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MINIMIZING THE LAPLACIAN OF A FUNCTION SQUARED

WITH PRESCRIBED VALUES ON INTERIOR BOUNDARIES—

THEORY OF POLYSPLINES

OGNYAN IV. KOUNCHEV

Abstract. In this paper we consider the minimization of the integral of the
Laplacian of a real-valued function squared (and more general functionals)
with prescribed values on some interior boundaries Γ, with the integral taken
over the domain D. We prove that the solution is a biharmonic function in D
except on the interior boundaries Γ, and satisfies some matching conditions on
Γ. There is a close analogy with the one-dimensional cubic splines, which is the
reason for calling the solution a polyspline of order 2, or biharmonic polyspline.
Similarly, when the quadratic functional is the integral of (∆qf)2, q a positive
integer, then the solution is a polyharmonic function of order 2q, ∆2qf(x) = 0,
for x ∈ D \ Γ, satisfying matching conditions on Γ, and is called a polyspline
of order 2q. Uniqueness and existence for polysplines of order 2q, provided
that the interior boundaries Γ are sufficiently smooth surfaces and ∂D ⊆ Γ, is
proved. Three examples of data sets Γ possessing symmetry are considered,
in which the computation of polysplines is reduced to computation of one-
dimensional L−splines.

1. Introduction

In the cases when the values of the function or its derivatives are prescribed on
the boundary of the domain, the problem of minimizing a quadratic functional is
reduced to the integration of a differential equation under appropriate boundary
conditions. That is a fundamental fact for the classical variational calculus [Mikh].

In the present paper we consider the minimization of a quadratic functional when
the values of the function are prescribed on interior boundaries of codimension 1.
We will work in a greater generality than indicated in the title of the paper, but all
important features of the theory presented here occur in the simplest case, when
the quadratic functional is given by the square of the Laplacian of a function. This
is the simplest nontrivial example which illustrates all features.

We will explain the ideas underlying the present paper by analogy with one-
dimensional spline theory.
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The interpolation splines of one variable may be considered as solutions to the
following extremal problem: ∫ b

a

[dqf(t)/dtq]2dt→ inf(1.1)

over the set of functions which satisfy the interpolation conditions:

f(tj) = cj , j = 1, 2, . . . , N ;(1.2)

dkf(t)/dtk|t=a = dkf(t)/dtk|t=b = 0,(1.2′)

for k = 1, . . . , q − 1, where a = t1 < . . . < tN = b.
Notice that we do not use the very standard definition of natural splines in [Laur,

p. 156] which requires N ≥ q, but rather that in [ANW, p. 109].
The solution to problem (1.1)–(1.2′) is a function s(t) in the interval [a, b] which

satisfies the following conditions:
(i) s(t) is a polynomial of degree ≤ 2q − 1 in every open interval (ti, ti+1), i =

1, 2, . . . , N − 1, i.e. d2qs(t)/dt2q = 0 for all t ∈ (ti, ti+1).
(ii) The following boundary conditions hold: dks(a)/dtk = dks(b)/dtk = 0, for

every k = 1, . . . , q − 1.
(iii) d2q−2s(t)/dt2q−2 is continuous everywhere in [a, b], i.e.

dksi(ti+1)/dt
k = dksi+1(ti+1)/dt

k

for k = 0, 1, . . . , 2q−2 and i = 1, . . . , N−2, where we denote by si(t) the restriction
of s(t) to the interval (ti, ti+1) .

Conditions (i)–(iii) together with the interpolation property (1.2) may be con-
sidered as an alternative definition of splines which, chronologically, is the original;
cf. [ANW, p. 76], [Laur, p. 162].

In the multivariate case, a natural analog to problem (1.1) is the following one:∫
D

(∆qf(x))2dx→ inf,(1.3)

where the minimization is over a proper class of functions, D is a bounded domain
in Rn, and ∆q is the q times iterated Laplace operator.

The purpose of the present paper is to provide a proper setting for the solubility
of problem (1.3). In other words, we find an analog to the interpolation conditions
(1.2) for which problem (1.3) has a solution.

As a result we obtain a constructive solution to problem (1.3) and an analog to
conditions (i)–(iii).

In fact, the set ofN points in [a, b] is replaced by a set ofN closed smooth surfaces
in D, namely T1, T2, . . . , TN , such that Tj surrounds Tj−1 for j = 1, 2, . . . , N , and
TN = ∂D; it is convinient to put T0 = ∅. Condition (1.2) is replaced by

f(x) = g(x)(1.4)

for x ∈ ST =
⋃N
j=1 Tj , where g(x) is a function defined on all surfaces Tj, j =

1, 2, . . . , N , and (1.2′) is replaced by the following condition:

∆kf(x) = 0, x ∈ TN = ∂D, for k = 1, . . . , q − 1;(1.4′)

(∂/∂nN)∆kf(x) = 0, x ∈ TN = ∂D, for k = 0, . . . , q − 1;

here nN denotes the inner unit normal vector to TN .
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The solution s(x) to problem (1.3)–(1.4′) will be called a polyspline of order
2q. In case it exists, it satisfies the following analogs to conditions (i)–(iii) (for the
proof see Theorem 4.2 below):

(i′) It is a 2q-harmonic function in the complement of the surfaces Tj, i.e.

∆2qs(x) = 0, x ∈ D \ ST.
(ii′) On the boundary ∂D the following condition holds:

∆ks(x) = 0, x ∈ ∂D = TN , for k = 1, . . . , q − 1;

(∂/∂nN)∆ks(x) = 0, x ∈ ∂D = TN , for k = 0, . . . , q − 1.

(iii′) If we denote by sj(x) the restriction of s(x) to the layer lying between Tj
and Tj−1, then

∆psj+1(x) = ∆psj(x), x ∈ Tj,
for p = 0, 1, . . . , 2q − 1 and j = 1, 2, . . . , N − 1;

(∂/∂nj)∆
psj+1(x) = (∂/∂nj)∆

psj(x), x ∈ Tj ,
for p = 0, 1, . . . , 2q− 2, and j = 1, 2, . . . , N − 1. Here (∂/∂nj) denotes the inner

normal derivative on the surface Tj .
Now, conditions (i′)–(iii′) may be taken as a definition of a polyspline of order

2q.
In the simplest case, q = 1, we have pieces of biharmonic functions which are

matching on the common boundaries Tj of the layers, in the sense that sj+1(x) =
sj(x), ∂sj+1(x)/∂nj = ∂sj(x)/∂nj and ∆sj+1(x) = ∆sj(x) for all x ∈ Tj and
j = 1, 2, . . . , N − 1; on the boundary ∂D = TN we have (∂/∂nN)sN (x) = 0.

The following argument shows the roots of the analogy with one-dimensional
spline theory (see [ANW, p. 109]):

Let us check that the number of degrees of freedom (or “free parameters”) is
equal to the number of matching conditions plus the number of interpolation con-
ditions. According to the theory of higher order elliptic boundary value problems
[ADN], [LiMa], [H], for the function uj polyharmonic of order 2q, on every surface
Tj, j = 1, . . . , N − 1, we have 2q boundary conditions (playing the role of degrees
of freedom), and similarly 2q for uj+1. The number of constraints (ii′) and (iii′) is
4q − 1. One degree of freedom is necessary for the data interpolation (1.4) on Tj
. On the surface TN we have 2q boundary conditions for the function uN . The
number of constraints (ii′) is 2q − 1. One degree of freedom is necessary for the
data interpolation (1.4) on TN . Consequently, the number of degrees of freedom
is equal to the number of matching conditions in (i′)–(iii′) plus the number of the
interpolation conditions (1.4).

a) The following are briefly the main results of the paper:
In the Sobolev spacesHs we prove existence for polysplines of order 2q satisfying

the interpolation conditions, Theorem 6.3.1 below. Let us remark that with the
same success one may study the existence in the Hölder spaces Ck+α following the
approach in [ADN].

The core of the paper is a basic identity for polysplines which is analogous to
the fundamental identity for one-dimensional splines [ANW, Laur]. By virtue of
this identity we obtain uniqueness for interpolation polysplines, Theorem 4.1, and
the equivalence of the two definitions, Theorem 4.2, the one given through problem
(1.3)–(1.4′), and the other through properties (i′)–(iii′) and (1.4)–(1.4′). That is



2108 OGNYAN IV. KOUNCHEV

the analog to the well-known extremal property of one-dimensional splines, called
Holladay’s theorem [ANW, Theorems 3.1.1, 5.4.1], [Laur, p. 162].

b) The following should be said about the techniques of the proofs:
In one-dimensional spline theory uniqueness implies existence of splines. Here

due to the basic identity of Theorem 3.1 we obtain the same principle: unique-
ness implies existence of polysplines through the Fredholm alternative proved in
Theorem 6.2.4. Let us remark the exceptional role of the order 2q. For solutions
of the equation ∆2q+1u = 0 one cannot obtain the key identity of Theorem 3.1,
and so the uniqueness of the interpolation 2q+ 1-polysplines does not hold in gen-
eral and Corollary 6.2.3 fails. That is rather similar to the one-dimensional case
where the splines of odd order (solutions to d2ku/dt2k = 0) satisfy a basic identity
and uniqueness of interpolation, while the even order splines do not enjoy similar
properties.

We provide the existence theorem for an arbitrary integer q ≥ 1 . The most
technical aspect of this is Proposition 5.1.1, the proof of which is reduced to checking
the condition of Agmon-Douglis-Nirenberg [ADN], [LiMa, Section 2.4.1], [Nec] for
a special system of boundary operators.

c) The plan of the paper is the following:
In Section 2 we provide some basic notions and notations.
In Section 3 we prove the basic identity for polysplines.
In Section 4 we prove the uniqueness for interpolation polysplines.
A reader who is not experienced in a priori estimates for higher order elliptic

equations, or is interested in the subject mainly from the point of view of spline-
theory, may drop Sections 5, 6. The existence Theorem 6.3.1 will be enough for him.
Still we would encourage the reader to go especially through Section 5.1 to make
sure that modulo some rather standard techniques of frozen coefficients things are
essentially reduced to one-dimensional generalized interpolation splines, or, even
more L−splines (cf. [ANW], [Schum, Chapter 10] for the notions of generalized
and L−splines); see Proposition 5.1.1 below. This point of view is strongly sup-
ported by the examples in Section 7, where in the case of data sets with symmetry
the effective computation of interpolation polysplines is reduced through Fourier
or Mellin transform to finding a one-dimensional interpolation L−spline. In fact,
the main result of Section 5, Theorem 5.2.1, is essentially identical with a detailed
consideration of one of the important special cases of data sets ST possessing sym-
metry. That is the case of parallel hyperplanes outlined in Section 7, 2).

For someone familiar with the a priori estimates for higher order elliptic equa-
tions we have to say that in Sections 5,6 we follow closely the scheme for proving
existence for boundary value problems presented in [LiMa], [H]. Trying to make the
presentation brief but clear, we write the chain of theorems leading to the existence
result, Theorem 6.3.1, but omit the proofs which are similar to those in [LiMa], or
indicate only the novelty which arises.

In Section 5 we consider a more general problem for interpolation polysplines
than is necessary, namely, when the right sides are non-homogeneous. In a forth-
coming paper this more general result will be used for proving existence of “smooth-
ing” and “perfect” polysplines.

In Section 6 we provide a priori estimates in an arbitrary domain with interior

boundary
⋃N
j=1 Tj . The existence is proved in the general form in Section 6.2. The

final existence result for polysplines is Theorem 6.3.1.
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d) Let us remark that biharmonic functions and solutions of other higher order
elliptic equations find wide applications in fitting discrete scattered data. In this
direction the following works are known to the author: solutions of higher order
elliptic equations for interpolating and smoothing purposes are studied in [FJ],
[Du]. An algorithm was given by Briggs in [Bri] (see also the papers [GA], [Smi]).
Polyharmonic functions are used for discrete data fitting in [Ma], [Wa].

e) Some of the results of the present paper were announced in [Ko1], [Ko2] in a
more general form. The paper itself is an extended version of the preprint [Ko5].

f) We number the formulas, theorems, propositions, and lemmas within every
subsection.

After having introduced the notion of polyspline by a direct analogy with the
univariate case, it is natural to ask how far does the analogy extend. Let us indicate
some problems that seem to be interesting and unsolved:

1. From the point of view of applications it is natural to have a data set ST
which is a union of intersecting smooth manifolds, i.e., when ST itself is a manifold
with singularities. In R2 in the case of such a data set ST polysplines are studied
in [Ko3]. So far, in dimensions greater than 2 there is no complete theory of elliptic
boundary value problems in domains with singularities, and, for that reason, the
results of the paper are not extendable at the present moment.

2. It would be interesting to have polysplines with a compact support, i.e.
analogs to the one-dimensional B-splines. In particular, a B-polyspline in the bi-
harmonic case will satisfy u = 0, ∂u/∂n = 0, ∆u = 0 on ∂D. Assuming ∂D = TN
given, the existence and smoothness of the rest of the components Tj of the mani-
fold ST seems to be an uneasy free boundary value problem. At least one case of
nontrivial B-polyspline is described in [HK] when the set ST consists of q concentric
spheres (it is also a piecewise polyharmonic spline in the sense of [Ma]). There it
arises as a Peano kernel of a mean value property of Bramble-Payne for polyhar-
monic functions, showing a beautiful analogy with the univariate B-splines. The
last arise like Peano kernels of the divided difference operator; cf. [Schum, Chapter
4.3, also p. 182].

2. Preliminaries

a) Let D be a bounded domain in Rn with infinitely smooth boundary Γ.

Suppose that a family of subdomains D̃1, . . . , D̃N , D̃N = D, is given such that
the closure cl(D̃j) lies in the domain D̃j+1, i.e. cl(D̃j) ⊆ D̃j+1, j = 1, 2, . . . , N −1.

We shall denote by Tj the boundary of D̃j , Tj = ∂(D̃j), j = 1, 2, . . . , N , and so
we have TN = ∂D; for convenience we put T0 = ∅.

By Dj we shall denote the layer which lies between the surfaces Tj and Tj+1, i.e.

Dj = D̃j \ cl(D̃j−1) for j = 2, . . . , N ;

we put D1 = D̃1.
By nj we shall denote the inner unit normal vector to Tj.
The union of the surfaces

ST =

N⋃
j=1

Tj

is considered to be the set of data points (parameter set) for the polysplines.
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We shall suppose throughout the paper that the boundaries Tj , j = 1, 2, . . . , N,
are infinitely smooth surfaces of dimension n − 1, which are conditions providing
solubility of the boundary elliptic problems and the validity of Green’s formulas
[Aron], [LiMa]. The proof of the existence theorem based on the techniques of a
priori estimates is the main reason for these severe smoothness requirements on
the boundaries [LiMa, p. 111], [H, Chapter XX], although these conditions may be
essentially relaxed.

The simplest model example to consider, is the one where D is a ball in Rn and
D̃j, j = 1, 2, . . . , N , are N concentric balls. Then Dj , j = 2, . . . , N , is the spherical

layer between the spheres Tj−1 = ∂D̃j−1 and Tj = ∂D̃j; we have D1 = D̃1 .
b) In what follows we shall use the standard notations and results concerning

spaces of functions on domains and their boundaries, which can be found in [LiMa],
[Nec].

We shall denote by Hs(Ω) the Sobolev space for a domain Ω ⊆ Rn, and by
Hs(Γ) the Sobolev space for the boundary Γ = ∂Ω.

For a compact domain Ω, we shall denote by C∞(Ω) the space of infinitely dif-
ferentiable functions on Ω. We denote by D(Ω) the space of infinitely differentiable
functions with supports in Ω.

c) We shall denote by ∆ the Laplace operator in Rn given by

n∑
j=1

∂2/∂x2
j ,

and by ∆k the polyharmonic operator, which is defined inductively for all integers
k ≥ 0 by ∆0 = 1,∆1 = ∆ and ∆k = ∆∆k−1.

The space Hs(D \ ST ) should be understood as the space of functions f for
which f ∈ Hs(Dj) for every connected component Dj of D \ ST.

It is important to introduce a proper space of functions which arises naturally in
Theorems 3.1 and 4.2 below. Namely, we will denote by HLq the space of functions
f ∈ H2q(D \ ST ) such that the traces of the functions ∆kf and (∂/∂nj)∆

kf , for
every k = 0, 1, . . . , q − 1, coincide on Tj when taken from Dj and from Dj+1.

3. Interpolation Polysplines - Definition and Basic Identity

For a function u(x) defined in the domain D we shall denote by uj(x) its restric-
tions to the subdomains Dj, j = 1, 2, . . . , N .

Definition. Let q > 0 be a given integer. The function u ∈ H4q(D \ ST ) is called
an (interpolation) polyspline of order 2q (for the given subdivision by the

domains D̃j) if and only if the following conditions hold:

∆2quj(x) = 0, x ∈ Dj, for j = 1, 2, . . . , N ;(3.1)

∆kuN(x) = 0, x ∈ TN = ∂D, for k = 1, . . . , q − 1;(3.2)

(∂/∂nN)∆kuN(x) = 0, x ∈ TN = ∂D, for k = 0, . . . , q − 1;

∆puj(x) = ∆puj+1(x), x ∈ Tj,(3.3)

for j = 1, 2, . . . , N − 1 and p = 0, 1, . . . , 2q − 1;
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(∂/∂nj)∆
puj(x) = (∂/∂nj)∆

puj+1(x), x ∈ Tj,(3.4)

for j = 1, 2, . . . , N − 1 and p = 0, 1, . . . , 2q − 2.

Equalities (3.2)–(3.4) should be considered as equalities between traces of func-
tions.

The space of all such polysplines will be denoted by PS2q(D), or simply by PS.
The following is a basic identity for polysplines:

Theorem 3.1. For every h ∈ HLq(D) and u ∈ PS2q(D) the following equality is
true:

∫
D

∆qu(x)∆qh(x)dx =

∫
ST\∂D

{(∂/∂n)∆2q−1u(x)}jumph(x)dω(x)

(3.6)

−
q−1∑
l=0

∫
TN

{∆l+qu(x)(∂/∂nN )∆q−1−lh(x)

− (∂/∂nN)∆l+qu(x)∆q−1−lh(x)}dωN (x),

where {(∂/∂n)∆2q−1u(x)}jump denotes the jump of the normal derivative at the
point x ∈ Tj, which is equal to

(∂/∂nj)∆
2q−1uj(x) − (∂/∂nj)∆

2q−1uj+1(x)

for j = 1, . . . , N − 1. (For j = N we have only one term, (∂/∂nN)∆2q−1uN (x).)
Here ω(x) denotes the intrinsic measure on all Tj, j = 1, . . . , N.

Proof. By the Green’s formula in [Aron, p. 10, (2.9)], for every j we have

∫
Dj

∆qu(x)∆qh(x)dx +

q−1∑
l=0

∫
∂Dj

{∆l+qu(x)(∂/∂νj)∆
q−1−lh(x)

−(∂/∂νj)∆
l+qu(x)∆q−1−lh(x)}dσj(x) = 0,

where dσj(x) denotes the element of the intrinsic measure on ∂Dj, and νj is the
inner unit normal vector to Dj.

Taking into account that νj = nj on Tj and νj = −nj−1 on Tj−1, after summing
over j = 1, . . . , N , we obtain formula (3.6). Q.E.D

4. Uniqueness of Interpolation Polysplines and Extremal Property

The immediate profit of Theorem 3.1 is the uniqueness of polysplines.

Theorem 4.1. Let u(x) be an interpolation polyspline of order 2q. If u(x) = 0 on
the set ST , then u ≡ 0 in the whole domain D.

Proof. Let us put h(x) = u(x) in formula (3.6) of Theorem 3.1. We obtain

∫
D

(∆qu(x))2dx = 0.

This implies that ∆quj(x) = 0, for every x ∈ Dj , j = 1, . . . , N .
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From Lemma 4.1 below it follows that u(x) is a q-harmonic function everywhere
in D. Now the boundary conditions (3.2) imply that u ≡ 0 in D. Q.E.D

The following is in fact a continuation through the boundary result:

Lemma 4.1. Let the function u ∈ H2m(D\ST ) have the property that ∆mu(x) = 0
for every Dj , j = 1, . . . , N , and also satisfy the following boundary conditions:

(i) ∆puj(x) = ∆puj+1(x),

(ii) (∂/∂nj)∆
puj(x) = (∂/∂nj)∆

puj+1(x)

for every x ∈ Tj, where p = 0, 1, . . . ,m−1 and j = 1, . . . , N−1. Then ∆mu(x) = 0
for every x ∈ D.
Proof. Let us apply the second Green’s formula [Aron, p. 10, (2.11)] to every
subdomain Dj . We obtain

Ωn

m−1∑
l=0

∫
∂Dj

{∆lu(x)(∂/∂νj)rl+1(x− y)(4.1)

−(∂/∂νj)∆
lu(x)rl+1(x − y)}dωj(x)

−Ωn

∫
Dj

∆mu(x)rm(x− y)dy = u(y), for y ∈ Dj

and is equal to 0 elsewhere. Here Ωn is a suitable constant and rl(x) is a normalized
fundamental solution of the equation ∆lw(x) = 0 [Aron, pp. 8-10].

Since νj = −νj+1 on Tj , after summing over j in (4.1), we obtain the second
Green’s formula for u(y) in D, which proves that it is a polyharmonic function of
order m in the whole of D. Q.E.D

Now we may prove that the solution to problem (3.1)– (3.4) satisfying the inter-
polation conditions (1.4) is in fact a solution to the variational problem (1.3)–(1.4′).

Theorem 4.2. The solution v(x) to problem (3.1)–(3.4) satisfying (1.4) is also a
solution to the following extremal problem:

∫
D

[∆qf(x)]2dx→ inf,

where the infimum is taken over the set of functions f(x) ∈ H2q(D) satisfying
conditions (1.4)–(1.4′)

Proof. For an arbitrary f consider the difference∫
D

[∆qf(x)−∆qv(x)]2dx

=

∫
D

[∆qf(x)]2dx− 2

∫
D

[∆qf(x) −∆qv(x)]∆qv(x)dx −
∫
D

[∆qv(x)]2dx.

Applying Theorem 3.1 to the second term by putting h = v − f and u = v, we
obtain the equality
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[∆qf(x)−∆qv(x)].∆qv(x)dx

=

∫
ST\∂D

[f(x)− v(x)].{(∂/∂n)∆2q−1v(x)}dω(x)

−
q−1∑
l=0

∫
TN

{∆l+qv(x)(∂/∂nN )∆q−1−l(f(x)− v(x))

−(∂/∂nN)∆l+qv(x)∆q−1−l(f(x) − v(x))}dωN (x).

All terms on the right side are zero, since v and f satisfy (1.4)–(1.4′). Thus we
obtain ∫

D

[∆qv(x)]2dx =

∫
D

[∆qf(x)]2dx−
∫
D

[∆qf(x)−∆qv(x)]2dx,

which proves our statement. Q.E.D

5. A Priori Estimates for Interpolation Polysplines
in the Half-space

We will call the function g(x) defined on the set ST interpolation data for the
(interpolation) polyspline u(x) ∈ PS2q if and only if

u = g on ST(5.1)

for the trace of the function u(x) on the set ST .
Our goal is a priori estimates for interpolation polysplines of the type

(5.2) ‖ u ‖Hs+4q(D\ST )≤ C{‖ g ‖Hs+4q−1/2(ST ) + ‖ u ‖Hs+4q−1(D\ST )}.
They are proved for the case of non-homogeneous interior boundary conditions

in Theorem 5.2.1 below.

5.1. Basic Proposition for the Matching in the Half-spaces. We will first
prove the main technical result of the paper, Proposition 5.1.1, necessary for study-
ing the a priori estimates for operators with constant coefficients in the half-space.

For this purpose we recall the standard notations and notions from [LiMa].
We will use the notation x = (y, t) for a point x ∈ Rn, where y = (y1, . . . , yn−1) ∈

Rn−1, t ∈ R . The variable dual to x will be ξ = (η, t′), where η = (η, . . . , ηn−1) ∈
Rn−1 and t′ ∈ R.

We denote by Rn
+ the half-space of the points x ∈ Rn with t > 0; by Rn− we

denote the other half-space, where t < 0.
Let us put m = 2q, and consider the operators

A(D)u = A(Dy , Dt)u = ∆mu,(5.1.1)

Bj(D)u = Bj(Dy, Dt)u = ∆ju, j = 0, . . . ,m− 1,(5.1.2)

Sj(D)u = Sj(Dy, Dt)u = Dt∆
ju, j = 0, . . . ,m− 1,(5.1.3)

where Dy denotes the multivariate differentiation in y and Dt = ∂/∂t.
We will put mj = 2j = ord(Bj). Hence the order of the operator Sj is mj + 1,

for j = 0, . . . ,m− 1.
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Let us denote by τ+
i (η) (respectively by τ−i (η)) the roots of A(η, τ) with positive

(resp. negative) imaginary part. Since A(D) has real coefficients, we may write

that τ−j (η) = τ+
j (η), j = 1, . . . ,m, where the bar means a complex conjugate.

We denote by S(R+), as usual (cf. [Schw]), the space of functions which are infin-
itely differentiable for t ≥ 0 and are rapidly decreasing for t→∞ (i.e. tkφ(j)(t) → 0
as t→∞, for every k and every j).

We denote by S(R−) the similar space for t ≤ 0 , i.e. φ(t) ∈ S(R−) if and only
if φ(−t) ∈ S(R+) .

For every η ∈ Rn−1, η 6= 0, let us consider the system of ordinary differential
equations

A(η, i−1d/dt)φ(η, t) = 0, t ≥ 0,(5.1.4)

A(η, i−1d/dt)ψ(η, t) = 0, t ≤ 0,(5.1.5)

with boundary conditions

Bj(η, i
−1d/dt)φ(η, t)|t=0 = Bj(η, i

−1d/dt)ψ(η, t)|t=0 + cj ,

(5.1.6)

for j = 0, . . . ,m− 1, and

Sj(η, i
−1d/dt)φ(η, t)|t=0 = Sj(η, i

−1d/dt)ψ(η, t)|t=0 + dj ,

(5.1.7)

for j = 0, . . . ,m− 2;

B0(η, i
−1d/dt)φ(η, t)|t=0 = γ,(5.1.8)

where φ(η, t) ∈ S(R+), ψ(η, t) ∈ S(R−), and cj , dj , γ are given complex numbers.
The following statement is an analog to Proposition 4.2, Ch. 2 in [LiMa].

Proposition 5.1.1. Let the operators A2q and Bj , j = 0, . . . , 2q − 1, and Sj , j =
0, . . . , 2q−2, be given by (5.1.1)–(5.1.3). Then problem (5.1.4)–(5.1.8) has a unique
solution for every set of constants cj , j = 0, . . . ,m − 1, and dj , j = 0, . . . ,m − 2,
and γ.

Proof. a) Let us find the dimension of the space of solutions to the system (5.1.4)–
(5.1.5).

Let us recall the simple fact from the theory of ordinary differential equations
that the solutions to the equation (5.1.4) (or to (5.1.5)) are exponential polynomials.
An exponential polynomial in R+ is in S(R+) if and only if the exponents have
positive imaginary parts. Similarly, an exponential polynomial in R− is in S(R−)
if and only if the exponents have negative imaginary parts. So if we denote by

τ+ = i | η | and τ− = −i | η |(5.1.9)

the zeroes of the polynomial equation Am(η, τ) = (η2 + τ2)m = 0 (which clearly
have multiplicity m = 2q), we obtain that the exponential polynomials in S(R+)

contain exponents of the kind eitτ
+

, and exponential polynomials in S(R−) con-

tain exponents of the kind eitτ
−
. Since the multiplicity of τ+ is m, the space of

solutions to equation (5.1.4) has complex dimension m. For the same reasons, the
dimension of the space of solutions to equation (5.1.5) also has complex dimension
m. Consequently, the space of solutions to the system (5.1.4)–(5.1.5) has complex
dimension 2m.
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b) An important observation for the further considerations is that if an exponen-
tial polynomial φ(η, t) ∈ S(R+) is a solution to equation (5.1.4), then the function
φ(η,−t) ∈ S(R−) is a solution to equation (5.1.5), i.e.

Am(η, i−1d/dt)ψ(η,−t) = 0.(5.1.10)

The last is due to the fact that the polynomial Am(η, τ) depends on τ2 solely.
c) As proved above, the dimension of the space of solutions to equations (5.1.4)–

(5.1.5) is exactly 2m, which is equal to the number of free parameters on the
right-hand side of the boundary conditions (5.1.6)–(5.1.8), namely the constants
cj , j = 0, . . . ,m− 1; dj , j = 0, . . . ,m− 2, and γ.

Thus to every couple (φ, ψ) ∈ S(R+) × S(R−) which is a solution to the sys-
tem (5.1.4)–(5.1.5), we map an element of the space C2m, given by the following
sequence of 2m numbers:

Bj(η, i
−1d/dt)φ(η, t)|t=0 −Bj(η, i

−1d/dt)ψ(η, t)|t=0,

for j = 0, . . . ,m− 1;

Sj(η, i
−1d/dt)φ(η, t)|t=0 − Sj(η, i

−1d/dt)ψ(η, t)|t=0,(5.1.11)

for j = 0, . . . ,m− 2;

B0(η, i
−1d/dt)φ(η, t)|t=0.

This is in fact a map from a 2m-dimensional linear space into C2m. Consequently,
the system (5.1.4)–(5.1.8) is solvable if and only if for a zero right-hand side,

cj = 0, j = 0, . . . ,m− 1; dj = 0, j = 0, . . . ,m− 2; γ = 0,(5.1.12)

we have that φ = 0, ψ = 0.
Suppose that (5.1.12) holds true.
Since the operators Bj , j = 0, . . . ,m−1, depend on τ2 solely, it follows that the

solution to equation (5.1.5) satisfies

Bj(η, i
−1d/dt)ψ(η,−t)|t=0 = Bj(η, i

−1d/dt)φ(η, t)|t=0,(5.1.13)

for j = 0, . . . ,m− 1.
In view of (5.1.10) the functions ψ(η,−t) and φ(η, t) are solutions to the same

boundary value problem. Now we may apply Proposition 4.2, Ch.2 in [LiMa] to
the operators Am and Bj , j = 0, . . . ,m− 1 (since they satisfy hypothesis II there),
which gives uniqueness of the solution (we provide this result in Lemma 5.1.2,i)
below).

Hence, we obtain that

φ(η, t) = ψ(η,−t).(5.1.14)

On the other hand, notice that the operators Sj(η, i
−1d/dt) are given by

Sj(η, i
−1d/dt) = i−1d/dt{Bj(η, i

−1d/dt)}, j = 0, . . . ,m− 2.

Consequently,

Sj(η, i
−1d/dt)ψ(η,−t)|t=0 = −Sj(η, i−1d/dt)ψ(η, t)|t=0,(5.1.15)

for j = 0, . . . ,m− 2.
By virtue of (5.1.7) and (5.1.14) we obtain the following equalities:

Sj(η, i
−1d/dt)ψ(η, t)|t=0 = 0, j = 0, . . . ,m− 2.(5.1.16)
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The boundary condition (5.1.8) is

B0(η, i
−1d/dt)φ(η, t)|t=0 = 0.(5.1.17)

d) The last step is to see that φ ≡ ψ ≡ 0.
For proving it we will use an idea of spline theory where the uniqueness (and

existence) of the splines is proved through a suitable identity (cf. [ANW, p. 154])
(which we have already exploited in Section 4).

For the function w(η, t) which coincides with φ on R+ and with ψ on R− we
have the following identity:∫ ∞

−∞
Aq(η, i

−1d/dt)w(η, t)Aq(η, i
−1d/dt)f(t)dt(5.1.18)

= {S2q−1w(0)}f(0)

for every f ∈ H2q(R); here we use the notation for the jump:

{S2q−1w(0)} = S2q−1(η, i
−1d/dt)φ(η, t)|t=0 − S2q−1(η, i

−1d/dt)ψ(η, t)|t=0.

The proof of (5.1.18), like that of Theorem 3.1, consists of simple integration by
parts, and makes use of the boundary conditions (5.1.13) and (5.1.15), and the fact
that

A2q(η, i
−1d/dt)w(η, t) = 0 for every t 6= 0.

Let us put f = w in (5.1.18). Since B0φ|t=0 = B0ψ|t=0 = w(0) = 0, we obtain∫ ∞

−∞
[Aq(η, i

−1d/dt)w(η, t)]2dt = 0,

and, consequently,

Aq(η, i
−1d/dt)w(η, t) = 0,(5.1.19)

for every t ∈ R.
Further we use (5.1.19) and also (5.1.15)-(5.1.16) to obtain the following bound-

ary value problem:

Aq(η, i
−1d/dt)φ(η, t) = 0, t ≥ 0,(5.1.20)

Sj(η, i
−1d/dt)φ(η, t)|t=0 = 0, j = 0, 1, . . . , q − 1.

This problem has only the trivial solution, since the operators Aq and Sj , j =
0, 1, . . . , q − 1, satisfy hypothesis II of Ch. 2 in [LiMa], (and we may apply Propo-
sition 4.2, Ch. 2, same ref.); see also Lemma 5.1.2,ii) below.

The last implies that φ ≡ 0.
The proof of the proposition is finished. Q.E.D

For completeness we provide the following (cf. [Nec]; B.V.P. means “boundary
value problem”):

Lemma 5.1.2. i) The boundary value problem (5.1.4) with

Bj(η, i
−1d/dt)φ(η, t)|t=0 = 0, j = 0, . . . ,m− 1,

has only the trivial solution;
ii) The B.V.P. (5.1.20) has only the trivial solution.
iii) The B.V.P. (5.1.4) with boundary conditions

Bj(η, i
−1d/dt)φ(η, t)|t=0 = 0, j = 0, . . . , q − 1,
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Sj(η, i
−1d/dt)φ(η, t)|t=0 = 0, j = 0, . . . , q − 1,

has only the trivial solution.

The proof follows by induction.

5.2. A Priori Estimates in the Half-spaces. To proceed further with the
scheme of frozen coefficients developed in detail in [LiMa, Ch. 2] we have to consider

1) a priori estimates of one-dimensional B.V.P.,
2) a priori estimates for operators with constant coefficients in the union of the

two half-spaces, and
3) a priori estimates for operators with variable coefficients in the union of the

two half-spaces.
This may be done by using the results of Section 5.1, Proposition 5.1.1, Lemma

5.1.2, and applying the techniques of the above-mentioned book.
Here we provide the formulation of the final a priori estimate, in the third case

only. This is enough to understand the mechanism of the a priori estimates obtained
in the present paper.

Next we will consider operators A and Bj , j = 0, . . . ,m − 1, such that their
principal homogeneous parts are given by (5.1.1)–(5.1.3), i.e. A0(0, D) = ∆2q,
Bj,0(0, D) = ∆j , j = 0, . . . ,m− 1, Sj,0(0, D) = DtBj,0(0, D), j = 0, . . . , 2q − 1.

Let w = (u, v) ∈ H2m(Rn
+)×H2m(Rn

−) . Let us denote by P the operator given
by

P : w = (u, v) → Pw = {A(x;D)u,A(x;D)v;

Bj(x;D)u|t=0 −Bj(x;D)v|t=0, j = 0, . . . ,m− 1;

Sj(x;D)u|t=0 − Sj(x;D)v|t=0, j = 0, . . . ,m− 2;

B0(x;D)u|t=0}.
Let us introduce the spaces

U1,r =
m−1∏
j=0

H2m+r−mj−1/2(Rn−1)×
m−2∏
j=0

H2m+r−mj−3/2(Rn−1)

×H2m+r−1/2(Rn−1),

and

U2,r =
m−1∏
j=0

H−2m+r+mj+1/2(Rn−1)×
m−2∏
j=0

H−2m+r+mj+3/2(Rn−1)

×H−2m+r+1/2(Rn−1),

where we have put mj = 2j = ord(Bj).
Thanks to the theorem about traces [LiMa, Chapter 1.8], the operator P is linear

and continuous from

H2m(Rn
+)×H2m(Rn

−) into L2(Rn
+)× L2(Rn

−)× U1,0.

Let us denote by P ∗ the operator adjoint to P which maps L2(Rn
+)×L2(Rn

−)×U2,0

into [H2m(Rn
+)×H2m(Rn

−)]′.
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Theorem 5.2.1. Assume that the operators with constant coefficients A0(0, D),
Bj,0(0, D), j = 0, . . . ,m − 1, Sj,0(0, D), j = 0, . . . ,m − 1, are given by (5.1.1)–
(5.1.3).

Then for every given integer r ≥ 0 there exists a positive ρ0 such that for ρ < ρ0

the following statements hold:
i) If w = (u, v) ∈ H2m(Rn

+)×H2m(Rn
−) is a couple of functions each of which

is equal to zero outside the ball B(0; ρ) and Pw ∈ S1 = Hr(Rn
+)×Hr(Rn−)×U1,r,

then w ∈ S2 = H2m+r(Rn
+)×H2m+r(Rn

−) and the following inequality holds:

‖ w ‖S2
≤ Cr,ρ{‖ Pw ‖S1

+ ‖ w ‖H2m+r−1(Rn
+)×H2m+r−1(Rn

−)},
where Cr,ρ depends on r and ρ.

ii) If F = {f1, f2; g1
o , . . . , g

1
m−1; g

2
o, . . . , g

2
m−2; g} ∈ L2(Rn

+) × L2(Rn
−) × U2,0 is

equal to zero outside the ball B(0; ρ), i.e. f1, f2 = 0 outside B(0; ρ); g1
j (y) = 0 for

| y |> ρ, j = 0, . . . ,m − 1, g2
j (y) = 0 for | y |> ρ, j = 0, . . . ,m − 2, and P ∗F ∈

T1,r = H−2m+r(Rn)×H−2m+r(Rn), then F ∈ T2,r = Hr(Rn
+)×Hr(Rn

−)× U2,r.
For integers r > 0 we have the inequality

‖ F ‖T2,r
≤ Cr,ρ‖ P ∗F ‖T1,r

+ ‖ F ‖Hr−1(Rn
+)×Hr−1(Rn

−)×U2,r
,

and for r = 0, the inequality

‖ F ‖T2,0
≤ C0,ρ{ ‖ P ∗F ‖T1,0 +‖ (f̃1, f̃2) ‖H−1(Rn)×H−1(Rn)}

+
m−1∑
j=0

‖ g1
j ‖H−2m+mj−1/2(Rn−1)

+
m−2∑
j=0

‖ g2
j ‖H−2m+mj+1/2(Rn−1)

+ ‖ g ‖H−2m−1/2(Rn−1)}.
Here f̃1 (resp. f̃2) is the continuation of f1 (resp. f2) as zero for t < 0 (resp.

t > 0).

The proof uses the same techniques as the proof of [LiMa, Ch. 2, Theorem 4.3]
and is based on Proposition 5.1.1 and Lemma 5.1.2.

6. A Priori Estimates and Existence in a Bounded Domain

Here we provide a priori estimates for a bounded domain with interior boundaries
in order to use them for proving a Fredholm alternative.

6.1. A Priori Estimates in a Bounded Domain with Interior Boundaries.
Let us go back to the interior B.V.P. (3.1)-(3.4).

We put m = 2q and assume all notations of Sections 2, 3.
We will consider the more general boundary value problem

Au(x) = f(x), x ∈ D \ ST ;(6.1.1)

BpuN (x) = hp(x), x ∈ TN = ∂D, for p = 1, . . . , q − 1;(6.1.2)

SpuN (x) = hq+p(x), x ∈ TN = ∂D, for p = 0, . . . , q − 1;

Bpuj(x) = Bpuj+1(x) + g1(x), x ∈ Tj ,(6.1.3)

for p = 0, . . . ,m− 1, j = 1, . . . , N − 1;

Spuj(x) = Spuj+1(x) + g2(x), x ∈ Tj,(6.1.4)
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for p = 0, . . . ,m− 2, j = 1, . . . , N − 1;

B0uj(x) = g(x), x ∈ Tj ,(6.1.5)

for j = 1, . . . , N ;
Here A = ∆2q in the whole of the domain D \ ST. The operators Bp are given

by Bpuj = ∆puj , x ∈ Tj ∪ Tj−1, for p = 0, . . . ,m − 1, for every domain Dj, j =
1, . . . , N , and function uj defined there. The operators Sp are given by the equality

Spuj = (∂/∂nj)Bpuj(x), x ∈ Tj ,

Spuj = (∂/∂nj−1)Bpuj(x), x ∈ Tj−1,

for p = 0, . . . ,m − 1, and for every domain Dj , j = 1, . . . , N , and function uj
defined there.

We assume that the domain D is bounded with boundary ∂D = TN which is
C∞, and locally D is on one side of ∂D. Each surface Tj, j = 1, . . . , N − 1, is an
infinitely smooth manifold of dimension n−1, such that the domain surrounded by
Tj is on one side of Tj .

Let us put ST1 =
⋃N−1
j=1 Tj , mj = ord(Bj) = 2j for j = 0, . . . q − 1, and

mj = ord(Sj−q) = 2(j − q) + 1 for j = q, . . . , 2q.
To simplify the writing let us put

U1,r =

m−1∏
j=1

H2m+r−mj−1/2(∂D)×
m−1∏
j=0

H2m+r−mj−1/2(ST1)

×
m−2∏
j=0

H2m+r−mj−3/2(ST1)×H2m+r−1/2(ST ),

U2,r =
m−1∏
j=1

H−2m+r+mj+1/2(∂D)×
m−1∏
j=0

H−2m+r+mj+1/2(ST1)

×
m−2∏
j=0

H−2m+r+mj+3/2(ST1)×H−2m+r+1/2(ST ).

We consider the data vector of problem (6.1.1)-(6.1.5) given by

F = {f, h; g1
0, . . . , g

1
m−1; g

2
0 , . . . , g

2
m−2; g} ∈ L2(D \ ST )× U2,0.

The corresponding operator given by

P : u→ F(6.1.6)

is linear and continuous from H2m(D \ ST ) into L2(D \ ST )× U1,0 .
Let us denote by P ∗ the operator adjoint to P mapping L2(D \ ST )× U2,0 into

[H2m(D \ ST )]′, which is defined by the equality

〈u, P ∗F 〉 = 〈Pu, F 〉,(6.1.7)

true for every F ∈ L2(D\ST )×U2,0 and every u ∈ H2m(D\ST ); here the brackets
〈, 〉 denote the pairing between the corresponding dual spaces.

We now give the main a priori estimate:
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Theorem 6.1.1. Under the above assumptions, for every given integer r ≥ 0 the
following statements are true:

10) If u ∈ H2m(D \ST ) and Pu ∈ Hr(D \ST )×U1,r, then u ∈ H2m+r(D \ST )
and

‖ u ‖H2m+r(D\ST )≤ Cr{‖ Pu ‖Hr(D\ST )×U1,r
+ ‖ u ‖H2m+r−1(D\ST )},

where Cr depends on r.
20) If F = {f ;h; g1

0, . . . , g
1
m−1; g

2
0 , . . . , g

2
m−2; g} ∈ L2(D \ST )×U2,0 and P ∗F ∈

[H2m−r(D \ ST )]′ , then F ∈ Hr(D \ ST )× U2,r.
For integers r > 0

‖ F ‖Hr(D\ST )×U2,r
≤ Cr{‖ P ∗F ‖[H2m−r(D\ST )]′ + ‖ F ‖Hr−1(D\ST )×U2,r

},
and for r = 0

‖ F ‖L2(D\ST )×U2,0
≤ C0{ ‖ P ∗F ‖[H2m(D\ST )]′ + ‖ f̃ ‖[H−1(Rn)]N

+

m−1∑
p=0

‖ g1
p ‖H−2m+mp−1/2(ST )

+

m−2∑
p=0

‖ g2
p ‖H−2m+mp+1/2(ST ) + ‖ g ‖H−2m−1/2(ST )},

where by f̃ we denote the set of N functions f̃j, j = 1, . . . , N , such that f̃j is a
continuation like zero of the function fj = f|Dj

outside the domain Dj.

The proof uses a partition of unity, and
1) the a priori estimate of [LiMa, Theorem 2.5.1, Ch.2] at interior points of

D \ ST ;
2) the a priori estimate of [LiMa, Theorem 3.1, Ch.2] at boundary points of ∂D.

This is possible since the system of boundary operators Sj , Bj , j = 0, . . . , q − 1,
satisfy the Agmon-Douglis-Nirenberg condition with respect to the operator A =
∆2q, see Lemma 5.1.2, iii) above;

3) the a priori estimate near the interior boundary points of ST1 provided by
Theorem 5.2.1.

6.2. Existence of a Solution in the Spaces Hs(D \ ST ) for Integers s ≥
2m. Now we may study the boundary value problem (6.1.1)-(6.1.5) in the spaces
H2m+r(D \ ST ) for integers r ≥ 0. We have to prove that the operator given
by (6.1.6) is a Fredholm operator from H2m+r(D \ ST ) into Hr(D \ ST ) × U1,r,
assuming the notations of the previous paragraph.

Recall that the index χ(P ) of P is given by the formula

χ(P ) = dim(Ker(P ))− codim(Im(P )).

Using the standard argumentation based on Peetre’s lemma, as in [LiMa, The-
orem 5.2, Ch. 2] we have the following:

Theorem 6.2.1. Let the assumptions of Section 6.1 hold. Then the operator P
defined by (6.1.6), considered from H2m+r(D \ ST ) into Hr(D \ ST )× U1,r, for
r = 0, 1, 2, . . . , has an index χ(P ) which does not depend on r. The kernel of P is
the space

Λ = {u : u|Dj
= uj ∈ D(Dj), Pu = 0}(6.2.1)
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and its image is the set of elements F = {f ;h; g1
0, . . . , g

1
m−1; g

2
0 , . . . , g

2
m−2; g} of the

space Hr(D \ ST )× U1,r such that

〈F,Φ〉 = 0(6.2.2)

for every element Φ = {v;χ; γ1
0 , . . . , γ

1
m−1; γ

2
0 , . . . , γ

2
m−2; γ} of the space

Λ1 = {Φ ∈ L : such that P ∗Φ = 0},(6.2.3)

where we have put

L =

N∏
j=1

D(Dj)× [D(∂D)]m−1(6.2.4)

× [D(ST1)]
m × [D(ST1)]

m−1 × [D(ST )]m,

and P ∗ is the operator adjoint to P , and is defined through the duality relation
(6.1.7) (where r = 0).

The following proposition explicitly describes the space Λ1, and the consistency
conditions (6.2.2) providing solubility of problem (6.1.1)-(6.1.5).

Proposition 6.2.2. The space Λ1 defined by (6.2.3) coincides with the set run by
the element

Φ = {v; −Sm−1−pvN |TN , p = 1, . . . , q − 1;

−Bm−1−pvN |TN , p = 0, . . . , q − 1;

−Sm−1vj+1|Tj , j = 1, . . . , N − 1;

−Sm−1−pvj|Tj , p = 1, . . . ,m− 1, j = 1, . . . , N − 1;

Bm−1−pvj|Tj , p = 0, . . . ,m− 2, j = 1, . . . , N − 1;

(−Sm−1vj + Sm−1vj+1)|Tj , j = 1, . . . , N − 1; −Sm−1vN |TN}
where v is such that v|Dj

∈ D(Dj) and

Av(x) = A∗v(x) = 0, x ∈ D \ ST ;

BpvN (x) = 0, x ∈ TN = ∂D, p = 1, . . . , q − 1;

SpvN (x) = 0, x ∈ TN = ∂D, p = 0, . . . , q − 1;

Bpvj(x)−Bpvj+1(x) = 0, x ∈ Tj, p = 0, . . . ,m− 1, j = 1, . . . , N − 1;

Spvj(x)− Spvj+1(x) = 0, x ∈ Tj, p = 0, . . . ,m− 2, j = 1, . . . , N − 1;

B0uj(x) = 0, x ∈ Tj, j = 1, . . . , N.
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The proof is based on the following Green’s formula obtained from [Aron, p. 9]
or [LiMa, Ch.2, Sec. 2]:∫

Dj

{u∆2qv −∆2quv}dx+

m−1∑
p=0

∫
∂Dj

(BpuS2q−1−pv − SpuB2q−1−pv) = 0.

It also relies upon the fact that the system of boundary operators {B0, . . . , Bm−1,
S0, . . . , Sm−1} forms a Dirichlet system on every boundary Tj, j = 1, . . . , N , i.e.
the set of their orders exhausts the set of numbers {0, 1, . . . , 2m − 1}. The last
permits the application of Lemma 2.2.2 from [LiMa, Chapter 2], which gives that
the vector

{Bpuj|Tj−1
, Bpuj|Tj , Spuj|Tj−1

, Spuj|Tj}m−1
p=0

runs through the space [D(Tj ∪ Tj−1)]
2m.

Here we give more information about the consistency conditions (6.2.2)-(6.2.3).

Corollary 6.2.3. The boundary value problem (6.1.1)-(6.1.5) is self-adjoint, and
for the space defined by (6.2.3) we have Λ1 = {0}.
Proof. Proposition 6.2.2 in fact provides a description of the B.V.P. adjoint to
(6.1.1)-(6.1.5), which evidently coincides with it. On the other hand, according to
Theorem 4.1 we have unique solubility to B.V.P. (6.1.1)-(6.1.5). Consequently, the
adjoint problem is uniquely solvable as well, and representation (6.2.3) implies that
Λ1 = {0}. Q.E.D

Here is the existence result:

Theorem 6.2.4. Let the assumptions of Section 6.1 hold. Then for the opera-
tor P , given by (6.1.6), considered as an operator from H2m+r(D \ ST ) into
Hr(D \ ST )× U1,r , for r = 0, 1, 2, . . . , we have Ker(P ) = {0} and codim(Im(P ))
= 0, i.e. P is a Fredholm operator and has an index χ(P ) = 0 . Hence, B.V.P.
(6.1.1)-(6.1.5) is solvable for all right sides from the indicated spaces.

The proof follows immediately from Corollary 6.2.3 and Theorem 6.2.1.

6.3. Existence of Polysplines. Let us go back to our original problem, the exis-
tence of interpolation polysplines, given by (3.1)-(3.4), and satisfying (5.1). As an
immediate corollary of Theorem 6.2.4 we obtain

Theorem 6.3.1. Let us assume that in the domain D ⊆ Rn we have a family of
monotonely imbedded closed surfaces Tj , j = 1, . . . , N , with TN = ∂D, which are de-
fined in Section 2. Assume that the surfaces Tj have the smoothness properties pro-

vided in Section 6.1. Then for every integer r ≥ 0 and data gj ∈ H4q+r−1/2(Tj), j =
1, ..., N, there exists a unique interpolation polyspline u(x), a solution to problem
(3.1)-(3.4), (5.1), such that its pieces satisfy uj ∈ H4q+r(Dj), j = 1, ..., N, and thus
u ∈ HL2q−1(D).

7. Examples and Applications

The main purpose of the examples below is to see that the computation of
the interpolation polysplines in some particular cases of a data set ST possessing
symmetry is reduced to finding one-dimensional interpolation L−splines. That
shows on one hand ways to compute the polysplines numerically; on the other hand
it proves that, in a certain sense, the polysplines are a genuine generalization of the
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one-dimensional concept of spline. We restrict ourselves to the formal side of the
computations, without discussing in detail the convergence of the Fourier series or
integrals that appear.

1. Data set on concentric circles and biharmonic polysplines.
Let us set

Tj =
{
(x1, x2) = (r, θ) ∈ R2 : |x| = r = rj

}
, j = 1, ..., N,

for the numbers 0 = r0 < r1 < ... < rN , and the polar coordinates (r, θ) .
Condition (3.1) states that the biharmonic polyspline satisfies

∆2uj (x) = 0, rj−1 < |x| < rj , j = 1, ..., N ;(7.1)

for u1 the above holds for x = 0 as well.
From (3.3), with p = 0, 1, we obtain

uj (rj , θ) = uj+1 (rj , θ) = gj (θ) , θ ∈ [0, 2π], j = 1, ..., N − 1;(7.2)

∆uj (rj , θ) = ∆uj+1 (rj , θ) , θ ∈ [0, 2π], j = 1, ..., N − 1.

From (3.4), with p = 0, we obtain

∂uj
∂r

(rj , θ) =
∂uj+1

∂r
(rj , θ) , θ ∈ [0, 2π], j = 1, ..., N − 1.(7.3)

Since the Laplace operator has the form

∆f =
∂2f

∂r2
+

1

r

∂f

∂r
+

1

r2
∂2f

∂θ2
,

and if we assume that gj ∈ C2 (Tj) , it follows from the second equality in (7.2)
that

∂2uj
∂r2

(rj , θ) =
∂2uj+1

∂r2
(rj , θ) , θ ∈ [0, 2π], j = 1, ..., N − 1.

Further we make a Fourier transfrom in θ and put, for every integer τ ,

vj (r, τ) = ûj (r, τ) =

∫ 2π

0

uj (r, θ) e−iθτdθ.

Let ĝj (τ) denote the Fourier transform of the data function gj (θ). For every integer
τ the above equalities become(

∂2

∂r2
+

1

r

∂

∂r
− τ2

r2

)2

vj (r, τ) = 0, rj−1 < r < rj , j = 1, ..., N ;

vj (rj , τ) = vj+1 (rj , τ) = ĝj (τ) , j = 1, ..., N − 1;

∂vj
∂r

(rj , τ) =
∂vj+1

∂r
(rj , τ) , j = 1, ..., N − 1;

∂2vj
∂r2

(rj , τ) =
∂2vj+1

∂r2
(rj , τ) , j = 1, ..., N − 1.

It follows that in the interval (0, rN ) we have an L−spline of order 4 defined by
the operator

L =

(
∂2

∂r2
+

1

r

∂

∂r
− τ2

r2

)2

.

After the change v = 2log(r) we get a well known one-dimensional problem
[Schum, Chapter 10, and references there]. After finding its solution for every
integer τ , we obtain the polyspline uj (r, θ) by expanding it in a Fourier series.
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For simplicity we considered only the plane R2, and biharmonic polysplines.
The computations are essentially the same if we expand the polyspline components
uj (x) in spherical harmonics for arbitrary space dimension n and order 2q.

To make things even more comprehensive we shall consider the case of spheri-
cally symmetric biharmonic polysplines in R2, i.e. when the data gj are radially
symmetric: gj(θ) = Const = gj , θ ∈ [0, 2π], j = 1, ..., N. Then the functions uj(r, θ)
depend only on r.

In [Vek, p. 181, formulas (35.29-32)] one may find the representation formulas
for functions biharmonic in a layer. Using them, we find that uj may be written as

uj(x) = Aj +Bjr
2 + (Cj +Djr

2) log(r), r =| x |,
for j = 1, 2, . . . , N , where Aj , Bj , Cj , Dj are constants, and C1 = D1 = 0.

Besides the above conditions (7.1)-(7.3), we have also a boundary condition in
(3.2) which reduces to

∂uN(rN )

∂r
= 0.(7.4)

The interpolation condition (5.1) becomes

u(rj) = gj, j = 1, . . . , N.(7.5)

Clearly, we have to see that there exist constants Aj , Bj , Cj , Dj such that the
above interpolation and boundary conditions (7.2)-(7.5) are fulfilled.

In order to demonstrate how the main idea of the present paper works in that
simple situation, we shall give a direct proof of the existence Theorem 6.3.1.

For that purpose, introduce the operator

Srf(r) = r1/2∆rf = r−1/2(∂/∂r)(r∂f/∂r).

Lemma 7.1. Let u be the biharmonic polyspline defined above. Then for every
function g ∈ H2(0, rN ) the following identity holds:

∫ rN

0

Sru(r)Srg(r)dr =

∫ rN

0

r[∆r]
2u(r)g(r)dr

+

N∑
k=1

λk(∂
3u(rk + 0)/∂r3 − ∂3u(rk − 0)/∂r3)g(rk)

+rN (∂/∂r)∆ruN (rN )g(rN ) + (∂/∂r)r(∂/∂r)uN (rN )(∂/∂r)g(rN ),

where the λk are some appropriate constants.

The proof easily follows through integration by parts.
Let us prove uniqueness for the interpolation problem (7.5).
If gj = 0, j = 1, . . . , N , then we put g = u in the above identity, and obtain

∫ rN

0

(Sru(r))
2dr = 0.

This implies Sru(rj) = 0, j = 1, . . . , N, or ∆ru(rj) = 0. Since uj(rj) = uj(rj−1) =
0 for j = 2, . . . , N , it follows that uj ≡ 0.
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Thus we have proved that for every right side {gj}Nj=1, there exists a unique

u satisfying (7.1)-(7.5). Since the system (7.1)-(7.5) is linear with respect to the
constants Aj , Bj , Cj , Dj, the uniqueness implies existence of u.

2. Data set on parallel hyperplanes and biharmonic polysplines.
Let ST be a set of parallel hyperplanes in Rn, i.e.

Tj =
{
(x, t) ∈ Rn : x ∈ Rn−1, t = tj

}
, j = 1, ..., N,

where the numbers t1 < ... < tN . Here uj (x, t) is defined in the layer between the
hyperplanes Tj−1 and Tj. As in the first example, conditions (3.2)-(3.4) simplify.
Let us make a Fourier transform in the variable x by putting, for every ξ ∈ Rn−1,

vj (ξ, t) = ûj (ξ, t) =

∫
Rn−1

uj (x, t) e−ixξdx,

and let ĝj (ξ) denote the Fourier transfrom of the data gj (x) .
For every ξ ∈ Rn−1 the main conditions in (3.1)-(3.4) (without the boundary

ones) become(
∂2

∂t2
− |ξ|2

)2

vj (ξ, t) = 0, tj−1 < t < tj , j = 2, ..., N ;

vj (ξ, tj) = vj+1 (ξ, tj) = ĝj (ξ) , j = 2, ..., N − 1;

∂vj
∂t

(ξ, tj) =
∂vj+1

∂t
(ξ, tj) , j = 2, ..., N − 1;

∂2vj
∂t2

(rj , tj) =
∂2vj+1

∂t2
(ξ, tj) , j = 2, ..., N − 1.

Consequently, for every ξ ∈ Rn−1, the function v (ξ, t) is a one-dimensional inter-

polation L−spline defined by the operator L =
(
∂2

∂t2 − |ξ|2
)2

, which is computable

by the reference quoted in the previous example. The original polyspline compo-
nents uj (x, t) are obtained by applying the inverse Fourier transform to vj (ξ, t) .
The case of arbitrary order 2q polysplines was studied in [Ko4].

Let us remark that the existence result for polysplines proved in Theorem 6.3.1
does not apply directly to the case of unbounded domains, which is the case of the
above example. Here we may profit from the results in Section 5. Namely, if we
assume as in Theorem 5.2.1 that the data functions gj, j = 1, . . . , N, have compact

supports and belong to H3 1
2 (Tj), the convergence of the inverse Fourier transform

above will follow automatically, and also the smoothness of the polysplines obtained
will be, near the interior boundary ST , that of Theorem 6.3.1.

3. Data set on rays and biharmonic polysplines.
Let ST be a set of rays in Rn coming out of the origin, i.e.

Tj =
{
(x1, x2) ∈ R2 : θ = θj

}
, j = 1, ..., N,

where (r, θ) are the polar coordinates of (x1, x2) , and 0 = θ0 < θ1 < ... < θN−1 <
θN = 2π. Let uj be defined for θj−1 ≤ θ ≤ θj , j = 1, ..., N. For simplicity we put
uN+1 = u1.

Now we make the following transform: we put t = − ln r and make the Fourier
transform t → λ. The whole transform is the so-called Mellin transform. Let us
denote by vj (λ, θ) the image of uj (r, θ) .
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Then as in the previous cases, for every λ ∈ R1, conditions (3.1)-(3.4) become(
∂2

∂θ2
− λ2

)(
∂2

∂θ2
− (λ− 2i)

2

)
vj (λ, θ) = 0, θj−1 ≤ θ ≤ θj ;

vj (λ, θj) = vj+1 (λ, θj) = ĝj (λ) ;

∂vj
∂θ

(λ, θj) =
∂vj+1

∂θ
(λ, θj) ;

∂2vj
∂θ2

(λ, θj) =
∂2vj+1

∂θ2
(λ, θj) ,

all for j = 1, ..., N.
Consequently, for every λ ∈ R1, the function v (λ, θ) is a periodic interpolation

L−spline defined by the operator

L =

(
∂2

∂θ2
− λ2

)(
∂2

∂θ2
− (λ− 2i)

2

)
,

and may be computed by the previous reference to [Schum].
The original polyspline uj (r, θ) is obtained by the inverse Mellin transform.
That example may be generalized to the case of ST which is a set of hyperplanes

in Rn which intersect at Rn−2.
We have to make a remark similar to that after example 2). In order to obtain

the smoothness rate of Theorem 6.3.1, example 3 needs some additional conditions
on the data related to the singularity of the interior boundary ST . Let us mention
that the problem was treated in [Ko3].

Finally, we want to point out the limits of application of Theorem 6.3.1 which
are imposed by the Sobolev imbedding theorem, by considering a particular case.

4. Let us apply Theorem 6.3.1 to the simplest case, that of biharmonic polysplines
in the plane, where Tj , j = 1, 2, are two circles as in example 1. Accordingly, the
data are two functions g1, g2 defined on T1, T2 respectively. Let us remark that
the solution may be obtained by following the procedure explained in example 1.

Theorem 6.3.1 states that the condition gj ∈ H3 1
2 (Tj) is necessary and sufficient

in order to obtain a solution u ∈ H4 (D \ ST ) which is smooth up to the interior
boundary ST, i.e. uj ∈ H4

(
Dj

)
. Since Tj , j = 1, 2, are one-dimensional manifolds,

∂D1 = T1, ∂D2 = T1

⋃
T2, by the Sobolev embedding theorem (cf. [Adams], p. 97,

Theorem 5.4) it follows that g1 ∈ C2 (T1) , g2 ∈ C2 (T1) , g2 ∈ C2 (T2).
This restriction on the data is present also in the Hölder space approach modelled

after [ADN]. In that setting smoothness of the solution up to the boundary also
requires sufficient smoothness of the data.

In fact, the result of Theorem 6.3.1 may be easily extended to Sobolev spaces of
arbitrary real exponent s ≥ 4q following the scheme of [LiMa, Chapter 2.5.4], and
for all other real exponents s, including s ≤ 0, by following the scheme in [LiMa,
Chapter 2, Sections 7,8]. Thus we will have a solution for data gj belonging to

arbitrary Sobolev space Hs− 1
2 (Tj) . In that case the polyspline u itself will belong

to a Sobolev space (denoted by Ξ in [LiMa]) of exponent s. For example, let us
take g2 ≡ 0, g1(x1, x2) = 0, x1 ≤ 0 and g1(x1, x2) = 1, x1 > 0, i.e. data which are

piecewise smooth with simple jumps. We have that gj ∈ H 1
2−ε(Tj) for every ε > 0;

see, e.g., [LiMa, Chapter 2, Theorem 10.2]. By the above remarks the solution will
belong to a Sobolev space of exponent 1 − ε in both domains D1, D2 up to the
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boundary! It does not seem to be of much practical use though, due to its low
smoothness near the boundary T1 ∪ T2.

From the point of view of practical smoothing techniques, the reasonable alterna-
tive, in the case of arbitrary data functions gj , is to approximate the last through

smoother data functions, namely gj ∈ H3 1
2 (Tj), and find the corresponding in-

terpolation biharmonic polyspline for the data gj . This would at least provide a
sufficiently smooth “approximate” interpolation polyspline u.
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