(a Cμ pairing with μ a square root of −1), then we need to carefully look at how to
define an associated commutative product.

Rather than providing a lengthy study of the commutative product, we give here
some properties of this special product over H, for any quaternion q = (q1, q2) =
(a+ jc, b+ jd), any Ci number z = (z)+i i(z) = ( (z), i(z)), any Cj number
w = (w)+j j(w) = (w, 0) and Ck number s = (s)+k k(s) = ( (s), j k(s)).
Then the following properties hold:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q w = (q1, q2) (w, 0) = (q1w , q2w)

q z = (q1, q2) ( (z), i(z))

= (q1 (z)− q2 i(z) , q2 (z) + q1 i(z))

q s = (q1, q2) ( (s), j k(s))

= (q1 (s)− jq2 k(s) , q2 (s) + jq1 k(s))

q i = (q1, q2) (0, 1) = (−q2, q1)

q j = (q1, q2) (j, 0) = (q1j, q2j)

q k = (q1, q2) (0, j) = (−q2j, q1j)

i j = j i = k

k j = j k = −i

i k = k i = −j

i i = −1

j j = −1

k k = 1

[1.68]

where all the given results can be checked by direct calculation using the bicomplex
product expression given in [1.65].
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As previously mentioned, the bicomplex product will not be encountered many
times in this book, but it will be of use in section 4.3 when studying the convolution
theorem for the QFT of complex-valued signals. The interested reader is referred to
[PRI 91, ROC 04] for more materials on bicomplex numbers.

1.4.3. R and C matrix representations

In addition to scalar representations, there exist two matrix representations over R
and C that are isomorphic to H. Given a quaternion q ∈ H, its real matrix
representation, denoted as MR(q) ∈ R4×4, is given by8:

MR(q) =

⎡⎢⎢⎣
a b c d

−b a −d c
−c d a −b
−d −c b a

⎤⎥⎥⎦

= a

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦+ b

⎡⎢⎢⎣
0 1 0 0

−1 0 0 0
0 0 0 −1
0 0 1 0

⎤⎥⎥⎦

+ c

⎡⎢⎢⎣
0 0 1 0
0 0 0 1

−1 0 0 0
0 −1 0 0

⎤⎥⎥⎦+ d

⎡⎢⎢⎣
0 0 0 1
0 0 −1 0
0 1 0 0

−1 0 0 0

⎤⎥⎥⎦

[1.69]

and for any quaternion q ∈ H, its complex matrix representation, denoted as MC(q) ∈
C2×2, is of the form:

MC(q) =
z1 −z2
z2 z1

= a
1 0
0 1

+ b
i 0
0 −i

+ c
0 −1
1 0

+ d
0 −i
i 0

[1.70]

Comparing the real and complex matrix expressions for q with the Cartesian
form, one gets a direct identification of the imaginary units over H, i.e. i, j and k
with their real 4 × 4 and complex 2 × 2 matrix forms. As a real vector space,
quaternions are spanned by these four real or complex matrices. For both of these
matrix representations, the quaternion product is identified with the matrix product
over R4×4 and C2×2. From a practical point of view, it is thus possible to manipulate

8 The transpose of the matrix representation given here is also valid.
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quaternions through their matrix representations. However, as noted in section I.6.2,
this is not optimal from a computational point of view as it requires much more
computation and storage than necessary. Matrix representations of quaternions have
been found to be of interest in the study of matrices with quaternion entries (for
example [ZHA 97]), and in many more application fields.

1.5. Powers of a quaternion

In many situations, we need to multiply quaternions together. Due to the fact that H
is an algebra, the product of two quaternions is still a quaternion. Now, if we multiply a
quaternion q ∈ H, say n times, by itself, it is interesting to look at how the components
of the nth power of q can be expressed using the components of q. First, note that a
quaternion commutes with itself. This may seem trivial, but it is interesting to note that
the right and left multiplications are equivalent in this special case. Now, assuming that
q has the polar form given in [1.47], it follows directly that:

qn = |q|n enμqφq = |q|n cos(nφq) + μq sin(nφq) [1.71]

This is simply a generalization of the de Moivre formula for quaternions
[KAN 89]. The demonstration can be carried out easily by using the series expansion
of the exponential and the property of the nth power of the pure unit imaginary μq

(see [1.34]). Apart from its simplicity, this formula has useful consequences in the
use of quaternions to represent rotations. Anticipating results from Chapter 2,
multiplying9 n times by the same quaternion q will be shown to be equivalent to
performing a rotation around the axis μq by an angle nφq/2.

1.6. Subfields

As previously mentioned, quaternions form a 4D algebra over R. A quaternion
q with no vector part, V(q) = 0, is thus a real number, i.e. q ∈ R if V(q) = 0.
Similarly, any quaternion with two of its three imaginary components equal to zero is
homomorphic to a complex number. This means that for q ∈ H of the form:

q = a+ wμ [1.72]

with μ = i, j,k, q is equivalent to a complex number. This is to say that numbers
taking values in R ⊕ μR, with μ2 = −1, form an algebra homomorphic to complex
numbers. q is said to be an element of Cμ. Obviously, we can see that such a
construction is the restriction of H to a 2D plane spanned by {1,μ}, just as the

9 The exact way to perform rotations using quaternion multiplication is presented in detail in
sections 2.1.2 and 2.1.6.
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complex plane is classically known to be spanned by {1, I}. Now, the
above-mentioned μ was required to be one of the three “classical” imaginary units
from H. In fact, it may be any root of −1 in H so that the subfield (equivalent to the
complex field) is now a different 2D plane inside the 4D space of H. Obviously, there
are infinitely numerous such subspaces that can be defined within H. Arbitrarily
choosing one such subfield yields a new basis for the expression of any quaternion
q ∈ H through the CD form given in section 1.4.1.4. This shows also that H contains
two copies of C as subfields.



2

Geometric Applications

The multiplication rules for the quaternion operators i, j and k provide a double meaning to
quaternion numbers: on the one hand, they are geometric forms (e.g.vectors in four-dimensional
(4D) space) and, on the other hand, they are transformation operators (e.g. rotation operators in
three-dimensional (3D) space). Their usefulness as a tool in solving real-world problems is
related to the various thought processes, or mental models, used to describe how they work. The
geometric forms of signal and image samples upon which the models are based are inherently
linked into the quaternion Fourier transform of those samples. There are three models: 3D and
4D vectors, spherical geometry and 3D projective space.

2.1. Euclidean geometry (3D and 4D)

The ability of quaternions to represent geometric transformations has been known
right from their discovery and it has been studied and applied in many areas
[ALT 86, CON 03, HAN 06, KUI 02, WAR 97, SHO 85]. It is standard knowledge
that 3D geometry can be well-handled using quaternions. However, 4D geometry is
also a major concept that is inherent to quaternions. A very good reference on 4D
geometry using quaternions is Coxeter’s paper [COX 46]. Material in the following
sections can be found in [COX 46] together with [ELL 07a]. We introduce here the
major geometrical transformations that will be of use in the later chapters.

When considering 3D and 4D transformations, it will be assumed that full
quaternions (i.e. elements of H) represent points or vectors in 4D space and pure
quaternions (i.e. elements of V(H)) represent points or vectors in 3D space.
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2.1.1. 3D reflections

Given a 3D vector p, represented as a pure quaternion, the reflection of p across
the plane defined by its normal vector η (i.e. η ∈ V(H) and |η| = 1 so that it is a
pure unit quaternion) is given by:

Pη[p] = ηpη [2.1]

Reflections are the simplest isometric transformations and the basic bricks for
building up more elaborate isometric transformations, as is well known (see for
example [COX 74, chapter III]). Finally, it is interesting to note that reflections are
their own inverse, meaning that if the same reflection is applied twice, one returns to
the original vector:

Pη[Pη[p]] = η (ηpη)η = η2pη2 = p [2.2]

which is true due to the fact that η is a pure unit quaternion, i.e. η2 = −1.

2.1.2. 3D rotations

Given a 3D vector p, represented as a pure quaternion, the rotations of p in 3D
space are encoded using one unit quaternion q (i.e. q ∈ H and |q| = 1) and are given
by:

Rq[p] = qpq [2.3]

where the operator Rq[.] denotes the rotation with respect to q. As q is a unit
quaternion, it can be expressed in its polar (Euler) form as q = eμqφq , with μq its
axis and φq its angle/phase, as explained in section 1.4.1.1.

The rotation operator Rq[.] consists of a rotation around the axis μq , with an angle
of 2φq (twice the angle of q).

Note that, as q is a pure quaternion, then q = q−1, allowing the alternate notation
for the rotation operator: Rq[p] = qpq−1.

It is noticeable that the inverse rotation operator R−1
q [.] is given by:

R−1
q [p] = qpq [2.4]

which is equivalent to a direct rotation encoded with q = q−1. This means that the
axis is the same but that the angle is exactly the opposite of the one in the rotation
Rq[.].
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A very good property of quaternions with respect to rotations is that, when
composing such transformations, the resulting transformation can be expressed in
terms of the product of the quaternions that represent the individual rotations. Indeed,
the composition of two rotations, first Rq1 [.] and then Rq2 [.], applied to a vector p
takes the form:

Rq2 [Rq1 [p]] = q2 (q1pq1) q2 = q2q1p(q2q1) [2.5]

which is equivalent to a rotation operator Rq2q1 [.] encoded using the quaternion q2q1.
Note that q2q1 is a unit full quaternion as it is the product of two unit full quaternions.
Obviously, the composition of rotations can be handled easily due to the fact that the
group of unit quaternions (isomorphic to SU(2)) is the double universal covering of
the 3D space rotation group SO(3) [ALT 86].

Generalizing the idea of composition, we can see that composing an arbitrary
number of rotations using n different quaternions q1, q2, . . . , qn is equivalent to
performing one rotation with the operator Rqnqn−1...q2q1 [.]. A special case of
composition is applying the same rotation n times. Applying the operator Rq[.] n
times will look like:

Rq [Rq [ . . . Rq [Rq [

n-times

p]] . . . ]] = qn p (q)
n [2.6]

As we would suspect, this is a rotation of p around the axis μq with an angle
nφq/2. The fact that the axis is kept the same during the successive rotation operations
and that only the angle is affected is a consequence of the de Moivre formula given in
[1.71].

Finally, it must be noted that, as is well known in Euclidean geometry, rotations can
be expressed using reflections. Using the previously introduced reflection operator, we
can see that two successive reflections with different axis/plane represent a rotation in
the following way:

Pη2
Pη1

[p] = η2 (η1pη1)η2 = η2η1 p (η2η1) = Rη2η1
[p] [2.7]

where the unit quaternion that encodes the rotation is q = η2η1. We made use of the
property shared by pure quaternion: η = −η together with the anti-involution
property of the quaternion conjugation. Note that as η1 and η2 are pure unit
quaternions, then q = η2η1 is a unit full quaternion, which is necessary to have a 3D
rotation. It is also necessary to have η1 = η2 in order to avoid degenerate cases.

Also note that if η1 ⊥ η2, then their product is a pure quaternion, i.e. η1η2 = η3

such that {η1,η2,η3} is a triad. The rotation obtained by succesive reflections with
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axis η1 and η2 is then a special case of the rotation operator obtained in equation
[2.7], where the angle of rotation is equal to π. Using the rotation operator notation
from equation [2.3], it means that q = η3 and the angle of q is φq = π/2. This
involves that cosφq = 0 and thus that q = η3 is a pure unit quaternion. The rotation
operator consists of a rotation around η3 with an angle of π.

2.1.3. 3D shears

As introduced in [ELL 07a], we present here the quaternion formalism for the
shear operator. In particular, two types of shears are studied here: axial-shears and
beam-shears. The simplest shears are the axial-shears. They are defined for a 3D vector
p (again considered as a pure quaternion) using two parameters, a scalar α (the shear
factor) and a pure unit quaternion μ3 (the shear axis), and take the form:

Sα,μ3
[p] = p 1− α

2
μ3 − α

2
μ2 pμ1 [2.8]

with μ1⊥μ2⊥μ3 and μ1μ2 = μ3, so that {1,μ1,μ2,μ3} form a quaternion basis.
This means that the three pure unit quaternions form a right-handed triad. The shear
operator reduces to the identity operator when α = 0 and reversing α inverts the shear
operation.

Now, the next level for shears is the beam-shear, that was introduced in [CHE 00].
This shear operator is parameterized by two scalar factors and a pure unit quaternion,
part of a triad. The beam-shear operator reads:

Sα,β,μ3
[p] = p

1

2
+

α

2
μ3 − α

2
μ2 pμ1 +

1

2
+

β

2
μ2 p− β

2
μ1 pμ3 [2.9]

where again μ1,μ2,μ3 form a right-handed triad.

2.1.4. 3D dilations

The quaternion formalism for dilations was first introduced in [ELL 07a]. Two
types of dilations are presented here: axial- and radial-dilations.

Considering a 3D vector p, the axial-dilation operator, denoted by Da, takes the
form:

Da
μ,α[p] =

1 + α

2
p+

1− α

2
μpμ [2.10]
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where μ is the axis of dilation/compression. The factor α controls the behavior of the
transformation, leading to a compression if |α| < 1, a dilation if |α| > 1 and identity
operator for α = 1. Negative values of α result in a reversal of the vector p.

For the radial dilation case, the operator is denoted by Dr and takes the form:

Dr
μ,α[p] =

2 + α

2
p+

α

2
μpμ [2.11]

This operator expands space outward from an invariant line defined by μ. Here,
dilations occur for α > 0 and compression occurs for α < 0, while α = 0 defines the
identity operator.

2.1.5. 4D reflections

As mentioned previously, quaternions have the ability to encode 4D geometric
transformations [COX 46]. Here, we introduce the 4D reflection operator for a 4D
vector p, encoded as a full quaternion, i.e. p ∈ H. The reflection of p across the
hyperplane defined by its normal 4D vector q (a unit full quaternion, i.e. q ∈ H and
|q| = 1) is given by:

Pq [p] = −q p q [2.12]

Just like in the 3D case in section 2.1.1, the 4D reflection operator is its own inverse
since:

Pq [Pq [p]] = q(q p q) q = q q p q q = p [2.13]

where we used the fact that q is a unit quaternion, i.e. qq = qq = 1.

2.1.6. 4D rotations

The last Euclidean transformation is the 4D rotation of a 4D vector p (encoded as
a full quaternion, i.e. p ∈ H). The 4D rotation operator is encoded using a pair of
full unit quaternions q and r, i.e. q, r ∈ H and |q| = |r| = 1, such that S(q) = S(r)
[COX 46]. The rotation operator takes the form:

Rq,r[p] = q p r [2.14]

where the rotation Rq,r[.] stands for a rotation about a plane (to be identified later)
with angle 2φ if S(q) = S(r) = cosφ. Note that the scalar parts of q and r are cosines
due to the fact that |q| = |r| = 1.
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Now, just as in the 3D case, a rotation can be expressed as a combination of two
reflections. In the 4D case, it arises in the following way when considering the product
of two reflections across planes with h1 and h2, respectively, as normal vector (with
the requirement that h1 = h2):

Ph2 [Ph1 [p]] = h2 (h1 p h1)h2 = h2 h1 p h1 h2 [2.15]

As h1 and h2 are pure unit quaternions, their product is a full unit quaternion.
The quaternions h2 h1 and h1 h2 are different (multiplication order); however, they
have their scalar part in common, which is not affected by the order of quaternion
multiplication, so that S h2 h1 = S h1 h2 . This, in addition to the unit norm of the
two quaternion products, is the requirement for the operator to be a 4D rotation. In
fact, this rotation operator performs a rotation of angle φ with cosφ = S h2 h1 =

S h1 h2 about a plane defined by S h2 h1p = S h1 h2p = 0. We can also identify
the obtained quaternions with the elements of the 4D rotation operator in section 2.14
like: h2 h1 = q and h1 h2 = r. The interested readers can refer to [COX 46, COX 74]
for more on 4D Euclidean geometry.

2.2. Spherical geometry

Geometry on a sphere resembles geometry on a plane. Thus, if A and B are two
points on a sphere, then in analogy to a segment on a plane one can consider AB =
B − A to be the distance between the points A and B, or the arc of a great circle
running from point A to point B. The idea of the difference of two points as an arc
joining them is completely analogous to the difference between two points in a plane
being the vector joining them. Hence, two arcs will be equal if and only if they lie
on the same great circle, and their lengths and directions are equal. Two equal arcs
can be superimposed by moving one along the great circle on which they are located.
One difference between planar and spherical geometry is that the addition of arcs is in
general non-commutative. The addition of arcs is commutative only if they lie on the
same great circle, in which case the addition reduces to a simple arithmetic sum.

Branets [BRA 74], following Hamilton, considered the unit quaternion λ that can
be represented in the form of a quotient of two equal-length pure quaternions or
vectors in 3D-space, a and b, i.e.,

λ = b a−1 = cosφ+ μsinφ. [2.16]

The reciprocal of a is defined through [1.26]. It can be shown that the following
conditions hold:

1) the angle φ from the vector a to b satisfies φ ≤ π;
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2) the unit vector μ is normal to the plane containing a and b;

3) the vectors a, b and μ span all of R3.

In other words, if we associate the point A on a sphere with the vector a, and the
point B with the vector b, then the angle of the arc AB is in fact φ given in [2.16].
This situation is depicted in Figure 2.1. This implies that the quaternion product of
two normalized quaternions corresponds to the geometric sum of the arcs of a sphere
of radius |a| = |b|. So we have at our disposal the equivalence between arcs and unit
quaternions, denoted as AB ⇐⇒ λb,a, which allows the correspondence

AB + BC = AC ⇐⇒ λc,b λb,a = λc,a

where we have included a third point C with its vector c.

Figure 2.1. Spherical geometry as unit length quaternion

Conversely, any unit quaternion λ defines an arc of a great circle, whose plane is
normal to μ and whose arc length is φ; the position of the arc on its great circle is
arbitrary, i.e. the arc may be slid along the circle.

Conjugating the quaternion λ reverses the direction of the arc along the same great
circle. Negating the quaternion −λ corresponds to the arc from −a to b.

The special cases of an arc of length zero corresponds to a quaternion λ = 1+ 0μ
so that the plane of the arc is arbitrary. The case where the arc length is π corresponds
to λ = −1 + 0μ, as again the direction of the arc is arbitrary when moving a point
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to its diametrically opposite point across the sphere – any direction will do. These
associations provide a mechanism for encoding spherical triangles. The geometric sum
of the three arcs AB, BC and CA forming a closed spherical triangle, when mapped
to their unit quaternions, is:

λa,c λc,b λb,a = (a c−1)(c b−1)(b a−1) = a (c−1c)(b−1b) a−1 = 1

which is the arc of zero length. In general, unit quaternions which represent arcs that
are cyclically arranged edges of a closed polygon have a quaternion product equal
to 1.

2.3. Projective space (3D)

Full quaternions, those with non-zero scalar part, can be used to represent points
in homogeneous coordinates. The quaternion identity:

q = s+ v = s 1 +
v

s
[2.17]

where s = S(q) and v = V(q). In this form, q can be used to represent a point located
at the end of the vector p = v/s from the origin with weight s. Thus, in weighted-point
form:

q = s[1 + p]

Hence, the set of quaternions can be associated with the real projective space P3 ∼=
R4. This interpretation was discussed by Joly [JOL 05] and MacFarlane [MAC 06] in
1905 and 1906, respectively. Under this interpretation, a unit-weight point at the origin
is denoted as q = 1[1+0i+0j+0k], and a weightless point at infinity in the (x, y, z)
direction is denoted as q = [0+ xi+ yj + zk], which can be seen by letting s → 0 in
[2.17]. The resulting pure quaternion can also be viewed as a translation vector when
added to a weighted-point.

The algebra of the set of vectors V ∼= V(H) and the algebra of the set of (weighted)
points P ∼= H, both described using quaternion algebra, are different in subtle ways.
For example, the direct sum of two vectors, v1 and v2, follows the parallelogram law,
whereas the direct sum of two (weighted) points, p1 and p2, follows the principle of
center-of-mass. This can be seen in the following equation:

q1 + q2 = (s1 + s2)

weight

[1 + (s1p1 + s2p2) / (s1 + s2)

center-of-mass

]
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Likewise, scaling a vector v ∈ V by α ∈ R changes its length but leaves its
direction unchanged, whereas scaling a point p ∈ P leaves its position unchanged but
changes its weight since αq = αs[1 + p].

The set of vectors is closed with respect to quaternion addition and subtraction;
however, the set of weighted-points is not closed. For example, the difference between
two equal-weight points, q1 and q2, is the weightless point (i.e. the vector) that joins
them as:

q1 − q2 = s [1 + p1]− s [1 + p2] = 0 + (p1 − p2)

Table 2.1 provides a summary of how various quaternion algebraic operations map
elements between point and vector subsets.

Mapping Projective space interpretation
αV → V Scales vector length, direction unchanged.
αP → P Scales point weight, position unchanged.
V ± V → V Parallelogram law.
P ± V → P Translates point in direction of vector.
P + P → P Principle of center-of-mass.
P − P → V or P V iff weights are equal.
VV → V or P V iff vectors are perpendicular.
PP → V or P V iff p1, p2 = 1.

Table 2.1. Summary of point (P ∼= H) and vector (V ∼= V(H))
mappings with α ∈ R

Quaternion conjugation, by definition, negates the vector part of a quaternion.
Consequently, conjugation and negation of a vector are the same, i.e. v̄ = −v. In
contrast, the conjugate of a weighted-point results in the point’s position being
reflected across the origin, whereas negation changes the sign of the point’s weight,
but its position remains the same, i.e.: s [1 + p] = s [1− p] = −s [1 + p2] .

Not withstanding these differences, some algebraic combinations behave
similarly for vectors and points. For example, given two vectors, v1 and v2, their
linearly weighted sum:

vα = (1− α)v1 + (α)v2

traces a line from v1 to v2 as α varies from 0 to 1, i.e. it draws a line diagonally across
the parallelogram defined by v1 and v2. Likewise, given two points, p1 and p2, their
linearly weighted sum:

qα = (1− α) s1 [1 + p1] + (α) s2 [1 + p2] = s1 [1 + p1] + s2 [1 + p2]
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also traces the same path across the diagonal of the parallelogram defined by points
p1 and p2. However, for a constant rate of change in α the weighed points are not in
general equally spaced, as it is in the vector case, due to the relative weight of the
two points. The points would be equally spaced only if their weights are equal. See
Figure 2.2 for an example comparison where p2 has a weight three times that of p1.

Figure 2.2. Linear weighted sum of points (top) versus vectors (bottom)
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Even though points and vectors are disjoint subsets, they share a common
framework when viewed as a projective space. A vector represents a point at infinity
along its direction so that geometrically all the points at infinity have been included
into a single 3-space model. We may ask, “what advantage does this projective space
model of separating points and vectors grant us?” We saw in section 2.1 the use of
various linear quaternion functions that map vectors into vectors by way of rotations,
reflections, shears and dilations. This set of linear operations can now be expanded
into projections (including translations). To understand this, we must digress and
discuss the most general form of linear quaternion equation.

2.3.1. Systems of linear quaternion functions

Real linear functions take the monomial form: f(x) = mx, where m,x ∈ R.
Linear combinations, i.e. direct sums or compositions, of such functions can always
be reduced to this same form. In contrast, quaternion linear functions have the
multinomial form:

f (q) =
P

p=1

mp q np [2.18]

where all factors are quaternion-valued, i.e., q,mp, np ∈ H. We would expect under
functional compositions that the number of terms in the summation can become
arbitrarily large due to quaternion multiplication being non-commutative. However,
this general multinomial can always be reduced to its quaternary canonical form:

f (q) = Aq +B q i+ C q j +D q k, [2.19]

where A,B,C,D ∈ H.

The linear sum of two such functions is given by the component-wise addition. Let
f1 (q) = A1q +B1q i+C1q j +D1q k and f2 (q) = A2q +B2q i+C2q j +D2q k
then:

f1 (q) + f2 (q) = A3q +B3q i+ C3q j +D3q k

where A3 = A1 +A2, B3 = B1 +B2, C3 = C1 + C2 and D3 = D1 +D2.
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The composition of two linear functions, f2 (f1 (q)), is given by:

f2 (f1 (q)) = A3q +B3qi+ C3qj +D3qk

where:

A3 = A2A1 −B2B1 − C2C1 −D2D1,

B3 = A2B1 +B2A1 − C2D1 +D2C1,

C3 = A2C1 +B2D1 + C2A1 −D2B1,

D3 = A2D1 −B2C1 + C2B1 +D2A1.

Careful examination of this composition rule reveals that it has the same structure
as the standard quaternion multiplication. The composition is, of course, not
commutative: f2 (f1 (q)) = f1 (f2 (q)). This is because geometrical operations do
not commute (the composition of two rotations, for example, gives different results,
in general, according to the order in which the rotations are carried out).

The equivalence between invertible functions in quaternary canonic form and the
general linear group of 4 × 4 invertible real matrices, GL4(R), will be used later.
Let p = p0 + p1i + p2j + p3k and q = q0 + q1i + q2j + q3k be two arbitrary
quaternions. Using standard hypercomplex operator product rules, the components of
the quaternion product pq = q0 + q1i+ q2j + q3k = q are:

q0 = p0q0 − p1q1 − p2q2 − p3q3,

q1 = p1q0 + p0q1 − p3q2 + p2q3,

q2 = p2q0 + p0q2 + p3q1 − p1q3,

q3 = p3q0 + p0q3 − p2q1 + p1q2.

By gathering terms into matrix-vector notation:⎡⎢⎢⎣
q0
q1
q2
q3

⎤⎥⎥⎦ =

⎡⎢⎢⎣
p0 −p1 −p2 −p3
p1 p0 −p3 p2
p2 p3 p0 −p1
p3 −p2 p1 p0

⎤⎥⎥⎦
⎡⎢⎢⎣

q0
q1
q2
q3

⎤⎥⎥⎦ [2.20]

we can define an equivalent matrix-vector form for the quaternion product. Let [[p]]
and [q] denote the matrix and vector equivalences, respectively. Since the quaternion
product is bilinear, we can instead place the components of p into the vector and the
components of q into the matrix, but in doing so the lower right 3 × 3 submatrix is
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transposed from the one given above. Denote this transmuted form of the matrix as
[[q]]

†. Therefore, any quaternion product has two equivalent matrix-vector forms:

pq ↔ [[p]] [q] = [[q]]
†
[p] .

Hence, any triple-product pqr may be arbitrarily reordered in matrix form as

pqr ↔ [[p]] [[q]] [r] = [[p]] [[r]]
†
[q]

The linear quaternary equation q = Aq + Bqi + Cqj + Dqk can be written in
matrix-vector form as

[q ] = [[A]] + [[B]] [[i]]
†
+ [[C]] [[j]]

†
+ [[D]] [[k]]

†
[q] = [[Q]] [q] [2.21]

Now, both a matrix [[p]] and a transmuted matrix [[q]]
† contain only four degrees of

freedom: one for each component of the quaternion. Careful examination of the four
terms in the above matrix equation reveals that these matrices are independent, giving
the total of 16 degrees of freedom necessary for an arbitrary matrix. It is
straightforward to start with an arbitrary matrix [[Q]] and solve for the elements of the
four quaternions {A,B,C,D}. For details of this analysis, see [ELL 07b].

2.3.2. Projective transformations

Having established the connection between GL4(R), the general linear group of
4 × 4 invertible real matrices, we can now discuss the various types of geometrical
transformation possible using a linear quaternion function. We draw here on the classic
text of Bruce Meserve [MES 83] which clearly sets out the possibilities (although not
using a quaternion formalism as given here).

The most general transformation is projective. The affine transformations are a
subset of the projective transformations with the property that straight lines are
preserved (that is, remain straight) under the transformation. Reflection, scaling and
shear are examples of affine transformations. Similarity transformations are a subset
of the affine transformations with the additional property that angles are preserved
(thus geometric figures are transformed into similar geometric figures). Uniform
scaling (that is, scaling along all axes by the same scale factor) has this property.
Euclidean transformations are a subset of the similarity transformations. Translation
and rotation are examples. They preserve angles as well as straight lines.

Two additional subsets of the affine transformations “cut across” the other subsets.
The isometries preserve the distance between points. The linear transformations are
those that obey superposition. In geometric terms, it means we may decompose a
vector or point into the sum of two or more vectors or points and obtain the same
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results by transforming the decomposed parts separately as by transforming the un-
decomposed vectors or points.

Now a very significant point is that all these transformations are linear when
expressed as operations on a projective space, even if non-linear in the 3D Euclidean
space of the signal samples or image pixels. All of these linear transforms can be
encoded using real 4 × 4 matrices as shown in Figure 2.3, which were shown to be
equivalent to linear quaternion functions in section 2.3.1.

Figure 2.3. Projective maps using real 4× 4 matrix
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Quaternion Fourier Transforms

Quaternion Fourier transforms provide elegance and expressive power in the analysis of vector-
valued signals and images. There is, however, a cost – an overwhelming number of transform
definitions. This chapter provides some of the possible quaternion Fourier transforms definitions
and their properties which appear best suited to vector-valued signals.

The classical (complex) Fourier transform of a one-dimensional (1D) complex-
valued function f(t) : R → C can be defined as:

F{f}(ω) = F (ω) =
∞

−∞
f(t) e−Iωt dt, [3.1]

where I is the complex square root of −1. The inverse transform is defined by
conjugating the exponential kernel and adding a scale factor as in

F−1{F}(ω) = f(t) =
1

2π

∞

−∞
F (ω) e+Iωt dω. [3.2]

Symbolically, we write the signal and its transform pair as f(t) F (ω). The
extension of the complex Fourier transform to two dimensions is straightforward.
Given a signal f(x, y): R2 → C, the two-dimensional (2D) complex Fourier
transform is

F{f}(ω,ν) = F (ω,ν) =
∞

−∞

∞

−∞
f(x, y)e−I(ωx+νy) dx dy

 Quaternion Fourier Transforms for Signal and Image Processing, First Edition. 
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The index space of the transformed function is of course 2D, like the original
function. As in the 1D case, the inverse transform is defined by conjugating the
exponential kernel and adding a scale factor as in

F−1{F}(x, y) = f(x, y) =
1

(2π)2

∞

−∞

∞

−∞
F (ω,ν)e+I(ωx+νy) dω dν.

A sufficient (though not necessary) condition that a function f(t) has a complex
Fourier transform is that the function should be absolutely integrable, i.e.,

R
|f(t)| dt < ∞ [3.3]

The set of such functions is denoted by L1(R;C). To be able to recover the
original function from the inverse Fourier transform, the function must be of bounded
variation, which means that f(t) can be expressed as the difference of two bounded
monotonically increasing functions. Alternately, if the function is square integrable,
i.e.,

R
|f(t)|2 dt < ∞, [3.4]

then both the Fourier transform and its inverse exist. Square integrable functions are
denoted by L2(R;C).

To generalize the Fourier transform to quaternion-valued signals, the approach
taken in this work is to replace the single complex square root of −1 = I2 with one
of many possible quaternion square roots of −1 = μ2. In the quaternion domain, μ is
taken from the set of all pure unit length quaternions, namely
μ ∈ {q ∈ V(H) : q = 1}. This provides an additional degree of design freedom,
beyond the complex Fourier transform, when treating problems in vector signal
processing and can be chosen to advantage for each application. The ability to choose
the root of −1 is particularly useful when dealing with 2D signals where each
integral may be associated with its own root, or not. For purposes of later
comparison, Table 3.1 contains the basic properties of the complex Fourier transform
used in image and signal processing.

Table 3.1 contains two operator formulas, which are the building blocks of image
and signal processing: convolution and correlation. The formal definition of a
convolution of two functions is

(f1 ∗ f2)(t) =
+∞

−∞
f1(τ)f2(t− τ) dτ.
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1√
2π

+∞
−∞ eIωtF (ω) dω = f(t) F (ω) = 1√

2π

+∞
−∞ e−Iωtf(t) dt

Time-domain f(t) F (ω) Frequency-domain
Time reversal f(−t) F (−ω) Frequency reversal
Complex conjugation f (t) F (−ω) Reversed conjugation
Reversed conjugation f (−t) F (ω) Complex conjugation

Purely real f(t) ∈ R F (ω) = F (−ω) Even, symmetric
Purely imaginary f(t) ∈ IR F (ω) = −F (−ω) Odd, anti-symmetric
Even, symmetric f(t) = f (−t) F (ω) ∈ R Purely real
Odd, anti-symmetric f(t) = −f (−t) F (ω) ∈ IR Purely imaginary

Time shift f(t− τ) F (ω) e−Iωτ Modulation
Modulation f(t) eIνt F (ω − ν) Frequency shift
Time scale f(αt) 1

|α|F (ω
α
)

1
|α|f(

t
α
) F (αω) Frequency scale

Linearity αf1(t) + βf2(t) αF1(ω) + βF2(ω)

Multiplication f1(t) f2(t)
√
2π F1(ω) ∗ F2(ω) Convolution

Convolution (f1 ∗ f2)(t)
√
2π F1(ω)F2(ω) Multiplication

Correlation (f1 f2)(t)
√
2π F ∗

1 (ω)F2(ω)

Delta function δ(t)
√
2π 1

Shifted delta δ(t− τ)
√
2π e−Iωτ

eIνt
√
2π δ(ω − ν) Shifted delta

1
√
2π δ(ω) Delta function

nth derivative dn

dtn f(t) (Iω)nF (ω)

tnf(t) In dn

dωnF (ω) nth derivative

NOTE.– f(t) : R → C, α, β ∈ R.

Table 3.1. 1D Complex Fourier transform pairs

Likewise, the cross-correlation of two functions is defined as:

(f1 f2)(t) =
+∞

−∞
f1 (τ)f2(t+ τ) dτ.

The correlation is superficially similar to convolution, but it has a different physical
interpretation. The generalization from complex to quaternion algebra comes at a cost:
neither the correlation nor the convolution are commutative, and which function is
shifted (f1 or f2) changes the results. In the complex domain, these differences are
immaterial, but with quaternions it means that the formulas given in Table 3.1 do not
work: instead we must find the correct quaternion generalizations, as discussed in
section 3.1.5.
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3.1. 1D quaternion Fourier transforms

In the complex case, the sign of the exponents of [3.1] and [3.2] must differ. Which
of the two you choose to be positive does not matter, so long as you keep to the
rule. If someone else has used the opposite choice, the Fourier pair calculated from
a given function will be the complex conjugate of that given by your choice. This
simple rule does not extend to the quaternion case. Still further definitions for the
quaternion Fourier transform (QFT) arise from the fact that quaternion multiplication
is non-commutative; hence, the placement of the exponential kernel in the transform
definition becomes meaningful. This situation gives rise to four unique 1D QFTs.

3.1.1. Definitions

The 1D right-sided 1 QFTs of a quaternion-valued signal f(t) : R → H are:

FR
∓μ{f}(ω) = FR(ω) = κ−

∞

−∞
f(t) e∓μωt dt [3.5]

where the −μ version is referred to as the forward transform and the +μ version is the
reverse transform, which is distinct from their inverse transforms given, respectively,
by

F−R
∓μ {FR}(t) = f(t) = κ+

∞

−∞
F (ω) e±μωt dω. [3.6]

In both equations, μ ∈ H is a pure unit quaternion so that μ2 = −1. The scale
factors must satisfy: κ+κ− = (2π)

−1. If κ− = κ+, then the transform is a unitary
transform with the consequence that the transform preserves the energy of the original
signal f(t) when it is mapped to the frequency domain2.

Likewise, the left-sided QFTs of a quaternion-valued signal, f(t) : R → H are:

FL
∓μ{f}(ω) = FL(ω) = κ−

∞

−∞
e∓μωt f(t) dt, [3.7]

1 In this book, we use the term right-sided to refer to the placement of the exponential relative
to the signal (the exponential is on the right for a right-sided transform). This is consistent
with usage in the QTFM library [SAN 13b], where the transform handedness is selected by a
parameter with values “L” or “R”. Care is needed to check whether this convention is used when
reading other quaternion literature, since the convention may differ.
2 The scale factor requirement also holds for complex Fourier transforms.
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and their inverses are given by:

F−L
∓μ{FL}(ω) = f(t) = κ+

∞

−∞
e±μωt FL(ω) dω. [3.8]

When the context makes it clear, or when either a left- or a right-sided transform
may be used, the superscript L/R will be dropped.

Not all quaternion-valued functions can be Fourier-transformed. They are
transformable if they fulfill certain conditions, known as the Dirichlet conditions. We
need not use first principles to discover which functions are transformable. Instead,
we can borrow from the classic complex case as follows. Split f(t) via symplectic
decomposition (equation [1.55]) into simplex and perplex parts with respect to μ, the
axis of the transform, as:

f(t) = fs(t) + fp(t) μ2, where μ2 ⊥ μ and fs, fp ∈ Cμ.

The left-sided QFT of f(t) becomes:

FL(ω) = κ−
R
e−μωtfs(t) dt+ κ−

R
e−μωtfp(t) dtμ2. [3.9]

so that:

FL(ω) = Fs(ω) + Fp(ω)μ2, [3.10]

where:

Fs(ω) = κ−
R
e−μωtfs(t) dt, and Fp(ω) = κ−

R
e−μωtfp(t) dt.

Likewise, the right-sided QFT of f(t) becomes:

FR(ω) = κ−
R
fs(t)e

−μωt dt+ κ−
R
fp(t)μ2e

−μωt dt [3.11]

= κ−
R
fs(t)e

−μωt dt+ κ−
R
fp(t)e

+μωt dtμ2

so that:

FR(ω) = Fs(ω) + Fp(−ω)μ2. [3.12]
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Due to the equivalence between Cμ and the standard complex numbers, and the
fact that the QFT can be decomposed into a sum of complex subfield functions, the
existence and invertibility of the QFT is inherited from the complex case. So, one
sufficient (though not necessary) condition is that if f(t) is absolutely integrable
(i.e. f(t) ∈ L1(R;H)) and if it is of bounded variation on every finite interval, then
FL(ω) (and FR(ω)) exists and f(t) can be recovered from the inverse Fourier
transform relationship at each point at which f(t) is continuous.

Since Fs(ω), Fp(ω) ∈ Cμ, they can be computed using the complex Fourier
transforms of fs(t) and fp(t). This is done by replacing μ by I in fs and fp, taking
their complex Fourier transforms, and then back-substituting μ for I in the results.
This is also the basis of a numerical implementation method using complex FFTs,
which is discussed in section 3.3.1.3.

3.1.2. Basic transform pairs

There are several basic relationships that are of use in manipulating Fourier pairs,
summarized in Table 3.2. For the most part, their proofs are elementary. The art of
determining the Fourier transform of a function is in using these relationships.

Linearity: of the transform integrals implies

αf1(t) + βf2(t) αF1(ω) + βF2(ω), [3.13]

where α, β ∈ Cμ and fn(t) Fn(ω). Hence, all four 1D QFT definitions are linear
operators.

Scaling: either time or frequency results in the following pairs:

f(αt)
1

|α|F
ω

α
and F (αω)

1

|α|f
t

α
, [3.14]

where α ∈ R.

Shifting: The Fourier pairs for shifts, in either time f(t−τ) or frequency F (ω−ν),
are unique for each Fourier definition, namely:

f(t− τ) FR
−μ(ω) e

−μωτ and FR
−μ(ω − ν) f(t) eμνt [3.15]

or

f(t− τ) e−μωτ FL
−μ(ω) and FL

−μ(ω − ν) eμνt f(t) [3.16]
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depending on the chirality of the transform used. As with the complex Fourier
transforms, shifts and modulation operations are inter-related between the time and
frequency domains, but the handedness of the transform must be taken into account.

Left-sided: 1√
2π

+∞
−∞ eμωtF (ω) dω = f(t) F (ω) = 1√

2π

+∞
−∞ e−μωtf(t) dt

Right-sided: 1√
2π

+∞
−∞ F (ω)eμωt dω = f(t) F (ω) = 1√

2π

+∞
−∞ f(t)e−μωt dt

Time-domain f(t) F (ω) Frequency-domain
Time reversal f(−t) F (−ω) Frequency reversal

Quaternion conjugation f(t) See section 3.1.4

Reversed conjugation f(−t) See section 3.1.4

Real f(t) ∈ R F (ω) = F (−ω) Even, symmetric
Pure μ-imaginary f(t) ∈ μR F (ω) = −F (−ω) Odd, anti-symmetric
Even, symmetric f(t) = f (−t) F (ω) ∈ R Real
Odd, anti-symmetric f(t) = −f (−t) F (ω) ∈ μR Pure μ-imaginary
Simplex f(t) ∈ Cμ2

F (−ω) = F (ω)

Pure perplex f(t) ∈ Cμ2
μ F (−ω) = −F (ω)

Time shift f(t− τ) e−μωτF (ω) (Left-sided transform)
f(t− τ) F (ω) e−μωτ (Right-sided transform)

Modulation (left-sided transform) eμνt f(t) F (ω − ν) Frequency shift
Modulation (right-sided transform)f(t) eμνt F (ω − ν) Frequency shift
Time scale f(αt) 1

|α|F (ω
α
)

1
|α|f(

t
α
) F (αω) Frequency scale

Linearity αf1(t) + βf2(t) αF1(ω) + βF2(ω)
Convolution (f1 ∗ f2)(t) See section 3.1.5
Correlation (f1 f2)(t) See section 3.1.5

Delta function δ(t)
√
2π 1

Shifted delta δ(t− τ)
√
2π e−μωτ

eμνt
√
2π δ(ω − ν) Shifted delta

1
√
2π δ(ω) Delta function

nth derivative dn

dtn f(t) (μω)n F (ω) (Left-sided transform)
nth derivative dn

dtn f(t) F (ω) (μω)n (Right-sided transform)
(Left-sided transform) tnf(t) μn dn

dωnF (ω) nth derivative

(Right-sided transform) tnf(t) dn

dωnF (ω)μn nth derivative

NOTE.– f(t) : R → H, μ2 ⊥ μ, and α, β ∈ R.

Table 3.2. 1D forward quaternion Fourier transform pairs
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Derivatives: In a similar manner, derivatives, with respect to either time or
frequency, have a chirality as:

dn

dtn
f(t) FR

−μ(ω) (μω)
n and

dn

dωn
FR
−μ(ω)μ

n tnf(t) [3.17]

or

dn

dtn
f(t) (μω)nFL

−μ(ω) and μn dn

dωn
FL
−μ(ω) tnf(t). [3.18]

Impulse functions: The QFT of the Dirac delta function δ(t) mimics the complex
transform exactly and is identical for all QFT forms:

δ(t)
√
2π 1 and 1

√
2π δ(ω). [3.19]

Likewise, the shifted delta function is common across all QFT forms as:

δ(t− τ)
√
2π e−μωτ and eμνt

√
2π δ(ω − ν). [3.20]

In the last equation above, if the reverse transforms are used, then the sign of μ is
changed.

3.1.3. Decompositions

In the time domain, complex-valued functions f(t) may happen to have one or
more special symmetries. It might be purely real or purely imaginary, or it might be
even, f(t) = f(−t), or odd, f(t) = −f(−t). These time-domain symmetries lead to
symmetries in the frequency domain. Put another way, any function f(t) can always
be decomposed into even-odd or real-imaginary or both parts. Decomposition of 1D
QFTs is helpful in simplifying QFT pairs and studying the relationships among the
various definitions.

3.1.3.1. Even-odd split

In general, the function f(t) is quaternion-valued; denoting by fs(t) and fp(t) its
simplex and perplex parts with respect to the transform axis μ, we have3:

f(t) = fs(t) + fp(t)μ, where fs(t), fp(t) ∈ Cμ2
,μ2 ⊥ μ, [3.21]

3 It should be noted that μ2 ⊥ μ allows for design freedom. If μ2 is fixed, then the transform
axis μ can be steered as needed in the plane perpendicular to μ2. Conversely, if μ is fixed, then
μ2 can be steered in the plane perpendicular to μ.
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and its (right-handed) QFT is

F (ω) = Fs(ω) + Fp(ω)μ, where Fs(ω), Fp(ω) ∈ Cμ2
[3.22]

where

S(ω) = κ−
R
[fs(t) cosωt+ fp(t) sinωt] dt, [3.23]

Fp(ω) = −κ−
R
[fs(t) sinωt− fp(t) cosωt] dt. [3.24]

Likewise, using the QFT inversion formula; with F (ω) = Fs(ω) + Fp(ω)μ, we
obtain:

fs(t) = κ+
R
[Fs(ω) cosωt− Fp(ω) sinωt] dω, [3.25]

fp(t) = κ+
R
[Fs(ω) sinωt+ Fp(ω) cosωt] dω [3.26]

Now under the special condition that f(t) is strictly μ2-complex, i.e. fp(t) = 0,
then the simplex and perplex parts of F (ω) are given by:

Fs(ω) = κ−
R
fs(t) cosωt dt and Fp(ω) = −κ−

R
fs(t) sinωt dt [3.27]

From which we conclude that Fs(ω) is even and Fp(ω) is odd, i.e.

Fs(−ω) = Fs(ω) and Fp(−ω) = −Fp(ω). [3.28]

Therefore:

FR
−μ(−ω) = FR−μ(ω), if f(t) ∈ Cμ2

, μ2 ⊥ μ. [3.29]

Conversely, if FR
−μ(−ω) = FR−μ(ω), then fp(t) = 0, i.e. f(t) ∈ Cμ2

.

Starting instead with f(t) being entirely perplex, i.e. fs(t) = 0, so that f(t) =
fp(t)μ, then the simplex and perplex parts of F (ω) are given by

Fs(ω) = κ−
R
fp(t) sinωt dt and Fp(ω) = κ−

R
fp(t) cosωt dt [3.30]
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Therefore, Fs(ω) is odd and Fp(ω) is even, i.e.

Fs(−ω) = −Fs(ω) and Fp(−ω) = Fp(ω). [3.31]

Therefore:

FR
−μ(−ω) = −FR−μ(ω), if f(t) ∈ Cμ2

,μ2 ⊥ μ. [3.32]

Conversely, if FR
−μ(−ω) = −FR−μ(ω), then fs(t) = 0, i.e. f(t) ∈ Cμ2

.

Imposing further restrictions on μ2-complex f(t), if we assume f(t) is an even
function of time, i.e. f(−t) = f(t), then Fp(ω) = 0. Conversely, if the QFT is a μ2-
complex simplex function, i.e. Fp(ω) = 0, then f(−t) = f(t), so that f(t) is even.
However, if we assume instead f(t) is μ2-complex and an odd function of time, i.e.
f(−t) = −f(t), then Fs(ω) = 0. Conversely, if the QFT of a μ2-complex function is
perplex, i.e. Fs(ω) = 0, then f(−t) = −f(t), so that f(t) is odd.

What we have shown is that if f(t) is μ2-complex and split into even and odd parts
as:

f(t) = fe(t) + fo(t) [3.33]

where fe(t) is even with respect to time and fo(t) is odd, then:

F (ω) = Fse(ω) + Fpo(ω)μ [3.34]

where

Fse(ω) = FR {fe} and Fpo(ω)μ = FR {fo} . [3.35]

To switch to left-sided QFT’s one instead starts with an alternate simplex-perplex
decomposition, namely, let

f(t) = fs(t) + μfp(t)

where the μ factor is on the left of fp(t) instead of on the right 4.

The above analysis mimics the symmetry properties of the complex Fourier
transform, but we speak of μ2-complex even and odd functions instead of real even
and odd functions of time.

4 Note this fp is the conjugate of fp from [3.21] by the swap rule.
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It is desirable that the complex Fourier transform properties be contained within
the QFT as a special case. Indeed this is so, for if we restrict the function to the μ-
complex subfield of H, then the classic complex properties carry over, namely, if f(t)
is strictly real-valued then:

F (ω) = F (−ω)

and if f(t) is purely μ-imaginary, i.e. f(t) ∈ μR,

F (ω) = −F (−ω).

Likewise, if f(t) is even, symmetric, i.e. f(t) = f(−t), then F (ω) ∈ R, but if
f(t) is odd, anti-symmetric f(t) = −f(−t), then F (ω) ∈ μR. Proof of this is
simple; since both f(t) and the kernel of the transform eμωt are from the same
complex subfield, Cμ = R + μR, they are isomorphic to the standard complex
numbers.

3.1.3.2. Orthogonal 2D planes split

Every q ∈ H can be split as q = q+ + q− with q± = 1
2 (q ± μ1qμ2) as in [1.58]

where μ1μ2 = μ3 [HIT 07]. In terms of components, if q = r0+μ1r1+μ2r2+μ3r3,
then

q± = {(r0 ± r3) + μ1(r1 ± r2)} 1± μ3

2
=

1± μ3

2
{(r0 ± r3)− μ2(r1 ± r2)} .

3.1.4. Inter-relationships between definitions

The left- and right-handed transforms given in [3.5] and [3.7] are related, as we
might expect, and the operations that play a role in these relationships are:
conjugation, time/frequency reversal and symplectic decomposition.

The operation with the simplest effect to consider is conjugation. In the classical
complex case (when complex signals are being considered), conjugation and
time/frequency reversal are connected: conjugation in one domain corresponds to
conjugation and reversal in the other. For example, F {f(t)} = F{f (−t)}. In the
quaternion case, however, there is a difference, and the reason is the different
behavior of the quaternion conjugate compared to the complex conjugate, when
applied to a product. In the complex case, the conjugate of a product is equal to the
product of the conjugates: (z1z2) = z1 z2 . In the quaternion case, however, order
must be reversed: q1q2 = q2 q1. The difference between the left- and right-sided
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transforms is the order of the signal and exponential; hence, it is not surprising that
change of handedness and conjugation are connected. Figure 3.1 shows how
transforms of opposite handedness are related with respect to conjugation.

Algebraically, the relationships can be expressed as:

FR
±μ f = FL∓μ {f} and FL

±μ f = FR∓μ {f}. [3.36]

(For simplicity, the figure omits the permutations of sign in the transform axis μ).

FR(ω)✉

f(t) ✉ f(t)✉

FL(ω)

✉

FR(ω)

FL(ω)

✉

✉

❅
❅
❅❘

✒

✒

❅
❅
❅❘

❅
❅

❅

❅
❅

❅FL

FR

FR

FL

Figure 3.1. Graph showing conjugation relationships between left- and
right-handed one-sided QFTs. The dotted lines represent conjugation. The

solid directed lines represent transforms

Time/frequency reversal is slightly more complicated5. In the classical complex
case, changing the sign of the time variable (time reversal) corresponds to changing
the sign of the frequency variable (frequency reversal). Thus, if we have: F{f(t)} =
F (ω), then: F{f(−t)} = F (−ω). In the quaternion case, however, the symplectic
decomposition plays a part. Figure 3.2 shows how transforms of opposite handedness
are related by time/frequency reversal and symplectic decomposition.

Note that application of the same transform twice to a signal f(t) results in a time-
reversed signal f(−t) (ignoring scale factors). It is immaterial whether the transform
chosen is left- or right-handed. The relationship between the two transforms is shown

5 Computationally time/frequency reversal is not trivial and we discuss it in section 3.3.3.2.
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by the vertical dashed line that represents a partial frequency reversal. The symplectic
decomposition of the right-handed QFT was given by [3.22] as:

FR(ω) = Fs(ω) + Fp(ω)μ, [3.37]

where Fs(ω), Fp(ω) ∈ Cμ2
. The left-handed QFT using the same symplectic

decomposition is found to be:

FL(ω) = Fs(ω) + Fp(−ω)μ, [3.38]

so that the simplex parts Fs(ω) are the same in both cases but the perplex parts
Fp(±ω) of the two transforms are reversed in frequency. We have not considered the
dual case, where the frequency-domain representation is reversed in frequency, but it
should be obvious that the effect in the time domain would be a partial time reversal
with only the perplex component reversed.

FR(ω) See [3.37]✉

f(t) ✉ f(−t)✉

FL(ω) See [3.38]

✉
❅

❅
❅❘

✒

✒

❅
❅
❅❘

❅
❅

❅

❅
❅

❅FL

FR

FL

FR

Figure 3.2. Graph showing time/frequency reversal relationships between left-
and right-handed one-sided QFTs. The dotted lines represent time/frequency

reversal (horizontally) or partial time/frequency reversal (vertically). The solid
directed lines represent transforms

3.1.5. Convolution and correlation theorems

Theorems for convolution and correlation as shown in Table 3.1 for the complex
Fourier transform are possible in the quaternion case, but the formulas are different
for each formulation of transform. The results in the previous section show that left-
and right-sided transforms are closely related, and conjugation plays a key role
because of the interaction between conjugation and the re-ordering of a quaternion
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product, which are steps that often occur in the derivation of formulas involving
quaternion products. Conjugation of a quaternion exponential requires a change of
sign in the root of −1, and of course this corresponds to changing a forward
transform into a reverse or vice versa. For these reasons, it is more sensible to
construct such formulas using a mix of transforms, rather than confining the formula
to a single transform, because this can yield a simpler formula. A secondary
consideration is that when the forward and inverse transforms have different scale
factors (as they do in some numerical implementations), combining forward and
inverse transforms of the same handedness becomes awkward because of the
different scale factors: it is simpler to combine transforms of the same direction
(forward and inverse) of different handedness, in order to avoid such difficulties. We
show how a correlation formula may be derived in section 4.2.2.

3.2. 2D quaternion Fourier transforms

The extension of the 1D QFT to two dimensions gives rise to a multitude of
possibilities. The obvious choice of altering the transform kernel from e−μωt to
e−μ(ωx+νy) for functions f(x, y) : R → H provides the same four left-right and
forward-reverse transforms, but there are other choices. One concept left unexplored
is the implication of the exponential product of two quaternions, i.e. in general
epeq = ep+q , as noted in [1.38]. Hence, e−(μ1ωx+μ2νy) = e−μ1ωxe−μ2νy . As soon
as the exponent is split like this, we have the ability to “sandwich” the function
f(x, y) between the exponents. We also have the ability to use a different root of −1
for each exponent.

Table 3.3 details these eight forward forms. Doubling this number to account for
the reverse transforms yields a total of 16 different QFTs. Only a limited number of
most commonly used forms will be explored in this book.

Left Right Sandwich
Single-axis e−μ(ωx+νy) f(.) f(.) e−μ(ωx+νy) e−μωx f(.) e−μνy

Dual-axis e−(μ1ωx+μ2νy) f(.) f(.) e−(μ1ωx+μ2νy) —
Factored e−μ1ωxe−μ2νy f(.) f(.) e−μ1ωxe−μ2νy e−μ1ωx f(.) e−μ2νy

Table 3.3. Forward transform kernel definitions for f : R2 → H

3.2.1. Definitions

The 2D single-axis, right-sided QFTs (forward and reverse) are defined as:

FR
∓μ {f} (ω,ν) = FR (ω,ν) =

R2

f (x, y) e∓μ(ωx+νy) dx dy, [3.39]
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with their inverses being formed with the conjugate of the exponential kernel as:

F−R
∓μ FR (x, y) = f (x, y) =

R2

FR (ω,ν) e±μ(ωx+νy) dω dν, [3.40]

The 2D single-axis, left-sided QFTs (forward and reverse) are defined as:

FL
∓μ {f} (ω,ν) = FL (ω,ν) = κ2

∓
R2

e∓μ(ωx+νy)f (x, y) dx dy, [3.41]

and their inverses are derived from the conjugate of the kernels as:

F−L
∓μ FL (x, y) = f (x, y) = κ2

±
R2

e±μ(ωx+νy)FL (ω,ν) dω dν. [3.42]

The 2D factored, sandwich QFTs (forward and reverse) are defined as:

FS
∓(μ1,μ2)

{f} (ω,ν) = FL (ω,ν) = κ2
∓
R2

e∓μ1ωxf (x, y) e∓μ2νy dx dy, [3.43]

and their inverses are derived from the conjugate of the kernels as:

F−S
∓(μ1,μ2)

FL (x, y) = f (x, y) = κ2
±
R2

e±μ1ωxFS (ω,ν) e±μ2νy dω dν. [3.44]

The remaining five transform definitions follow a similar pattern, with kernel
placements as shown in Table 3.3.

Discovering which 2D quaternion-valued functions can be Fourier-transformed
follows the same logic of the 1D case in section 3.1.1; we can borrow from the
classic complex case. Split f(x, y) via symplectic decomposition into simplex and
perplex parts with respect to μ2 as:

f(x, y) = fs(x, y) + fp(x, y) μ2, where fs, fp ∈ Cμ,
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so that the right-sided QFT of [3.39] becomes:

FR (ω,ν) =
R2

fs (x, y) e
−μ(ωx+νy) dx dy +

R2

fp (x, y)μ2e
−μ(ωx+νy) dx dy,

=
R2

fs (x, y) e
−μ(ωx+νy) dx dy +

R2

fp (x, y) e
μ(ωx+νy) dx dyμ2

= Fs(ω,ν) + Fp(−ω,−ν)μ2,

In the same manner, [3.41] yields for the left-sided QFT:

FL (ω,ν) =
R2

e−μ(ωx+νy)fs (x, y) dx dy +
R2

e−μ(ωx+νy)fp (x, y) dx dyμ2

= Fs(ω,ν) + Fp(ω,ν)μ2

From the fact that the left- and right-sided 2D QFTs can be decomposed into a sum
of complex subfield functions, fs,p(x, y), the existence and invertibility of these 2D
QFTs is inherited from the 2D complex case. This is true even for the sandwich form
of the QFT of [3.43], but showing this takes more work. Split f(x, y) via symplectic
decomposition into simplex and perplex parts with respect to μ2 as:

f(x, y) = fs(x, y) + fp(x, y) μ2, where fs, fp ∈ Cμ1
,

so that [3.43] becomes:

F (ω,ν) = Fs(ω,ν) + Fp(ω,ν)μ2 [3.45]

where

Fs(ω,ν) =
R2

e−μ1ωxfs(x, y)e
−μ2νy dx dy, and

Fp(ω,ν) =
R2

e−μ1ωxfp(x, y)e
−μ2νy dx dy.

The derivation begins with a 2D QFT equivalent to a 2D complex Fourier
transform. Let:

Fs,μ1
(ω,ν) =

R2

e−μ1ωxfs(x, y)e
−μ1νy dx dy [3.46]
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so that Fs,μ1
(ω,ν) ∈ Cμ1

because both kernels of the QFT are the same. This is
different from the definition of [3.44] on purpose. Expand the following expression,
using Euler’s cosine equation [1.51] in the last step, as:

1
2 Fs,μ1

(ω,ν) + Fs,μ1
(ω,−ν)

= 1
2

R2

e−μ1ωxfs(x, y)e
−μ1νy dx dy + 1

2
R2

e−μ1ωxfs(x, y)e
+μ1νy dx dy

= 1
2

R2

e−μ1ωxfs(x, y) e−μ1νy + e+μ1νy dx dy

=
R2

e−μ1ωxfs(x, y) cos(νy) dx dy

Likewise, using the sine function of [1.51], another expression:

1
2 Fs,μ1

(ω,ν)− Fs,μ1
(ω,−ν)

= 1
2

R2

e−μ1ωxfs(x, y)e
−μ1νy dx dy − 1

2
R2

e−μ1ωxfs(x, y)e
+μ1νy dx dy

= 1
2

R2

e−μ1ωxfs(x, y) e−μ1νy − e+μ1νy dx dy

=
R2

e−μ1ωxfs(x, y) sin(νy) dx dy {−μ1}

Combining these two expressions, with the second post-multiplied by
−μ3(= μ2μ1), yields:

1
2 Fs,μ1

(ω,ν) + Fs,μ1
(ω,−ν) + 1

2 Fs,μ1
(ω,ν)− Fs,μ1

(ω,−ν) {−μ3}

=
R2

e−μ1ωxfs(x, y)e
−μ2νy dx dy = Fs(ω,ν)

which is the simplex part of the 2D QFT we are looking for from [3.45]. So that, after
simplifying the combined expressions,

Fs(ω,ν) = Fs,μ1
(ω,ν)

1− μ3

2
+ Fs,μ1

(ω,−ν)
1 + μ3

2
[3.47]

Substituting fp(x, y) for fs(x, y) in [3.46] provides similar expressions for the
perplex part of the 2D QFT, namely:

Fp(ω,ν) = Fp,μ1
(ω,ν)

1− μ3

2
+ Fp,μ1

(ω,−ν)
1 + μ3

2
[3.48]
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which gives us the desired result:

F (ω,ν) = Fs(ω,ν) + Fp(ω,ν)μ2

= Fs,μ1
(ω,ν)

1− μ3

2
+ Fs,μ1

(ω,−ν)
1 + μ3

2

+Fp,μ1
(ω,ν)

μ2 + μ1

2
+ Fp,μ1

(ω,−ν)
μ2 − μ1

2
.

3.2.2. Basic transform pairs

Following is a list of theorems that can be proved using the defining equations of
section 3.2.1; it is assumed that all functions considered actually have Fourier
transforms. For the sake of brevity, we consider only the forward versions of each
form; the reverse form pairs will be obvious. Table 3.4 summarizes the results that
follow.

Linearity: of the transform integrals implies:

αf1(x, y) + βf2(x, y) αF1(ω,ν) + βF2(ω,ν), [3.49]

where α, β ∈ R and fn(x, y) Fn(ω,ν). Hence, all eight 2D QFT definitions shown
in Table 3.3 are linear operators.

Scaling: Consider the function f(αx, βy), which is obtained by replacing (x, y)
by (αx, βy), where α, β ∈ R. The QFT of this function is given as:

FS
μ1,μ2

{f(αx, βy)} =
1

|α| |β|F
S ω

α
,
ν

β
. [3.50]

Change of Coordinates: 2D functions can undergo a change of coordinates in the
function’s domain, or index space. In general, a change of coordinates is a mapping:
(x, y) → (αx + βy, γx + δy) where α, β, γ, δ ∈ R and αδ − βγ = 0. So, consider
the function f(αx + βy, γx + δy), which is obtained by a change of coordinates of
the function f(x, y). The QFT of this function is given as:

FS
μ1,μ2

{f(αx+ βy, γx+ δy)} =

1

αδ − βγ

1 + μ3

2
F (ωδ̂ − νγ̂,να̂+ ωβ̂) +

1− μ3

2
F (ωδ̂ + νγ̂,να̂− ωβ̂) [3.51]

where μ3 = μ1μ2, α̂ = α
αδ−βγ , β̂ = β

αδ−βγ , γ̂ = γ
αδ−βγ , δ̂ = δ

αδ−βγ .
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Shifts: If a function is shifted in both directions by a constant (δx, δy), the spectral
amplitude remains the same but a linear term is added to the respective “phase” of
each axis as:

FS
μ1,μ2

{f(x− δx, y − δy)} = e−μ1ωδxFS(ω,ν)e−μ2νδy . [3.52]

Derivatives: Taking the nth partial derivative of a function with respect to x, we
conclude that:

FS
μ1,μ2

∂n

∂xn
f(x, y) = (μ1ω)

n FS(ω,ν). [3.53]

Likewise, the mth partial derivative with respect to y gives:

FS
μ1,μ2

∂n

∂yn
f(x, y) = FS(ω,ν) (μ2ν)

n [3.54]

and together they yield:

FS
μ1,μ2

∂n+m

∂yn∂ym
f(x, y) = (μ1ω)

n FS(ω,ν) (μ2ν)
m. [3.55]

These formulas for the partial derivatives do not guarantee that the transforms
exist; but if they do, the formulas will be as given.

Impulse functions: In applications we use functions that are singular, e.g., the
Dirac delta function. To obtain the following results, we use this definition for the
delta function: with f(x, y) an arbitrary function, continuous at a given point (xo, yo),
δ(x, y) is such that:

R2

δ(x− xo, y − yo)f(x, y) dx dy = f(xo, yo).

It is assumed here that δ(x, y) is a real-valued function so as to commute with
f(x, y). The QFT of the 2D Dirac delta function is identical for all QFT forms, namely,

δ(x, y) 2π 1 and 1 2π δ(ω,ν). [3.56]

However, the shifted delta function is only common across all factored and single-
axis 2D QFT forms as:

δ(x− xo, y − yo) 2π e−μ1ωxoe−μ2νyo
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and

eμ1ωoxeμ2νoy 2π δ(ω − ωo,ν − νo).

Whereas for the dual-axis (un-factored) form:

δ(x− xo, y − yo) 2π e−(μ1ωxo+μ2νyo)

and

eμ1ωox+μ2νoy 2π δ(ω − ωo,ν − νo).

3.2.3. Decompositions

Any 2D signal can be split into two different ways with regard to symmetry: either
into fully even and odd components along the x- and y-axes as6:

f(x, y) = fee(x, y) + foe(x, y) + feo(x, y) + foo(x, y),

where feo denotes the part of f that is even with respect to x and odd with respect to
y, and so forth, or the signal may be split into partial even and odd components as

f(x, y) = fe(x, y) + fo(x, y) [3.57]

= fe(x, y) + fo(x, y) [3.58]

where fe denotes the part of f that is even with respect to x and no symmetry is
assumed with respect to y, and fo denotes the part of f that is odd with respect to
y and no symmetry is assumed with respect to x, etc. The partial even-odd split is
related to the full even-odd split as:

fe(x, y) =
1
2{f(x, y) + f(−x, y)} = fee(x, y) + feo(x, y),

fo(x, y) =
1
2{f(x, y)− f(−x, y)} = foe(x, y) + foo(x, y),

fe(x, y) =
1
2{f(x, y) + f(x,−y)} = fee(x, y) + feo(x, y),

fo(x, y) =
1
2{f(x, y)− f(x,−y)} = foe(x, y) + foo(x, y),

6 Recall that a function is even along the x-axis if f(x) = f(−x) and odd if f(x) = −f(−x).
Hence, an arbitrary signal can be split using: fe(x) = 1

2
{f(x) + f(−x)} and fo(x) =

1
2
{f(x)− f(−x)}, so that f(x) = fe(x) + fo(x).
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while the full even-odd split is given by:

fee(x, y) =
1
4{f(x, y) + f(−x, y) + f(x,−y) + f(−x,−y)},

feo(x, y) =
1
4{f(x, y) + f(−x, y)− f(x,−y)− f(−x,−y)},

foe(x, y) =
1
4{f(x, y)− f(−x, y) + f(x,−y)− f(−x,−y)},

foo(x, y) =
1
4{f(x, y)− f(−x, y)− f(x,−y) + f(−x,−y)}.

Using the 2D sandwich QFT [3.43], it can be shown that:

FS(ω,ν) = FS
ee(ω,ν)− μ1F

S
oe(ω,ν)− FS

eo(ω,ν)μ2 + μ1F
S
oo(ω,ν)μ2

where

FS
ee(ω,ν) = FS

−(μ1,μ2)
{fee} (ω,ν) ,

FS
oe(ω,ν) = FS

−(μ1,μ2)
{foe} (ω,ν) ,

FS
eo(ω,ν) = FS

−(μ1,μ2)
{feo} (ω,ν) ,

FS
oo(ω,ν) = FS

−(μ1,μ2)
{foo} (ω,ν) .

3.2.4. Inter-relationships between definitions

Using the symplectic decomposition of f(x, y) with respect to μ1, i.e.

f(x, y) = fs(x, y) + fp(x, y)μ2, where fs,p ∈ Cμ1

the right-sided QFT is given by:

FR(ω,ν) = Fs(ω,ν) + Fp(ω,ν)μ2, [3.59]

where Fs(ω,ν), Fp(ω,ν) ∈ Cμ1
. The left-sided QFT, using the same symplectic

decomposition for f(x, y), is found to be:

FL(ω,ν) = Fs(ω,ν) + Fp(−ω,−ν)μ2, [3.60]

so the simplex parts of the left-side and right-side QFTs are the same, while the perplex
parts of the two transforms are reversed in frequency.
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1
2π

R2

eμ1ωxF (ω,ν)eμ2νy dω dν 1
2π

R2

e−μ1ωxf(x, y)e−μ2νy dx dy

Spatial-domain f(x, y) F (ω,ν) Frequency-domain
Spatial reversal f(−x, y) F (−ω,ν) Frequency reversal

f(x,−y) F (ω,−ν)

Spatial shift f(x− xo, y − yo) e−μ1ωxo F (ω,ν) e−μ2νyo

eμ1ωox f(x, y) eμ2νoy F (ω − ωo,ν − νo) Frequency shift
Spatial scale f(αx, βy) 1

|α| |β|F (ω
α
, ν
β
)

1
|α| |β|f(

x
α
, y
β
) F (αω, βν) Frequency scale

Coordinate change f(αx+ βy, γx+ δy) 1
αδ−βγ

{ 1+μ3
2

F (ωδ̂ − νγ̂,να̂+ ωβ̂)

+ 1−μ3
2

F (ωδ̂ + νγ̂,να̂− ωβ̂)}
Linearity αf1(x, y) + βf2(x, y) αF1(ω,ν) + βF2(ω,ν)

Delta function δ(x, y) 2π 1
Shifted delta δ(x− xo, y − yo) 2π e−μ1ωxoe−μ2νyo

eμ1ωoxeμ2νoy 2π δ(ω − ωo,ν − νo) Shifted delta
1 2π δ(ω,ν) Delta function

nth derivative ∂n

∂xn f(x, y) (μ1ω)
n F (ω,ν)

∂n

∂yn f(x, y) F (ω,ν) (μ2ν)
n

∂n+m

∂yn∂ym f(x, y) (μ1ω)
n F (ω,ν) (μ2ν)

m

NOTE.– f(t) : R2 → H, α, β, γ, δ ∈ R, μ3 = μ1μ2

α̂ = α
αδ−βγ

, β̂ = β
αδ−βγ

, γ̂ = γ
αδ−βγ

, δ̂ = δ
αδ−βγ

.

Table 3.4. 2D factored, sandwich quaternion Fourier transform pairs

If the signal f(x, y) is split into the partial even and odd parts with respect to the
y-axis, i.e. f(x, y) = fe(x, y) + fo(x, y), then we find:

FS(ω,ν) = FL
e (ω,ν)− μ1F

L
o (ω,ν)μ2 [3.61]

where

FL
e (ω,ν) = FL

−μ {fe} (ω,ν)
FL
o (ω,ν) = FL

−μ {fo} (ω,ν)
so that the sandwich form can be constructed from the left-handed form. See [YEH 08]
for details of the proof.

Likewise, if the same signal f(x, y) is split into the partial even and odd parts with
respect to the x-axis, i.e., f(x, y) = fe(x, y) + fo(x, y), then we find:

FS(ω,ν) = FR
e (ω,ν)− μ1F

R
o (ω,ν)μ2 [3.62]
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where

FR
e (ω,ν) = FR

−μ {fe} (ω,ν)
FR
o (ω,ν) = FR

−μ {fo} (ω,ν)
so that the sandwich form can also be constructed from the right-handed form.

3.3. Computational aspects

In this section, we consider the practical and numerical issues that arise in the
computation of QFTs, and the process of verification that the numerical results
computed by the transform are in agreement with the mathematical definition.
Verification is also applicable to formulas such as those presented in section 3.1.4,
and we discuss the details of time/frequency reversal, because this plays a key role in
the inter-relationships between transforms.

3.3.1. Coding

Coding of a QFT requires at least some minimal quaternion arithmetic operations
to be implemented. These operations are normally provided by a software library,
and unless a library already exists for the chosen computing platform or language, it
will be necessary to create one. Examples of libraries are the Boost library for C++,
which contains some quaternion functions in the Math toolkit [BRI 13], and the
QTFM library for MATLAB® [SAN 13b], which implements a wide range of
quaternion functions using as far as possible standard MATLAB® notation and
conventions. Both of these libraries are open source; so implementation of a
quaternion library for another language or platform should not be difficult, since the
code of the existing libraries can be inspected for ideas.

Even if a library exists, there may be bugs in it that render the results of a
quaternion transform computation incorrect under some circumstances, and this fact
should be considered when testing an implementation to verify correctness.

A further use for a quaternion library is the analysis of the results from computing
a transform, whether this is some form of processing (e.g. filtering in the frequency
domain) or interpretation (e.g. by plotting the Fourier coefficients or some aspects of
them such as their magnitude, axis or angle).

In the following sections, we consider four possible ways to compute a QFT
numerically:

1) a direct quaternion computation using a discrete QFT implementing directly the
desired transform as a single or double summation;
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2) a direct quaternion FFT algorithm using decimation in time or frequency or
another method [BRA 00];

3) a decomposition into a pair of complex Fourier transforms that can be computed
using existing complex FFT library routines;

4) a matrix method that avoids the need for a quaternion library, and thus provides
a way to validate a computation based on a quaternion library.

Of these methods, the third is probably the best choice for most purposes, since
it requires minimal effort to code, and exploits the significant work that others have
invested in the fast and accurate computation of complex FFTs. We discuss each of
the above methods in turn in the following sections.

3.3.1.1. Direct computation of a DFT

Any discrete Fourier transform (DFT) (complex, quaternion or otherwise) can be
computed directly from the definition, using a summation (or double summation in the
case of a 2D transform). This is often referred to in the literature as a DFT, the word
discrete referring to the discretization of time (or position in an image). For example,
a 1D left-sided QFT pair as defined in [3.7] could be computed in discrete form using
the following pair of summations7:

F [u] =
N−1

n=0

exp −μ 2π
nu

N
f [n]

f [n] =
1

N

N−1

u=0

exp +μ 2π
nu

N
F [u]

[3.63]

Now obviously the conversion from the integral notation to the discrete notation
assumes another difference: the integral is over all time, whereas the summation is
over a limited range of sample indices. This is a matter that is standard in digital
signal and image processing, where the integral notation is often used, even though a
discretized form is actually used for numerical computation.

The summation is simple enough to be coded in a few lines of code in a high-level
language. In MATLAB®, it is possible to avoid a loop and perform a vectorized
computation by precomputing the exponential for all index values8, then multiply the

7 Exactly how the scale factor is handled is a matter of choice. It could be applied to the forward
transform, or the square root of the scale factor could be applied in both directions.
8 This assumes there is enough memory available to store the entire set of exponential
values. For longer transforms, this is not a reasonable assumption, and a more sophisticated
computation is recommended in order to store the exponential values more economically.
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resulting matrix by the signal vector to obtain the result. This is how the QTFM
function qdft.m is coded, and the following code extract shows the core of the code:

F = E * f;

The variable E here contains a matrix of dimension N ×N containing the values
of the exponential function for all possible index values n and u in [3.63], as
discussed, for example, by Golub and van Loan [GOL 96, section 4.6.4]. A single
matrix product then multiplies the signal by this matrix to yield the
frequency-domain coefficients. This works because the quaternion operations for
element-wise and matrix multiplication are implemented within the toolbox, and the
exponential function is vectorized, just like the standard MATLAB® exponential
function. (Of course the classical complex DFT can be computed by exactly the same
code, by replacing mu with 1i.)

A major disadvantage of this method, whether implemented using loops, or as
vectorized code, is that the run-time scales as the square of the length of the signal
array, N . This can be easily seen in Figure 3.3, which was obtained by running the
qdft function on random quaternion arrays from length 1 to 2,000, and averaging over
three measurements. For comparison, it also shows the results from the qfft function
(see section 3.3.1.2).
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Figure 3.3. Run-time for the qdft and qfft functions of the QTFM toolbox
[SAN 13b] on random quaternion signals
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As can be seen, even for a short array of only 2,000 samples, the run-time for the
qdft function is around a third of a second, whereas the qfft computes in
approximately 10 ms, with a very much slower increase in run-time with increasing
N . The corresponding transform for a 2D array has run-time that scales as N4,
assuming a square array of dimension N × N . (None of this is unique to QFTs, but
since computing with quaternions takes four times as much memory and 16 times as
much time as computing with reals, run-time is an important issue.)

Despite the disadvantage of long run-times, and run-times that scale with the
square of the signal length, a direct coding of a quaternion DFT is useful as a
reference against which the results of faster methods can be compared. As can be
seen, the translation of mathematics into code can be so direct that there is little room
for error. However, as already explained, it is not difficult to verify the results of a
quaternion DFT against a complex Fourier transform implementation.

3.3.1.2. Direct coding of an FFT

The fast Fourier transform (FFT) is a family of algorithms for computing the DFT
with much reduced run-time scaling and better accuracy. Both advantages arise from
a significant reduction in the number of arithmetic operations needed. We will not
discuss here how this reduction in run-time is achieved, since it is not pertinent to
this book, and is well-covered elsewhere (see, for example, [BRA 00]). A DFT takes
time proportional to N2, whereas an FFT has run-time proportional to N logN . The
difference is clearly illustrated in Figure 3.3 where the second trace shows the run-time
of the qfft function (close to the horizontal axis).

Direct coding of a quaternion FFT algorithm is possible, but it requires significant
effort, even for a power-of-two FFT (the easiest type of algorithm to implement), and
it does not seem worth attempting nowadays. It was used by Sangwine in 1996
[SAN 96] because there was no other fast method capable of working with 512×512
color images, but it required very significant effort to code and test, even after a
quaternion arithmetic library had been written (in Ada 95). The implementation was
limited to array sizes that were powers of 2 because handling other sizes was much
more difficult, and it was not necessary to handle other sizes in order to demonstrate
the validity of using QFTs on color images. Direct coding of quaternion FFTs was
effectively made obsolete by the idea presented in the next section, which is the
method recommended for anyone wishing to code a quaternion FFT.

3.3.1.3. Computation using decompositions and complex FFTs

In 2000, two of the authors published a paper showing how to decompose a QFT
into a pair of complex Fourier transforms, and thus compute a fast quaternion
transform without needing to code an explicit quaternion FFT [ELL 00a]. The
method is also explained in [ELL 07c, section IV.B]. This technique has a major
advantage over an explicit quaternion FFT: it exploits the capabilities of any existing
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fast complex FFT code, and any future enhancements made to the code (subject to
recompilation or relinking with the newer version, of course). The most obvious
candidate is the excellent FFTW library written at MIT by Matteo Frigo and Steven
G. Johnson [FRI 05]9. FFTW is written in C, and it handles arbitrarily sized arrays of
data, even with large prime-number lengths. For repeated calculation on multiple
data of the same length, it may be fine-tuned to optimize the speed on a particular
machine architecture and at a particular address in memory (the latter affects cache
hits and misses, which impacts performance, and can be taken into account in the
tuning process).

The mathematical basis of the decomposition method is described in
section 1.4.1.4 where it is shown that any quaternion can be decomposed into two
quaternions parallel and perpendicular to a chosen unit pure quaternion. Applying
this idea to a particular QFT formulation, as in section 3.1.1 (see [3.9] and [3.11]), it
is possible to decompose the signal and the transform into a pair of quaternion
transforms each of which is isomorphic to a complex Fourier transform. Note that it
is necessary to find the decomposition formula for each particular transform. After
computing the pair of complex transforms, the complex results are used to construct
isomorphic quaternions, which are then combined into the quaternion result.
Numerically, a simpler implementation of this idea is to compute a change of basis of
the vector part of the quaternion signal, and this is how the technique is actually
implemented in the QTFM library [SAN 13b, Function change_basis]. Given a
basis, for example, {1,μ1,μ2,μ1μ2} and a quaternion q = w + xi + yj + zk
expressed in the standard basis {1, i, j,k}, the four numerical components of the
quaternion expressed in the new basis are simply computed as:

w = w

x = q,μ1

y = q,μ2

z = q,μ3

After the change of basis, the numerical components of the quaternion signal can
be directly utilized as complex signals z1 = w + x I and z2 = y + z I , and the
complex transforms computed. Finally, the change of basis has to be inverted after
reassembling the complex results into a quaternion result. Inversion requires that the
standard basis be expressed in terms of the new basis. This is straightforward because
a basis can be expressed as an orthogonal 3 × 3 matrix, which is trivially invertible
(note that the change of basis does not affect the scalar part). Therefore, the three unit
quaternions needed to invert the change of basis are simply computed from μ1, μ2 and

9 FFTW is the library used by MATLAB® to compute FFTs. It is available at:
http://www.fftw.org.
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μ1μ2 by constructing new unit pure quaternions from their x, y and z components,
in the same manner as constructing new rows from the columns of the corresponding
3× 3 matrix.

3.3.2. Verification

The transforms presented in this book are not just theoretical results. They have
been implemented in computer code and applied to problems in signal and image
processing. This requires numerical implementations, and numerical
implementations should be verified carefully. In the experience of the authors,
numerical implementations also provide an excellent way to verify the mathematics,
particularly with hypercomplex formulas where the interactions between
non-commutativity and operations such as conjugation provide plentiful sources of
error in mathematical derivations.

3.3.3. Verification of transforms

Here, we consider the problem of verifying that the numerical results produced
by a transform implementation are in agreement with the mathematical definition.
This is not a trivial issue: it is simple to check that an implementation of a particular
transform inverts correctly – compute the forward transform of a randomly created
signal or image f , giving F , and then compute the inverse transform of F , giving
g. Then, f and g should be identical to within a suitably small tolerance (computing
their difference is the simplest way to check this, followed by finding the maximum
absolute value of the result). However, this process does not verify that the transform
computes the Fourier coefficients correctly, according to the mathematical definition,
although it is a useful initial check – if the test described fails (the difference between
f and g is not small), then there is obviously an error in the coding of the transform.
A most likely error is that f and g could differ significantly by a scale factor, which
is not serious, and easily corrected. This problem is easily diagnosed by computing
the quaternion ratio of the elements in f to those in g (multiply each sample in f
by the quaternion inverse of the corresponding sample in g). A scale factor error will
manifest as a constant real-valued result for all elements of f and g. If the error is
not a scale factor error, the problem of diagnosis is more difficult. This is where it
is valuable to code a DFT implementation, as discussed in section 3.3.1.2, because
this provides a simple, directly coded implementation that is useful as a reference
for a more complex implementation based on decompositions and complex FFTs.
However, even a DFT implementation requires a quaternion library, and there could
be errors in a library that affect both transform implementations. Given the limited
number of hypercomplex libraries in existence, running on different platforms, and
written in different languages, even checking one against another is a non-trivial task.
Until 2010, there was no known solution for this problem, other than the use of a
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different library for verification, but the formulation presented in the next section even
overcame that problem.

It is also possible to verify results against a classical complex Fourier transform
implementation. The latter is possible because a QFT reduces to the classical
complex Fourier transform under certain conditions. If these conditions are satisfied,
a numerical comparison is possible between a quaternion implementation and a
classical complex implementation. The most general way to do this is to construct a
quaternion signal so that all the samples will have the same axis, and this axis is the
same as the transform axis10. Here is the process: construct a complex test signal f
(e.g. using a random number generator), such that f = fr + Ifi. Then construct an
isomorphic quaternion signal q = fr + μfi. Compute the complex Fourier transform
of the complex signal, F = F {f}, and the QFT of the quaternion signal, with axis
μ, Q = F {q}. Then, to within a tolerance, we should find that Fr = S(Q) and
μFi = V(Q).

3.3.3.1. Transform formulation using a matrix exponential

A solution to the problem of verifying a transform without requiring a second
quaternion library was first published in 2012 [SAN 12], and it is of considerable
mathematical interest. It is based on a matrix representation of quaternions (as already
discussed in sections I.6.2 and 1.4.3), and it can compute a QFT without a quaternion
library.

A one-sided quaternion DFT pair such as that given in [3.5] can be represented
in the following form, which combines matrix representations of quaternions with
quaternions represented as four-element column vectors:

F [u] = S
N−1

n=0

exp −J 2π
nu

N
f [n] [3.64]

f [n] = T

N−1

u=0

exp +J 2π
nu

N
F [u] [3.65]

where J is a 4 × 4 matrix root of −1 representing a quaternion root of −1 using the
representation of [1.69]; f [n] and F [u] are quaternion-valued discrete-time signals
with N samples; each sample, indexed by n or u respectively, being a column vector of
four elements corresponding to the four components of the corresponding quaternion
signal sample; and the two scale factors S and T multiply to give 1/N in the usual
way (the distribution of the scale factors between the forward and inverse transforms
being arbitrary).

10 It is assumed here that we are discussing a one-sided transform with a single axis. Obviously,
matters get a bit more complicated if the transform is two-sided with multiple axes.
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This formulation depends on two results that are not obvious at first glance. The
first is that Euler’s formula is valid when the root of −1 is replaced by a matrix that
squares to a negated identity matrix (we call this a matrix root of −1): exp Jθ =
I cos θ + J sin θ where I is an identity matrix, and J2 = −I. For a proof, we refer
the reader to [SAN 12], but note that the result is easily verified using MATLAB® or
other mathematical software. The exponential, of course, must be a matrix exponential
[ROW 14].

The second result is due to Ickes [ICK 70], who showed that the matrix
representation of a quaternion, as discussed in section I.6.2 and 1.4.3 could be
combined with a four-element column vector containing the four components of a
quaternion to represent the quaternion product as a matrix-vector product (the result
of course is a four-element column vector). Surprisingly, Ickes also showed that the
matrix does not have to represent the left operand in the product: by transposing the
lower-right 3 × 3 part of the matrix, the matrix-vector product yields the result when
the quaternion represented by the matrix is the right operand, despite the fact that the
matrix remains the left operand in the matrix-vector product.

The transform pair in [3.64] can be implemented in MATLAB® code as follows
(note the directness of the coding):

N = size(f, 2);
F = zeros(size(f));
for n = 0:N-1

for u = 0:N-1
F(:, u + 1) = F(:, u + 1) + ...
expm(-J .* 2 .* pi .* n .* u ./ N) * f(:, n + 1);

end
end

Here, F and f are arrays of four rows and N columns, representing a signal of N
quaternion samples; and J is the quaternion root of −1 used in the transform,
represented as a 4 × 4 matrix according to [1.69]. This code runs on standard
MATLAB®, i.e. without needing any quaternion toolbox or library, and it has been
verified to produce the same numerical results as the quaternion functions qdft and
qfft in the QTFM library [SAN 13b].

The approach discussed here has been shown also to work for two-sided transforms
such as that in [3.43], using the simple approach of representing all the quaternions
(left and right exponentials, and the signal samples) as matrices. However, using the
matrix-vector approach of Ickes [ICK 70], it should be possible to formulate even a
two-sided transform as a matrix-matrix-vector product, placing the two exponential
matrices on the left, but using the middle one to represent the right-side exponential
in Ickes’ partially transposed manner.
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Finally, note that the matrix formulation also works in the classical complex case,
and for other hypercomplex algebras such as Clifford algebras [SAN 12].

3.3.3.2. Time and frequency reversal

As we have seen in section 3.1.4, the various transform formulations are
inter-related, and there are two operations that play a key role in the
inter-relationships: conjugation and time/frequency reversal. Conjugation is
computationally simple, but it is worth expanding a little on time/frequency reversal
because verification of relationships involving time/frequency reversal is not as
simple as it might appear. In the continuous-time case, time and frequency reversal
simply require the time or frequency variable to be negated, and this is
mathematically and algebraically trivial. In discrete time, however, some care is
needed to implement this operation correctly, whether working algebraically, or with
a numerical implementation. To understand this point, it is necessary to understand
how the frequency-domain coefficients of a discrete-time Fourier transform are
stored.

N even

DC Positive frequencies Nyq. Negative frequencies

0 1 N
2

N
2 − 1 N

2 + 1 N − 1· · · · · ·
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Swap

N odd

DC Positive frequencies Negative frequencies

0 1 N−1
2

N+1
2 N − 1· · · · · ·
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Swap

Figure 3.4. Layout of frequency-domain coefficients for a DFT of N samples

Figure 3.4 shows the layout of the samples in the frequency domain for a 1D DFT
(classical or quaternion, the layout is the same). The indexing in the figure shows zero-
based indexing, as used in mathematical formulas. In programming languages with
one-based indexing, program code must be adapted to use array indices for accessing
the transform elements, but zero-based indexing for calculations. In the even-length
case, the coefficients are divided into four categories:

– the zero-frequency or DC coefficient, stored in the first index position with
numerical index zero;
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– the Nyquist frequency coefficient, stored in the first index position of the second
half of the array with numerical index N/2;

– the positive frequency coefficients, stored between the DC and Nyquist
coefficients, with the lowest frequency on the left, with index 1, and the highest
frequency on the right, with index (N/2)− 1;

– the negative frequency coefficients, stored between the Nyquist coefficient and
the end of the array, with the lowest frequency coefficients (i.e. closest to zero
frequency) at the end, with index N−1, and the highest frequency next to the Nyquist
coefficient, with coefficient (N/2) + 1.

In the odd-length case, the Nyquist frequency coefficient is not present. The zero-
frequency coefficient is at index zero, the positive frequency coefficients run from
index 1 to (N − 1)/2, and the negative frequency coefficients run from index N − 1
down to (N + 1)/2.

Time reversal of a signal corresponds to the interchanging of the positive and
negative frequency coefficients. Classically, in digital signal processing texts
concerned with real signals, time reversal corresponds to conjugation in the
frequency domain (because the Fourier coefficients of a real signal have complex
conjugate symmetry – the negative frequency coefficients are the conjugates of the
corresponding positive frequency coefficients). However, as soon as we move from
real signals to complex, it is much simpler to think in terms of exchanging positive
and negative frequency coefficients, since this is fundamentally how the
correspondence between the two domains operates.

The swaps indicated by the arrows in Figure 3.4 show how to achieve time reversal
of a signal in either domain. In practice, the swaps can be very simply achieved by
reversing the order of the whole array, excluding the DC coefficient, which should stay
where it is in index position zero. This operation leaves the Nyquist coefficient (in the
even case), unmoved. Alternatively, reversing the whole array, and then applying a
right circular shift by one position, will put the DC coefficient back in index position
zero. To understand why it is that the same operation works in both domains, note
that in time, the sample at index zero must remain in the same position, since when
negating the time variable, t = 0 remains at 0. Second, we must remember that the
DFT treats the signal as periodically extended to infinity. Thus, the sample stored at
the rightmost end of the array is also logically adjacent to the sample with index zero,
but on its left.

In two dimensions, the above condition applies to both the rows and columns of an
image. The simplest way to consider this is to imagine the reversal applied to the rows
first, then to the columns of the result, and indeed this is a simple way to implement
the operation numerically.



4

Signal and Image Processing

This chapter presents some examples of applications of quaternion Fourier transforms (QFTs) to
process color images and complex-valued signals. The concepts presented in this chapter will be
illustrated on simulated and real images and signals.

4.1. Generalized convolution

One of the early motivations for the study of QFTs is that they can be used to
describe color image filters when the image pixels are treated as vectors and thus
offer freedom to process color images holistically, rather than as separated color space
components. This section illustrates the use of QFTs to process color images through
the use of a vector convolution operation.

4.1.1. Classical grayscale image convolution filters

Convolution is a way of describing how systems change an input signal into an
output signal. If the system under consideration is a linear time- (or shift-) invariant
process, the Fourier domain description of that system is greatly simplified. Time
invariance means that whether we apply an input to the system now or τ seconds from
now, the system output will be identical except for a time delay of τ seconds. Hence,
the system is time invariant because the output does not depend on the particular time
at which the input is applied. A similar description applies to shift-invariant systems.
For example, image processing filters can be described by their point-spread function,
which is independent of where, in the input image, the filter is applied.

The classical 2D convolution of two functions, f(x, y) and h(x, y), is given as:

(f ∗ h)(x, y) =
∞

−∞

∞

−∞
f(x− x , y − y )h(x , y ) dx dy [4.1]
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where f(x, y) is the input signal and h(x, y) is the system’s point-spread function.
The discrete equivalent of this convolution, used in image processing, is given by:

(f ∗ h)[n,m] =

N−1

i=0

M−1

j=0

f [n− i,m− j]h[i, j] [4.2]

where f [n,m] ∈ RN×M is the input image, a scalar array of grayscale pixels. The
filter convolution mask h[n,m] is typically much smaller in dimensions than the input
image. The 2D complex Fourier transform of this equation is given by

F {f ∗ h} = F [u, v]H[u, v] [4.3]

where F [u, v] = F {f} and H[u, v] = F {h}. This is an element-wise product, not
a matrix product. This equation, called the Fourier convolution theorem, gives insight
into what the filter mask does to an arbitrary input image. It scales and phase shifts
each unique frequency component of the input image, F [u, v], for a specific frequency
index [u, v] by the spectral coefficient of the mask at the same index. In fact, the
desired filter mask can be designed by construction of the mask spectral coefficients
and taking the inverse transform of the results. Or, if only one specific image needs to
be filtered, it can be manually shaped in the frequency domain and the result inverse
transformed, skipping the construction of the mask altogether.

The discrete convolution of [4.2] can be visualized by imagining the mask h[i, j]
being shifted across the input image f [n,m] to different offsets; then the
superimposed values at this offset are multiplied together, and the products added.
The resulting sum at this offset is the value of the output image
g[n,m] = (f ∗ h)[n,m] at the pixel location corresponding to the center of the mask.
This is shown in Figure 4.1.

The classical edge detectors, attributed to Prewitt, Sobel and Kirsch, are examples
of 2D convolution filters defined by [4.3]. The simplest of the three is the Prewitt filter,
which is defined by a real-valued convolution mask over a 3× 3 neighborhood as:

h =

⎡⎣ 1 1 1
0 0 0

−1 −1 −1

⎤⎦ [4.4]

This mask detects horizontal edges; a transposed version of this mask can be used
to detect vertical edges. Both filters can be combined to yield an edge strength output
image. This can be done by applying the second filter to the output image of the first, or
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a combined filter can be created by convolving one mask against the other. Likewise,
the classic Sobel filter has the mask values:

h =

⎡⎣ 1 2 1
0 0 0

−1 −2 −1

⎤⎦ [4.5]

for detecting horizontal edges. Finally, the classic Kirsch filter has the mask values:

h =

⎡⎣ −3 5 5
−3 0 5
−3 −3 −3

⎤⎦ [4.6]

and seven other similar masks, each sensitive to vertical or horizontal edges, or edges
inclined at 45◦ to the vertical. Each of these edge detection filters is a high-pass filter,
meaning that low-frequency components of the input image are attenuated and
high-frequency components accentuated. This can be seen by computing the complex
Fourier transforms of their masks, h[n,m], and examining the resulting spectral
coefficients, H[u, v], at specific frequencies (±u,±v).

Figure 4.1. Convolution mask operation example

The extension of these ideas to color images could be achieved by repeated
application to each color component of the image, as if each component were a
grayscale image. This is, in fact, what is commonly done. But this implies that such
marginal, component-wise filtering is sufficient under all desired color image
filtering operations. It has been shown that this assumption is false, and the rest of
this section shows why.
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4.1.2. Color images as quaternion arrays

Color image pixels typically have three components, as such they can be
represented in quaternion form using pure quaternions1. For example, a pixel at
image coordinates (n,m) in an RGB color space image can be represented as
f [n,m] = r[n,m]i + g[n,m]j + b[n,m]k, where r[n,m] is the red component and
g[n,m] and b[n,m] are the green and blue components of the pixel, respectively. The
same approach may be used with other color space models, for example, a
luminance-chrominance color space, such as Y CbCr [PAL 98]. Using the 3D pure
imaginary quaternion is neither coincidental nor arbitrary. As we saw in Chapter 2, a
full quaternion may be interpreted as the ratio of two vectors, the quantity that
multiplies one vector to give another. This geometric interpretation is exploited in the
design of color filters.

In classical image filtering, we typically have to handle the problem of color space
closure. Image pixel values have a finite range, typically positive and scaled to the
interval [0, 1]. If a filtering operation results in a pixel value outside this range, then it
must be brought back into the range, ideally without distortion artifacts. One says the
range of legitimate pixel values is not closed with respect to the filtering operation. For
grayscale images, closure is typically forced by clipping the pixel value at the range
boundaries. For color image filters, the color space is a 3D bounded volume, e.g., the
RGB color space is typically mapped to a unit edge-length cube with one corner (the
black color) at the origin. The color space closure problem becomes more difficult,
especially if we wish to avoid visual distortions in the color image output. To reduce
these distortions, the origin is moved to the center of the color cube. This means that all
pixel values are now vectors pointing away from mid-gray, the center of the cube. Now
closure can be enforced by clipping output pixel values to the value where the pixel
vector passes through the cube’s surface. This three-space clipping eliminates hue
distortions by holding the orientation of the pixel vector constant during the clipping
operation, i.e. only the length of the vector is altered [SAN 04].

4.1.3. Quaternion convolution

There are three possible quaternion convolution definitions available: left-, right-
and bi-convolution defined, respectively, as:

(hL ◦ f)[n,m] =
N−1

i=0

M−1

j=0

hL[i, j] f [n− i,m− j] [4.7]

1 Some color spaces are four-dimensional but because of the tri-stimulus response of the human
visual system most are three-dimensional.
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(f ◦ hR)[n,m] =

N−1

i=0

M−1

j=0

f [n− i,m− j]hR[i, j] [4.8]

and

(hL ≺ f hR)[n,m] =
N−1

i=0

M−1

j=0

hL[i, j] f [n− i,m− j]hR[i, j] [4.9]

where f [n,m] is the input image and hL[n,m] and hR[n,m] are the convolution
masks. The bi-convolution operation is shown in Figure 4.2 where the filter masks
sandwich the input image.

Figure 4.2. Bi-convolution mask operation example

When defining quaternion filter masks for color images, care must be taken to
ensure that the convolution equations map pure quaternions into pure quaternions. In
general, the product of a vector (pure quaternion) with another vector is a full
quaternion; hence, there are constraints on the convolution masks. The simplest
example of ensuring this constraint is in the design of color edge detection filters.
This was first done in [SAN 98c] with a generalization of the Prewitt filter shown in
[4.4]. To this design was added two additional filters, generalizations of the Sobel and
Kirsch edge detection filters [SAN 00], all based on vector rotation operations. These
filters are a generalization of the classical grayscale edge detection filters of Prewitt,
Sobel and Kirsch, as described in section 4.1.1. They employ a vector rotation in
color space about the gray line of the RGB color space on which all achromatic pixel
values lie; hence, they require the use of the bi-convolution equation [4.9].
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The Prewitt color filter is defined by two quaternion-valued bi-convolution masks
over a 3× 3 neighborhood as

α

⎡⎣ 1 1 1
0 0 0
q q q

⎤⎦⎡⎣ f

⎤⎦⎡⎣ 1 1 1
0 0 0
q q q

⎤⎦ [4.10]

where q = exp(μπ/2) and α = 1/6 is a scale factor to account for the addition
of the six non-zero pixel values, and f denotes the input image. This expression is
not a matrix equation but a shorthand notation for the situation shown in Figure 4.2.
When μ points along the gray line, the rotation operator Rq[{f}] = q {f} q rotates
a pixel value {f} through π radians in the plane normal to the luminance axis or gray
line (see [2.3]). Like the classical Prewitt filter, these masks detect horizontal edges; a
transposed version of both masks can be used to detect vertical edges.

Where the mask overlies an image region of gradually varying color, the pixel
values along the top and bottom rows of the mask will be similar. Since the top row is
multiplied by unity (and therefore remains unchanged) and the bottom row is rotated
through π about the gray line, the pixel values in the top row and bottom row are
positioned opposite each other at an equal distance from the gray line after rotation.
When added (using quaternion or vector addition) and scaled, the resultant pixel value
lies on or near to the gray line, in a plane normal to the gray line positioned between
the planes containing the original pixel values. In contrast, when the mask overlies a
horizontal color edge, the result after rotation, vector addition and scaling does not lie
near to the gray line and exhibits color. When the mask overlies a horizontal luminance
edge where the pixels above and below the edge have similar or identical hues, the
chrominance components of the pixels will almost cancel. The cancellation is less
perfect where there is a large difference in luminance.

Figure 4.3, provided in full color in the color section within this book, shows the
result of applying the Prewitt filter to an image. The filtered image is a full color image,
despite appearing as a grayscale image. Where the original color image had gradually
varying areas of color, the filtered image has been reduced to gray (achromatic) pixels.
Where the original image had a color edge (i.e. a sudden change of color), the filtered
image exhibits color and the “edge” pixels have a vector “strength”.

The Sobel and Kirsch filters, ([4.5] and [4.6], respectively), are likewise
generalized with the expressions:

1
8

⎡⎣ 1
√
2 1

0 0 0

q
√
2q q

⎤⎦⎡⎣ f

⎤⎦⎡⎣ 1
√
2 1

0 0 0

q
√
2q q

⎤⎦ [4.11]
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and

1
30

⎡⎣ √
3q

√
5

√
5√

3q 0
√
5√

3q
√
3q

√
3q

⎤⎦⎡⎣ f

⎤⎦⎡⎣ √
3q

√
5

√
5√

3q 0
√
5√

3q
√
3q

√
3q

⎤⎦ [4.12]

where q is as in the Prewitt filter.

Figure 4.3. Filtered output (right) of color image (left) using
Prewitt edge detector (see color section within this book for a

full color version of this figure)

Finally, it is worth noting that the color of the edges in the output image is related
to the colors involved in the edge transitions of the input image. That is, the colors of
regions on either side of the edge determine the color of the final output edge value.
Also, reversing the transition, e.g., red to blue versus blue to red, will complement the
output edge color.

4.1.4. Quaternion image spectrum

Using the left-sided QFT of [3.41], with transform axis chosen to be
μ = (i+ j+ k)/

√
3 (which points along the gray line in color space), we obtain the

quaternion image spectrum. This quaternion spectrum is an array of quaternion
values, with one real and three imaginary parts. We customarily treat this spectrum as
a quaternion image – that is, we regard each spectral coefficient as a quaternion pixel.
It is usual for all four parts of any given spectral coefficient to be non-zero. A similar
statement applies to the complex spectra of grayscale images, where the coefficients
usually have non-zero real and imaginary parts, even when the image pixels are
purely real.

Complex spectra are interpreted and visualized by creating images based on
writing the spectrum in polar form: one image for modulus and the other for phase.
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In a similar manner, a meaningful visualization of the quaternion spectrum can be
based on quaternion polar form (see [1.47]). However, quaternions in polar form
have a third quantity besides modulus and phase: i.e. the axis. This has no
counterpart in the complex case because the imaginary operator I =

√−1 in the
complex case is constant. In the quaternion polar form, this imaginary operator
μ =

√−1 may be any pure unit quaternion.

The modulus is visualized as a grayscale image, appropriately scaled using, for
instance, a logarithmic scaling such as

l(q) =
log (1 + |q|)
log (1 +K)

where K is the largest modulus in the image. The phase can be visualized by using a
color representation based on the IHS color space. We create an RGB value from an
IHS value, where H is the phase, I is the mid-range and S is unity. This means that
a phase of zero is represented by a red hue, a phase of π/2 is represented by a green
hue and a phase of π is represented by a green-cyan hue. This leaves us with the axis
to represent. Because μ is a pure quaternion, it has three components. This suggests
a representation using an RGB image. The standard RBG color space is restricted
to one octant of 3-space, as each color component must be non-negative. The values
of μ, however, may be anywhere on a unit sphere centered at the origin. By scaling
this sphere by 1

2 and placing it at the center of a unit edge-length color cube, we
can represent all possible values of μ. To further enhance the image, the μ value is
scaled until it extends to the surface of the color cube, so that the resulting image
is fully saturated. This is done by scaling μ so that the largest component has unit
value. Figure 4.4, provided in full color in the color section within this book, shows
the quaternion spectrum of an image, visualized as described in the previous text, with
the constant term in the center of the image, as is conventional. Positive frequencies
are, therefore, in the upper right quadrant.

Figure 4.4. Quaternion spectrum of an image. Left to right: original image,
spectral modulus, phase and axis (see color section within this book

for a full color version of this figure)
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Given a quaternion spectrum image, F [u, v], its pixel-by-pixel symplectic
decomposition with respect to Cμ is given as

F [u, v] = F1[u, v] + F2[u, v]μ2

where each part F1 and F2 are in CN×M
μ . The orthogonal vector μ2 can be placed

anywhere in the chromatic plane, but in the pictured example, it is parallel to the
red line. If one takes the inverse transform of each component: f1 = F−1 {F1} and
f2 = F−1 {F2}, then it happens that the simplex part f1 contains the luminance
information and the perplex part f2 contains the chrominance information. This is not
a coincidence, as μ is parallel to luminance and everything perpendicular to μ is in the
chrominance plane. The simplex part will be purely imaginary, luminance requiring
only one real number. The perplex part will be complex, chrominance requiring two
real numbers. Figure 4.5, provided in full color in the color section within this book,
shows the previous image decomposed in this manner. Both parts are still full color
images, not grayscale images. The original image can be recovered by adding the
simplex and perplex parts.

Figure 4.5. Symplectic decomposition of color image into simplex and perplex
parts of spectra. Left to right: original image, simplex part, perplex part and

direct sum of both parts (see color section within this book for a
full color version of this figure)

The arrangement of coefficients in the quaternion spectrum follows the same
layout as that in a complex Fourier transform spectrum; the spectrum is thus divided
into quadrants as shown in Figure 4.6. Any given pair of horizontal and vertical
frequencies is represented in the spatial frequency domain by two quaternion values,
the pair being taken from diagonal quadrants. Exceptions are the Nyquist frequency
pair, and the DC term, and any pair of frequencies including a DC or Nyquist term.
(The coefficients in the two quadrants correspond to combinations of positive and
negative horizontal and vertical spatial frequencies.) If the image is to be a pure
quaternion image, which will be the case if color images are represented by the color
components in the three components of the vector part of a quaternion pixel, the
scalar parts of the two frequency components must cancel out. Certain symmetry
conditions on the image (analogous to conjugate symmetries in complex images) will
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ensure this; in general, an image with no symmetries whatever (e.g. a random image)
must have a spectral domain representation that satisfies this constraint; otherwise the
inverse QFT of the spectral coefficients would not reconstruct the original image (the
scalar part would be non-zero).

Figure 4.6. Spectral coefficient layout

Consider the inverse transform that reconstructs an image from a pair of spectral
coefficients and the basis functions:

f [n,m] =
M−1

v=0

N−1

u=0

eμ2π(mu
M +nu

N ) F [V, U ]

and extract two terms from the summation, which make up the component of the
image at specific horizontal and vertical spatial frequencies. Let the arbitrary
frequencies, denoted by their index values, be V and U (where 0 < V < M/2 and
0 < U < N − 1). From the symmetry of the coefficients, those at M − V and
N − U also represent the same frequencies; so for a given choice of V and U , we
have, after some simplification:

f [n,m] = eμ2π(mu
M +nu

N ) F [V, U ] + eμ2π(−mu
M +−nu

N ) F [M − V,N − U ]

= eμ2π(+α+β) F [V, U ] + eμ2π(−α−β) F [M − V,N − U ]

Any coefficient of the Fourier spectrum may be separated into simplex and perplex
parts with respect to μ:

F [V, U ] = Fs[V, U ] + Fp[V, U ]μ2, where Fs, Fp ∈ Cμ.
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The simplex and perplex parts of the coefficient multiply the exponential basis
function of the Fourier transform to produce a cosinusoidal image component with
horizontal and vertical frequencies determined by the indices of the coefficient, and
with amplitude, phase and orientation in color space determined by the value of the
coefficient.

f [n,m] = eμ2π(+α+β) {Fs[V, U ] + Fp[V, U ]μ2}
+ eμ2π(−α−β) {Fs[M − V,N − U ] + Fp[M − V,N − U ]μ2}

= eμ2π(+α+β)Fs[V, U ] + eμ2π(−α−β)Fs[M − V,N − U ]

+ eμ2π(+α+β)Fp[V, U ]μ2 + eμ2π(−α−β)Fp[M − V,N − U ]μ2

Figure 4.7. Spectral coefficient images for the constant term and first three harmonics
(horizontally and vertically) of color image. The DC term is the center tile on bottom row with
positive horizontal frequencies to the right and negative horizontal frequencies on the left. The
bottom row corresponds to the DC vertical term with each previous row increasing in vertical
frequency – the left and right halves of the last row are mirrors of each other as they contain
the same spectral coefficient pairs (see color section within this book for a full color version of
this figure)

Since the first two terms in the last equality are isomorphic to the complex
numbers (being in Cμ), we see that the coefficients F [V, U ] and F [M − V,N − U ]
behave analogously to the classical complex case. That is, these coefficients scale the
magnitude and alter the phase of the Fourier exponentials that combine to form a
cosinusoidal function. The same is true for the remaining terms in the last equality,
after factoring out the μ2 term from both. This is shown in Figure 4.7, which is
provided in full color in the color section within this book. When these two
cosinusoidal functions are added, they describe an orbit in the color space centered at
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mid-gray. A demonstration of the color orbit interpretation of the spectral
components can be made possible through the use of a color-cube scatter plot. If each
pixel value of an image is plotted in color space, the resulting scatter plot shows the
distribution of the image’s color contents in color space. The first row of Figure 4.8,
provided in full color in the color section within this book, shows an image and its
color-cube scatter plot. If the original image is quaternion Fourier transformed, a
single harmonic (in one direction) extracted and inverse transformed, the resulting
image will show a “rainbow grating” pattern due to harmonic oscillations in
luminance and chrominance. The scatter plot of this rainbow grating image should
draw an elliptic orbit about the center of the cube. The second through sixth rows of
Figure 4.8 show that, indeed, each harmonic describes an elliptical orbit in the color
space, which results in a rainbow grating at that harmonic. The rightmost column
shows the resulting image built up by progressively adding each new harmonic
(horizontal and vertical) to the previous harmonics.

Figure 4.8. Harmonic reconstruction of color image. The legend at the top shows a color-cube
scatter plot for the original image. The lower grid shows plots of the color orbits for the first five
horizontal and vertical harmonics taken from the QFT spectrum of the image, along with their
corresponding images. The final, rightmost column shows the image resulting from the sum of
the harmonics, starting from the constant (zero frequency) term to the corresponding harmonic
(see color section within this book for a full color version of this figure)
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Figure 4.9, provided in full color in the color section within this book, shows
results of filtering the image directly in the quaternion spectral domain. The first
column shows the original image and its spectral modulus. The second column shows
the results of low-pass filtering the image by zeroing the 12th and higher spectral
harmonics. As expected, the resulting image is blurred consistent with this operation.
The third column repeats the process in bandpass fashion, clearing the constant and
first two harmonics as well as the 26th and higher harmonics. As expected, only
moderate-sized regions with uniform luminance or chrominance can be detected in
the final image. Finally, the last column shows high-pass filtering by zeroing the first
five harmonics. Again, as expected, the image contains content only where there is
rapid luminance or chrominance variation.

Figure 4.9. Direct filtering in frequency domain of color image. Top row, left
to right: original image, low-pass, band-pass and high-pass filtered. The

bottom row shows the corresponding spectral magnitude (see color section
within this book for a full color version of this figure)

4.2. Generalized correlation

Correlation is concerned with detecting and locating similarity in signals or
images. Given a known feature such as a pulse of a particular shape and duration, or,
in an image, an object seen from a known viewpoint, correlation can locate the
feature, if present, within a longer, noisy, signal; or within a noisy or degraded image.
For example, it may be desired to locate a target2 object within a defocused or
blurred image; or in the context of color image processing, an image taken under

2 The use of the word “target” here is not meant to imply a military application, although of
course, there are military applications for object location within images.
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lighting conditions such that the colors of the target object are different from a
reference image. More precisely, correlation will reveal the most likely location, or
multiple locations, of the feature. A second use for correlation is to compute the
temporal offset between two similar signals or the spatial offset between two images
in order to bring one into registration with the other by applying a shift to one signal
or image equal to the offset between them. As with any other fundamental technique,
correlation can be used as a step within a more complex algorithm.

A closely related concept is phase correlation [KUG 75] in which the normalized
cross-power spectrum is computed, from which the inverse Fourier transform yields a
correlation peak at an offset representing the best correlation between the two signals
or images. Phase correlation works particularly well with images, where sharp edges
are frequently present (these have frequency content that can be exploited well by the
phase correlation technique).

Correlation was generalized to quaternion signals and images in 2003 [MOX 03],
and we consider it in detail in section 4.2.2. Phase correlation was successfully
generalized to color images using QFTs in 2001 [SAN 01], and we consider it in
detail in section 4.2.3.

In the next section, we discuss the classical cases of correlation and phase
correlation, before introducing some quaternion equivalents. The classical case is
normally presented in the literature for real-valued signals, but in fact it can easily be
generalized to complex-valued signals, which is a more useful starting point for the
quaternion case in this book. The principal difference concerns the relationship
between time (or spatial) domain reversal (of a signal or image), and the
corresponding effect on the frequency-domain representation. Time reversal of a
signal corresponds, in general, to interchange of the positive and negative frequencies
in the spectrum of the signal. However, the Fourier spectrum of a real signal has
conjugate symmetry, that is the positive and negative frequency coefficients are
conjugates of each other, and therefore the effect of interchanging positive and
negative frequencies can be obtained more easily (without moving data) by
conjugating the Fourier coefficients, and it is the latter operation that is mentioned in
most texts.

Correlation can be defined (and computed numerically) in both the time and
frequency domains, but phase correlation has to be computed in the frequency
domain, because it requires the phase of the Fourier coefficients3. There is an
equivalence between the two domains. In each domain, there is a formula – in the
time domain, this requires an integral (or summation in the discrete case), whereas in

3 There is a normalization involved using the modulus of the products of the Fourier
coefficients, and this operation is not linear. It does not therefore have a straightforward
equivalent in the time domain.
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the frequency domain it is a point-wise product between Fourier coefficients. The
difference is computationally significant (the Fourier domain approach is much faster
for practical signals and images). However, it is necessary to know the frequency
domain formula, and this depends on the QFT(s) used. In the quaternion cases
presented after the next section, it will be shown that the formula is not a trivial
generalization of the classical case. Formulas of this type are not easily discovered,
as was noted by J.L. Synge in 1972:

It is typical of quaternion formulae that, though they be difficult to
find, once found they are immediately verifiable. [SYN 72]

One of the ways that these formulas are verifiable is to implement them, of
course, and check that the implementation behaves as expected, but a very useful fact
to remember is that the formula must reduce to the classical case when the quaternion
variables within it are constrained to a subspace that is isomorphic to the complex
numbers, for example, when all the quaternions within the formula have the same
axis (direction of the vector part).

4.2.1. Classical correlation and phase correlation

Cross-correlation4 can be defined directly in the time domain (without Fourier
transforms) using the following formula [WEI 14a]:

c(t) =
∞

−∞
f (τ)g(t+ τ) dτ [4.13]

The conjugate in the formula is vital if the signals are complex; otherwise, the
product of the imaginary parts of two similar signals could cancel with the products
of the real parts. Conjugating one of the signals negates one of the imaginary parts
and thus cancels out the −1 arising from the product of the two imaginary roots of
−1. Of course, if the signals are real, the conjugate has no effect. Note that the
formula is equivalent to convolution (compare [4.2]) with one signal time-reversed
and conjugated [WEI 14a]. Note that one of the signals must be shifted through all
possible shifts relative to the other signal. In the discrete case (with signals of finite
length), the formula becomes:

c[n] =
M−1

m=0

f [m]g[n+m] [4.14]

4 If the mean, or zero-frequency, component of the signals is subtracted out (i.e. f and g in the
formula have zero means), then the result is known as the cross-covariance.
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assuming the signals are of the same length, M samples. For any reasonable length of
signal or size of image, a much faster calculation is possible using Fourier transforms.
In order to do this, it is necessary to know the operational formula that expresses the
equivalent of [4.14] in the frequency domain. In the classical case, this is:

c[n] = F−1 {F {f}F {g}} [4.15]

Note that the product of the two Fourier spectra is computed element-wise
(sometimes known as point-wise), that is, each coefficient in the spectrum is
multiplied by the corresponding coefficient in the other spectrum (and one of the two
is also conjugated). A subtlety about the use of discrete Fourier transforms is that
they assume that the signal is periodically repeated over all time (in image processing
this is often referred to as tiling – the image is assumed to repeat over an infinite
plane both horizontally and vertically). A consequence is that the formula in the time
domain must be modified if it is to yield exactly the same result as the formula based
on discrete Fourier transforms, by implementing cyclic wrap around of the shifted
signal. This is easily done by modulo arithmetic on the sample index, so that the
value m − n in [4.14] is computed modulo M , and hence always has a result falling
in the range between 0 and M − 1. A more common approach with real signals is to
use zero-padding.

Figure 4.10 illustrates classical cross-correlation with complex signals by
showing the cross-correlation of two noisy signals, each containing a
Gaussian-modulated complex exponential pulse. The cross-correlation was computed
using [4.15]. The correlation result is complex, with a waveform matching the two
signals that were correlated, and a position along the time axis corresponding to the
displacement in time between the two original pulses.

Phase correlation is a simple modification of the above ideas, requiring only one
extra step. Originally developed for grayscale image processing [KUG 75], the
technique works best on signals with edges, rather than smoothly varying signals.
(Images tend to have sharp transitions between amplitude levels – at least in a
properly focused image, due to the edges of objects.) The technique was shown to
work for complex images with pixels representing the chrominance components of a
color image [SAN 98b, section 12.2.1]. In the complex case, given two signals or
images f and g, the formula required to compute phase correlation is:

F−1 F G

|F G| [4.16]
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Figure 4.10. Complex cross-correlation of two Gaussian-modulated complex
exponentials. Upper: original signals. Lower: the complex cross-correlation

result. In both plots, the real and imaginary parts are projected onto the lower
plane and rear plane of the bounding axes
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where F = F {f} and G = F {g}. The normalized element-wise or point-wise
product of F and G (whose inverse Fourier transform yields the phase correlation)
is called the cross-power spectrum. Care must be taken with the normalization
because a divide-by-zero is possible if any frequency coefficient has zero amplitude
(this is unlikely with a real signal, but it can easily happen with simulated signals) 5.
Usually, further processing is applied to the result to extract the location of the phase
correlation peak or peaks. The simplest method is to take the modulus of the phase
correlation result and look for the maximum sample or pixel value by thresholding.
Figure 4.11 shows the result of applying phase correlation to a pair of signals similar
to those illustrated in Figure 4.10. An important difference is that the amplitude of
the complex exponential has been discretized in order to introduce “edges” into the
signal. The phase correlation technique is less suited to smoothly varying signals, but
well suited to signals with abrupt amplitude transitions. Notice the sharp peak that
results from suppression of modulus information in the cross-power spectrum
(essentially the result is based on the phase only, hence the name of the technique).

Note that the location of the peak produced by phase correlation can sometimes be
determined to subsample or subpixel accuracy even though the image is sampled on a
discrete grid. (As a simple example, consider what happens when the offset between
the two signals is half a sample period: the correlation peak will have equal amplitude
at two adjacent samples and therefore the location of the peak can be inferred as mid-
way between the two samples).

Cross-correlation and phase correlation, as we have seen from the examples just
presented, are defined for both real and complex signals or images. To extend the ideas
to vector-valued signals or images (with three or four components per sample), it is
obviously possible to compute independent classical correlations on each component
(marginal processing). It should be clear without much thought that this is unlikely to
work well, although in many cases it will yield a workable result. An obvious difficulty
is that three or four separate marginal results will be obtained, and these have to be
combined in some way, meaning that an additional algorithmic step is needed, such as
a majority vote, or some numerical combination of the marginal results. In this book,
we argue that a hypercomplex approach is a much more sensible way to proceed, and
correlation is no exception.

5 Obviously, there can also be numerical problems with frequency coefficients that have very
small values, and it is wise to apply a threshold criterion to suppress such coefficients.
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4.2.2. Quaternion correlation

To generalize correlation to quaternion-valued signals and images, we use [4.13],
and replace the complex conjugate by the quaternion conjugate. That this is the
correct approach should be evident from the following: the formula must reduce to
the classical complex case when all the quaternion values involved come from the
same subfield (i.e. they all have the same axis 6 in their vector parts). This is easily
seen to be the case, since if this is so, we may replace the axis value by the complex
root of −1 and replace each quaternion by an isomorphic complex number, and the
formula then reduces to [4.13] because the quaternion conjugate under these
conditions reduces to the complex conjugate. We can then immediately compute
cross-correlation using [4.14], replacing all the complex operations by their
quaternion counterparts. As already discussed, this is a slow method, particularly for
images where the run-time depends on the square of the image size, but it provides a
very useful reference case for verification of a frequency domain implementation. To
work in the frequency domain, we need the quaternion equivalent of [4.15], which is
unfortunately not obtained simply by changing all the complex operations to their
quaternion counterparts. Furthermore, the frequency domain formula depends on our
choice of QFT. Unlike the complex case, where there is only one formulation of the
Fourier transform, in the quaternion case, because of non-commutative
multiplication, there are many possibilities. Section 3.1.5 explained that a
frequency-domain correlation formula may be best derived using a mix of left- and
right-sided transforms. This was first done for the quaternion case in 2000 [ELL 00b]
using 2D one-sided QFTs.

What follows therefore is an example of the derivation of a frequency-domain
correlation formula. A classical complex derivation is given in [WEI 14b], and we
follow a similar process here, but in the reverse order, because the example given in
[WEI 14b] would require us to choose the Fourier transforms as the first step. Instead,
we choose the inverse transform as the first step and manipulate the integrals until we
can see which forward transforms are needed.

At various points in this derivation we could make a different choice, and thereby
arrive at a different end result. Practically, once we have one formula that is correct and
implemented, there is little to gain by deriving others, since the speed of computation
is unlikely to differ, and all the formulas will compute the same result.

We start with the quaternion equivalent of [4.13]. This derivation could be done
with the discrete form of correlation, as in [4.14], but we choose to use the integral

6 See [1.36] for the definition of the axis of a quaternion.
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form in order to make use of the results given in section 3.1.1. Hence, we have the
following definition of quaternion cross-correlation:

c(t) =
∞

−∞
f(τ)g(t+ τ) dτ [4.17]

where c, f and g are now quaternion-valued signals. Take the right-sided QFT of both
sides, as in [3.5], but for simplicity, we will omit the scale factor, and we will also
leave implicit the transform axis (+μ unless stated otherwise):

FR{c(t)} = r(ω) =
∞

−∞

∞

−∞
f(τ)g(t+ τ) dτ eμωt dt

Since the exponential is constant with respect to the inner integration, and dτ is
real (and therefore commutes with the exponential), we may re-arrange to obtain:

r(ω) =
∞

−∞

∞

−∞
f(τ)g(t+ τ)eμωt dτ dt

Changing the order of integration and moving f(τ) outside the new inner integral:

r(ω) =
∞

−∞
f(τ)

∞

−∞
g(t+ τ)eμωt dt dτ

we recognize the inner integral as a right-sided transform and applying the shift
theorem from [3.16], we can replace it with FR{g(t)}eμωτ :

r(ω) =
∞

−∞
f(τ)FR{g(t)}eμωτdτ

Now the problem is one of ordering. We need to place the exponential that we
have just inserted adjacent tof(τ). This cannot be done without a decomposition
because the exponential does not commute with FR{g(t)}. However, by
decomposing FR{g(t)} into components parallel and perpendicular to μ using
[3.21], it becomes possible to change the order, in one case requiring a conjugate.

r(ω) =
∞

−∞
f(τ) FR{g(t)}+ FR

⊥{g(t)} eμωτdτ

=
∞

−∞
f(τ)FR{g(t)}eμωτdτ +

∞

−∞
f(τ)FR

⊥{g(t)}eμωτdτ [4.18]
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The parallel component commutes with the exponential, whereas the
perpendicular component anti-commutes: when the order is changed, the exponential
must be conjugated:

r(ω) =
∞

−∞
f(τ)eμωτdτ FR{g(t)}+

∞

−∞
f(τ)e−μωτdτ FR

⊥{g(t)}

The remaining integrals can now be recognized as right-sided transforms, in one
case with a negated transform axis, hence:

r(ω) = FR f(t) FR{g(t)}+ FR
−μ f(t) FR

⊥{g(t)} [4.19]

and c(t) = F−R{r(ω)}. Note that we have arrived at a result using only right-sided
transforms, all in the same direction (forward), but in one case with a negated axis.
Only one inverse transform is required as the final step. This means that if there is
asymmetry in the scale factors between the forward and inverse transforms, this
formula requires no modification, as it would if we mixed forward and inverse
transforms.

It remains to explain the meaning of the quaternion values in the correlation result,
since it is a quaternion-valued function. It was shown in 2003 [MOX 03] that the
quaternion values represent an averaged rotation that in some sense is a best fit rotation
to map the quaternion values in one signal into the values in the other signal for each
offset between the signals. This value has a more precise meaning when there is a
clear correlation “peak”, the position of which identifies the offset that best matches
one signal to the other.

4.2.3. Quaternion phase correlation

Phase correlation works well on images because of the presence of sharp edges (in
most images). Therefore, we present here an example of color image phase correlation.
Figure 4.12, provided in full color in the color section within this book, shows two
images with identical backgrounds.

Each image contains a car, of identical model, but different colors (one is red
and the other is yellow). The two cars are placed at different positions in each image
(approximately displaced, but also slightly rotated relative to the camera). Figure 4.13,
provided in full color in the color section within this book, shows results from phase
correlation based on the same operational formula as was given in the previous section,
apart from normalization of each value in the cross-power spectrum by dividing by its
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modulus (exactly as in the complex case and subject to the same provisos about very
small values noted immediately after [4.16]):

p = F−R r(ω)

|r(ω)| [4.20]

where r(ω) is as given in [4.19]. The maximum amplitude peak in the phase
correlation surface is found, and its coordinates used as an offset to shift (cyclically)
the second car image. When added to the first car image (and normalized by dividing
by 2), the result in Figure 4.13 is obtained. Note that the two cars have been
superimposed correctly, although a small rotation is apparent (the two cars do not
align precisely). This result is achieved despite the complex background of the image
(which admittedly is invariant between the two images). As can be seen from the
phase correlation surface, correct detection of the offset between the two cars is only
just achieved. There are 20 points with a magnitude greater than 75% of the
amplitude of the largest peak, showing that the detection of the offset is close to
being incorrect. It was shown in 1998 that complex phase correlation working on
chrominance data could also achieve a phase correlation result for this pair of images
[THO 98], and the result is in agreement with that obtained above.

Figure 4.12. Two color images with identical backgrounds but a foreground object (the car)
in different positions with different colors. (Images by and reproduced with the permission of
Dr. A.L. Thornton [THO 98]) (see color section within this book for a full color version of
this figure)

Tests with grayscale versions of the two images showed that classical phase
correlation was unable to establish the offset between the two cars. More than 6,000
points in the phase correlation surface had magnitudes greater than the point at the
correct offset of (4,169) found in the quaternion/color case.
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Figure 4.13. Phase correlation results using the color images in Figure 4.12. Upper: the phase
correlation surface. Lower: the two images superimposed after shifting one of them by the
coordinate offset found from the maximum peak in the phase correlation surface, showing the
two cars correctly superimposed (see color section within this book for a full color version of
this figure)

In a practical application, a better result would be obtained by removing the
background from a “reference” image of the car so that the extraneous detail in the
reference image would not correlate with details in the “target” image.
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Quaternion phase correlation has been shown to work when correlating a color
image with a grayscale image [SAN 01], indicating that there could be applications in
image registration (e.g. to register an aerial photograph with a map).

4.3. Instantaneous phase and amplitude of complex signals

The notions of instantaneous phase and instantaneous amplitude have been
well-known concepts in the signal and image areas for a long time [GAB 46]. A very
intuitive parallel, which was made in the early years of time-frequency analysis
[VIL 48] by physicists, is to link instantaneous phase to the phase velocity and
instantaneous amplitude to the group velocity. Instantaneous phase and amplitude
can be considered as the simplest versions of a time-frequency analysis for single
frequency signals [FLA 98].

In this section, we show how it is possible to define an instantaneous phase and
amplitude for a complex-valued signal using similar techniques as those used for real-
valued signals, but by means of quaternion rather than complex Fourier transforms.
The work presented here can be seen as an alternate approach to the bivariate signal
analysis developed by Lilly et al. [LIL 10], where the authors used vector and matrix
algebra together with complex Fourier transforms to analyze bivariate (or equivalently
complex-valued) signals. Here, the proposed approach is to stick to scalar (univariate)
complex-valued signals and use the QFTs to analyze them. The presented results are
then straightforward generalizations of existing results for real-valued signals, which
become a special case of the theory developed in the following.

In [LIL 10], the authors analyzed complex-valued signals z(t) as bivariate signals
that can be represented as trajectories in the plane, as displayed in Figure 4.14. Here,
we will rather consider complex signals as trajectories in 3D space, where the third
dimension is time t. This is illustrated in Figure 4.15.

This choice for a 3D trajectory representation will become obvious when defining
the instantaneous phase and frequency concepts in sections 4.3.4 and 4.3.5 as they will
be associated with the 3D behavior of the complex signal z(t).

4.3.1. Important properties of 1D QFT of a complex signal z(t)

Recall that here we consider complex signals z(t) = zr(t) + izi(t), with real part
zr(t) and imaginary part zi(t), which belong to L1(R;C) ∩ L2(R;C). Such complex
signals have a right-sided QFT with axis j, denoted as ZR

j (ω), given by:

ZR
j (ω) = FR

j {z}(ω) =
+∞

−∞
z(t)e−jωt dt [4.21]
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Figure 4.14. Representations of a complex signal z(t) as a trajectory in a 2D
plane with constant time step from its initial point (black dot) at t= 0 to its

final point (black circle) at t= 1

Note that we consider a right-sided QFT here, and that similar results could be
obtained by choosing a left-sided QFT. Also, in this section, we take the axis of the
transform to be μ = j, a special case of the general definition of the right-sided QFT
given in [3.5].

Now, given the quaternion-valued Fourier transform with respect to axis j, denoted
Zj(ω) ∈ L1(R;H) ∩ L2(R;H), then its inverse transform is:

z(t) =
+∞

−∞
Zj(ω)e

jωt dω [4.22]

where z(t) is in general complex-valued. Note that in some cases to be discussed later
on, the signal so constructed z(t) may be quaternion-valued, depending on the values
taken by Zj(ω). Now, we present some properties of the QFT that will be useful in
the definition of instantaneous attributes. The key property that allows a quaternion
extension to what is known for a real signal and its complex-valued analytic signal
comes from the symmetry properties of the QFT.
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Figure 4.15. 2D and 3D representations of a complex signal z(t). The 2D trajectory in the
plane (black signal) is the same as in Figure 4.14. The 3D trajectory (gray signal) is obtained
by unfolding z(t) along a third dimension, which corresponds to t. In the 3D representation,
each point has coordinate [ (z(t)), (z(t)), t]. The initial point (black dot) is displayed at
time t= 0.2 and the final point (black circle) is displayed at time t= 1.2 (the 0.2 shift is used for
display convenience)

4.3.1.1. Symmetry

Given a real-valued signal x(t), it is well known that its (complex) Fourier
transform fulfills Hermitian symmetry, such that X(−ω) = X∗(ω), where ∗ denotes
the complex conjugate. Now, it is also well known that the (complex) Fourier
transform of a complex-valued signal z(t) has no symmetry. This lack of symmetry
suggests that an alternate Fourier transform may be used that possesses some
symmetry properties. This is where the QFT can be the alternative to a classical
Fourier transform.

The QFT with axis j of a complex signal z(t) ∈ Ci, denoted as Zj(ω), is
i-Hermitian symmetric, i.e.:

Zj(ω) = Zj(−ω)
i

[4.23]
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Figure 4.16 illustrates this symmetry property.

✲
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Figure 4.16. Symmetry of the four components of the QFT Zj(ω) of a complex

signal z(t). The QFT satisfies the i-Hermitian symmetry: Zj(ω) = Zj(−ω)
i
,

which means that (Zj(ω)) and i(Zj(ω)) are even while j(Zj(ω)) and
k(Zj(ω)) are odd

An additional symmetry property is also of interest when considering complex
signals z(t). The QFT of the conjugate of z is given by:

FR
j {z }(ω) = FR

j {z}(ω) j [4.24]
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Note that good symmetries do not exist for the (classical) complex Fourier
transform of a complex signal and that the QFT allows us to define a Fourier
transform with symmetries for complex signals.

4.3.1.2. Orthocomplex modulation

A key property of the 1D QFT is its behavior with respect to modulation. It is well
known that the classical (complex) Fourier transform of a modulated signal consists
of a frequency-shifted version of the unmodulated version of the signal. That is, for a
given real or complex signal z(t) with FT Z(ω), the FT of z(t)eiω0t is Z(ω− ω0) for
a given constant frequency ω0. For the QFT, things are different when one considers
a complex-valued signal z(t). This can be seen by inserting w(t) = z(t)eiω0t in place
of z(t) in [4.21] which gives:

Fj{w}(ω) = Wj(ω) =
+∞

−∞
w(t)e−jωt dt =

+∞

−∞
z(t)e−iω0te−jωt dt [4.25]

Now, recall from [1.38] that:

eiαe−jβ = e(iα−jβ) [4.26]

for any α, β ∈ R, then the property of modulation does not extend trivially to the 1D
QFT case. In fact, the QFT of w(t) reads:

Wj(ω) =
1

2
(Zj(ω − ω0) + Zj(ω + ω0)− iZj(ω − ω0)j + iZj(ω + ω0)j) [4.27]

which cannot be considered as a modulation in the sense that several copies of the
QFT of z(t) are shifted and modified.

In order to recover the same frequency shift behavior as in the well-known complex
case, it is necessary to use another axis for the exponential that multiplies the signal.
In fact, the well-known phase shift appears when the axis of the exponential is the
same as the transform axis. So now, consider the signal y(t) = z(t)e−jω0 , then its
QFT (with axis j), denoted as Yj(ω) = Fj{y}(ω), is given by:

Yj(ω) =
+∞

−∞
z(t)e−j(ω−ω0)t dt = Zj(ω − ω0) [4.28]

Note also that a special case of orthocomplex modulation is that the QFT with axis
j of exp(jω0) is simply δ(ω − ω0). This orthocomplex modulation property extends
to QFTs with any axis μ, provided that the exponential axis is also μ.
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Note that the orthocomplex modulated signal y(t) = z(t)e−jω0 obtained by
orthocomplex modulation of the complex signal z(t), is quaternion-valued,
i.e. y(t) ∈ H. Thus, when taking a base-band complex signal and orthocomplex
modulating it, we get a quaternion-valued signal. As will also be shown in
section 4.3.3, a signal with a right-sided QFT is quaternion-valued in the time
domain. This will be exploited to propose the quaternion extension of a complex
signal in section 4.3.3.

4.3.1.3. Convolution

Here, we are interested in the convolution of two complex-valued signals. The very
interesting property that exists for such a convolution reads as follows. Consider two
complex signals z(t) and w(t) with QFTs Zj(ω) and Wj(ω), respectively, then the
following stands:

Fj {z ∗ w} (ω) = Zj(ω) Wj(ω) [4.29]

where denotes the bicomplex product of [1.65].

Note that the bicomplex product (defined in 1.4.2) is commutative so that, as one
would hope, the order in the convolution product does not affect the result, i.e.:

Fj {z ∗ w} (ω) = Fj {w ∗ z} (ω) [4.30]

for any two complex-valued signals z(t) and w(t). This property is rather important as
it allows us to deal with convolution products of complex signals and their QFTs just
as we are used to doing with real signals and their complex FTs. This simply means
that the presented results are generalizations of existing facts and that the QFT offers
a thorough generalization of known results to deal with complex-valued signals.

4.3.2. Hilbert transform and right-sided quaternion spectrum

As we are interested in defining instantaneous amplitude and phase for complex
signals, a simple way to do it is to mimic the Gabor [GAB 46] and Ville [VIL 48]
approach that adds a signal in quadrature to the original signal. In their work, Gabor
and Ville considered real-valued signals and added a quadrature signal in the
imaginary part of a complex-valued signal associated with the original. This complex
signal is named the “analytic signal” associated with a real-valued signal. The
quadrature signal was obtained by the Hilbert transform of the original signal.

Here, our original signal is complex-valued. So, in order to proceed in the manner
of Gabor and Ville, we now need to add a complex signal in quadrature to the first
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one and to make this addition so that the final signal is 4D. This is where quaternion-
valued signals enter the scene. Before building this quaternion signal, we now take a
look at how to build the quadrature signal. For this, we would like to simply build the
Hilbert transform of a given complex signal z(t). It is constructed as follows.

First, we are interested in the QFT of the real-valued signal x(t) = 1/πt. It is
trivial to notice that, due to the behavior of the QFT with respect to real-valued signals
(see Chapter 3), we get:

Fj{x}(ω) = −j sgn(ω) [4.31]

This allows us to define, in a straightforward way, the Hilbert transform of a
complex signal z(t) ∈ C, denoted zH(t), as follows:

zH(t) = p.v. z ∗ 1

πt
(t) [4.32]

Now, as 1/πt is a real-valued signal, if we look at the QFT of zH(t), it is the QFT
of the convolution product between a real and a complex signal. Thus, the previously
introduced property [4.29] for the transformation of a convolutive product applies in
a degenerate form where one of the two signals has no imaginary part. In this case, as
can be checked directly from [4.29], the bicomplex product boils down to a classical
product and reads:

ZjH(ω) = −j sgn(ω) Zj(ω) = −j sgn(ω)Zj(ω) [4.33]

A proof can be found in [LE 14]. As we have defined the quadrature signal zH(t)
of a given complex signal z(t), we need to check which type of signal corresponds to
a spectrum with only positive frequencies. Consider a spectrum Zj(ω) obtained from
the QFT of a complex signal z(t) = zr(t) + izi(t). Then, just as shown in
Figure 4.16, the spectrum Zj(ω) has positive and negative frequencies. In order to
build from Zj(ω) a spectrum with only positive frequencies, we simply need to
consider (1 + sgn(ω))Zj(ω) = Wj(ω). It is obvious that Wj(ω) = 0, ∀ω < 0,
and by linearity of the inverse QFT, we get:

F−1
j {Wj} (t) = F−1

j {(1 + sgn(.))Zj} (t)
= F−1

j {Zj} (t) + F−1
j {sgn(.)Zj} (t)

= F−1
j {Zj} (t) + jF−1

j {−j sgn(.)Zj} (t)
[4.34]
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where the last equality is valid due to the fact that we are considering a right-sided
QFT. From the last equality in [4.34] and equation [4.33], we can see that the signal
w(t) = F−1

j {Wj} (t) is simply the following combination:

w(t) = z(t) + jzH(t) [4.35]

which is the sum of the original signal z(t) and its quadrature version that is put in
two extra dimensions spanned by the basis vectors j and k. As a result, we can see
that a one-sided spectrum QFT signal w(t) is indeed a quaternion-valued signal, that
is w(t) ∈ H. This is the direct counterpart of what is known for the classical FT, where
a one-sided FT corresponds to a complex-valued signal.

As an example, we mention here what happens when the signal z(t) is
band-limited and then orthocomplex modulated. This type of signal was introduced
previously and referred to as an orthocomplex modulated signal. So, consider a
signal z(t) with a band-limited QFT, i.e. Zj(ω) = 0 for |ω| > ωm for a given ωm.
Then, for a frequency ω0 > ωm, the orthocomplex modulated signal z(t)ejωOt has a
right-sided QFT, and, as a result, should be quaternion-valued. This can be directly
checked from its literal expression as:

z(t)ejω0t = (zr(t) + izi(t)) (cos (ω0t) + j sin (ω0t))
= zr(t) cos (ω0t) + izi(t) cos (ω0t)

+jzr(t) sin (ω0t) + kzi(t)sin (ω0t)
[4.36]

Illustration of this orthocomplex modulated signal z(t)ejω0 is given in Figure 4.17,
where the QFT spectrum Zj (ω − ω0) is drawn.

We now move to the problem of associating a quaternion-valued signal with any
complex signal, making use of the behavior of the QFT just presented.

Even Odd
(Zj(ω)) j (Zj(ω))

i (Zj(ω)) k (Zj(ω))

Table 4.1. Symmetry properties of the components of the QFT Zj(ω)
of a complex signal z(t)

4.3.3. The quaternion signal associated with a complex signal

Due to the results presented in the previous section 4.3.2, we can now turn to the
definition of a quaternion-valued signal associated with any complex signal z(t). We
have just seen that a quaternion-valued signal corresponds to a one-sided spectrum. It
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seems now rather clear how to associate a given complex signal z(t) with its
quaternion companion. However, one could imagine several ways to make such an
association. The one presented here is similar to the association between a real signal
and its associated analytic signal: they share the same spectral content. This is
explained in detail in [PIC 97], from which we just recall the main idea and follow
the lines.

✲

✻

(Zj(ω − ω0))

ω
0

ω0

✲

✻

i(Zj(ω − ω0))

ω
0

ω0

✲

✻

j(Zj(ω − ω0))

ω
0

ω0

✲

✻

k(Zj(ω − ω0))

ω
0

ω0

Figure 4.17. Four components of the quaternion-valued Fourier transform Zj(ω − ω0) of
the orthocomplex modulated signal z(t)ejω0t and where the complex signal z(t) has a QFT
verifying |Zj(ω)| = 0 for |ω| > ω0. The spectrum of z(t) is displayed with the standard
symmetries holding for a QFT (with axis j) of complex signals
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Given a signal z(t), there is an infinite number of choices of corresponding
quaternion-valued signals qz(t). In order to uniquely determine this signal, the most
natural choice is to ask that the frequency content of the signal should be the same as
that of z(t). Now, remembering the symmetry properties of the QFT depicted in
Figure 4.16, it is obvious that only half of the spectrum (positive or negative
frequencies) of z(t) is necessary to reconstruct the entire spectrum due to the
symmetry properties of the QFT (with axis j) of z(t).

As a consequence, we can simply choose to keep the right-sided spectrum that
contains all the information about z(t). As we just showed in section 4.3.2, the signal
constructed as such will be a quaternion-valued signal (obtained, for example, by
inverse QFT of the right-sided spectrum), and this quaternion-valued signal, denoted
as qz(t) previously, will share exactly the same frequency properties as the “original”
signal z(t). In fact, this way of building a quaternion-valued signal from a complex
signal allows us to make a one-to-one correspondence between the two signals
(through the content of their QFTs).

To summarize, if we are given a complex signal z(t), then we can associate with
it a quaternion signal qz(t) that we will call the quaternion extension of z(t) and that
is simply constructed as:

qz(t) = z(t) + jHj {z} (t) [4.37]

As can be deduced from what we exposed, the quaternion extension of a complex
signal can be seen as the equivalent of the analytic signal associated with a real signal
as first introduced by Gabor [GAB 46]. The property of analyticity is also shared by
qz(t) in a certain way. In fact, the quaternion extension can be called pair-wise
analytic in the following sense. Consider qz(t) ∈ H, a quaternion extension signal
corresponding to a complex signal z(t), with the following Cj-pair form:

qz(t) = ( (qz(t)) + j j (qz(t)) , i (qz(t)) + j k (qz(t)))
= (q1(t), q2(t))

[4.38]

Then, the quaternion extension qz(t) is said to be pair-wise analytic as the two
complex-valued signals q1(t) and q2(t) are analytic signals associated, respectively,
with the real and imaginary parts of z(t). Analyticity is understood in the classical
sense here, with the slight difference that the complex signals considered are
Cj-valued. This is a minor issue as Cj is isomorphic to the classical C field. The
demonstration of the pair-wise analyticity of q(t) is trivial. It can be guessed easily
by understanding how the QFT acts on a complex signal z(t). The real and imaginary
parts of the signal are transformed separately and the H-valued spectrum obtained by
a QFT can be seen as a pair of Fourier transforms applied to the real and imaginary
parts of z(t). The and j parts of the QFT contain information from the real part
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of z(t) and the i and k parts contain information from the imaginary part of z(t).
Then, by linearity of the Hilbert transformation, we can see that the process of
constructing the quaternion extension consists of processing the information
contained in the real and imaginary parts of z(t) in parallel. In other words, the
quaternion extension of a complex signal z(t) consists of associating with it an
analytic pair of signals with components that are the analytic signals associated with
the real and imaginary parts of z(t). These analytic signals are then the components
of the Cj-pair form of the quaternion extension qz(t).

4.3.4. Instantaneous amplitude and phase

We have just constructed a quaternion signal qz(t) that is defined in a unique way
from a complex signal z(t), following the tracks of the construction of the analytic
signal associated with a real signal. The natural question to ask now is:

Can we obtain an instantaneous amplitude and phase of a complex
signal z(t) from its quaternion extension qz(t), and if so, what do the
amplitude and phase represent?

In the analytic signal case, provided that the spectral content of the signal is
“simple”,7 the analytic signal is understood as the simplest time-frequency
representation. Now it is no longer the best representation to use if the spectral
content of the signal is richer. In such cases, we should refer to more sophisticated
time-frequency analyses (e.g. see the Wigner-Ville representation in section 4.3.7).
However, the links between the analytic signal and time-frequency representations
(such as the Wigner-Ville distribution) are well known [VIL 48]. They are
investigated for the quaternion case in sections 4.3.8 and 4.3.9.

From what was explained in section 4.3.3, one might think that the most natural
way to handle the quaternion extension qz(t) is to consider it as a pair of complex
signals. It is tempting to define a pair of instantaneous amplitudes as well as a pair of
instantaneous phases. This was done by Lilly et al. [LIL 10] and extended to signals
with more than two components in [LIL 11]. However, here we would like to consider
the signal qz(t) as a single entity rather than analyzing it component-wise. This is
because we would like to take advantage of the geometric nature of quaternions. To
do so, it is possible to use the richness of quaternion representations/forms to express
the quaternion extension signal in terms of a modulus and a phase. Clearly, there are
two polar forms that could be used: the polar and the CD polar form. We will use
the latter here because it includes a complex-valued envelope which is of particular
interest in the analysis of a complex signal.

7 Here, “simple” means that the spectral content is made up of one bandpass contribution.
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Given a complex signal z(t) and its quaternion extension qz(t), there is a canonical
pair [ρz(t), φz(t)], with ρz(t) ∈ C and φz(t) ∈ C uniquely associated with z(t) by
the polar CD form of qz(t). Recall that the quaternion extension qz(t) possesses the
same spectral information as z(t) and that it is made up of the signal z(t) and its
orthogonal Hilbert transform with respect to the j axis (see [4.37]). Then, using the
polar CD form introduced in 1.4.1.5, the quaternion extension qz(t) is:

qz(t) = ρz(t)e
φz(t)j [4.39]

The principle of canonical pairs (modulus and phase) associated with a given
signal was originally used by Picinbono [PIC 97] to demonstrate the one-to-one
relation between a real signal and its instantaneous amplitude and phase defined
through the analytic signal [VIL 48].

There is a one-to-one correspondence between a complex signal z(t) and the
canonical pair associated with z(t) through its quaternion extension qw(t) (see
details in [LE 14]).

Now, looking at the polar CD form of the quaternion extension qz(t) in [4.39], it
is noticeable that it looks very much like an orthocomplex modulation. Recall that
the quaternion extension has, by construction, no negative frequencies. As a
consequence, it can be shown (see [LE 14] for details) that φz(t) is not complex but
real-valued8. Thus, the polar CD form of qz(t) should be understood as made up of a
“low frequency” part ρz(t) (the instantaneous amplitude/modulus) subject to an
orthocomplex modulation with the exponential eφz(t)j where φz(t) is the
instantaneous phase of z(t). Once again, note that this is a very thorough extension of
the concepts well known for real signals when considering their complex extension
(analytic signal). The presented results incorporate the analytic case as a special case,
which happens when z(t) is real-valued. Some illustrative examples of the concept of
instantaneous amplitude and phase for different types of complex signals z(t) are
presented in section 4.3.6.

4.3.5. The instantaneous frequency of a complex signal

Of great interest in non-stationary signal processing is the concept of
instantaneous frequency, which provides information on the time-varying spectral
content of a signal. However, it must be remembered that this can only lead to a
proper interpretation when the spectral content of the signal is not too complicated.

8 Note that for quaternion-valued signals with a one-sided QFT, the argument/phase in their
polar CD form is always real. However, there are some quaternion-valued signals having
a two-sided QFT spectrum, but with no specific symmetry relations. For such signals, the
argument/phase of their polar CD form can be complex-valued.
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When such cases arise, the notion of instantaneous frequency of a complex signal
z(t), denoted by Ωz(t), is directly linked to the instantaneous phase defined
previously, as:

Ωz(t) =
dφz(t)

dt
[4.40]

Once again, remember that the considered phase is real-valued, leading to a real-
valued instantaneous frequency. This definition is again a generalization of what is
known for real-valued signals [VIL 48].

Now, recalling that the signal we are looking at, i.e. z(t), is complex-valued and
bearing in mind the 2D planar or 3D trajectory that characterizes z(t), it is obvious
that we need more than just an instantaneous frequency to analyze such a signal.

Due to the 2D nature of its samples, it is possible to think about z(t) as a
trajectory evolving in the 2D plane as mentioned earlier. However, here we prefer to
consider z(t) as a 3D curve, as illustrated in Figure 4.15. As we have obtained an
instantaneous frequency Ω(t) for z(t) and as it is scalar (real) valued, there should be
more information necessary to describe the instantaneous behavior of z(t). In fact, in
addition to the value of the instantaneous frequency Ωz(t), we need to know in which
plane in 3D space is the signal oscillating at each time t. This notion can be
understood as the instantaneous osculating plane of z(t).

This osculating plane can be obtained from the instantaneous amplitude introduced
in section 4.3.4, as explained in [LE 14]. This can be inferred from the classical case
of the analytic signal associated with a real signal x(t). The instantaneous amplitude,
also known as the envelope of the signal, is obtained from the modulus of the analytic
signal. Now, as shown in Figure 4.18, the envelope ρx(t) together with its first-order
derivative ρx(t) define the plane in which the signal x(t) oscillates. In the case where
x(t) is real-valued, it is trivial as the plane does not change with time (the plane is
defined by the time axis and the signal magnitude axis).

Now, in the case where the signal z(t) is complex-valued, and remembering that
we consider that z(t) is a 3D trajectory (as displayed in Figure 4.15), the envelope
is complex-valued, meaning that it can also be interpreted as a 3D trajectory, just
like z(t). As a consequence, the derivative of the envelope, ρz(t) is the set of vectors
tangent to ρz(t), just like the velocity vector associated with a trajectory (see [DO 76]
for example). Now, the osculating plane is simply defined by ρz(t) × ρz(t) where ×
is the cross product. In the Frenet-Serret formulation [DO 76], the vector defined by
this cross product is the binormal vector. It is orthogonal to the osculating plane. This
osculating plane concept for complex signals will be illustrated in section 4.3.6.

Now, we have shown that in the case of a complex signal z(t), it is possible to
define the concept of an instantaneous frequency Ωz(t). However, additional
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information is necessary to describe the dynamical behavior of z(t), and this
information is provided by the complex envelope ρz(t). First, just as in the real case,
it provides a complex envelope to the signal z(t), i.e. an instantaneous amplitude, and
in addition to this, it provides the orientation in 3D space of the plane in which z(t)
oscillates. The information about this plane and the instantaneous frequency provide
complete information about the local behavior of z(t) in 3D. The introduced
concepts are illustrated using two simple examples in the following section.

Figure 4.18. In the classical (real) case when x(t)∈ R , the instantaneous amplitude ρx(t)
(dashed black line) of a modulated real signal x(t) (gray) is given by the envelope of its analytic
signal. Assuming that ρx(t) is at least C1, its derivative ρx(t) (represented at t = t0) together
with ρx(t) defines the osculating plane of the signal x(t)

4.3.6. Examples

In order to show the information carried by the instantaneous phase and
amplitude of the quaternion extension associated with a complex signal, we present
two toy examples that should highlight the concepts of instantaneous phase and
envelope that were previously introduced. The presented examples are orthocomplex
modulated complex signals with different kinds of behavior for their instantaneous
frequency.
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4.3.6.1. Example 1: orthocomplex modulated signal with constant frequency

In this example, we consider a complex signal z(t), which is displayed in blue
in Figure 4.19 (provided in full color in the color section within this book) together
with its real and imaginary parts (projections). This signal z(t) with band-limited QFT
spectrum is also displayed (real and imaginary parts) in Figure 4.20. Note that it is not
analytic in the classical sense [VIL 48], meaning that its real and imaginary parts are
not in quadrature at any time instant. In Figure 4.19, a 3D representation of the signal
z(t) is given together with its projections in the and planes. Figure 4.20 presents
the projections of the signal, i.e. its real and imaginary parts (z(t)) and ((z(t)).

Figure 4.19. Orthocomplex modulated complex signal with constant frequency z(t). 3D
representation of the complex signal z(t) (blue solid line) and its complex instantaneous
amplitude ρz(t) (red solid line) obtained from the polar CD form of its quaternion extension
qz(t). The projections in and planes (black solid lines) correspond to the signals presented
in Figure 4.20 (see color section within this book for a full color version of this figure)

From the original complex signal z(t), it is possible to estimate its complex
envelope ρz(t) as explained in section 4.3.4. This is done by computing the QFT of
z(t), and then by canceling out the negative frequencies and computing the inverse
QFT. The result is a quaternion-valued signal qz(t). The complex envelope ρz(t) of
this equivalent quaternion signal qz(t), obtained from its polar CD form section
1.4.1.5) is displayed in Figures 4.19 and 4.20. One can see from these figures (3D
and projections) that ρz(t) is a complex-valued envelope. This is thus a
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complex-valued signal that corresponds to a base-band version of z(t). Now, as
explained previously, as qz(t) is quaternion-valued, its polar CD form is:

qz(t) = ρz(t)e
Φz(t)j [4.41]

from which we already mentioned the envelope ρz(t). In this example, the signal
z(t) was constructed such that it contains only one frequency. This can be seen from
Figures 4.19 and 4.20 as the oscillations of z(t) are not varying with time, showing
a single frequency content behavior. This means that its instantaneous frequency is
constant. This could be seen as well by plotting the estimated Φz(t). As it is a rather
trivial case, the display is omitted here and an exposition of instantaneous frequency
is postponed to example 2.

Figure 4.20. Orthocomplex modulated complex signal. Real part (top) and imaginary part
(bottom) of the complex signal z(t) (gray solid lines) and its complex instantaneous amplitude
ρz(t) (dashed black lines) obtained from the CD polar of its quaternion extension qz(t).
The envelopes computed using the “classical” analytic signal from (z(t)) and (z(t)) are
displayed in black solid lines
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It must be noticed from the complex envelope displayed in Figures 4.19 and 4.20
that it is different from envelopes that could be obtained from the classical analytic
signals computed separately on the real and imaginary parts of z(t). This can be seen
in Figure 4.20 where the envelopes obtained using the classical analytic signal
computed on the real and imaginary parts of z(t) separately are displayed. As both
the envelopes computed using the classical analytic signal can only be positive
valued (as they are moduli of complex-valued signals), there is no chance that they
give an envelope that is a base-band version of the original complex signal z(t). It
must be emphasized that this is a major advantage of using the QFT to study
complex-valued signals, as the complex envelope ρz(t) has a direct interpretation,
while any process computing the real and imaginary parts of z(t) may not carry as
much insight as the QFT approach does. Another approach to extend the concept of
instantaneous attributes to complex signals has been proposed in [LIL 10]. It is a
parametric approach called the modulated elliptical signal (MES), but it does not
provide a complex-valued envelope for a given complex signal z(t). A comparison of
the MES approach with the instantaneous amplitude and frequency presented here is
available in [LE 14].

4.3.6.2. Example 2: orthocomplex modulated signal with linearly varying frequency

In this example, we consider a complex signal with an instantaneous frequency
linearly varying with time. The original z(t) signal is displayed in Figure 4.21 in 3D
and in Figure 4.22 as real and imaginary parts.

The frequency content of z(t) is a single frequency that linearly changes with
time. This can be guessed from Figures 4.21 and 4.22 where it can be seen that the
frequency increases with time from t = 0 on, followed by a small decrease just before
time t = 1.

The complex envelope ρz(t) obtained from the polar CD form of the quaternion
signal associated with z(t) is displayed in 3D in Figure 4.21. In Figure 4.22, the real
and imaginary parts of z(t) are presented, together with the complex envelope. The
envelopes computed using the classical analytic signal computed separately on the
real and imaginary parts of z(t) are superimposed. As we can see in Figure 4.22, the
“classical” envelope cannot take negative values, which means that it cannot lead to
the type of result obtained with ρz(t). However, for positive values, the “classical”
envelope and ρz(t) take similar values.

Finally, to illustrate the instantaneous frequency concept, Figure 4.23 presents the
estimated instantaneous frequency obtained by numerical differentiation of the phase
Φz(t) given by the polar CD form of the quaternion signal qz(t). It must be noted that
in theory, the phase Φz(t) could be complex-valued (see the definition in [1.60] and
[1.61]). However, it can only take real values when the real and imaginary parts of the
signal share the same frequency, which is the case here and is for most of the time
in real-world applications. For example, it is well known that polarized signals can
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only be called so if both components of the electric field (classically denoted by Ex(t)
and Ey(t)) have frequencies in common [BRO 98]. As can be seen in Figure 4.23, the
estimated frequency contains some errors. These errors occur at time instants where
the signal z(t) vanishes, leading to aberrant values in the phase estimation. However,
the frequency content of the signal is recovered as can be seen from Figure 4.23 where
the increasing frequency behavior together with the decrease at the end of the time
window can be observed.

Figure 4.21. Orthocomplex modulated complex signal with linearly varying frequency z(t).
3D representation of the complex signal z(t) (blue solid line) and its complex instantaneous
amplitude ρz(t) (red solid line) obtained from the polar CD form of its quaternion extension
qz(t). The projections in and planes (black solid lines) correspond to the signals presented
in Figure 4.22 (see color section within this book for a full color version of this figure)

This demonstrates the ability of the polar CD form of the quaternion extension of
a complex signal z(t) to access its instantaneous frequency. This is a direct extension
of what is known for real signals and the ability of the polar form of the analytic signal
to provide the instantaneous phase and frequency.

Together, the instantaneous amplitude (envelope), the instantaneous phase and the
instantaneous frequency obtained from the polar CD form of qz(t), the quaternion
extension of the complex signal z(t), are the faithful generalizations of the
well-known instantaneous attributes obtained from the analytic signal of a
real-valued signal. This shows the position of the QFT with respect to
complex-valued signals: it is the counterpart of the (classical) FT for real signals.
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This is due to the inherent symmetries of the QFT and its intrinsic four dimensions.
The QFT should thus be considered on a systematic basis for the study of
complex-valued signals as it has the required symmetries to extract any spectral
information from bivariate signals.

Figure 4.22. Orthocomplex modulated complex signal. Real part (top) and imaginary part
(bottom) of the complex signal z(t) (gray solid lines) and its complex instantaneous amplitude
ρz(t) (dashed black lines) obtained from the CD polar form of its quaternion extension qz(t).
The envelopes computed using the “classical” analytic signal from (z(t)) and (z(t)) are
displayed as black solid lines

4.3.7. The quaternion Wigner-Ville distribution of a complex signal

We end this section with some results that provide the basic foundations for a
generalization of time-frequency representations inspired by the QFT9.

9 A simple time-frequency analysis of non-stationary complex signals can also be carried out
using a short-time QFT that can be easily computed using sliding time-windowed QFTs.
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Time-frequency representations are well known in signal processing for the study of
non-stationary signals [FLA 98]. Here, we show how the previously introduced
concepts open the door to a new way to study non-stationary complex signals. Some
parts of the presented material can be found in [ELL 12].

Figure 4.23. Orthocomplex modulated complex signal with linearly varying frequency.
Estimated instantaneous frequency obtained from the numerical derivative of the instantaneous
phase computed as the phase of the polar CD form of qz(t), the quaternion signal associated
with the complex signal z(t). The estimation errors are due to the signal vanishing at certain
times

This section shows the link between the just defined quaternion extension and
instantaneous frequency of a complex signal and its quaternionic Wigner-Ville
distribution (QWVD). First, we introduce the definition of the quaternion Wigner
distribution (QWD) of a complex signal and then the QWVD of its quaternion
extension. Then, we introduce some of the remarkable properties of the QWVD.
Finally, we show how the time marginal and mean frequency formulas [FLA 98]
extend to the quaternionic case.

4.3.7.1. Definitions

Just as in the case of real signals, we will make the distinction between Wigner and
the Wigner-Ville distribution. Recall that classically the Wigner distribution (WD) is
built for real-valued signals, while the Wigner-Ville is built using the complex analytic
signal associated with a real signal. The latter version was originally proposed by Ville
[VIL 48]. Motivations for using Wigner-Ville distributions are given, for example, in
[BOA 88].
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First, we start with the Wigner distribution definitions. Given two complex-valued
signals z(t) and w(t), their quaternionic (cross-) Wigner distribution with respect to
the j-axis, denoted by Wz,w(t, ω), is:

Wz,w(t, ω) =
+∞

−∞
z(t+ τ/2)w (t− τ/2)e−jωτ dτ [4.42]

while the quaternionic (auto-) Wigner distribution of z(t), denoted by Wz(t, ω), is
given by:

Wz(t, ω) =
+∞

−∞
z(t+ τ/2)z (t− τ/2)e−jωτ dτ [4.43]

Now, given two complex-valued signals z(t) and w(t) and their respective
quaternion extensions qz(t) and qw(t), their quaternionic (cross-) Wigner-Ville
distribution with respect to the j-axis, denoted by WVz,w(t, ω), is:

WVz,w(t, ω) =
+∞

−∞
qz(t+ τ/2)qw(t− τ/2)e−jωτ dτ [4.44]

while the quaternionic (auto-) Wigner-Ville distribution of z(t), denoted by
WVz(t, ω), is given by:

WVz(t, ω) =
+∞

−∞
qz(t+ τ/2)qz(t− τ/2)e−jωτ dτ [4.45]

Note that in the Wigner-Ville definitions, the transform consists of a QFT with axis
j of a quaternion-valued function with respect to the τ variable. Just as would happen
with the complex FT of a complex signal, and because the quaternion extensions qz(t)
and qw(t) have one-sided QFT spectra, the quaternionic auto- and cross-Wigner-Ville
distributions are one-sided (i.e. equal to zero for negative frequencies).

In the sequel, we will consider Wigner and Wigner-Ville distributions, depending
on the purpose we wish to illustrate. Mainly, we will stick to the Wigner case when
dealing with standard properties, and then move to the Wigner-Ville case when
considering the link with the instantaneous amplitude, phase and frequency of a
complex signal.
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4.3.7.2. Basic properties

Here, we list several properties of the QWD. Most of the proofs can be obtained
by direct calculation, and can be found in [ELL 00a].

First, the QWD of the conjugate signal z (t) is simply:

Wz (t, ω) = Wz(t, ω) [4.46]

and the (cross-) QWD fulfills the following symmetry relation when reversing the
order of z(t) and w(t):

Ww,z(t, ω) = Wz,w(t, ω)
k

[4.47]

The behavior of the QWD with respect to time shifting is as follows:

WTχz,Tχw(t, ω) = Wz,w(t− χ, ω) [4.48]

where Tχz(t) = z(t− χ) is a translation operator.

4.3.7.3. Inversion

It is possible to extend the well-known inversion formulas for the WD [FLA 98]
to the quaternion version of the WD. Given two complex signals z(t) and w(t), the
following equality holds:

z(t)w (0) =
+∞

−∞
Wz,w

t

2
, ω ejωt dω [4.49]

provided that w (0) = 0. Now, in the case of the (auto-) QWD of a complex signal
z(t), this becomes:

z(t)z (0) =
+∞

−∞
Wz (t, ω) e

jωt dω [4.50]

This means that z(t) can be recovered up to a phase factor z (0) by computing the
inverse QFT of its QWD.

Now, we previously introduced the orthocomplex modulation which shares some
behavior with the classical modulation when considering complex FTs. As was
highlighted in section 4.3.1.2, the orthocomplex modulation is a central concept in
the study of band-limited complex signals with right-sided quaternionic spectrum. It
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is thus interesting to know how this peculiar modulation behaves through the QWD,
which is given, for two complex signals z(t) and w(t), by:

WOω0z,Oω0w
(t, ω) = Wz,w(t, ω − ω0) [4.51]

where [Oω0z] (t) = z(t)ejω0t and [Oω0w] (t) = w(t)ejω0t defines the orthocomplex
modulation operator.

In addition to the presented properties of the QWD, we now give the two
characteristics that make the connection between the instantaneous phase and
amplitude introduced in section 4.3.4 and some characteristics of the QWVD,
namely the time marginal and the mean frequency formula.

4.3.8. Time marginal

We investigate here what information is available at each time instant t in the QWD
of a complex signal z(t) by integrating Wz(t, ω) over the frequency range. The result
is summarized by the following expression:

+∞

−∞
Wz(t, ω) dω = z(t)z (t) = |z(t)|2 [4.52]

This is simply the squared instantaneous magnitude of the signal z(t), i.e. its
instantaneous energy. Doing the same with the QWVD would lead to the squared
modulus of the quaternion extension of z(t), which carries the same information in
terms of energy. It would read as follows:

+∞

−∞
WVz(t, ω) dω = q(t)qz(t) = |qz(t)|2 [4.53]

In the case of a real signal, it is well known that proceeding in the same way with
the analytic signal associated with the original real signal leads to a similar result.
Thus, the QWD (and QWVD) simply generalize this existing result to the case of an
arbitrary complex signal.

4.3.9. The mean frequency formula

A more interesting result, which is known for the classical Wigner-Ville
distribution, is that its mean value is the instantaneous frequency [FLA 98]. It states
that the normalized mean value of the Wigner-Ville distribution is in fact the
instantaneous frequency. We show here how this extends to the QWVD. The
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generalization leads to a more complicated expression for the mean value of the
quaternion-valued QWVD; however, it is a generalization of the classical case and is
given in [4.66].

As an illustration of calculations with a QFT, we give the lines to follow to obtain
this property of the QWVD.

First, recall that if a complex signal z(t) has a QFT denoted by Zj(ω), then the
following property holds:

Fj
d
dt
z (ω) = Zj(ω)jω [4.54]

This extends to the QFT of the quaternion extension qz(t) directly by:

Fj
d
dt
qz (ω) = Z+

j (ω)jω [4.55]

where we now have that Z+
j (ω) = 0 for ω < 0. We also have the classical initial

value theorem that holds for the QFT of qz(t), i.e.:

+∞

−∞
Z+
j (ω) dω = qz(t)|t=0 = qz(0) [4.56]

Now, from the definition of the QWVD, we can write that:

qz t+
τ

2
qz t− τ

2

Fj−→ WVz(t, ω) [4.57]

Now, remembering the above-mentioned property of the QFT with respect to
derivation and that in the QWVD definition, integration is with respect to τ , we get:

d
dτ

qz(t+
τ

2
)qz(t− τ

2
)

Fj−→ WVz(t, ω)jω [4.58]

Now, expanding the derivative, denoting qz(t) = dqz(t)/dt and taking its value
for τ = 0, we get:

+∞

−∞
WVz(t, τ)jω dω =

1

2
qz t+

τ

2
qz t− τ

2
− qz t+

τ

2
qz t− τ

2 τ=0

[4.59]
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Note that we left the integration over the range ]−∞,+∞[ even though we know
that the QWVD is right-sided. This does not affect the calculation anyway. Now, right-
multiplying both sides of the equality by j leads to the following equality:

+∞

−∞
ωWVz(t, ω) dω = −1

2
qz(t)qz(t)− qz(t)qz(t) j [4.60]

Dividing both sides of the equality by +∞
−∞ WVz(t, ω) dω and remembering the

result in [4.53], we get:

+∞
−∞ ωWVz(t, ω) dω
+∞
−∞ WVz(t, ω) dω

=
1
2 qz(t)qz(t)− qz(t)qz(t)

qz(t)qz(t)
j

= −1

2
qz(t)q

−1
z (t)− q−1

z (t)qz(t) j

= −V qz(t)q
−1
z (t) j

[4.61]

It suffices now to remember that the quaternion extension qz(t) can be expressed
with its polar CD form (as explained in [4.39]), so that qz(t) = ρz(t)e

φz(t)j . This
means that its time derivative is given by:

qz(t) = ρz(t)e
φz(t)j + ρz(t)φz(t)je

φz(t)j = {ρz(t) + ρz(t)φz(t)j} eφz(t)j [4.62]

Now, it follows that:

+∞
−∞ ωWVz(t, ω) dω
+∞
−∞ WVz(t, ω) dω

= −V
qz(t)

qz(t)
j

= −V
ρz(t) + ρz(t)φz(t)j

ρz(t)
j

[4.63]

It is important to remember that ρz(t) is complex-valued and that φz(t) can also be
complex-valued (even if we already mentioned that it is most likely to be real-valued
in real-world applications). Writing ρz(t) = |ρz(t)| exp ϕρz(t)i , we first evaluate
the quantity qz(t)q

−1
z (t) as:

qz(t)q
−1
z (t) =

|ρz(t)|
|ρz(t)| + iϕρz(t)

+ exp ϕρz(t)i φz(t)j [4.64]

which is a full quaternion term as |ρz(t)| / |ρz(t)| ∈ R, and iϕρz(t)
is a pure i part

and exp ϕρz(t)i j is made of a j and a k part. Now, the final step consists of
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taking the vector part of this term and multiplying it on the right by j, which leads to
the following:

−V
ρz(t) + ρz(t)φz(t)j

ρz(t)
j = exp ϕρz(t)i φz(t)− kϕρz(t)

[4.65]

which finally gives the following expression for the “mean frequency formula”:

+∞
−∞ ωWVz(t, ω) dω
+∞
−∞ WVz(t, ω) dω

= exp ϕρz(t)i φz(t)− kϕρz(t)
[4.66]

As said previously, this expression is more complicated than its “classical” version
that involves the standard Wigner-Ville distribution of a real signal. Here, however,
the instantaneous frequency of the complex signal z(t) (defined as Ωz(t) = φz(t)
in section 4.3.5) can be recovered from the normalized mean of the QWVD. First,
note that in [4.66], the right-hand side of the equation has two terms that do not mix
together in the 4D quaternion space. The term kϕρz(t)

is a pure k term that provides
information on the complex envelope of z(t). In fact, it is the instantaneous frequency
of the complex envelope/amplitude ρz(t) of z(t). Next, the term eϕρz(t)iφz(t) is made
of the instantaneous frequency of z(t), multiplied by a pure phase factor containing
again information on the complex envelope. Thus, by simply taking the modulus of
this term, we recover the instantaneous frequency φ (t) of the complex signal z(t).
This is true in the cases where this instantaneous amplitude is real, which is, as already
mentioned, the case in most real-world applications. The mean frequency formula thus
provides information on the instantaneous frequency of the processed signal, just as
in the classical case, and with some extra terms due to the additional information
available in a complex signal (with respect to information available in a real-valued
signal).

As a conclusion, we can see that the QWVD generalizes some well-known results
from “classical” WVD, and may be a very powerful tool to analyze complex signals
that arise in many applications. There is still some work to be done to completely
discover the rest of the properties of the QWVD and of time-frequency representations
based on quaternionic Fourier analysis.
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A

absolutely integrable, 40
algebra

Clifford, 65
division, 1, 3, 5

amplitude
instantaneous, 101

analytic signal, 96, 100
anti-involution, 4, 23
arc, spherical, 27
associativity, 3
axis, 11

B

Baker-Campbell-Hausdorff formula, 9
basis, 2

change of, 61
bicomplex product

commutativity, 16
binormal vector, 103
bivariate signal analysis, 91
Boost, 57

C

Cayley-Dickson form, 12
polar, 14

change of basis, 61
change of coordinates, 2D, 52
Cj-pair, 15
color image, 70

decomposition, 75
color space

RGB, 70
commutativity

non-, 3
complex exponential, 82
complex signal

instantaneous amplitude, 91
instantaneous phase, 91
properties of 1D QFT, 91

complex subfield, 86
conjugate, 4

time/frequency reversal, 45
conjugation

quaternion, 23
convolution, 67

classical, 2D, 67
complex, 36, 96
mask, 68
quaternion, 70
theorem, 47, 68

coordinates
change of, 52
homogeneous, 28

correlation
classical, 81
color and grayscale

image, 91
complex, 36
frequency domain, 86
peak interpretation, 88
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phase, 80–82, 88
sub-sample precision, 84

quaternion, 79, 86
theorem, 47

cross product, 3
cross-covariance, 81
cross-power spectrum, 80

D

de Moivre, 18
decomposition

symplectic, 45
decompositions, 42

2D, 54
derivatives, 42, 53
dilation, 3D, 24
dirac delta function, 42
dirichlet conditions, 39
division algebra 1, 3, 5

E

edge detector, 68
envelope, 103

complex, 105, 107
Euler angles, 12

formula, 8, 11, 64
exponential

complex, 82
matrix, 63
quaternion, 7, 9

F

FFTW library, 61
Fourier

convolution theorem, 68
transform

coefficients, 65
complex, 35, 37
computation by decomposition, 60
direct DFT coding, 58
direct FFT coding, 60
discrete-time, 65
dual-axis form, 48
factored form, 48
fast, 60
FFT, 60

matrix exponential, 63
pairs, 1D, 40
pairs, 2D, 56
pairs, complex, 37
quaternion, 1D, 38
quaternion, 2D, 48
tiling, 82
verification, 62

transforms
Clifford
coding, 57
computation of, 57

Frenet-Serret formulas, 103
frequency

instantaneous, 91
mean

Wigner-Ville distribution, 113
negative, 66, 80, 97
Nyquist, 66, 75

frequency domain, 81

G

Gabor, D., 96
geometry, 21

Euclidean, 21
spherical, 26

great circle, 27
group

general linear, 32, 33
group velocity, 91

H

Hamilton, Sir W. R., 1
Hilbert transform, 96, 102
homogeneous coordinates, 28

I

image
color, 70
grayscale, 67
registration, 91

impulse, 42, 53
instantaneous

amplitude, 91, 101
frequency, 91

of a complex signal, 102
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phase, 91, 101
integrable absolutely, 40
involution, 4, 5, 15
isometry, 33

K, L, M

Kirsch, 68
linearity, 40, 52
logarithm

quaternion, 7
marginal processing, 84
MATLAB®, 57, 64
matrix

exponential, 63
representations, 17

mean frequency
Wigner-Ville distribution, 113

modulated elliptical signal, 107
modulation

orthocomplex,
95, 112

modulo arithmetic, 82
modulus, 4

N, O

norm 1
product of, 3
quaternion, 3

Nyquist frequency, 66, 75
one-sided spectrum, 97
orthocomplex modulation, 95, 112
orthogonal split, 2D, 45
osculating plane, 103

P

phase
Fourier coefficients, 80
instantaneous, 101

phase correlation, 80, 82
classical, 81

phase velocity, 91
plane, osculating, 103
point, weighted, 28
polar form, 101

Cayley-Dickson, 102
Prewitt, 68

product
scalar, 3
vector, 3

projective space, 29
(3D), 28

Q

QTFM, 57
quadrature, 105

signal, 96
quaternion

axis, 11
basis, 2, 6
Cartesian form, 1
Cayley-Dickson form, 12

polar, 14
Cj-pair, 15
conjugate, 4
convolution, 70
de Moivre formula, 18
exponential, 7, 9
Fourier

transform, see Fourier
functions

linear, 31
ijk, 1
inverse, 5
involution, 5, 15

properties, 5
logarithm, 7, 10
modulus, 4
norm, 3, 4
perplex part, 13
polar form, 8, 11

Euler angles, 12
power, 18
product, 3

bicomplex, 15
matrix-vector form, 32

pure, 2
ratio of, 5
representations, 11

matrix, 17
scalar part, 1
simplex part, 13
subfields, 18
sum, 2



126 Quaternion Fourier Transforms for Signal and Image Processing

symplectic form, 13
systems of equations, 31
vector part, 1

R

reflection
3D, 22
4D, 25

registration
image, 91

reversal
time, 80
time/frequency, 45, 46

implementation, 65
rotation, 71

3D, 22
4D, 25
composition, 23

S

scalar part, 1
using conjugate, 4

scalar product, 3
scaling, 40, 52
shear, 24
shift

frequency, 95
shifting, 40, 53

in correlation, 81
signal

analytic, 100
complex

instantaneous frequency, 102
non-stationary, 109
quaternion extension, 101

envelope, 103
quadrature, 96, 98
quaternion

associated with complex, 98
signal analysis

bivariate, 91
Sobel, 68
spectrum

cross-power, 80
one-sided, 97
quaternion

layout, 75
visualization, 74

quaternion image, 73
spherical triangle, 28
split

even-odd, 42
orthogonal 2D plane, 45

subfield
complex, 86

superposition, 33
swap rule, 13
symmetry, 42, 75, 80, 94, 100

complex signal, 93
QFT, 109
QFT of complex signal

properties of, 98
symplectic decomposition, 45
symplectic form, 13
Synge, J.L., 81

T

tangent vector, 103
tiling, 82
time domain, 80
time reversal, 80
time-frequency analysis, 91, 101
time/frequency reversal, 65
transform

Hilbert, 96, 102
transformation

affine, 33
dilation, 24
Euclidean, 33
linear, 33
projective, 33
reflection

3D, 22
4D, 25

rotation, 71
3D, 22
4D, 25

shear, 24
similarity, 33

translation vector, 28
transmutation, 32
triangle, spherical, 28
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V

vector
translation, 28

vector part
using conjugate, 4

versor, 6, 10
Ville, J., 96
visual system

human, 70
visualization, quaternion spectrum, 74

W, Z

Wigner-Ville distribution
mean frequency, 113
quaternion, 109, 112

zero padding, 82



Figure 4.3. Filtered output (right) of color image (left) using
Prewitt edge detector

Figure 4.4. Quaternion spectrum of an image. Left to right: original image,
spectral modulus, phase and axis

Figure 4.5. Symplectic decomposition of color image into simplex and perplex
parts of spectra. Left to right: original image, simplex part, perplex part and

direct sum of both parts



Figure 4.7. Spectral coefficient images for the constant term and first three harmonics
(horizontally and vertically) of color image. The DC term is the centre tile on bottom row with
positive horizontal frequencies to the right and negative horizontal frequencies on the left. The
bottom row corresponds to the DC vertical term with each previous row increasing in vertical
frequency. (The left and right halves of the last row are mirrors of each other as they contain
the same spectral coefficient pairs.)



Figure 4.8. Harmonic reconstruction of color image. The legend at top shows a color-cube
scatter plot for the original image. The lower grid shows plots of the color orbits for the first
five horizontal and vertical harmonics taken from the QFT spectrum of the image, along with
their corresponding images. The final, right-most column shows the image resulting from the
sum of the harmonics, starting from the constant (zero frequency) term to the corresponding
harmonic



Figure 4.9. Direct filtering in frequency domain of color image. Top row, left
to right: original image, low-pass, band-pass and high-pass filtered. The

bottom row shows the corresponding spectral magnitude



Figure 4.12. Two color images with identical backgrounds but a foreground
object (the car) in different positions with different colors. (Images by and

reproduced with the permission of Dr A.L. Thornton [THO 98])



Figure 4.13. Phase correlation results using the color images in Figure 4.12. Upper: the phase
correlation surface. Lower: the two images superimposed after shifting one of them by the
coordinate offset found from the maximum peak in the phase correlation surface, showing the
two cars correctly superimposed



Figure 4.19. Orthocomplex modulated complex signal with constant frequency z(t). 3D
representation of the complex signal z(t) (blue solid line) and its complex instantaneous
amplitude ρz(t) (red solid line) obtained from the polar CD form of its quaternion extension
qz(t). The projections in � and � planes (black solid lines) correspond to the signals presented
in Figure 4.20



Figure 4.21. Orthocomplex modulated complex signal with linearly varying frequency z(t).
3D representation of the complex signal z(t) (blue solid line) and its complex instantaneous
amplitude ρz(t) (red solid line) obtained from the polar CD form of its quaternion extension
qz(t). The projections in � and � planes (black solid lines) correspond to the signals presented
in Figure 4.22


	Half-Title Page
	Title Page
	Copyright Page
	Contents
	Nomenclature
	Preface
	Introduction
	I.1. Fourier analysis
	I.2. Quaternions
	I.3. Quaternion Fourier transforms
	I.4. Signal and image processing
	I.5. Other hypercomplex algebras
	I.6. Practical application
	I.6.1. Software libraries
	I.6.2. Matrix representations

	I.7. Overview of the remaining chapters

	1 Quaternion Algebra
	1.1 Definitions
	1.2 Properties
	1.3 Exponential and logarithum of a quaternion
	1.3.1 Exponential of a pure quaternion
	1.3.2 Exponential of a full quaternion
	1.3.3 Logarithm of a quaternion

	1.4 Representations
	1.4.1 Polar forms
	1.4.1.1. Euler formula
	1.4.1.2. The Euler angle parameterization polar form
	1.4.1.3. The Cayley–Dickson form

	1.4.2 The Cj-pair notation
	1.4.3 R and C matrix representations

	1.5 Power of a quaternion
	1.6 Subfields

	2 Geometric Applications
	2.1 Euclidean geometry (3D and 4D)
	2.1.1. 3D reflections
	2.1.2.3D rotations
	2.1.3. 3D shears
	2.1.4. 3D dilations
	2.1.5. 4D reflections
	2.1.6. 4D rotations

	2.2. Spherical geometry
	2.3. Projective space (3D)
	2.3.1. System of linear quaternion functions
	2.3.2. projective transformations


	3 Quaternion Fourier Transforms
	3.1. 1D quaternion Fourier transforms
	3.1.1. Definitions
	3.1.2. Basic transform pairs
	3.1.3. Decompositions
	3.1.4. Inter-relationships between definitions
	3.1.5. Convolution and correlation theorems

	3.2. 2D quaternion Fourier transforms
	3.2.1. Definitions
	3.2.2. Basic transform pairs
	3.2.3. Decompositions
	3.2.4. Inter-relationships between definitions

	3.3. Computational aspects
	3.3.1. Coding
	3.3.2. Verification
	3.3.3. Verification of transforms


	4 Signal and Image Processing
	4.1. Generalized convolution
	4.1.1. Classical grayscale image convolution filters
	4.1.2. Color images as quaternion arrays
	4.1.3. Quaternion convolution
	4.1.4. Quaternion image spectrum

	4.2. Generalized correlation
	4.2.1. Classical correlation and phase correlation
	4.2.2. Quaternion correlation
	4.2.3. Quaternion phase correlation

	4.3. Instantaneous phase and amplitude of complex signals
	4.3.1. Important properties of ID QFT of a complex signal z(t)
	4.3.2. Hilbert transform and right-sided quaternion spectrum
	4.3.3. The quaternion signal associated with a complex signal
	4.3.4. Instantaneous amplitude and phase
	4.3.5. The instantaneous frequency of a complex signal
	4.3.6. Examples
	4.3.7. The quaternion Wigner-Ville distribution of a complex signal
	4.3.8. Time marginal
	4.3.9. The mean frequency formula


	Bibliography
	Index 
	Supplemental Images

