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ON THE COMPLETE REPRESENTATION
OF BIHARMONIC FUNCTIONS*

ROGER L. FOSDICK¥

Abstract. The emphasis of this paper is on the complete representation of biharmonic functions
in terms of harmonic functions for arbitrary bounded three-dimensional domains. The main result
is contained in Theorem 2, which allows for the possibility that the domain may possess inclusions
(i.e., holes). Reduced forms of the representation are noted under restrictive hypotheses on the
geometry of the domain. A brief analogous treatment for plane two-dimensional domains is con-
sidered in order to illustrate the significant difference that here similar reduced forms are complete
without geometric restrictions on the region. However, in this case, multivalued harmonic functions
are generally necessary.

1. Introduction. The representation of biharmonic functions in terms of
harmonic functions has a long history ; two of the earliest treatments being that
of Goursat [1] in 1898, and Almansi [2] one year later. Goursat considered the case
of plane two-dimensional regions, while Almansi’s work dealt with three-
dimensional domains. More important, however, was the fact that Goursat
obtained a complete representation in terms of three harmonic functions while
Almansi’s treatment of the completeness question was valid only for regions
which possess certain directional convexities. More recently, Krakowski and
Charnes [3] have given several distinct reductions of Goursat’s representation
from three harmonic functions to two, each of which are valid in arbitrary plane
two-dimensional domains.! Although these reductions were reported earlier by
Frank and von Mises [4], their proof of completeness was restricted to regions
which are either convex in one direction or star-shaped with respect to one
interior point. For three dimensions, Bergman and Schiffer [5] have recorded a
representation in terms of only two harmonic functions, the completeness of which
was again demonstrated only for starshaped regions. Finally, a complete repre-
sentation for nonperiphractic’ three-dimensional regions in terms of four
harmonic functions has been given by Fosdick [6].

In the present work we obtain in § 2 (Theorem 2) a complete representation
of an arbitrary biharmonic function in terms of four harmonic functions and a
linear combination of specific biharmonic functions, the number of which depends
upon the degree to which the domain is periphractic, which is valid for general
three-dimensional domains. When the region is nonperiphractic the linear
combination of known biharmonic functions is not needed and the result reduces
to that given earlier in [6]. In a plane two-dimensional domain the analogous
representation theorem, which is quoted without proof (Theorem 3), shows that

* Received by the editors August 4, 1969.

+ Aeronautical Engineering and Mechanics Department, University of Minnesota, Minneapolis,
Minnesota 55455. This research was supported by the National Science Foundation under Grant
GP-8728.

! Goursat’s representation as well as the three reduced representations of Krakowski and
Charnes are respectively listed in (3.1a) and (3.1b)<3.1d) of the present paper. Timoshenko and
Goodier [8, p. 185] have also recorded (3.1d).

2 A region is periphractic if it possesses a boundary surface which encloses at least one point not
contained in the region. Thus, a periphractic region has inclusion (i.e., holes).
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three harmonic functions and a linear combination of specific biharmonic
functions, the number of which depends upon the degree of multiply connected-
ness, is sufficient. While in three dimensions it is shown that the linear combination
of specific biharmonic functions is necessary to preserve the completeness property
(Remark 2), in two dimensions they can be dropped from the representation
provided the three remaining harmonic functions are allowed to be multivalued
(Theorem 4). Finally, within the present theme we briefly consider the position
of Goursat’s representation and the general and complete reduction to two
harmonic functions of Krakowski and Charnes [3] at the conclusion of § 3. It is
interesting to observe that while these reductions are indeed general and complete
for arbitrary plane regions, the analogous three-dimensional reduced forms of
Almansi [2] and Bergman and Schiffer [5], which are summarized at the end of
§ 2, have been proved only for certain convex and starshaped domains.

While we recognize that the standard proof of Goursat’s representation
theorem using complex variables is by far the most economical,® our emphasis in
this paper is on the completeness question for three dimensions, and we believe
that the analogous treatment of the plane two-dimensional representation and
its major reductions helps to clarify and emphasize the present issue.

2. Three-dimensional domains. In this section we discuss the complete
representation of biharmonic functions in terms of harmonic functions in bounded
open three-dimensional domains R. The closure of R will be denoted by R, and
the boundary 6R is assumed to consist of a finite number of nonintersecting
closed regular surfaces, the latter term being used in the sense of Kellogg [9].
Herein, such a region R will be called regular. In general, the region R may be
periphractic, in which case dR will consist of several disjoint closed regular
surfaces, R = \_JI_, d;R. The outer boundary 0,R is that surface which encloses
all remaining n boundary surfaces 0;R, i = 1,2, ---, n, the latter set of which
corresponds to the boundaries of the “holes” which are characteristic of a peri-
phractic region. These boundaries will be denoted as inner boundaries.

We say that a real-valued function f defined on an open or closed region
G < R is class CV*%G) and write fe CV*%G), 0 < a < 1, if and only if f is N
times continuously differentiable and has Nth order Holder continuous partial
derivatives with exponent o on G.

While the main representation theorem is the second theorem in this section,
it is more revealing to present the result in parts. Thus, we begin with the following
theorem.

THEOREM 1. Let R be a regular three-dimensional region with boundary
OR =\, 0;R. The outer boundary 0oR as well as each inner boundary O;R,
i=1,2,---,n, is assumed to be twice continuously differentiable. Further, let u
have the following properties:

(a) ue C***R),ue C***(R);

0 _
(b) 6—(V2u) dA = 0 for every closed regular surface 0D < R.

oD Oh

3 See, e.g. Mikhlin [7, § 40], or Timoshenko and Goodier [8, § 56].
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Then,
(i) u is biharmonic in R;
(ii) there exist harmonic functions v and w in R such that

(2.1) u=v+x-w inR.

For the most part, the proof of this theorem rests on the following lemma
concerning the existence of a vector potential.

LemMA 1. Let R, 04R and 6,R, i = 1,2, ---, n, meet the same hypotheses as
in Theorem 1. Let f have the following properties :

(a) feC"*%R),N = 1,fe C(R);

(b) f-ndA = 0 for every closed regular surface D < R.

oD
Then,
(i) f is divergence-free in R;
(ii) there exist @ e CN*1**R), w € C°(R) such that
(2.2) f=V x o inR.

While a proof of this lemma is essentially given by Lichtenstein [10, pp. 101-
106], we remark that his smoothness hypotheses are more restrictive than those
recorded here, which are sufficient.

Proof of Theorem 1. By applying condition (b) of the theorem to a surface 6D
which is reducible in R, and by making use of the divergence theorem, it follows
that u is biharmonic in R.

To arrive at the representation (2.1) it is sufficient to show that there exists
a vector field w with the following properties in R;

(2.3a) Viw =0,
(2.3b) Viu — x-w)=0.
Then v is defined through v & u — x - w. To facilitate this proof we first define
2.4) Y € 4v2,
and observe that the hypotheses yield y € C>**R), y € C! +“(R), and
VY -ndA =0

oD

for every closed regular surface D = R. Hence, Lemma 1 implies the existence
of a vector field m € C>*%R), o € C°(R) such that in R,

(2.5) Vy =V x o.
Finally, we define the vector field w through

o(y) Av(y) — V Y(y)
p(x,y) r P(X,Y)
where x and y are points in R and where p(x, y) is the distance between x and y.

From well-known properties of the Newtonian potential we remark that
we C3**%(R), and that in R, V’w = —V x o + V. Hence, with (2.5) we see that

(2.6) 4nw(x) Ly x f dv(y),
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(2.3a) is satisfied. Moreover, (2.6) yields V-w = ¢ in R, and with (2.4) it readily
follows that (2.3b) is satisfied to complete this proof.

Remark 1. Not all biharmonic functions satisfy hypothesis (b) of Theorem 1.
Hence, this theorem does not claim a complete representation for all biharmonic
functions. To substantiate this remark consider a periphractic region R with at
least one closed, regular inner boundary, d; R, and consider the distance function
u = |x — &;| where x is an arbitrary point in R, and where &, is a fixed point
outside R and enclosed by 9, R (i.e., inside the “hole”). It is clear that V*u = 0 in
R, but it can readily be shown that condition (b) is not satisfied for any closed
surface D = R which is reducible to 6, R. In fact, since u is biharmonic everywhere
in space except at x = &, we need only observe that (b) is not satisfied for any
spherical surface with center at the point ;. Then application of the divergence
theorem in the region bounded by 0D and the spherical surface yields the same
conclusion for dD.

Remark 2. Theorem 1 is not true if hypothesis (b) is replaced by the hypothesis
that u is biharmonic in R. Hence, condition (b) is in general necessary for the
representation (2.1). To see this, we need to exhibit a biharmonic function which
cannot be represented in terms of harmonic functions through (2.1). Toward
this end, consider the region R and the distance function u = |x — &;| of the
preceding remark. If we suppose that harmonic v and w exist such that [x — &;|
= v + x-win R, then applying the Laplacian operator wereachV-w = 1/|x — &/|
in R. Moreover, since w is supposed to be harmonic in R, a well-known identity
yields V x V x w = VV -w, and we obtain the necessary result that V. x V x w
= V(1/|]x — &;|) in R. Now, let 0D be a closed regular surface in R which encloses
the inner boundary 0 R. Then,

1
[x — &

where nis the unit normal on one side of dD. Since the left-hand side of this equation
is identically zero due to Stokes’ theorem, we reach the conclusion that the right-
hand side must also vanish. However, analogous to the previous remark, it can
be shown that this integral cannot vanish since 0D encloses the point &;, which
supplies a contradiction to the assumption that |x — &;| admits the representa-
tion (2.1).

The preceding remarks suggest the following theorem.

THEOREM 2. Let R, 3oR and O.R, i = 1,2, -- -, n, meet the same hypotheses as
in Theorem 1. Let u have the following properties :

(1a) ue C***(R),ue C*R);

(b) u is biharmonic in R.

f (VXxV xw-ndd = \Y -ndA,
oD oD

Then, there exist constants k;,i = 1,2, -- -, n, and harmonic functions v and w in R
such that
n
2.7 u=v+x-w+ Y kix — &,
i=1
where &;,i = 1,2, ---, n, represents an arbitrary fixed point not in R, but enclosed

by the inner boundary ;R,i = 1,2, - - -, n, for each choice of index i.
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Proof. Let {k;} be a set of n constants and choose a set of n fixed points {&;}
as in the theorem statement. Then, the function f <y — Yi_ kix — & clearly
satisfies the hypotheses (a) and (b) of the present theorem. Further, a straight-
forward calculation yields

0 1
(2.8 f —(V3f)dA = f —Vzu dA —2 ) k; ——dA
U N ) (Vwia-23 op O [x — &
for every closed regular surface D = R, where n is the outer unit normal to the
region of space enclosed by dD. Now, since V?u and 1/|x — &, i=1,2,---,n,

are harmonic in R, it readily follows from (2.8) that

(2.9) f a-(sz) dA =0

oD
for every closed regular surface 0D which is reducible to a point in R. In addition,
if in (2.8) we set 0D = 0;R where 0;R is any one of the inner boundaries of R, then
in the region enclosed by d;R, 1/|x — & is harmonic for all i except i = j, and
we reach

0 1
a;R on|x — §J|
The last integral on the right can be conveniently evaluated as —4n by enclosing
0;R in a spherical surface with center at &; and by appealing to the divergence

theorem in the region bounded by this spherical surface and 0;R. Thus, if we
define the set of constants {k;} through

a 2 _ a 2
(2.10) L ’ (V) dA = L ’ (V) dA — 2k,

1
(2.11) k; & — f —(Vzu) A,

8=
where here we have taken n to be the unit normal to ;R in the outer direction to
R (ie., opposite to that used in (2.8)+2.10)), it follows from (2.10) that

2.12) f a( V2f)dA = 0, j=1,2,---,n.
c?Ra

Finally, since f satisfies (a) and (b) of this theorem and since any closed
regular surface in R is reducible to a linear combination of inner boundaries,
we reach

i
2.13) Lna (V3f)dA =0

for every closed regular surface 9D < R. With this much shown, we observe that f
meets the hypotheses of Theorem 1 and thus admits the representation (2.1).
By recalling the earlier definition of f, the proof is completed.

Remark 3. The analysis in Remark 2 shows that the series in (2.7) cannot be
combined with either of the harmonic functions v or w.

Remark 4. Since conditions (b) of Theorems 1 and 2 are equivalent if and
only if R is nonperiphractic, the series in (2.7) is needed only for the representation
of biharmonic functions in periphractic regions.
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The work of Almansi [2] and Bergman and Schiffer [5] shows that for non-
periphractic regions, appropriate restrictions on the geometry of the domain will
permit further reduction of the representation (2.1). The specific results are
summarized in the following two statements:

(a) (Almansi). If u is biharmonic in R and if R is convex with respect to the
direction of a fixed unit vector e, then u admits the representation u = q + (X - e)h,
where g and h are harmonic in R

(b) (Bergman and Schiffer). If u is biharmonic in R and if R is starshaped
with respect to an interior point Q € R, then u admits the representationu = g + r*h,
where r is the distance measured from Q and where g and h are harmonic in R.

3. Two-dimensional domains. For a plane two-dimensional region A4,
Goursat’s representation of a biharmonic function in terms of three harmonic
functions, two of which are conjugate, and the representations of Krakowski
and Charnes [3] in terms of two harmonic functions are complete and general
only if the harmonic functions are permitted to be multivalued in the region of
representation. These results are summarized in the following statement: If u is
biharmonic in A, then u admits any one of the representations ;

(@) u = Re{d(z) + zy(2)}, (b) u =g + x;h,

3.1)
(©) u=g + x3h, (d) u=g + rh.

Here, g and h are harmonic in 4, ¢ and ¥ are analytic functions of the complex
variable z = x; + ix,, Z is the conjugate of z, and r? = x{ + x3, where x; and x,
are the coordinates of a point in A. Although these representations are well
known and most economically established with the aid of complex variables,
it is revealing and of comparative interest to see how a treatment analogous to
that given in § 2 can yield such results. Certain proofs will be omitted in order to
- avoid being repetitive.

Here, we let A denote a bounded open plane region with closure 4 and
boundary 04 which is such that A is regular in the sense that dA4 consists of a
finite number of nonintersecting closed regular curves, the latter term being used
after Kellogg [9]. In general, 4 may be periphractic (i.e., multiply connected in
the present situation), in which case 04 will consist of several disjoint closed
regular curves, 04 =\, 0;4:00A is the outer boundary which encloses the
remaining n inner boundary curves 6;4,i = 1,2, ---, n.

The following theorem, given without proof, represents the analogue of the
main Theorem 2 in the plane.

THEOREM 3. Let A be a regular plane region with boundary 04 =\, 0;A.
The outer boundary doA as well as each inner boundary 0;A,i =1,2,---,n, is
assumed to be twice continuously differentiable. Let u have the following properties:

(@) ue C**%A),ue C*A);

(b) u is biharmonic in A.

Then, there exist constants k;,i = 1,2, -+, n, and harmonic functions v and w
in A such that

(3.2) u=v+x-W+ y kix —&l*[log|x — & — 1],

i=1
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where &;,i = 1,2, -- -, n, represents an arbitrary fixed point not in A, but enclosed
by the inner boundary 8;A,i = 1,2, -- -, n, for each choice of index i.

As with the three-dimensional representation given in Theorem 2, the
question also arises here as to whether the series in (3.2) is necessary for the
representation to remain complete. Although for three dimensions we found that
the series in (2.7) was indeed necessary, the following lemma shows that such is
not the case for the representation in the plane.

LemMma 2. Let {&},i=1,2,---, n, denote a set of points as described in
Theorem 3 and let {k;},i =1,2,---, n, be a set of constants. Then, there exist
harmonic functions v, and wq such that

(3.3 Y kix — g2 [log|x — &l — 1] = vo + X - Wy,
i=1

everywhere except at the points x = &;,i = 1,2,---, n.
Proof. It follows by direct calculation that the functions defined by

6O we™ Y kl(x — 8)loglx — & — 1] - (x — 5) x a0,
65 w0 - Y kg {ix - llorh— &l 1]~ (x &) x 210,

where a5 is a unit vector perpendicular to the plane of 4 and in the right-hand
sense relative to two fixed orthonormal vectors a;, a, in the plane and where 6;
is given by

_1(X - &)-ay

3.6 Hi dér tan s
(36) x — &) a,

i=1a2,“"na

are harmonic everywhere except at the points x = §;. Further it is clear that (3.3)
is satisfied by these functions. Thus, the lemma is proved, which in combination
with Theorem 3 yields the following theorem.

THEOREM 4. Under the same hypotheses as in Theorem 3, u admits the complete
representation

(3.7) u=v+xw in4d,

where v and w are harmonic in A.

Remark 5. In general, the representation (3.7) will not be complete unless the
harmonic functions v and w are allowed to be multivalued in A.

In the remainder of this section we shall show how the four representations
of (3.1) emerge as corollaries from (3.7). Toward this end we introduce the complex
variable z = x; + ix, with conjugate Z and define the analytic functions

(3.8) ‘ fi¥w +iwl, o Ew, +iws,

where w is the harmonic vector function in (3.7) and where w’ denotes the con-
jugate harmonic of w. To obtain (3.1c) we first observe that Re (zf}) = x;w; — x,wh,
and add and subtract this quantity to the right-hand side of (3.7) to reach

3.9) u =v + Re(zf}) + x2(wy + wh).
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Thus, by defining the harmonic functions g and h through
(3.10) g¥v+Re(zfy), h¥w,+w,

the validity of (3.1c) is demonstrated. In a similar manner, by adding and sub-
tracting the expression Re (izf) to the right-hand side of (3.7), we also establish
the representation (3.1b) as a consequence of Theorem 4. To reach Goursat’s
representation (3.1a) we observe that (3.7) may be written in terms of z, z and the
analytic functions f; and f, as

(3.11) u=v+3Relz(f; — if2)] + FRe[z(f; + if)].

Thus, by identifying v + 3 Re [z(f; — if>)] with the real part of an analytic function
¢ and by noting that f; + if; is analytic, y, say, we obtain the first of (3.1). Finally,
as was shown by Krakowski and Charnes [3] and Timoshenko and Goodier [8],
(3.1d) follows directly from Goursat’s representation by writing (3.1a) as

u = Re { + (2/2)0)

and observing that zz = r2.
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