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SOLVING THE BIHARMONIC EQUATION AS COUPLED
FINITE DIFFERENCE EQUATIONS*

LOUIS W. EHRLICHfY

Abstract. A technique is proposed for solving the finite difference biharmonic equation as a
coupled pair of harmonic difference equations. Essentially, the method is a general block SOR method
with convergence rate O(h'/?) on a square, where 4 is mesh size.

1. Introduction. In[7],J. Smith presented a method for solving the biharmonic
difference equation as a pair of coupled finite difference equations. He showed that
for a rectangle the convergence rate of his method was 1 — K, h as h — 0 for some
constant K. Here, we propose an iteration scheme for which Smith’s is a special
case. Our method has optimum convergence rate 1 — ./ K,h, for some constant
K,, i, an order of magnitude faster. (h is the mesh size.)

2. The equations. For notational simplicity, we will consider a simpler system
of equations than Smith [7]. Our results, however, will be applicable to more
general systems.

Consider, for u(x, y):

1) A% = Uy + 2y + Uy, =0, 0<x,y<1,
u=0, x=0,1 or y=0,1,

2.2) u,=0, x=0,1 or y=0,
u,=1, y=1,

where u, is the outward normal derivative on the boundary of the unit square.
The equation (2.1) can be replaced by

Au=u,, +u, =0,

23) Ausvxx+vw=0, 0<x,y<l1,

with boundary conditions (2.2). We propose to solve the finite difference analogue
of (2.3) and (2.2).

Superimpose a square grid over the unit square with mesh size h = 1/N + 1
for some positive integer N. Let Q be those grid points (x, y) = (ih, jh) for 1 < i,
j £ N (i.e, the interior), and let 0Q be those points for which i,j =0 or N + 1
(i.e., the boundary). Let u be a function where u(x, y) = u(ih, jh) = u;;. Define

Ui g+ Wi qj+ Uijeg + U5 — 4y
h2

(2.4) Ay =
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and
oy~ 1 =1,--,N
h b J b b 9
UN+1,j — UN,j
9 1’ ’N’
h
(2.5 Op =
Uio — Uiy
: . = 1’ 9 N,
h b
u; — Uu;
| t,N+1h 1,N’ l=1,,N

To approximate the solution of (2.2) and (2.3), we approximate Au with A,u.
At the boundary, we assume an extra row of unknowns outside the region and then
use A,u = v and the boundary conditions of u to approximate boundary conditions
for . Combining these equations, we obtain, in the manner of Smith [7], the linear
system

Lu = h?v,
(2.6) ) D
Lv + PMu = W
or

L*u + 2Mu = (L?> + 2M)u = D,

where D contains the boundary conditions and where

L, I - 0 -4 1 0
I L, I : 1 -4
L= : s Li= >
I 1
0 1 LN N2x N2 0 1 -4 NXxN
@2.7) i=1,2,---,N,
T+ 1 0 1 0
T 0
M = T , T =
T 0
0 T+ I yaxne 0 1 nxn

We note that if (2.1) is not homogeneous, or if less of the boundary conditions are
homogeneous, then extra terms will appear on the right of (2.6) (see Smith [7]).
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3. The iterative scheme. Consider the following:

2 D
Lvm+1 + ﬁMum = h_z’

Em+1 = W3Vp 41 + (1 - wZ)ﬁm’

3.1 _
G1) Lupy .,y = h2vm+1’

ﬁm+1 = W1l 4+ + (1 - wl)ﬁm

Smith’s scheme [7] was the special case w, = 1. Solving (3.1) for #,,.; and @, ,
we have
D 2
l-)m+1 = wZL_l{P - FMﬁm} + (1 - 0)2)5",,
(32) Uy 1 = 0 L™, L7'D — 20,17 *Mii,, + h3(1 — ,),,} + (1 — 0,)id,,,

or in matrix notation,

(-
(3.3) (_ i
um+1
2(02 _ — w2 —
o1 — o)k’ L™ (1 — o) — 20,w,L"2M| \4m w;w,L™2D

To investigate the convergence properties of this scheme, we seek eigenvalues
X1

of the iteration matrix. If an eigenvector is x = ) , partitioned as above, then for

. X
eigenvalues 4 we have 2

2
(1 — wy)x; — %L”sz = Ax,,

(3'4) h2w1(1 - wz)L_lxl + (1 - wl)xz - Zwlsz_Zsz = }.xz.

Eliminating x,, we have

(3.3) (1 =y = (1 — @y — DI + 20,w,AL"*M)x, = 0.

Thus, if 7 is an eigenvalue of L~ 2M, then the eigenvalues of our iterative method
are determined by

(B6) A2 —[(1 —w)+ (1 —w,)—2ww,7)A+ (1 — )1 —w,)=0.

Similar results are obtained if we eliminate x, or if the equations of (3.1) are
rearranged.

Let 1 = max |} be the spectral radius of a matrix whose eigenvalues are .
We note that 7;, the eigenvalues of L~?M, are all real and nonnegative, with zero
being a multiple eigenvalue.

Following McDowell [4] (see also Taylor [6]), we rewrite (3.6) as

[A—0 - w))ld -1 - w,)] =214

(3.7)

@100,
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First, consider the case w; = w, = w or

(3.8) é[i -1 - w]? = -2
Let
02 = =214,
(3.9)
1 A —1
oy=—(—1+a0)=24+2" "
(0] (0] (0]

Fi1G. 1

281

In the 4, o-plane we have Fig. 1. As  increases from 0, the roots of (3.8)
remain complex, their magnitude being 1 — w, and the straight line o, pivots
about the point (1, 1). When the line becomes tangent to the parabola, the roots
associated with ¢ become real. From then on these roots are the intersection of
the line and parabola, one root of which grows. Thus, for a given t we see that
the minimum of the maximum || occurs at tangency or when the roots of (3.8)
are equal. For each 7 such that 0 < 7 < 7, the associated parabolas (3.9) have the
same vertex but have latus rectum = 27. Hence, the minimum of maximum ||

is associated with T when the roots of (3.8) are equal. Since

(3.10) A=(1 - o) - 0’ + o/o?7 - 2l — w)yi,
we want
(3.11) 0*? — 2(1 — w)7 = 0.

Choose w, such that

(3.12) w2t — 21 — wy)i = 0
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or

(3.13) Wy = —2——
1+ 1+27

with

(3.14) A=1— w,.

(The above results are also obtained from the analysis of David M. Young, Jr. [10]
and from references there cited.)

Now consider w; # w,. For any pair of w’s, the roots of (3.7) associated
with t = 0 are 1 — w, and 1 — w,. Thus, it is clear we need only consider w,,
w, > o, (since 0 < w, < 1). It is easy to show that the roots of (3.7) associated
with 7 are real for any o, and w, in this range. Further, one negative root is
always greater than 1 — w, in magnitude. Thus, w; = w, = w, for optimum
convergence and

=1—,/1+2‘E
1+ /1+21

(3.15) A= —(1 — )

or

(3.16) joyif2z-1
JI+2+1
For Smith’s approach [7], we have w, = 1 and (3.7) becomes
(3.17) Adds = [(1 — @y) — 2047} =0
or
(3.18) Ae=0,1—w; —2w,t.
The optimum o satisfies
(3.19) l—w, —20T=0w; —1

or

(3.20) W, =

and

(3.21) Ay = )

which are Smith’s results.
Now, Smith [7] has shown that T = 1/hg,, where

h? Y, (Awu)?

3.22 0, = min ————-.
( ) h h Zaﬂ (5hu)2
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In the Appendix, we show that
295+ 43Th<0,< 4+ 8h

for small h. Thus, for small A,
0.2

h

(9}

0.339

T

lIA
IIA

bl

S

and one can show that

1 —./5%h

|
@

-
IIA

o)
IIA

and
1—4h <7, £1—295h.

The method proposed here is then an order of magnitude faster. Smith [8] is
able to obtain this rate of convergence but has to resort to a Chebyshev scheme

to do so.

Appendix. In [3], Kuttler shows that

hy.ou?
Al = min 22—,
(A1) 0 = Mmin W2 zn )

where Aju = 0 in Q. (The continuous analogue of this result is due to Fichera
[1].) To obtain an upper bound for o,, let u = 1. Then from (A.1), we have

h(4N + 4) 4N+12 4
h*N? ( N ) (1 =h?*

To obtain a lower bound, we note first the discrete analogue of the maximum
principle [3, Theorem 4], [2].

THEOREM. If u is defined over Q and 0Q, and if Ayu = 0 (Z0) in Q, then u
assumes its maximum (minimum) value on 0C.

What follows is the finite difference analogue of the continuous analysis of
Payne [5] (see also Theorem 9 [3]). Let u be the minimizing function of (A.1).
Define H such that

(A2) o =

AhH = 0 in Q,

(A3)
H =u? on Q.

Now, we observe that since A,u = 0 in Q,
(A9 A = Au® —uAu = 0
by Cauchy’s inequality (see also [3]). Thus, we have
AH—u?)= —Au*>£0 inQ,
H—-—u*=0 on 0Q,
and by the maximum principle,

(A.5) H-u*20 inQ.
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Define

A =—2 inQ,
(A.6)
=0 on 0Q.

(This is the discrete analogue of the stress function [9, p. 116].) From (A.5) and
(A.6), we have

1
(A7) Yu? <Y H=—2) HAup.
Q Q 2 Q
We now apply the discrete form of Green’s identity (see, e.g., [3]):
Q Q Q oQ

and obtain, using (A.3) and (A.6),

S HAw = — =Y Hé,p.
Q 2h oQ

N =

(A.9) Yur < —

Letting |6,0| ,o = MaXxq |0,¢| and using (A.3), we have

(A.10) Y u? < ___|5h2¢;l|an Y u?

Q oQ
Combining this with (A.1), we finally have

2

(A.11) o, =
= |5h(P|an

We now consider solving (A.6). It is not difficult to verify that

mnl No . nmk
_ 4 Z (Z SmN —+ 1) ( ; SmN +1 sin nmi sin mmj
TN D, nn N+1 "N +1

(A.12)

N+1 ®N+1

is the solution. However, finding a good upper bound for ¢ j, @n+1,j> Pi,0 and
@;.n +1 does not appear promising. Instead, we solve a series of difference equations
which are direct analogues of a series of differential equations considered by
Sokolnikoff [9, pp. 114-131].

Define

h o,
(A13) l//ij = @;; + ‘2—(12 +]2)
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Then it can be verified that

Ahl//=0, iaj=19"',N’
h2j2 )
[/jo’j=—2—-’ ]=1’...’N’
1 h2'2
(A14) Unirg=5+ 5 J=1N,
h2‘2
l//zo—Tl, i=1, , N,
1 h2i?
Vin+1 >t i=1, ,N
Define
l//l 1,j 2¢11+¢1+11 j=091a“'aN+17
. i 1,
(A.15) fii= 2 + i 1.....N.

Using (A.14), we can also write

(A16) I e
One can show that

A f=0, i,j=1,---,N,
(A.17) fo,j =fN+1,j =0, j=1,--,N,

ﬁ’0=ﬁ,N+1=2’ i=1’...,N’

where the first equation follows from (A.15) and (A.16), the second equation
follows from (A.16) applied at i = 0, N + 1 and the third follows from (A.15) at

j=0,N+ 1.
The solution of (A.17) is obtainable by separation of variables and is
4
(A18)  f;= N T 1"21 A, sin ——— N (smh jo, + sinh (N + 1 — j)a,),
where
Y. sin nk sin n—cot i
- N + 2N +1
(A.19) 4, = =1 M N +1)

sinh (N + Do, smh (N + 1),

and where o, satisfies

nm
N+1

(A.20) cosha, = 2 — cos
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From (A.15) and (A.16), it is easy to show

Yo — Vi + VUnsi1,; — Unj
h? ’

M=

fi=N+

i=1

(1 “21)
Pr '70!',1 l//i,ﬂ Wi,lv lpi,lv-f— 1
f;! ’ 2 .

M=

Jj

Using this and (A.13), we have

ifij — N + Po,j — P1,j +h2€01v+ i~ q)N,j’
i=1
(A22)
i Qi1 = @Qiot PN — QiN+1
. fij - h2
ji=1
or
N
OnPo,; + OnPn+1,j
fi; =2N + - L
igl ! h
(A.23)
i fi= — 94Pi,0 — OnPin+1
= h .

From the symmetry of ¢, we note that

N h
5h€0o,j = 5h(pN+1,j = ( Z f,j - 2N)§,
i=1
h N
—0hPi0 = — OWPin+1 = 5 qu
25
Thus, since our region is a square, we have
h N
10,0100 = m?x [0h0,jl = m;?‘xi 2N — '21 fu)
h 4 X sinhja, + sinh(N + 1 = jlo,[ & . nak |2
< —[2N — z z sin
= hax 2( N1 12, sinh (N + 1), \k; N+1

The j which maximizes the right side is j = (N + 1)/2 (if N is odd) or j = N/2 (if
N is even).
For N odd, we have

h 4 X 1 N onmk \?
< — —_ —_—
(A-24)  10y9le = z(ZN N2, NOE: 1)«"(,;1 N 1) )

2

Since the summation has only positive terms, we continue the inequality by
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dropping all terms after the first and have, in terms of A,

h(2(1 — h) cot?(mh/2)
(A.25) 104lo < 5( o hcosh(al/(zh)) '

For small h, one can show that «, = nh + O(h®). Thus we have (cosh a,/(2h))™!
~ (cosh /2 + O(h?))~!. Indeed, this can also be shown to be true for N even.
Thus, we have

104l = 1 — h — 2h2(sechg + O(hz)) cotz%h

<1-h-— 2h2(sech§ + O(hz)) (i - % + O

n2h?
<1—h—"sech”+ Oh?)
= n? 2

<0677 — h
for sufficiently small h. Finally,

44+ 8h= ~ 295 + 4.37h.

2
- > >_ -
A—h? =%"=0617—h
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