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THE DIRECT SOLUTION OF THE BIHARMONIC EQUATION ON
RECTANGULAR REGIONS AND THE POISSON EQUATION
ON IRREGULAR REGIONS*

B. L. BUZBEE anp FRED W. DORRfY

Abstract. The discrete biharmonic equation on a rectangular region and the discrete Poisson
equation on an irregular region can be treated as modifications to matrix problems with very special
structure. We show how to use the direct method of matrix decomposition to formulate an effective
numerical algorithm for these problems. For typical applications the operation count is O(N?) for an
N x N grid. Numerical comparisons with other techniques are included.

1. Introduction. Modification methods obtain the solution of a matrix
equation Au = v by solving another equation Bu = w. Usually B differs only
slightly from A, and B is chosen so that the equation Bu = w can be solved
efficiently. The modification w of the right-hand side v must be computed, and in
order to determine w we need to know certain elements of B™'. Since these ele-
ments are independent of v, this computation can be done as a preprocessing
phase. Using the results of the preprocessing, the solution of a particular equation
Au = v can then be done very efficiently.

The capacitance matrix approach has been used by several authors to solve
problems that are modifications of elliptic difference equations [5], [16], [26],
[271, [33]. In [7] we described this technique in detail and indicated how it could
be applied to the solution of the discrete Poisson equation on irregular regions.
A similar approach was used by Golub [17] in deriving an algorithm for the
solution of the discrete biharmonic equation on rectangular regions. In both
cases, the algorithms were presented in a general form and without detailed con-
sideration of any specific method for the solution of the modified matrix problem.
In this paper, we show that the direct method of matrix decomposition can be
used effectively in these algorithms. Matrix decomposition has been used in
Poisson solvers by Christiansen and Hockney [9], Hockney [25]-[27] and Hughes
[29], and the method has been described for more general problems in [8].

Efficient methods for the solution of the discrete biharmonic equation on
rectangular regions have recently received a great deal of attention. The direct
method described by Golub [17] has been examined experimentally by Walker
[36] and Ehrlich [14]. Application of block Gaussian elimination to this problem
was described in Bauer and Reiss [3] and Angel and Bellman [1]. Iterative methods
that treat the biharmonic equation as a coupled pair of Poisson equations have
been examined by Axelsson [2], Ehrlich [11]-[14], Greenspan and Schultz [18],
Gupta [19]-{21], Gupta and Manohar [22], McLaurin [30], and Smith [31]-{32].
Iterative methods applied directly to the biharmonic difference equations have
been investigated by Fairweather, Gourlay and Mitchell [15] and Hadjidimos
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[23]-[24]. The direct method which we shall describe requires O(N?) operations
and 3N?2 storage locations to solve the discrete biharmonic equationonan N x N
grid.

For the discrete Poisson equation on an irregular region, we let p denote the
number of modified equations (cf. [7]). We also let 6(N) denote the number of
operations required to solve a discrete Poisson equation on a rectangular region.
Neglecting lower order terms, §(N) = ¢,N? for an arbitrary value of N and
O(N) = c,N?log, N if N is restricted to be 2* — 1 for an integer k [10]. The
direct application of the capacitance matrix approach described in [7] requires
pO(N) + O(p®) operations for preprocessing and 26(N) + O(p?) operations for
each particular solution. The method which we shall describe requires O(pN 2+ pY)
operations for preprocessing and 26(N) + O(p*) operations for each particular
solution. The storage requirements are the same for both direct methods.

2. Algorithm for the biharmonit equation. Consider the biharmonic boundary
value problem

A*u(x,y) = f(x,y) inR,
u(x,y) = g(x,y) ondR,
ou(x, y)

X,

X,

on

= h(x,y) onodR,

where R = (a,b) x (c,d) is a rectangle and du(x, y)/dn is the outward normal
derivative of u(x,y) on OR. Imposing a uniform mesh in both directions, we
define

Ax =2 =a+iA
x—M+1, x; = a + iAx,
d—c
Ay = = iA
y N+ yj=c¢+JjAy,

and we seek an approximation u;; = u(x;, y;). Ordering the unknowns by vertical
lines, we let

Uiy u;

Uiz uy
w=| . |, U=

Un Uy

Using the standard thirteen-point difference approximation to the biharmonic
operator [4], [38], [39], we must solve a linear system of equations AU = V (we
shall use capital letters such as U, V to denote vectors defined on the grid points

(xi’ y;))
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The matrix A4 can be written as A = B + D, where
(P> 43 2P I 0 |
2P (P? + 2I) 2P I
5 I 2P (P? +2I) 2P I |
0 I 2P (P +2I) 2P

i 1 2P (P*+3)

—2(p + 1) p 7

p -20+1) »p 0 Al
P = . s, p= K;) ,
0 p —2p+1 P
L P —2p+1)
. h _
E 0
D = 2p?
0 E
L E |
and
g .
0 0
E =
0 0
L 1]
Since
D 12 [ar ]
I P I 0 0 0
B=| |+ :
0 1 P 1 0 0

L 1 Pl L 21

both 4 and B are positive definite. The right-hand side V' is v;; = (AX)*f(x;, y))s

with additional terms to include the boundary conditions.
We consider the matrix B as a modification of the matrix A and use the

capacitance matrix approach to solve the modified matrix problem. Systems



756 B. L. BUZBEE AND FRED W. DORR

involving the matrix B are solved using matrix decomposition. In [17] Golub
combined the Woodbury formula and matrix decomposition to derive a similar
method that required O(N*) operations and 9N? storage locations (cf. the im-
plementation of a modification of the Golub algorithm described in [14]). We
first review these basic concepts and then show how to efficiently apply them to
this particular problem.

Following the capacitance matrix development in [7], we assume that we
are given an n x n matrix A and an integer p with 1 < p < n. We modify p rows
of A to obtain the matrix B, and B is chosen so that we can efficiently solve
Bu = w. For convenience of exposition we assume that the first p rows of 4 are
changed. This is seldom the case in practice, but we can accomplish the same
result by using an implicit indexing scheme. Partition 4 in the form

)
a=1{"",
Az

where A, is a p x n matrix and A4, is an (n — p) x n matrix. By assumption,

)
B=1{"],
A,

where B, is a p x n matrix. The preprocessing stage of the algorithm requires the
computation of the p X p capacitance matrix

I
i),
0

where the identity matrix is p x p. We shall also assume that the capacitance
matrix is factored into an LU decomposition [37, pp. 93-110] as part of the pre-
processing phase. To find the solution to a particular equation Au = v, we par-
tition v in the same way as 4 and proceed in the following steps:

1. Computeu, = A,B" v,

2. Solve CB = v, —1u,,

3. Solve Bu = v + ((':)

To solve a system BU = W we use the method of matrix decomposition as
given in [8]. In describing this algorithm it is useful to think of the block-vectors
U = (u;) and W = (w;;) as two-dimensional arrays. Thus u; can also be thought
of as the ith row of U. The orthogonal matrix R = (r;;) of eigenvectors of P is

given by
/2 . jn ..
Fij = N+lsmN+1’ l=i,jsN,

and the associated eigenvalues are

_ m )
A,—Z[p(cosN+1 1) IJ.

The solution of BU = W is obtained as follows:
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1. Compute the vectors w; = Rw;. In practice, this means that we multiply
each row of W by R.

2. Reorder the array W’ = (w;) by horizontal lines instead of vertical lines
to generate an array W” = (w}), and then solve the pentadiagonal systems

-
(i,? +3) 24; 1
24; (/112- +2) 24; 1 0
1 24; (lf +2) 24 1
uf = wj.
0 1 24; (if + 2) 24;
L 1 24; (/1,2 + 3)]

In practice, this means that we solve the systems using the columns of W for each
right-hand side and then store each vector u] in the columns of U. Of course, U
can overwrite W if this is desired.

3. Reorder the array U” = (u}) by vertical lines instead of horizontal lines
to generate an array U’ = (uj) and then set u; = Ruj. In practice, this means that
we multiply each row of U by R.

Given these two basic methods, we now incorporate them into an efficient
algorithm for the solution of the biharmonic equation.

Step 1. Preprocessing. The matrix B is obtained by modifying the equations
of A corresponding to the mesh points {(x;,y)|Il £i< M, j=1,N}; thus
p = 2M. Since A = B + D, the capacitance matrix C is given by

C=1+2p*B,

where B is the p x p minor of B~! corresponding to the modified mesh points.
Since B is positive definite, so is B and hence C. This means that we only have
to store a triangle of C and we can use Cholesky decomposition [37, pp. 9-30]
to factor C and solve the capacitance matrix equation.

To compute the kth column of B = (b;,) we proceed as follows: (i) set T = 0
at all mesh points, (ii) determine the kth modified mesh point and set T = 1 at
that point, and (iii) find the value of the solution of BS = T at the ith modified
mesh point and store the result in b;,. Note that we only need p components of the
vector S. .

There are symmetries in the biharmonic operator and these particular
right-hand sides that can be used to advantage in the calculation of the capacitance
matrix. Because the solution can be reflected about the lines x = (a + b)/2 and
y = (¢ + d)/2, the solution for the modified mesh point (x;, y,) (1 £i < [(M + 1)/2])*
also determines the solution corresponding to the modified mesh points
(Xpr+1-1> Y1) (x;, yy)and (xXps4 1 —i» ¥n)- Thus we only have to calculate [(M + 1)/2]
columns of C instead of all 2M columns.

The important part of the algorithm is the fact that we can determine each
required column of C using O(N?) operations and O(N) storage locations.> To

' [(M + 1)/2] is the greatest integer less than or equal to (M + 1)/2.
2 When discussing operations and storage, we shall assume that M = N.
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show this, we examine the application of matrix decomposition to the calculation
of a column of C. Because there is only one nonzero row of T and that row is a
unit vector, the multiplication of each row of T by R is done implicitly. The
pentadiagonal systems are positive definite, so to solve all of them requires O(N?)
operations. Finally, instead of multiplying each row of S by R, we accumulate
only the 2N sums of those components that correspond to the modified mesh points,
which requires O(N?) operations.

After C is computed, we factor it using Cholesky decomposition. Thus the
total cost of the preprocessing is O(N?3) operations and 2N2 4+ O(N) storage
locations (2N? + N for the capacitance matrix and O(N) for temporary storage).
We now proceed with the solution of a particular equation AU = V using the
capacitance matrix.

Step 2. Compute A,B~'V. This part of the algorithm proceeds as in the
calculation of a column of B in Step 1. Since V may be full, the multiplication of
each row of V by R requires O(N?) operations. The solution of the pentadiagonal
systems requires O(N?) operations. As in Step 1, we only need p components of
the solution so we accumulate only the 2N sums of those components that cor-
respond to the modified mesh points. This requires O(N?) operations, so that the
total cost of this step is O(N?) operations and N? + O(N) additional storage
locations (N? for the right-hand side ¥ and O(N) for temporary storage).

Step 3. Solve the capacitance matrix equation. Using the factored capacitance
matrix, this step requires O(N?) operations and O(N) additional storage locations.

Step 4. Solution of the modified matrix equation. We add the vector B deter-
mined in Step 3 to V at the modified mesh points. The final system is then solved
using the full matrix decomposition algorithm. One effective method of imple-
mentation is to overwrite the solution U on C and leave V unchanged, which
preserves the storage requirement at 3N2. If the capacitance matrix is to be used
again, the solution U can be overwritten on V. lu this case, it is mast efficient ta
store half of the symmetric matrix R, thus increasing the storage to 3.5N2. In
either case, the number of operations for this step is O(N3).

In solving nonlinear or time-dependent problems, we frequently have to
solve a sequence of equations

(A + o2)U, =V, n=0,1,2,---.

The algorithm given above can be applied directly to the matrix A + a2, since
this*only adds «? to the diagonal of each of the pentadiagonal systems. After the
preprocessing has been done, the solution time for each new right-hand side is
essentially the O(N?) operations required for Steps 2 and 4. If N is restricted to
be 2¥ — 1 for an integer k, the fast Fourier transform could be used to reduce
this time to O(N? log, N) operations.

3. Numerical results for the biharmonic equation. We have implemented this
direct method for the biharmonic equation and tested it on a variety of problems.
Tables 1 and 2 summarize some results for a case in which Ax = Ay = h and the
solution U is composed of random numbers uniformly distributed on the interval
[1,2]. The computer used was a CDC 7600 and all subroutines were written in
ForTRAN. The right-hand side was determined by multiplying U by the matrix
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TABLE 1
Solution of the biharmonic equation using FORTRAN subroutines

Number Maximum Computation Scaled.
h Method of iterations error time (sec.) coml?utallon
time

Direct 1 — 5.409(—11) 0.185 1.00

3= Direct 2 — 5.409(—-11) 0.104 0.56
Ehrlich 1 21 2.073(—4) 2.701 14.60

Direct 1 — 6.697(—10) 1.370 1.00

& Direct 2 — 6.697(— 10) 0.747 0.55
Ehrlich 1 32 1.006(—4) 30.762 2245

Direct 1 — 3.228(—38) 10.453 1.00

o Direct 2 — 3.228(—-9) 5.655 0.54
Ehrlich 1 51 _ 2811(=9) 377903 36.15

TABLE 2

Solution of the biharmonic equation for M = 2* — | using FORTRAN subroutines

Scaled

h Method Number Maximum Computation com;?neation
of iterations error time (sec.) time
Direct 1 1.461(—10) 0.376 1.00
& Direct 2 1.461(—10) 0.209 0.56
Ehrlich 2 24 1.705(—4) 1.582 421
Direct 1 — 2.171(—-9) 2.812 1.00
= Direct 2 — 2.171(-9) -1.530 0.54
Ehrlich 2 39 4970(-5) '11.073 394

A. This is an interesting example because it gives an indication of the round-off
error that can be expected in this problem. For the case M = 2% — 1, we could
improve the speed of the direct methods by using the fast Fourier transform, but
we have not done so.
The tables also include results for the semidirect method examined by
Ehrlich [11], [14]. The abbreviations used for the methods are:
Direct 1—direct method,
Direct 2—direct method using precomputed and factored capacitance
matrix,
Ehrlich 1—Ehrlich iteration using matrix decomposition [8] for the Poisson
solver (valid for arbitrary M),
Ehrlich 2—Ehrlich iteration using odd—even reduction [6] for the Poisson
solver (valid for M = 2F — 1).
For the Ehrlich method, we use the iteration parameters described in [14] and
terminate the iteration when

m _ n—1) 2
n{a}xlui;' ui;” Y £ 0.1(Ax)%.

The initial guess is u{;’ = 1.5. Because the convergence criterion is a function of
Ax, the number of operations required for the solution is O(N7/2 log, N) using
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matrix decomposition and O(N>/%(log, N)?) using odd—even reduction (cf. [14]).
The storage is 4.5N? locations because we have to retain the right-hand side V.

4. Numerical results for the Poisson equation. The techniques developed in
§2 can also be applied to modified problems such as those described in [7] for
Poisson equations on irregular regions. The only significant difference is that we
may not be able to take as much advantage of symmetries in the calculation of the
capacitance matrix. If there are p modified equations, the number of operations
is O(pN? + p’) for Step 1, O(N3) for Step 2, O(p?) for Step 3, and O(N?3) for Step 4.
As we remarked earlier, if M = 2% — 1 the operation count for Steps 2 and 4
can be reduced to O(N? log, N).

To illustrate the application of this method, we have considered the example
treated in [7]. The region is a square with sides of length 1 that has a symmetrically
located square removed from its center. We consider two cases: for Region 1 the
inner square has sides of length §, and for Region 2 the inner square has sides of
length 1. We solve the Poisson equation with Dirichlet boundary conditions for
the function u(x, y) = x> + y*. All of the computations were performed on a
CDC 7600 computer.

TABLE 3
Solution of the Poisson equation using FORTRAN subroutines

. Maximum Computation Scaled.
Region h p Method . computation
error time (sec.) time
SOR 1.566(—4) 0.267 1.28
SLOR 1.436(—4) 0.322 1.54
n 16 ADI 2.672(-5) 0.215 1.03
32 Direct 1 4.370(—13) 0.557 2.67
Direct 2 4.370(—13) 0.209 1.00
Direct 3 4.370(—13) 0.066 0.32
1
SOR 2.497(-5) 2.571 1.85
SLOR 2.998(-5) 2.752 1.98
. 0 ADI 1.950(—5) 1.151 0.83
o4 Direct 1 1.890(—12) 4511 3.25
Direct 2 1.890(—12) 1.389 1.00
Direct 3 1.890(—12) 0.280 0.20
SOR 1.270(—4) 0.266 0.73
SLOR 1.107(—4) 0.307 0.84
n By ADI 2.627(—5) 0.171 0.47
32 Direct 1 3.695(—13) 1.051 2.88
Direct 2 3.695(—13) 0.365 1.00
Direct 3 3.695(—13) 0.067 0.18
2
SOR 1.664(—5) 2.536 0.96
SLOR 3.467(-5) 2.585 0.98
1 64 ADI 1.842(-5) 1.090 041
o4 Direct 1 1.535(—12) 8.760 3.31
Direct 2 1.535(—-12) 2.649 1.00

Direct 3 1.535(—12) 0.284 0.11
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The results listed in Table 3 are for a program written entirely in FORTRAN.
The methods used are:

SOR  —successive point overrelaxation [34, p. 58],

SLOR —successive line overrelaxation [34, p. 80],

ADI  —Peaceman-Rachford alternating direction implicit iteration [35,
Chap. 6],

Direct 1—direct method including preprocessing time (calculation of the
capacitance matrix implemented as described in [7]),
Direct 2—direct method including preprocessing time (calculation of the
capacitance matrix implemented as described in this paper),
Direct 3—direct method using precomputed and factored capacitance
matrix.
The initial guess for the iterative procedures is identically zero, and the iterations
are terminated when the maximum difference between iterates is less than 0.1(Ax)>.
The iteration parameters used are those for the imbedding rectangle, and for
ADI the parameters for cycles of length four are determined by the algorithm
described in [35, Chap. 6]. The direct methods use odd—even reduction [6] for
the Poisson solver, so we are taking advantage of the fact that M = 2% — 1. The

TABLE 4
Solution of the Poisson equation using some assembly language subroutines

Scaled
Region h p Method Maximum Computation computation

error time (sec.) time

SOR 1.566(—4) 0.265 243

SLOR 1.436(—4) 0.192 1.76

1 16 ADI 2.672(-5) 0.117 1.07

32 Direct 1 4370(—13) 0.312 2.86

Direct 2 4370(—13) 0.109 1.00

Direct 3 4.370(—13) 0.039 0.36

1

SOR 2.497(-5) 2.554 3.83

SLOR 2.998(—5) 1.594 2.39

1 32 ADI 1.950(—5) 0.614 0.92

o4 Direct 1 1.890(—12) 2271 340

Direct 2 1.890(—12) 0.667 1.00

Direct 3 1.890(— 12) 0.151 0.23

SOR 1.270(—4) 0.265 1.42

SLOR 1.107(—4) 0.185 0.99

1 32 ADI 2.627(—5) 0.094 0.51

32 Direct 1 3.695(—13) 0.588 3.16

Direct 2 3.695(—13) 0.186 1.00

Direct 3 3.695(—13) 0.040 0.22

2

SOR 1.664(— 5) 2.523 2.03

SLOR 3.467(—5) 1.510 1.21

1 64 ADI 1.842(-5) 0.575 0.46

64 Direct 1 1.535(—12) 4428 3.56

Direct 2 1.535(—12) 1.244 1.00

Direct 3 1.535(—12) 0.151 0.12
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differences between Table 3 and Table 1 in [7] are due to: (i) different computers
(CDC 7600 for Table 3 and CDC 6600 for [7]) and (ii) different programming
languages (FORTRAN for Table 3 and some assembly language in [7]). In addition,
in [7] we recomputed the right-hand side in each iteration of the iterative pro-
cedures but in this program we have saved it. This increases the storage require-
ment but reduces the execution time.

Because of the “instruction stack™ on the CDC 7600 computer, it is some-
times possible to significantly accelerate numerical algorithms by programming
short loops in assembly language. In Table 4 we give the results for running these
examples with the vector addition and inner product routines and tridiagonal
system solver written in assembly language. It is interesting to note that the
qualitative as well as the quantitative aspects of the results have changed for this
problem. Hockney [28] has reported some similar results comparing the same
FORTRAN programs on different computers.

Acknowledgment. The algorithm for the biharmonic equation described in
this paper is closely related to earlier work of Professor Gene Golub. We have
benefited greatly from several discussions with Professor Golub, and he provided
much of the inspiration and incentive for this work.
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