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Abstract

We solve the biharmonic eigenvalue problem 12u = λu and the buckling plate problem 12u = −λ1u
on the unit square using a highly accurate spectral Legendre–Galerkin method. We study the nodal
lines for the first eigenfunction near a corner for the two problems. Five sign changes are computed and
the results show that the eigenfunction exhibits a self similar pattern as one approaches the corner. The
amplitudes of the extremal values and the coordinates of their location as measured from the corner are
reduced by constant factors. These results are compared with the known asymptotic expansion of the
solution near a corner. This comparison shows that the asymptotic expansion is highly accurate already
from the first sign change as we have complete agreement between the numerical and the analytical
results. Thus, we have an accurate description of the eigenfunction in the entire domain.

AMS Subject Classifications: 65N25.

Key Words: Biharmonic operator, eigenvalue, eigenfunction, plate equation, spectral method, asymp-
totic expansion.

1. Introduction

We consider the eigenvalue problem for the biharmonic operator:

12u = λu, u ∈ H 2
0 (�), � = (0, 1)2 (1)

and the eigenvalue problem for the buckling plate problem:

12u = −λ1u, u ∈ H 2
0 (�), � = (0, 1)2. (2)

The occurrence of nodal lines near the corners for the first eigenfunction of the
biharmonic eigenvalue problem was numerically first computed by Bauer and Reiss
[1]1. Bauer and Reiss used a second order finite difference code. Bjørstad [2]
developed a fast algorithm for the same discretization which allowed a detailed

1 Their early calculations were based on a direct solution on a 32×32 grid, and an alternating direction
iterative procedure with h = 1/80. Using extrapolation they determined the first eigenvalue to be
λ1 = 1294.88, about 0.05 smaller than the correct value.
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study of the first sign change and clearly showed the structure of the nodal lines.
Independently, Hackbusch and Hoffmann [8] used piecewise linear rectangular
finite elements combined with a multigrid solver. They reported two sign changes,
but as first reported in [5] the location of their second sign change was incorrect.
About the same time Coffman [6] proved the existence of infinitely many sign
changes as one approaches the corner.

The more recent code [5] used a spectral tau method which should have higher
accuracy. Very recently, Wieners [13] used C3 rectangular finite elements and
furnished a numerical existence proof of nodal lines. He used the same technique
to prove the existence of nodal lines also for the buckling plate problem. Owen
[10] derives asymptotic estimates for the first eigenvalue on rectangular regions,
he also shows that the negative part of the corresponding eigenfunction is small.
Thus, to the authors’ knowledge none of the previously reported methods have
been accurate enough to determine more than the first sign change.

In this work, very high precision is obtained by using the spectral Legendre-
Galerkin method, with a basis constructed by Shen [11], combined with a fast
solution algorithm developed by the authors [3]. The Legendre–Gauss–Lobatto
points used in this algorithm approach the boundary as 1/N2. With our algorithm
we can take N > 1000 and study the solution within 10−6 of the corner. This
resolution reveals five changes in the sign and shows how the alternating behavior
of the eigenfunction follows a predictable pattern.

2. Asymptotic Expansion Near a Corner

Based on the theory developed by Kondrat’ev [9] the paper by Blum and Rannacher
[4] study singularities near an arbitrary angle for the biharmonic problem and
weakly nonlinear problems of the form

12u−
2∑

i=1

∂

∂xi

Fi(·, u,∇u,∇2u)+ F0(·,∇u,∇2u) = f. (3)

Their analysis can be applied to the biharmonic eigenvalue problem. Using the
general expansion formula developed by Blum and Rannacher it is simple to show
that in the special case of a rectangle with Dirichlet boundary conditions u has an
expansion near the corner of the form

u(x, y) = crzψ(θ)+ ū(x, y)

where (r, θ) are local polar coordinates with origin at a corner, c is a complex
constant, while ψ(θ) and ū(x, y) are smooth functions. The theory developed
in [4] further shows that this expansion holds when the equation is changed in
lower order terms, ie., the biharmonic operator determines the asymptotic behavior



High Precision Solutions of Two Fourth Order Eigenvalue Problems 99

alone. We should therefore expect to see the same behavior for both the biharmonic
eigenfunction defined in (1) and for the buckling plate problem (2). In order to
distinguish between the two cases we will subscript ω and the constant aψ(π/4)

in (4) with index 1 and 2 respectively. The complex exponent z can be shown to be
the unique complex root (Im(z) 6= 0) with real part 2 ≤ Re(z) ≤ 4 of the equation

sin((z− 1)π/2) + (z− 1) = 0.

This equation is easy to solve and we find

z = α + iβ = 3.739593356 + 1.119024534i.

We now consider this expansion along the line x = y, (that is, θ = π/4) where it
takes the form

u(r) = arα cos(β log r + ω)ψ(π/4)+ ū(r/
√

2, r/
√

2). (4)

Let rn be the distance to a local extremal value of this function, where we let n
decrease with increasing radius r . If we neglect ū when determining the local
extremal points then we readily find that

u′(r) = ψ(π/4)arα−1(α cos(β log r + ω)− β sin(β log r + ω)) = 0 (5)

thus

rn = e
tan−1(α/β)−ω−(n−1)π

β n = 1, 2 . . . (6)

and the ratio

rn

rn+1
= eπ/β = 16.56742776. (7)

The ratio of two consecutive extremal values must be

−u(rn)

u(rn+1)
= (

rn

rn+1
)α = 36267.54987. (8)
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Table 1. Computation of the first eigenvalue of the biharmonic problem

N 12u = λu

14 1294.93398

100 1294.93397959171283

1000 1294.933979591712808170302648

2000 1294.9339795917128081703026479744

3000 1294.9339795917128081703026479744

4000 1294.9339795917128081703026479744

5000 1294.9339795917128081703026479744

Table 2. Computation of the first eigenvalue for the buckling plate problem

N 12u = −λ1u

14 52.3446913

100 52.344691168416546

1000 52.344691168416544538705330752

2000 52.344691168416544538705330750368

3000 52.344691168416544538705330750366

4000 52.344691168416544538705330750365

5000 52.344691168416544538705330750365

3. An Accurate Numerical Method

Using the discretization developed in [11] the basis for the biharmonic problem is
given by:

φk(x) = dk(Lk(x)− 2(2k + 5)

2k + 7
Lk+2(x)+ 2k + 3

2k + 7
Lk+4(x)) k = 1, . . . , N (9)

where Lk are Legendre polynomials and dk = (2(2k + 1)2(2k + 3))−1/2. Let
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Figure 1. The first biharmonic eigenfunction and the buckling plate eigenfunction. The functions are

plotted in a log-log scale on top, while the lower graph scales by the asymptotic expansion given by (4)

D = diag(dk), k = 1, . . . , N and let the matrices B and C be defined as

bkj = (φj (x), φk(x)) ckj = (φ
′
j (x), φ

′
k(x)). (10)

It is shown in [11] that the nonzero elements of B and C are given by:

bkk = d2
k (ek + h2

kek+2 + g2
kek+4)

bkk+2 = dkdk+2(hkek+2 + gkhk+2ek+4)

bk+2k = bkk+2

bkk+4 = dkdk+4gkek+4

bk+4k = bkk+4

ckk = −2(2(k − 1)+ 3)d2
k hk

ckk+2 = −2(2(k − 1)+ 3)dkdk+2

ck+2k = ckk+2

where ek = 2
2k−1 , gk = 2k+1

2k+5 and hk = −(1+ gk) k = 1, . . . , N .
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The matrix B can be split in two parts B1 and B2 by ordering the odd and even
components, the same can be done for C and D. The discrete counterpart to
12u = λu is given by

MuN = λ(B ⊗ B)uN, (11)

where M = (IN ⊗ B)+ (B ⊗ IN)+ 2(C ⊗ C). We refer to [3] for more details
of the efficient solver that we use in the iterative scheme below. It can be proved
that first eigenfunction has all the symmetries of the domain (cf. [7]). The dis-
crete spectrum splits with the matrix splitting and studies show that the spectrum
associated with M1 = (IN

2
⊗ B1) + (B1 ⊗ IN

2
) + 2(C1 ⊗ C1) contains the first

eigenvalue. Thus it is only necessary to solve this system, saving computational
time and reducing memory requirements. Since we are only concerned about the
first eigenvalue and its corresponding eigenfunction we will denote this pair (λ, u)
without any identifying index. The first eigenpair (λ, u) is computed using the
Rayleigh quotient iteration:

An initial estimate, λ(0), is chosen.
Pick x0 with ‖x0‖2 = 1.
Then for k = 0, 1, . . .

λ(k) := xT
k

M1xk

xT
k

(B1⊗B1)xk

Solve (M1 − λ(k)(B1 ⊗ B1))zk+1 = (B1 ⊗ B1)xk

xk+1 := zk+1/‖zk+1‖2
end

Table 3. Computed extremal values for the first biharmonic eigenfunction

N = 3000 N = 4000 N = 5000

u1 −1.697912879810476 · 10−5 −1.697912879810476 · 10−5 −1.697912879810476 · 10−5

u2 4.681610062754766 · 10−10 4.681610062754766 · 10−10 4.681610062754765 · 10−10

u3 −1.290853694317260 · 10−14 −1.290853694319487 · 10−14 −1.290853694319680 · 10−14

u4 3.559233569291186 · 10−19 3.559251855971790 · 10−19 3.559252581823539 · 10−19

u5 −1.527481389963724 · 10−24 −8.332122807525830 · 10−24 −9.748609616111923 · 10−24

The rate of convergence is cubic, and only three iterations were needed. The
system (M1−λ(k)(B1⊗B1))zk+1 = (B1⊗B1)xk is solved using the direct solver
described in [3], the corresponding iterative solver could also have been used. All
the problems of the form M1x = y tested in [12] with analytically known solutions
showed high accuracy which did not deteriorate when N was increased. The same
behavior has also been observed for problems of the form (M1−α(B1⊗B1))x = y

where the analytical solution is known.
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However, the product (B1 ⊗ B1)xk, when computed directly, caused a dramatic
increase in the quantity | λ(3) − λ(2) | for large values of N .

Table 4. Computed locations of the extremal points for the first biharmonic eigenfunction

N = 3000 N = 4000 N = 5000

r1 0.0326294729775 0.0326294729775 0.0326294729775

r2 0.0019694919355 0.0019694919355 0.0019694919355

r3 0.0001188773517 0.0001188773517 0.0001188773517

r4 0.0000071753303 0.0000071753303 0.0000071753652

r5 0.0000002394873 0.0000004279764 0.0000004327667

Table 5. Ratios of consecutive extremal values for the first biharmonic eigenfunction

N=3000 N=4000 N=5000

|u1/u2| 36267.71254 36267.71254 36267.71254

|u2/u3| 36267.54979 36267.54979 36267.54979

|u3/u4| 36267.74330 36267.55696 36267.54957

|u4/u5| 233013.2199 42717.22751 36510.36119

|un/un+1| 36267.54987 36267.54987 36267.54987

This error was reduced using the decompositionB1 = D1B̂1D1 andC1 = D1Ĉ1D1.
Written on this form this diagonal transformation can be performed before and af-
ter the Rayleigh quotient iteration. (The elements of D1 are defined after (9).)
Next, consider the buckling plate problem. This problem can be studied using
the same technique. Also in this case the first eigenvalue belongs to the M1
part of the problem. The Laplace operator −1 has the discrete representation

R1 = (B1 ⊗C1)+ (C1 ⊗B1). At each iteration we must compute λ(k) = xT
k

M1xk

xT
k

R1xk

and solve the equation

(M1 − λ(k)R1)zk+1 = R1xk. (12)

Also in this case a diagonal transformation was applied before and after the iteration
in order to improve the numerical accuracy.
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Table 6. Ratios between consecutive extremal points for the first biharmonic eigenfunction

N=3000 N=4000 N=5000

r1/r2 16.56745701 16.56745701 16.56745701

r2/r3 16.56742775 16.56742775 16.56742775

r3/r4 16.56750941 16.56742779 16.56742802

r4/r5 21.18577379 16.76579822 16.58008884

rn/rn+1 16.56742776 16.56742776 16.56742776

4. Computational Results

All computations were performed on a Cray Origin 2000 with quadruple preci-
sion. The eigenfunctions were normalized such that the maximum value of the
eigenfunction equals 1. The computed eigenfunction is symmetric with respect to
the line x = y, and the extremal points of the eigenfunction lies on this line. By
using very accurate starting points the extrema were efficiently computed using an
elementary iterative method along the line x = y.

To the author’s knowledge the most accurate bounds for the first eigenvalue are
given in [14], where the lower bound is 1294.933940 and the upper bound is
1294.933988. The approximation of the first eigenvalue given in [5] is 1294.93761
which is larger than the current upper bound. Our computation has λ(3) inside these
bounds for N ≥ 14, see Table 1. We note that our computation provide an upper
bound (since we use a Galerkin method) as long as roundoff errors can be neglected.
This is clearly seen in Table 1 as the computed value decreases in a monotone way
when we increase N .

In Fig. 1, we plot the computed eigenfunctions for both the problems considered
along the diagonal line x = y. In the first graph the functions are plotted from the
corner (r = 0) to the center (r = √2/2) using a logarithmic scale to resolve the
small oscillations. The function values are plotted on a log-scale that displays both
positive and negative values starting from 10−30. Note that this scaling greatly
distorts the shape of the functions, but enables us to directly read off the values that
describe the eigenfunctions. The second graph shows the same functions scaled
by the asymptotic expansion (4). We have used the values ω1 = 5.109947 and
ω2 = 4.436918 as determined from the extremal values of the functions. We further
estimate the values a1ψ1(π/4) = −0.8051070 and a2ψ2(π/4) = −15.76212
in agreement with the second graph, that is, we have a complete and accurate
determination of the expansion from (4).
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We note that there is very good agreement between the formula (4) and the actual
eigenfunction well inside the location of the first extremal point. The buckling
plate function deviates slightly more from the model near the end points compared
to the biharmonic case. This deviation near the corner end point is due to numerical
errors.

Table 7. Computed extremal values for the first eigenfunction for the buckling plate problem

N = 3000 N = 4000 N = 5000

u1 −1.17054642119349 · 10−4 −1.17054642119349 · 10−4 −1.17054642119349 · 10−4

u2 3.26414244011922 · 10−9 3.26414244011922 · 10−9 3.26414244011922 · 10−9

u3 −9.00054558016984 · 10−14 −9.00054558017012 · 10−14 −9.00054558017014 · 10−14

u4 2.48170769549679 · 10−18 2.48170802554547 · 10−18 2.48170802642496 · 10−18

u5 −5.93638671361257 · 10−18 −6.82641834748896 · 10−23 −6.83051144901473 · 10−23

Table 8. Computed locations of the extremal values for the first eigenfunction
for the buckling plate problem

N = 3000 N = 4000 N = 5000

r1 0.0593622581801 0.0593622581801 0.0593622581801

r2 0.0035937907192 0.0035937907192 0.0035937907192

r3 0.0002169214273 0.0002169214274 0.0002169214274

r4 0.0000130932495 0.0000130932465 0.0000130932465

r5 0.0000007827203 0.0000007895344 0.0000007904724

Table 9. Ratios between consecutive extremal points for the first eigenfunction
for the buckling plate problem

N=3000 N=4000 N=5000

| r1/r2 | 16.51800642 16.51800642 16.51800642

| r2/r3 | 16.56724633 16.56724631 16.56724632

| r3/r4 | 16.56742490 16.56742856 16.56742858

| r4/r5 | 16.72787282 16.58350288 16.56382390

| rn/rn+1 | 16.56742776 16.56742776 16.56742776

The minimum value after the first sign change turned out to be very close to the
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corresponding value observed by Bjørstad [2]. Our results for the first sign change
also correspond well with the observations made in [14]. In [8] two sign changes
are reported, but the second sign change does not coincide with our results. In
[8] a 128× 128 uniform grid was used, and a second sign change was reported at
(2/128, 3/128). We find the second sign change at approximately (1/550, 1/550)
well outside the resolution of a 128 × 128 grid.

Finally, Table 5 and 6 show the computed values of the ratios in (7) and (8) and
compare these with the theoretical limit given on the last line of each table. We
observe a remarkable agreement of up to eight figures already for the second ratio.
From Table 5 it is seen that the ratio | u4/u5 | does not approximate the asymptotic
ratio | un/un+1 | as well as the other ratios. As mentioned in Section 3 problems
similar to the eigenvalue problem with known solutions have been solved very
accurately. We therefore believe that the roundoff error when computing u(r) can
be neglected and that the the ratio | u4/u5 | is further from the asymptotic ratio
due to lack of resolution as one moves closer to the corner. It should be noted,
however, how much the ratio improves from N = 3000 to N = 5000. The same
behavior can be observed in Table 6.

We next consider the buckling plate problem. This eigenvalue problem showed a
very similar behavior. Also in this case three Rayleigh quotient iterations proved
sufficient. In [13] Wieners reports an approximation λ = 52.3446911 for the first
eigenvalue. As seen from Table 2 our approximation is very close to Wieners
approximation even for small values of N . The first sign change is detected further
from the corner and the amplitude of the extremal values are larger than in the
biharmonic case. This also corresponds well with the observations made in [13].
Tables 7–10 present the same information about the buckling plate problem as
previously discussed for the biharmonic operator. From Tables [9] and [10] it is
seen that the ratios converge towards the same values as for the biharmonic case
in accordance with the prediction made in Section 2. As for the biharmonic case
the last ratios have lower accuracy due to lack of resolution.

Table 10. Ratios of consecutive extremal values for the first eigenfunction
for the buckling plate problem

N = 3000 N = 4000 N = 5000

| u1/u2 | 35860.76413 35860.76413 35860.76413

| u2/u3 | 36266.05089 36266.05089 36266.05089

| u3/u4 | 36267.54432 36267.54431 36267.54431

| u4/u5 | 41805.02072 36354.46729 36332.68233

| un/un+1 | 36267.54987 36267.54987 36267.54987

In conclusion, we note that the asymptotic form (4) is an accurate approximation of
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all the oscillations of the two eigenfunctions. With the numerical method presented
in this note combined with the asymptotic form given in Section 2 we feel that one
has the necessary tools to completely determine all properties of the eigenfunctions
considered.
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