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FAST NUMERICAL SOLUTION OF THE BIHARMONIC DIRICHLET
PROBLEM ON RECTANGLES*

PETTER BIORSTAD*

Abstract. A new method for the numerical solution of the first biharmonic Dirichlet problem in a
rectangular domain is presented. For an N X N mesh the complexity of this algorithm is on the order of
N? arithmetic operations. Only one array of order N” and a workspace of size less than 10N are required.
These results are therefore optimal and the algorithm is an order of magnitude more efficient than previously
known methods with the possible exception of multi-grid. The method has an iterative part where a problem
with different boundary conditions is used to precondition the original problem. It is shown that any initial
error will be reduced by a factor ¢ after at most k =1n (2/¢) iterations using the conjugate gradient method.
The conjugate gradient method is also shown to have a superlinear rate of convergence when applied to
this formulation of the problem. The purpose of this paper is to provide a description and analysis of the
new method.

1. Introduction. Consider the Dirichlet problem for the biharmonic operator in
a rectangle R with boundary 6R:

Au(x,y)=f(x,y), (x,y)€eR,
¢)) u(x,y)=gilx,y), (x,y)€dR,
un(x, Y)=g2(x’ Y), (x’ )’)EaR-

Here u, denotes the normal derivative of u with respect to the exterior normal.

In linear elasticity, u(x, y) can represent the Airy stress function or, as in the
theory of thin plates, the vertical displacement due to an external force. In fluid
mechanics, equation (1) describes the streamfunction of an incompressible two-
dimensional creeping flow.

Let R be covered by a uniform mesh with mesh size 4. For ease of exposition
only, we take the number of interior gridpoints in both coordinate directions equal
to an even number N. Thus there are N interior gridpoints and unknowns in the
discrete problem. Also, the mesh size & equals 1/(N + 1) in both coordinate directions.
The biharmonic operator is approximated using the 13-point stencil

1
. 2 -8 2
AﬁuEzz 1 -8 20 -8 1|u
2 -8 2
(2) 1

2
=A%y +%(D? +DiD3+D3D5+DSu+0 "

where D; =08/dx;, i =1 or 2. This stencil is only well defined for gridpoints P having
all their (nearest) neighbors in the interior of R. For a gridpoint P € R with a neighbor
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60 PETTER BIQRSTAD

Q € 6R we use the normal derivative boundary condition at Q to formally get a local
O(h?®) accurate extrapolated value at the missing (exterior) point in the stencil (2).
This results in a stencil of the form

1
L1282
(3) Aﬁu(P)-——‘F -8 21 -8 1| u(P)+2h%u,(Q)=AuP)+OHr™)
2 -8 2
1

when applied to a point P next to the left boundary. It can be shown [4] that the
discretization error |lu — u| is of order h*. A discussion of alternative approximations
and some of their properties is given in [3].

The discrete problem can be written as a linear system of algebraic equations

1
(4) ?Auh = b

where the matrix A is defined by the stencils (2) and (3). The elements of the vector
b can be computed from the data f, g, and g, evaluated at the appropriate meshpoints.

Many methods for the numerical solution of this linear system of algebraic
equations have been proposed, see for example Bauer and Reiss [2], Buzbee and
Dorr [6], Ehrlich [9], [10], [11], Golub [12], Greenspan and Schultz [14], Gupta [15],
[16], Jacobs [18], McLaurin [21], Parter [23], Smith [27], [28], [29] and VajterSic
[31]. The operation count for these methods varies between O (N 5/2 log N)and O(N'¥).
They also require more storage than the method proposed in this paper. Furthermore,
the methods with the most favorable complexity are all based on the coupled equation
approach [21], [31] and the actual computational work is often comparable to, for
example, the O(N 3 capacitance matrix method presented in [6]. (See [11].)

In [5] Brandt proposes a multi-grid method for a class of boundary value problems.
The solution of the biharmonic problem using this important method is mentioned.
The method may have the same O(N ?) complexity, but the analysis in [5] does not
seem completely rigorous for this particular problem.

Another well known method is sparse Gaussian elimination with a nested dissec-
tion ordering. The complexity of this direct method is O(N>) arithmetic operations
and O(N?log N) storage locations. This and other sparse matrix methods for the
given problem were studied and compared in [26]. The study indicates that both
constants in the above estimates are quite large and that a regular band solver is very
competitive even when the number of unknowns approaches one thousand.

On the basis of previously published algorithms, it was concluded in [24] that
the solution of the first biharmonic problem was an order of magnitude more difficult
than the solution of Poisson’s equation, on parallel computers. Our results show that
this is not the case.

We first describe a decomposition of the algebraic system, After a brief description
of the algorithm, we shall in this paper concentrate on an analysis of its rate of
convergence. The present paper is based on Chapter 3 of the author’s Stanford
University dissertation [3]. We plan to publish a paper describing efficient computer
implementations of the method in the near future.

2. Decomposition of the linear system. We will show how to decompose the
linear system (4) in a way that makes an efficient numerical solution possible. While
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we concentrate on the discrete case and provide a description that is quite close to
the computer algorithm, we note that a similar analysis is also possible for the
continuous problem. In that case the analysis is related to the solution of the separable
problem where Au, instead of u.,, is specified on two opposite parts of the boundary.
We will see in § 4 that the discrete analysis provides precise estimates of the rate of
convergence. The matrix A can be represented with the aid of two simple matrices.
Thus, let the negative of a one-dimensional discrete Laplace operator be the symmetric,
positive definite, tridiagonal N X N matrix

5) R =tridiag[-1, 2, —1].

Let U be the N X2 matrix defined by

(6) U =[e1, en],

where ¢; is the ith column of an N X N identity matrix I. The matrix A can be written
7 A=[I®R)+RODNFP+2(UUT @ +20 @ UUT).

The two last terms in (7) arise from the quadratic bouhdary extrapolation. The matrix
€] L=I®R)+(R®I)

is the standard 5-point difference approximation of the negative Laplace operator in
two dimensions. Let

9) B=L*+2(UUT®]I).

The matrix B represents a discrete approximation of the biharmonic problem with
Au specified rather than the normal derivative, on two opposite sides of the rectangle.
For this problem separation of the variables is possible. We will show that this problem
can be used in a special way, to precondition the original problem.

In the followinglet Pxps € R™™ "™ be the permutation matrix such thatif D € R™",
E eR"* then

(10) Pxu(D ® E)Pin=(E ®D).

Notice that if the vector x with components xjp i=1,2,--- M, j=1,2,--- N is
defined on a grid with M rows and N columns, then Pypx is the permuted vector
ordered along rows instead of columns. We also need the N X N orthogonal matrix

2 . g }
1 ={gl=+]—2— .
(11 Q={as} N+1{SmN+1
It is easy to show that the vectors q;, i =1, 2, - - -, N are the normalized eigenvectors
of R and that
QRQ =A,
Q=Q"=Q7,
(12)
A =diag (4)),
— (1 - cos LT =10 ...
A —2(1 cosN+1), i=1,2,---,N.

Q represents a real sine transform and y = Qx can be computed in O(N log N)
operations using the fast Fourier transform.
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Using the Sherman-Morrison formula [8],
(13) B =L —2U®ICUT®IL™>),
where C is the 2N X 2N matrix
C=I+2U"QDL>(U®I)

(14) T 5-1
=I+2((QU) ®NS (QU RI)
with
(15) §=[I®R})+2A®R)+(A*®I)].
S is a block diagonal matrix, each block S, k=1, -, N, being pentadiagonal.

THEOREM 1. The solution of the linear system Cx =y can be reduced to the solution
of the two linear systems .
Ti(x1+x2)=y1t+y2,

To(x1—x2) = y1—Yy2,
where x = (1), y=(3) and

T\ =I+ 8 Nil sin’ T St
! N+le ..o N+1°F°
8 N 2 km ~—1
T,=I+——
- N+1,-= 224 sin N+1Sk

Proof. Performing the matrix multiplications in (14) gives

k; i § 21 kuQkNSk
C=1+2| N .
; qukNSk ’ g qinSi

Partition the equations according to this block structure and use qin = (=1)** ' qi1
The final result is then obtained by adding and subtracting the block equations. 0

Equation (13) shows that the solution of a linear system Bx =y can be obtained
if one can solve linear systems with coefficient matrlces L and C. At most O(N?)
operations are required to solve the linear system Cx = y. This follows from Theorem
1 and the fact that QT,Q is diagonal. An important observation is that several O(N?
methods for solving the discrete Poisson equation (matrix L) are known; see, for
example, Bank and Rose [1] and Schréder, Trottenberg and Witsch [25]. Such a
method must be used in order to obtain an O(N?) method for the present problem.
Direct specialized algorithms for the solution of linear systems with coefficient matrix
B can also be devised. Alternatively, one can proceed using a method based on Fourier
transforms, since

1) B=I®QPINA’®N+2(A®R)+(I ®R*)+2(I ® UUT)1Pxw( ® Q)
= (I ® Q)P;{JNSPNN(I ® Q)a

where

(17) S=S+20®UUT).

S is block diagonal and the kth block of S is
(18) : S =8 +2UU".
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Using this decomposition, the solution takes O (N> log N) operatlons Next, consider
the formal inversion of the discrete biharmonic operator A

(19) A'=B 120 @U)CT'U®UTB™
where
(20) C=I+20®UNB U ®U).

If an O(N?) algorithm for the solution of a linear system Cx =y can be found, then
the discrete biharmonic equation car be solved in O(N?) operations.

THEOREM 2. The solution of the linear system Cx =y can be reduced to the solution
of the two linear systems,

Ti(x1+x2)=y1+ys,
Ta(x1—x3)= Y1—Y2

where
Ponx = (XI>, Pyny = (YI>
X2 y2
and
8§ N-1 , km
+—
=1 N+1,= 13SIn N+1Sk
8 N
T2—I+__ sin Sk .

N+1 .54, N+1

Proof. The proof is similar to that of Theorem 1 with § replaced by S and a
permutation P,y of the variables. a

The next theorem provides the basis for the analysis of an iterative method for
the solution of linear systems with coefficient matrix 7, r =1, 2.

THEOREM 3. The following matrix has the block structure
( Frl)TFrl 0 ]

0 (FYZ)TFI‘Z
forr=1, 2. Moreover, if we let y;; = (A, +A,-)2, ,=20—-1)+r,j,=2(j—1)+rand

8 N ) jmr

=1+—0r 2
ol N+1;- rrz+2 s N+1)

then F" is the N/2 X N/2 matrix with components

Pon(QT, Q) V*QT,Q(QT,.Q) V?Pin=1—- [

s 8 sin i sin Jsm

PN+ 1N "N+1

(l’l—d:/‘/a a]s »

Proof. Write

QT.Q= I+—§—— § sm2 T Qs:'Q
r N 1 k=rr+2, N+1 ,
N
=TI+ 8 ¥ sm V(I - QU (I, +2(QU) ¥ 'QU) (QU)T ¥ !

N+1k rnr+2, N+1
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where ¥, =diag (¥y;),j =1, 2, - - -, N. Itis clear that exactly the same kind of calcula-
tion that lead to Theorems 1 and 2 can be repeated, this time working with scalars.
The calculation is straightforward but tedious. For more details we refer to [3]. O

Observe that the two matrix problems associated with 7, (r =1, 2) have been
split into four smaller problems. This reduces the required computer storage since we
can process one problem at a time. The reduction into four subproblems is a con-
sequence of the symmetry of the biharmonic operator on the rectangle R. Each
subproblem corresponds to a subspace of the space of biharmonic eigenfunctions.
Consider the square R ={(x, y): |x| <1, |y|<1}. The discrete biharmonic eigenfunc-
tions with symmetry around the coordinate axis and symmetry or antisymmetry around
the diagonals are generated by the matrix F'', while the eigenfunctions with antisym-
metry around the coordinate axis and symmetry or antisymmetry with respect to the
diagonals are generated by F>>. The matrices F 2 and F?! generate eigenfunctions
which are antisymmetric under a rotation of #. This is a degenerate case and for each
eigenvalue in this group there are two eigenfunctions of the same shape, one rotated
/2 relative to the other. A second important observation is that the elements f;; can
be computed easily after some preprocessing of the quantities that appear in the above
formula. This requires only O(N?) operations and O(N) storage and provides an
alternative to the implicit definition of 7, given in Theorem 2.

3. A preconditioned conjugate gradient method. A very attractive iterative
scheme for the solution of a symmetric positive definite linear system Ax = b is the
conjugate gradient method. From an arbitrary initial vector x, the method generates
a sequence of approximations {x,} to the solution x defined by

Xn+1=Xn +anpm a, = (rm rn)/(Apm pn)’
Pn+1=’n+1+Ban ﬂn=(rn+1’ rn+1)/(rm rn))

where r, =b —Ax, and po=ro. The method is due to Hestenes and Stiefel [17]. The
iteration does not require knowledge of the matrix elements, since only matrix vector
products are needed. It therefore follows from Theorem 2 that this iterative method
can be used to solve the linear system Cx =y. It can be shown [3] that this method
requires O(N 1/3) iterations resulting in an O(N 7/3) method for the biharmonic
problem.

Suppose, instead of applying the conjugate gradient method directly to a matrix
T, that we split 7' by writing

T=T-(T-T).

Assume that it is easy to solve linear systems with the matrix T. In this case the
conjugate gradient method can be used with a preconditioning matrix T corresponding
to the above splitting of 7. An analysis of this technique is given in Concus, Golub
and O’Leary [7]. The process can be viewed equivalently as applying an ordinary
conjugate gradient iteration to the transformed system T-Y2TT7'* with a change
of variables. If 77! is an approximate inverse of 7, then the convergence rate will be
much improved. Two effects can contribute to this. First, the ratio between the largest
and the smallest eigenvalue g max/ & min is Often substantially reduced when we consider
TY2T T'/* instead of T. Second, and often more important, the spectrum of T-*1
T2 will usually have a more favorable distribution. Typically, there will be a cluster
of eigenvalues close to one, and only a few outlying eigenvalues. We propose to solve
the linear systems T.x =y, using T, as a preconditioning matrix. We will show in the
next section that both of the above mentioned effects are prominent in this case.
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4. Convergence of the iterative method. We will in this section prove properties
about the spectrum of 7', T This enables us to determine the rate of convergence
of the iterative method proposed in the previous section. It follows from Theorem 3
that the spectrum of 7, 'T, can be studied by considering the singular values of the
four matrices F™, r=1,2, s =1, 2. The following lemma enables us to express the
quantity a, defined in Theorem 3, in closed form.

LeMMmA 1. For 0<a <1,

.2
N N
4a2 Z i 3
j=1,2,-- 2 ki
(1+a 2a cosN+1)
2 N+1,\2 2
a (@) (2IN+1) 1+a )}
= + — —_
2(N 1){1_a2 1_(aN+1)2\1_(aN+1)2 1_a2
and
: .2 Jm
N sin 1
4q Y N ;
j=2’4’... 2 w
14a%— )
( a“—2a cosN_+_1
2 N+1 2
a a ( N+1 1+a )}
= + —_ — .
W+ 0| - T o o
Proof. Let

4a’sin’ x
(1+a*—2a cos x)*

flx)=

Poisson’s summation formula gives the relation

N+1[

1
Ef(’")— Fy+2 Z F2k(N+1)]

1) 2fo+ z f(NH)

where
F, = I f(x) cos kx dx.
0

Integration by parts reduces this to well known integrals which can be found in
[13]. When substituting the result back into (21), we are left with geometric series.
The first result is obtained by performing the summations. The second result, where
the sum extends over even integers only, follows in the same way by a change of
variable. 0O

The sum over odd integers can now be found as the difference between the two
expressions in Lemma 1. Together these results furnish closed form expressions for
the individual matrix elements f;; defined in Theorem 3. The elements are positive
and increase with N. The following important lemma gives the precise form of the
limit matrix as the dimension N becomes large.

LEMMA 2. The matrix F" defined in Theorem 3 has elements:

rs=_8_ (i’jS)3/2 a"Sa’S' O( 1 )
Do 7+ 00 AN +1)?

r=1,2, s=1,2,
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where
ip=20-1)+r, =2(j-1D+r
and a;’ and b}° are exponentially close to one in j and given by
af=1+(-1y"te7,
b =(1+2(=1)Yme i —eHm/2,

Proof. Derive Taylor expansions for each element f;; in the variable 1/(N +1)
around zero. This is tedious to do by hand and the symbolic manipulation program
MACSYMA [20] was used to derive the above expressions. [

As an illustration of Lemma 2, the 3 X 3 leading principal minors of the (infinite)

limit matrix F% are compared with the corresponding minors of Fg3 for N =63 in
Fig. 1. Notice that the approximation is quite good already for this value of N.

545 .122 .038 [ 546 .122 .039
Fil=| 122 209 .125 Fl=| 122 212 .128
.038 .125 .123 039 .128 .127
319 .078 .030 320 .079 .031
Fi=| 218 .167 .093 F2=| 219 .169 .096
.093 .132 .108 095 .135 112
323 .144 065 325 .146 .067
FZ =| .144 156 .107 F2 =| 146 .159 .111
.065 .107 .101 067 .111 .106

F1G. 1. Leading principal minors of F for N =63 and N =00,

The next lemma can be used to obtain bounds on the row and column sums of F.
LEMMA 3. Let

- (A e
i= ,Zl (iz' +"].2)2, r=1or?2,
1= r r

for some given i€ (1,2,3,-++). Then
ﬂ_lzz(z)”:skzﬁg é(z)”‘
16 i32\5/] T7'T 16 i 32\5

for all positive i and r =1 or 2.
Proof. Let

P e N0/
RGP S A+

Consider
3/2
flx)= T+
with

3\ 25/3\**
o= t(VD) -5 0mrme
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and

N

j flo de =32,

Clearly

V2
lim §; = J f) de ==,
By considering the discrete sum for finite i and the fact that f is monotone on each

side of its maximum, it follows that

a2 1 2 1

o S max =9 =7+ max-
g fmex=Si= 8 7f

Doing the same analysis for the even sum Scyen,
12 G

Seven == PPEEYRVVE
i j=aa (L+(j/D)?)?
results in

21 2 1

ax—--Se-,ven5 + < 8max
T6 i&m 16 5™

where the appropriate function is

22532 °° ~/2
8= e j gy dv ="

and

gmax=§ ( \[2—%) = fmax-

Combining these two results proves the lemma. 0
We can now give the following bound on the singular values of the matrices F".
THEOREM 4. Let {0:}iL, be the singular values of one of the matrices F™ defined
in Theorem 3. Then

0=0,<0.8,

independent of N.
Proof. An upper bound for the largest singular value o; of the matrices F™ will
be derived. The following elementary inequaltiy will be used:

o1 = ”(Frs)TFrs”g2 = (llF’slllllFrs"oo)l/z
1/2
= [ (max217) (maxz7)]
I LI
since all matrix elements are positive. It can be verified by calculation that

(o] 1 .

Y fij <.759,
i=1

and that this row sum is larger than any other bound that can be obtained for small
i (say i <20). Lemma 3 shows that this value certainly cannot be exceeded for any
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larger i. (The factors ai° and b{° in Lemma 2 are exponentially small in i and present
no difficulties.) O

Computations show that the largest singular value omax always belongs to F''.
A block Lanczos code written by Underwood [30] was used to compute this value
for N ranging from 1 to 2047. The results, together with the bound from the proof
of Theorem 4, are shown in Fig. 2. It should be noted that the smallest row sum of
the matrices F™ can be used to obtain a lower bound on o,.x as well. Calculations
indicate that omax >.7 as N tends to infinity.

1.0

08¢t

0.4 r

0.2

I 1 A
1 2 3 4 35 6 7 8 9 10 11 12
logz (N +1)

—

F1G. 2. The largest singular value as a function of log, (N + 1) (below), compared with the corresponding
Gerschgorin bound (above).

The next lemma shows that the singular values o; cluster at zero.
LEMMA 4. The following bounds on the sum of the singular values {o:} hold:

N/2
g;<InN ifo;belongsto F'' or F**,
=1

14

N/2
Y o?<InN if o; belongs to F2orF*,
i=1
Proof. Consider the matrix F 1 Since F'! is symmetric, it is sufficient to look at
its trace.
N N2 1/ai\*_1 1
Y F,-l,-1 =3y — —(b—ﬂ“) §-—(‘y +InN+6 +O(—)>
i=1 h T N

i=17T 1

where vy is Euler’s constant, y =.5772 - - - and § is the contribution from the small
term a;'/b;'. Letting N - oo, this shows that the constant in front of the In N term
in the lemma (taken equal to 1 there) tends to 1/7 as N becomes large. A similar
argument gives the same result for F>, It is an obvious conjecture that this result is
true also for F'2, but since it is of little importance in this context a weaker statement
is given. This can be proved by considering ¥ ; (F i?)? (the Frobenius norm of F'?). O

We now conclude this section with two theorems describing the rate of conver-
gence of the conjugate gradient iteration proposed in § 3.
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THEOREM 5. If the conjugate gradient algorithm is used to solve the linear system
T.x=y with the splitting T, =T, — (T, —T,), then the initial error will be reduced by a

factor ¢ after at most
2
k=In (—)
£
iterations.

Proof. Let u1=u,=--+=uy be the eigenvalues of f"flT,. It is well known from
the theory of the conjugate method [19] that

éi(ﬂN +M1)
Ty \un —p1

where Ty is the kth Chebyshev polynomial of the first kind. Ty (x) = cosh (k cosh™ x)
for x > 1. Therefore

cosh™ (1/¢)

_ +u1)
cosh™? (II«N “ 1)
MN — M1

k=

Using cosh™' (1/¢)<In(2/e), u1>1-.8>=.36, and cosh™ ((1+.36)/(1—.36))>1
gives the desired result. 0O

This theorem establishes convergence to any prescribed accuracy m a constant
number of iterations independent of N. Smce each iteration takes O(N? ) arithmetic
operations, the description of an O(N?log N) algorithm for the first biharmonic
problem using (16) is complete. If the accuracy is required to increase with increasing
N as N7 for a fixed p, then O(log N) iterations are required and the overall asymptotic
operation count remains unchanged. (In order to be consistent with a decreasing
discretization error, p should be 2.)

However, under this assumption the use of an O(N?) Poisson solver will not
make the overall algorithm any faster if the solution on the final grid is computed
directly. In order to have an O(N?) method, it is necessary to compute the solution
on a sequence of grids, reducing the error by a fixed amount on each grid. (The total
work on all the coarser grids will only be O(N?).)

For practical computations (N =2047), the use of the computed spectral radius
Omax=.6343 for N = 2047 (see Fig. 2) strengthens the above theorem to

1 2
=-In(-).
k 2 n(e)

As an illustration, with ¢ = 107"° this estimate gives k <12.

The above theorems show that the conjugate gradient iteration converges at a
very fast linear rate. The next theorem complements this by showing that asymptotically
the rate of convergence is in fact superlinear.

Recall that a sequence {ex}r -0 converges R-superlinearly to zero if and only if
limk sup [lex['’* = 0. An excellent reference discussing the convergence of iterative
processes is Ortega and Rheinboldt [22].

THEOREM 6. The conjugate gradient method defined in Theorem 5 has an R-
superlinear rate of convergence.

Proof. Using the optimality property of the conjugate gradient iteration,

Elleal

mi—
lecll= (cx)“[lecll= max H :
melwifily j=1
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where ||| is the error in the appropriate norm at iteration k. Let the set {u;}i1 be
ordered such that u; = w1 for all i. Then

lell=  max n B
pefwiorsr j=1

Elleal
2

2
P
= max ]I —1’ > |leoll
oefoiliok+1 j=1

<H = zlleoll

Using the arithmetic-geometric mean inequality, Lemma 4 and the fact that o; <1
for all j gives
2

1k 1 InN
= (f 5 17L5) ed = (3 22 2) lel.

j=1

This inequality shows that the constant

InN
)
1

A

&=

C l1-0o
tends to zero as k increases for fixed N.

However, since the concept of R -superlinear convergence is most meaningful in
the case of an infinite number of iterations and the conjugate gradient method has
finite termination on finite-dimensional problems, consider the limiting case as N - co.
Lemma 4 implies that lim; ..« o« =0, and therefore

1k of
hmck—hm< ¥ ’2)=0. 0

k>0 \k ;=1 1—0;
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