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1. Introduction

Much attention has been devoted to biharmonic problems because of their
occurrence in applications, for example, in flow and elasticity problems.
Several applications involve the biharmonic Dirichlet problem:

A%u = f in £,
(1.2) u = g1 oNos2,
gz = go 0N 92,

where here and throughout the pap&denotes the Laplaciaf, = (0, 1) x

(0,1), 042 is the boundary of?2, andd/on is the outer normal derivative

on 9£2. In linear elasticity,; represents the Airy stress function or, as in
the theory of thin plates, the vertical displacement due to an external force.
In fluid mechanics, (1.1) defines the streamfunction of an incompressible
two-dimensional creeping flow.
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268 Z.-M. Lou et al.

Various methods have been developed for solving (1.1) numerically. Fi-
nite difference methods can be grouped essentially into two approaches. The
first consists of the direct discretization of the biharmonic equation using
a thirteen-point stencil [20,28]. Some algorithms for solving the resulting
linear system have been proposed by Bjgrstad [5], Buzbee and Dorr [7], and
Golub [19], for example. On alV x N partition, the complexity of Golub’s
algorithm isO(N?3 log, N) with the use of fast Fourier transforms (FFTSs)
routines, while the complexity of Buzbee and Dorr’s algorithm and that of
Bjgrstad are)(N?3) andO(N?), respectively. The second approach is based
on the so-called splitting principle [28], in which the biharmonic equation
is separated into a coupled pair of Poisson equations that are discretized us-
ing the standard five-point finite difference approximation. Several iterative
methods based on this approach have been presented in [15,16, 22,25, 26].

Some finite difference methods are very efficient, for example, that of
Bjgrstad [5] which is of optimal complexit®)(N?). However, since all of
these methods are based on the standard finite difference discretization, the
global error is of second order. Higher order accuracy can be achieved using
finite element methods. There are many finite element approaches which
use iterative methods, such as those in [6,9,10,18,23]. Moreover, Hermite
bicubic orthogonal spline collocation (OSC) methods for the biharmonic
Dirichlet problem (1.1) have been considered by Cooper and Prenter [11]
who proposed an alternating direction implicit OSC method, and by Sun
[27] who presented a Schur complement OSC algorithm, the cost of which
is O(N31log, N). These methods produce fourth order approximations al-
though no rigorous proof of this result is provided in [11] or [27].

The purpose of this paper is to present existence, uniqueness and con-
vergence results for OSC methods for the solution of three biharmonic
problems, based on the splitting principle. In Sect. 3, we consider the first
problem, which comprises the biharmonic equatiofiZ2imvith © = ¢g; and
Au = go on 942. This problem becomes one of solving two honhomoge-
neous Dirichlet problems for Poisson’s equation. The resulting linear sys-
tems can be solved effectively with caS{ N2 log, N) using the matrix
decomposition algorithm of [3]. In this case, optimal ord&f-norm er-
ror estimatesk = 0, 1, 2, are derived. In the second problem, considered
in Sect. 4, the boundary conditicdu = ¢ on the horizontal sides of
012 is replaced by the conditiofu/0n = g3. Optimal H'- and H2-norm
error estimates are derived and a single series OSC Fourier method is for-
mulated for the solution of the algebraic problem. This algorithm has cost
O(N?log, N). Sect. 5 is devoted to the biharmonic Dirichlet problem (1.1)
and again optimal - and H2-norm error estimates are derived. The OSC
linear system is solved by a direct method which is based on the capacitance
matrix technique with the second biharmonic problem as the auxiliary prob-
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Orthogonal spline collocation methods for biharmonic problems 269

lem. The total cost of this capacitance matrix algorithi®?{sv?). We begin
by introducing some basic concepts, terminology and some well known
results for OSC approximation.

2. Preliminaries

Let N be a positive integer and I€t,,}¥_, be a uniform partition of0, 1]
such that,, = nh, n=0,..., N, whereh = 1/N is the stepsize. Let1;,
be the space of piecewise Hermite cubic§@ri] defined by

My, = {w € C*0,1] : Wity tnia] € Py m=0,...,N =1},
where P; denotes the set of polynomials of degre, and let
MY = {w e My, : w(0) = w(1) = 0},
MY = {we MY :w'(0) =w'(1) =0}
Let {¢,}2Y, be the Gauss points i), 1) given by

3-3
£2m+1 :tm+h 6 )
54+\3 m=20,...,N—1,
£2m+2 :tm+h 6 )
and let
(2.1) G={(z,y):z,y € {& 1N}

be the collection of the Gauss pointsfih

It follows from Lemma 2.3 in [14] that eache M is uniquely defined
by its values at the Gauss poir{, }2Y, . Therefore, in the following/M)
is regarded as a Hilbert space with the inner produe} defined by

2N

22) (w,2) = 2 Y- (wa)(Ew)

n=1
Throughout the papet; denotes a generic positive constant. The fol-
lowing inequality is (2.6) of [24]:

1

(2.3) (w,w) > C/ w(t)dt, we M).
0

The following result is Lemma 3.1 in [14]:

LemmaZ2.1. Forw, z € My,

1 N
—(w",z) = / (w'2)(t) dt — w2l + CR® Y w2,
0

n=1

wherewﬁf’) = w®) (1), ZT(L3) = (3 (t), t € (tn—1,tn).
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270 Z.-M. Lou et al.

Using (2.3) and Lemma 2.1 we prove the foIIowing result.

Theorem 2.1. If \ > 0, then for any number§f,, }2Y, and{g,}2Y,, there
exist uniquew € M9 and unique: € M, such that

(2.4)  —w"(&) + A (&) +2(6) = fo, n=1,...,2N,
(2.5) —2"(&) +X2(&) =gn, mn=1,...,2N.
Proof. Since in (2.4)—(2.5), the number of unknowns is equal to the number
of equations, we assume thét =g, = 0,n = 1...,2N, and show that
w = z = 0. Taking the inner produgt, -) with z on both sides of (2.4) and
with w on both sides of (2.5), respectively, we obtain
(—w", z) + Mw, z) + (2, 2) =0,

(=2",w) + Mz, w) = 0.
It follows easily from Lemma 2.1 thdt-w”, z) = (w, —2"") and hence (2.6)
gives(z, z) = 0, which implies

(2.6)

(2.7 2(6,) =0, mn=1,...,2N.
From (2.5) and (2.7), we hav# (¢,,) = 0, n = 1,...,2N. Since on each
subintervallt,,—1,tm], m = 1,...,N, z € Ps, it follows from the four

conditionsz(&,,) = 2”(&,) = 0,n = 2m —1,2m, thatz = 0 ON [t —1, tm)
and hence = 0.
From (2.4) and (2.7), we have

(—w", w) + Mw,w) = 0.
)(t) dt,

SinceA(w,w) > 0 and since, by Lemma 2.1--w", w) > fol( !
= 0 this implies

it follows thatw’ = 0 on [0, 1]. Together withw(0)
w = 0. O
Forl = 0,1,2,..., H(£2) is the standard Sobolev spadd¥((?
L?(£2)) equipped with the norm
9 1/2
LQ(Q))

HUHHI(Q) = ( Z
0<itj<I
where||v]|72 ) = [ v*(z,y) dz dy. Forw andz defined org of (2.1), let
(w, z), and|jw||, be defined by
2 2N 2N

(2.8) (w,z) —Z Y (w2) (& bm),  Nlwlle = (w,w)l/.

n=1m=1

oty
OxtOyI

Sincew € MY ® M is uniquely determined by its values 6 M @ MY
can be regarded as a Hilbert space With); as an inner product.
The following results follow easily from inequalities established in [24].
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Orthogonal spline collocation methods for biharmonic problems 271

Lemma 2.2. For w € MY @ M9,

(2.9) CHwlr20) < lwlle < Cllw|lr2(0),
and
(2.10) wlls < CllAw|s.

For sufficiently smoothy defined onf2, let v,, € M;, ® M, be its
piecewise Hermite interpolant defined by

O (v,, — )
oxt Oyl
It is well known thatv has a unique interpolant,. Moreover, we have the
following lemmas.

Lemma 2.3. [8] If v € H%(£2), then

(tnytm) =0, n,m=0,....,N, i,j=0,1

2.11) v —vllgr) < Ch* 7 Fvllgagn),  k=0,1,2.
Lemma 2.4. If v € H*(§2), then

(2.12) lv = ville < ChY[jvl| (-
Moreover, ifv € H'(£2),1 = 4,5, then

(2.13) 1AW = vl < CH 720l r1)-

Proof. Inequalities (2.12) and (2.13) fér= 5 were proved in Lemma 4.2
of [2]. Inequality (2.13) forl = 4 can be derived in a similar way. O
The following additional results were proved in [1].

Lemma 2.5. For w € MY @ M9,

N N |1
[wl[r2(2) < C (hllwllz0) + }f >0 1222 Awléen—is fom—j) )
(214) n=1m=1 [i=0 j=0
If v € H%($2), then
h2 N N 1 1
(2.15) T ;mz_l ;;)A(v — Uy)(&2n—is Eom—j)| < Ch4”U”H6(Q)~

To present some useful bases fef,, we first introduce (see, for exam-
ple, [17]) the functions,, s, € My, n = 0,..., N, known as the “value
function” and the “scaled slope function”, respectively, associated with the
pointt,. These functions are defined by

Un(tm) = 5n,m7 U;L(tm) =0,

Sn(tm) :07 Sln(tm) :h_16n7m’ nam:07...’N7
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272 Z.-M. Lou et al.

whered,, ,, is the Kronecker delta. By ordering thg ands,,, we obtain
two bases{¢, }2X ! and{y, )2 for M;, such that

{b0,b1,...,Pan, Pan41} = {v0,v1,...,UN—2,UN—1, 50, 51, - -
(2.16) SN—2,SN—1,SN,UN},
and
{0, Y1, ..., YN, Yant1} = {vo, s0,v1,81 ...,
(2.17) UN_1,5N—1,5N,UN}.

Note that, by removing the first and the last basis functions from (2.16) and
(2.17), we obtain two bases fav():

{p1,....,¢an} = {v1,...,uN—2,UN_1, 50, S1, - - -,
(2.18) SN_Q,SN_1,SN}
and
{¢17 ey ¢2N} — {5071}1, S1...,UN—1,SN—1, 5N}~
In [3], formulas were derived fok,, > 0 andz, € M% n=1,...,2N,
such that
(2.19) —20(&m) = Anzn(&m), m=1,...,2N,
and
(2.20) (Zny2Zm) = Opm, n,m=1,...,2N,

where(-, ) is defined by (2.2). According to Theorem 2.1 in [3],
(221) \p=X,, n=1,....N—1, Ayin=X\!, n=0,...,N,

where
12 (8 + 10 £ pin
AE =2 <> i = (/43 + 40, — 202
R\ 71— ’ w
(2.22) N T=1n
y, = COS —.
g N

It follows easily from (2.20) thafz, }2Y, is a basis forM?.
In addition to the base§p,, }2Y, and{z,}2Y,, we introduce the basis
{6, }2N, for M) defined by

(2.23) 0n(&m) = Onm, n,m=1,...,2N.

Then anyw € M can be represented in the forms

2N 2N 2N
(2.24) W= wimm =Y win =) whbn,
n=1 n=1 n=1
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wherew?, w?, andw? are the Fourier coefficients af with respect to the
corresponding basis functions. It follows from (2.24), (2.20), and (2.23) that

(2.25) wi = (w, zp), wz =w(&,), n=1,...,2N.

Moreover, if
w? = [w?,... ,wiy]T, w?=[w!,... ,wa]T, wl = [wf, ... wiy]T,
(2.26)
then it was shown in [4] that
(2.27) w? = Zw?,
2.28 s MR W
(2.28) W= b ¢ PoW',
and h
(2.29) w® = 5ZTB(;FWG,
where
(230) Bd) = (bmn)%\fn:p bimn = ¢n(§m)7
and ‘ ‘ ‘
SA; 0] SAL |0
(2.31) Z—G\/gl Ci, | o4 :
mnm\ N1 mnm\ N
S = |si C=
(Sln N )m,n:l ’ <COS N )m,n=07
R mna\ NN-1
C = <cos ) .
N m=0,n=1

The diagonal matriced?, Ag in Z are defined by

AL =diag(af, ..., a5 1),

Ag =diagBy, ..., By_1), Af =diag1,8f,...,8%_,1/V3),

where

nmw
o = GHan s, o = ssin (50)

vE = 1271+ 1) (8 + 1 F pn)? + (1 — 1) (11 + Ty, F 4pa) 22,

andy,, andn,, are asin (2.22).
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3. Biharmonic problem |
3.1. OSC scheme

In this section, we consider Biharmonic Problem | (BPI):

A%2u=f inf2,
(3.2) u=g; onaf2,
Ay = gy onof2.

Introducingv = Aw, we obtain the equivalent decoupled problem

—Au = —wv in {2,
(3:2) u=gy O0Nnoaf,

—Av=—fin (2,
(33) v=gy O0Nofl

Thus we can solve (3.1) by sequentially solving two nonhomogeneous
Dirichlet problems for Poisson’s equation, (3.3) and then (3.2).

The piecewise Hermite bicubic OSC method for solving (3.2)—(3.3) con-
sists in findinguy,, v, € Mj, ® My, such that

—Aup(§) = —vp(§),§ € G,
(3.4) “Aum(§) = —f(6), f<.

where the boundary coefficients ir), and v, are determined by piece-
wise Hermite cubic interpolation as in [2]. Specifically, usi{tgi}ff(;rl
and{«;}3;"" of (2.16) and (2.17) as the bases fof;,, we writewy (z, y)

andwy, (z,y) in the form

(3.5) up(w,y) = un(z,y) +in(z,y), vn(z,y) = va(z,y)+00(z,9),

where

2N 2N

up(z,y) = Z Z u jdi ()Y (y),

i=1j=1

2N 2N
n(x,y) =D uiodi(z)o(y) + D wiant19i(x)dan11(y)
=1 =1

2N+1 2N+1

+ Z uo,j¢0 ()i (y) + Z UaN+1,jP2n+1(2)j(y),
j=0

J=0
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Orthogonal spline collocation methods for biharmonic problems 275

with oy, (z, y) andoy, (z, y) defined similarly. Using the boundary conditions
in (3.2) and (3.3), the coefficients i, (z, y) andv,(x, y) are selected so
that

(36) Uh(w,y) :uﬂ<x7y)7 ’Uh(l',y) :Uﬂ(mvy)a (.Z',y) € 012.
Substituting (3.5) into (3.4), we obtain

3.7) —Aup(§) + oh () = Aun(§) — tn(€), € €6,
' — A (§) = Ap(§) — f(£), £€G,

wherey,, 7, € MY ® MY and the right hand sides are known. Hence
existence and uniqueness of the approximate solutigrendv;, of (3.4)
follow from those foru; and vy, in (3.7). Moreover,s;, and thena,, of
(3.7), and hencey;, and u; of (3.4), can be computed using the matrix
decomposition algorithm of [3].

3.2. Convergence analysis

3.2.1. Additional lemmas
We need the following lemmas.
Lemma 3.1. For w, z € M) ® MY, we have

(3.8) (—Aw, z), = (w, —Az),.

Proof. Sincew, z € M @ M}, we have

(3.9) w(a,y) =z2(a,y) =0, a=0,1, ye]l0,1],
and

(3.10) w(z,b) = z(z,b) =0, =z€]0,1], b=0,1.
In order to prove (3.8), it suffices to show that

(3.11) <_wmxa Z>g = <w7 _Z:m:>g > <_wyy7 Z>g = <w> _Zyy>g .

Using (2.8), (2.2), Lemma 2.1, and (3.9) farwe have

h 2N
<_wxaraz>g - _5 Z <wmc('7£m)7z('7€m)>
m=1

h 2N 1
(3.12) m=1 N
B 2N = N
=53 [ e tatae o i)
m=1 0 —
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where
wﬁf;g) = Weze (T, &m), Zg}g) = Zpaa(T,8m), T € (tn—1,tn)-

Since the right-hand side of (3.12) is symmetric with respeet t@and z,
the first equation of (3.11) follows easily. A similar argument using (3.10)
gives the second equation in (3.11).0

Lemma 3.2. For w € M9 @ M9,
(3.13) [wllg2() < CllAwlls.
Proof. From (8.24) in [21] we have
HwH%{Q(m < CHAwH%Q(m, w € H*(2), w=0 on 9,

and from the Cauchy-Schwarz inequality we have

2 2 2
| Aw )20 < 2 (IlwalZ2g) + gy 220)) -
Thus, since
2 2
| Aw]|2 = |wae||2 + 2 (Waa, wyy), + [[wyyl12,
it suffices to show that

meHLQ <C ||wmz||ga ||wyy||L2(_Q) <C ||wyyHga w e M ® MO’
(3.14)

and

(3.15) (Wezy wyy), >0,  we MY M.

Using (2.8), the exactness of 2-point Gauss quadrature for polynomials
of degree< 3, the fact thatv,, (z,-) € MY, z € (t,_1,t,), and (2.3), we
have

h 2N 1
el = Z Zw&@=52/ﬁm@m
m=1 0

= [ > wi(x&n)de > C/ w2, (. y) dz dy.
m 2

Thus interchanging the roles ofandy, we obtain (3.14).

It follows from Lemma 2.1, applied with respecttoandy directions,
that the operators-wy, —wy, from M) ® MY into M) @ M are self-
adjoint and nonnegative definite with respectte),. Moreover, it is easy
to verify that they commute. Therefore, the operatoy, ), is nonnegative
definite which implies (3.15). O
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3.2.2. H*-error estimates

We now prove the following convergence result for the OSC scheme (3.5)—
(3.7).

Theorem 3.1. Letu € H3%(2), k = 0,1, 2, be the solution of BPI (3.1).
Letuy, v, € My ® My, of (3.5) satisfy (3.6) and (3.7). Then

(3.16)  lu— upllge(ny < Ch* Flullgs—r(ny, &k =0,1,2.

Proof. Let u,, andwv,, be the piecewise Hermite bicubic interpolantsuof
andv = Au, respectively, and let

(3.17) W= Up — Uy, 2= Vp— Uy
Then it follows from (3.17), the first equation of (3.4), aneé= Au that

(3.18)-Aw(&) + 2(£) = —A(un — us)(§) + (v — v3)(€)
= Auy(§) — v (§)
= —A(u—uy)(§) + (v —v)(§), E€G.

Similarly from (3.17), the second equation of (3.4), ghe Av, we have
(3.19) —Az(§) = —f(§) + Avy(§) = —A(v —v)(§), £€G.

Equations (3.17) and (3.6) imply that = € M9 ® M. Therefore, taking
the inner product:, -), with —Aw on both sides of (3.18), we obtain

(3.20) [|[Aw||% + (2, —Aw)g = (—A(u — uy,) + v — vy, —Aw),.
Taking the inner produdt, -), with w on both sides of (3.19), we have
(3.21) (—Az,w)g = (—A(v — vy), W)
Hence from (3.20), (3.21), and Lemma 3.1, we obtain
[Aw]]% = (=A(u = ) + v = vy, =Aw)g + (A(v = v5,), W)

Using the Cauchy-Schwarz inequality and (2.10), we have

[Aw][s < C(|A(u = u)lls + lv = vills + [[A(v = v20)[])-
Thus from this inequality, (3.13), (2.12), and (2.13), we obtain
(3.22) lwllg22) < CP*Flullgs—re), k= 1,2.

Fork = 1,2, (3.16) follows now from the triangle inequality, (2.11) with
k=1,2,(3.17), and (3.22).
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To prove (3.16) foik = 0, we use (2.14), (3.18), the triangle inequality,
and the Cauchy-Schwarz inequality to obtain

[wllg2(e) < C(M“’HH?

PP

1 1
ZZ u_uH §2n 17£2m ])
=0y

(3.23) +jv = vlls + ||2||g>-
Using (2.9), (2.14), (3.13), and (3.19), we also have

Izl <C (hHA(v — vl

h2 N N
(3.24) +7 >

n=1m=1

1 1
ZZ U_UH <§2n 17€2m ])
i=0 j=0

Finally (3.16) fork = 0, follows from the triangle inequality, (2.11) with
k =0, (3.17), (3.23), (3.24), (3.22) with = 1, (2.12), (2.13) withl = 5,
and (2.15). O

4. Biharmonic problem I

4.1. OSC scheme: existence, uniqueness, convergence

Consider Biharmonic Problem Il (BPII):

A’u=f in,
u =gy onos2,
4.1
(4.1) g—u = g2 ONOfX,

n
Au = g3 ondfls,

whered(?; is the union of the horizontal sides @f2 anddf2, is the union
of the vertical sides of (2. By introducingv = A, we obtain the coupled
problem

—Au = —v in §2,
u=g¢g; 0naf2,
(4.2) o
o, =92 on osh,
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Orthogonal spline collocation methods for biharmonic problems 279

and

4.3) —Av=—finQ,

v=gs 0NJfl.
We seek OSC solutionsy,, v, € M;, ® M,, of (4.2)—(4.3) defined in the
following way. Sinceuy,, v, € M) ® My, they are of the form

2N+12N+1
up(z,y) = > > widi(x)(y),
i=0 j=0
2N+1 2?\/'+1
op(z,y) = Y. D viidi(x)v;(y),
i=0 ;=0
where the base; }72"' and{v;}32; ! for M, are defined in (2.16) and
(2.17).
The nonhomogeneous boundary conditionsfandwv in (4.2) and (4.3)
are approximated using piecewise Hermite cubic interpolation. The coeffi-
CientSui70,ui72N+1, 1=1,...,2N, anduovj, UIN{1,5, ] = 0,...,2N +1,
in (4.4) which correspond to the boundary condition= g, on 9{2 are
determined in exactly the same way as those in Sect. 3.1. Now we describe
the approximation of the boundary conditién/on = g, ond2; to deter-
mine the coefficients; 1, u; on, ¢ = 1,...,2N, and the approximation of
the boundary conditiom = g3 on 92, to determine the coefficients ;,
VaN+1,5,J = 0,...,2N + 1. On the bottom side af{2, we require that

[(un)y + 92)(tn,0) =0, n=1,...,N—1,
[(uh)y +g2]x(tn70) = 07 n = 0, .. .,N.

Substitutingu, (z, y) of (4.4) into these equations, we obtain formulas for
the coefficientss; 1,7 =1,...,2N:

Up1 = —hga(ty,0), n=1,...,N —1,
UN+n,1 = _h2(92)x(tna 0), n= 0, e N.
On the top side ob{2, we require
[(uh)y_g2](tn,1):07 nzl,...,N—l,
[(un)y — g2)u(tn,1) =0, n=0,...,N,

from which, we obtain formulas for the coefficients;n, 7 = 1,...,2N:

(4.4)

Upaon = hga(tn,1), n=1,...,N —1,
UNtnoN = h?(g2)z(tn, 1), n=0,...,N.

On vertical sides of{2, we require that

(vh —g3)(a,t,) =0, (vy —g3)y(a,tn) =0, a=0,1, n=0,...,N.
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By substitutinguy, (z, y) of (4.4) into these equations, we obtain formulas
for the coefficientsy j, j = 0,...,2N + 1:

Vo,2n = 93(0, tn)’ Vo,2n+1 = h(g3)y(07 t'fl)a n= 07 v 7N - 17
vo 2N = h(93)y(0,tN), vo2n+1 = g3(0,tN),

and the coefficientsay 15,7 =0,...,2N + 1.

vant+12n=93(1,tn),  vant12n+1 = h(g3)y(1,tn), n=0,...,N —1,
van 12N = h(g3)y(1,tN), vanr12nv 41 = g3(1,tN).

Thus, we determin@6 N + 8 coefficientsu; o, u; 1, uian, UiaN+1, @ =
1,...,2N, uo,j,u2N+1J,j =0,...,2N+1, andvom 'U2N+1,j,j =0,...,
2N + 1.

If we rewriteuy, (x, y) andvy(z, y) of (4.4) in the form

uh(way) = ﬂh(:nv y) + ﬂh(x,y),

5 on(z,9) = 042, 9) + Bn(, 1),
where
2N 2N—-1
(4.6) Up(z,y) =3 Y uiji(@);(y),
i=1 j=2

2N 2N
p(z,y) = uiodi(@)vo(y) + > uiids(@)vr(y)
i=1 =1

2N 2N
(4.7) + Z u; aN @i (x)han (y) + Z Ui 2N+10: () Van+1(y)
N ON 1
+ > uogdo(x)i(y) + Y uant1i0an+1 ()5 (y),
=0 =0
and
2N 2N+1
(4.8) Op(z,y) = > viidi(x)v;(y),
i=1 j=0
2N+1 IN+1
(4.9)Tn(z,y) = Y vo00(@)0i(y) + Y vans1an+1(2)Y;(y),
=0 =0

then all of the coefficients ifa, (z, y) andoy, (x, y) are known. Thus we need
to determiney, (z, y) andvy, (z,y) of (4.6) and (4.8), which contaig/N?
unknown coefficients. These coefficients are obtained by requiring that

— Al (€) + Th(€) = Aiin(€) — n(€), £ € G,
(4.10) — A (€) = Avn(€) — (6), €€,
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where the right hand sides are known. Equations (4.10) impdSecon-
straints, which is the same as the number of unknown coefficietg in y)
andop, (z,y).

Now we prove the existence and uniquenessifoandv;, of (4.10). To
do so, we require the following lemma.

Lemma4.1. If w € M) ® M’ andz € M) @ M,, then
(—Aw, z); = (w, —Az),.

Proof. Sincew € MY ® MY andz € M) ® M, we have

(4.11) w(a,y) =z2(a,y) =0, a=0,1, ye]l0,1],

and
(4.12) w(z,b) = wy(x,b) =0, x€][0,1], b=0,1.

The proofis then identical to that of Lemma 3.1 except that (4.11) and (4.12)
are used instead of (3.9) and (3.10).0
Using Lemma 4.1, we prove the following theorem.

Theorem 4.1. There exist unique functiong,(z, y) of the form (4.6) and
op(z, y) of the form (4.8) satisfying (4.10).

Proof. Clearly, @), € M) @ MY andv;, € MY ® M,,. Since the number
of unknown coefficients imy, (z, y) andv, (z, y) is equal to the number of
equations in (4.10), it suffices to show that if

(4.13) — At (&) +0,(6) =0, £€6,
(4.14) —Aup () =0, €€g,

thenu;, = v, = 0. Taking the inner produgt, -), with v, on both sides of
(4.13), we obtain

(4.15) (—Aup, vp)g + (O, Up)g = 0.

Similarly, taking the inner produgt, -), with @; on both sides of (4.14),
we obtain

(4.16) (— Aoy, up)e = 0.
From (4.15), (4.16), and Lemma 4.1, we havg, v;,), = 0, which implies
(4.17) () =0, €.

Thus by (4.13)Aa,(€) = 0, € € G. Sinceq, € MY @ MY, (2.10) and
(2.9) imply thatu;, = 0.

From (4.17) and the fact thag € M ®M,, we see thaty, (, &) = 0,
x € [0,1], m = 1,...,2N. Then (t})..(§) = 0, £ € G, and hence
(4.14) implies thatvy,),,(§) = 0, £ € G. For fixedn, n = 1,...,2N,
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let w(y) = vp(&n,y), y € [0,1]. Since on each subintervé,_1,t],
m = 1,...,N, wis cubic andw = w” = 0 at two Gauss points in
[tm—1,tm], it follows thatw = 0 on [t,,—1,tm], m = 1,..., N, and hence
uh(&n,y) = 0,y € [0,1]. Therefore,u, = 0 on all vertical lines off?
passing througlf € G. In particular,z;, = 0 at the Gauss points on the
horizontal sides 06(2. Sincew;, = 0 at the corner points of?, it follows
thato;, = 0 on the horizontal sides @ff2. Thusy;, = 0 on 942, and hence
(4.17) and (2.9) imply that, = 0. O

The following result gives error bounds for the OSC scheme (4.10).

Theorem 4.2. Letu € H®*(2), k = 1,2, be the solution of BPII (4.1).
Letuy, vy, € Mj @ M, of (4.5)—(4.9) be solutions of (4.10), wheig, 0y,

are obtained by approximating the boundary conditions in (4.2) and (4.3)
using piecewise Hermite cubic interpolation. Then

(4.18)  Jlu—will ey < OV Ml sy k=12

Proof. It follows from the way the coefficients ifiy, anddy, are selected that
W= Up — Uy € ./\/12 ® ./\/120 andz = v, — v, € ./\/12 ® M,,. Therefore,
the derivation of (4.18) is identical to that of (3.16) with= 1, 2, except
that Lemma 4.1 is used instead of Lemma 3.1

4.2. Single series OSC Fourier method

In this section, we present the single series OSC Fourier method for solving
(4.10). First we rewrite (4.10) in a different form by moving some known
coefficients ofuy, (z,y) from the right hand side to the left hand side; the
rationale for this will become clear later. To this end, we wiitgz, y) of

(4.7) as

(4.19) in(z,y) = ay(z,y) + @ (z,9),

where

2N
a} (z,y) Z wiobi(x)o(y) + > uindi(z)i(y)
i=1

(4 20) 2N 2N
+ Z uiaN i (@) (y) + D tian110i () an11(y),
and
IN+1 2N+1
(4.21) @t (x,y) Z uo, ;00 ()05(y) + > uant1,j02n+1()h; (y).
=0
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With @y, (x, y) as in (4.6) and

2N 2N+1
(4.22) @y (2, y) = p(z,y) + @ (2, ) = Y > wijdi(@);(y),

i=1 j=0
where the coefficients; o, w; 1, u; on, Uion+1,7 = 1,...,2N, are known,
(4.10) can be rewritten in the form
(4_23) _Auh(f) + ﬁh(g) = F(§)7 §€ g,

_A@h(é) = G(£)7 f € ga

where

(4.24) F(&) = Au (&) — r(),  G(&) = ATp(&) — f(€), £ €6,

and oy, (z,y) ando,(z,y) are given by (4.8) and (4.9), respectively. Note
that F' andG are known. Moreover,, v, € M ® M, which was the
purpose of the reformulation (4.23) of (4.10).

Since{; 121, of (2.18) and{z;} 2, of (2.19)—(2.20) are bases fan?,
and{y;} 32" of (2.17) is a basis fot,, from (4.22) and (4.8), we may
write

2N 2N+1 2N

(4.25)  dan(z,y) =D > wigdi(@)(y) = z(@)ui(y),
i=1 j=0 i=1

and
2N 2N+1 2N

(4.26)  vu(z,y) =D > vijdi(@)i(y) = zi(x)vi(y),
i=1 j=0 i=1

whereu?, v? € M. Substituting (4.25) and (4.26) into the first equation of

7771

(4.23) withe = (&,, &) € G and using (2.19), we obtain

2N
4.27) Y zi(E){Niuf (€m) — [4F)" (Em) + 07 (Em)} = F(6n ém),
i=1
n,m=1,...,2N,

where{)\;}2%, are given in (2.21)—(2.22). For fixegl,, we take the inner
product(-, -) of both sides of (4.27) withy, k = 1,...,2N, and use (2.20)
to obtain

(4.28) —[ui]" (€m) + Mui (Em) + Vi(€m) = Ff (&m),
k,m=1,...,2N,

where
(4.29) Flj(gm) = <F(>£m)a zk>
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Similarly, from the second equation of (4.23), we obtain

(4.30) — [vi]"(&m) + Akvi(ém) = Gi(6m),  k,m=1,...,2N,

where
Since the coefficients; o, u; 1, i 2N, ui2on+1,% = 1,...,2N, of u;, are
known, we also expeet; to contain some known coefficients. In fact, if we
expressuj, v € My, k=1,...,2N,inthe form
2N+1 2N+1
4.32) wily) = Y wpbeim), viy) = > viie),
=0 3=0
then, for eactk = 1,..., 2N, the coefficients:;’, ufy, ujhy, uppn i1

are known. For example from (4.32), and propertles of the basis functions
{v; 135, we have

2N+1

(4.33)  wi(0)= Y wp¥y;(0)=uph, k=1,...,2N.
j=0

On the other hand, from (4.25) and (4.33), we obtain

(4.34) Z wi 0¢i(z Z u 0 zl
Let
(4.35) up = [urg,...,uono]", ui¥ = [ulg,.. ugﬁo],

where the vectong is known. On comparing (4.34) with (2.24) and (4.35)
with (2.26), it follows from (2.28) that the vectorg’w can be computed

using the relation

h
(4.36) ui? = §ZTBEB¢u0,

where B and Z are given in (2.30) and (2.31), respectively. Again, from
(4.32), we have

2N+1

(4.37) [ui]'(0) = Y wptwi(0) =up{h™', k=1,...,2N.
7=0

On the other hand, from (4.25) and (4.37), we obtain

2N
(’Ilh)y(x,()) = h_l Zumgbi =h" 1 Zuz | ,zz

i=1
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Let
(438) u; = [ul’l, .. ,UQNJ]T, ﬂ/) [ul 11b, .. u2ﬁ 1] ,

whereu; is known. Then the vectorf’ can be computed using the relation

h

(4.39) ulY = §ZTBgB¢u1.
Similarly, let
(4.40) woy = [uron, .- uanan]ts WY = Uity ub o]
and .

UoN41 = [U12N+15 -+ UIN2N+1]
(4.41) 2 2 2T

u2N+1 [u1,2N+17"'7u2N,2N+1] )

whereuyy andusy 1 are known. Then we have
2 h 11 2 h 1 o1

(4 4 ) u2N = *Z B¢ B¢U2N, u2N+1 =S §Z B¢ B¢u2N+1.
We are ready to describe the following method.

Single series OSC Fourier method for solving (4.10)

1. DetermineF' (&, &m), G(&n, &m), nym =1,...,2N, using (4.24).

2, FindF,j(gm),G;(gm) kym=1,...,2N, of (4.29) and (4.31).

3. Computeu ", u?™” u2;$, anduQNH using (4.36), (4.39), and (4.42).
4. Fork =1,...,2N, find the coefficient§u; % } 2, ' and{vy "'} 3N in

uj, andvy of (4 32),sothat(4.28) and (4. 30) are satisfied. (Notlce that for

eachk = 1,...,2N, the four coefﬁuentmk’g’, uk‘f, U, gf’N, uk’;”NH

are known from Step 3.)

5. Compute the coefficientas; ;17> " and{v M}le’szfgl of iy (z,y),
on(w,y) of (4.6), (4.8) using{uj 205" and v} 122 ob-
tained in Step 4.

We now describe in more detail the implementation of the single series
OSC Fourier method.
Step 1 Assuming that the values ¢{¢), ¢ € G, have been determined, we
can directly computd’(§,,, &) andG (&, &m), n,m = 1,...,2N, from
(4.24), sincei} (z, y) of (4.21), andiy, (z, y) of (4.9) are known. Hence the
cost of Step 1 i©)(N).
Step 2 We useF' (&, &) andG (&, &m), n,m = 1,...,2N, obtained in
Step 1 to computdy; (&,,) and Gi (&), k,m = 1,...,2N, defined by
(4.29) and (4.31). For fixeth, m = 1,...,2N, letw € M9 be such that

(4.43) w(€,) = F(én,&m), n=1,...,2N.
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Then (4.29) gives

(4.44) FZ(&n) = (F(,&m),zn) = (w,2zn), n=1,...,2N.
If

z,0 z T
(4_45) F [Fl (fm) 7F2N(€m)] ’ m=1,...,2N

F?ne - [ (gl’gm)7 s 7F(£2Na£m)]Ta ’

then on comparing (4.43), (4.44) with (2.25) and (4.45) with (2.26), it follows
from (2.29) that

(4.46) F>! = gZTBgF%ﬁ, m=1,...,2N.
Similarly, if
G = [Gi(&m),- Sn (Em)]T
@4.47) 7 - =1,...,2N,
Gm - [ (glafm)v"')G(glNaémﬂ 3
then L
(4.48) Gl = §ZTB$G%’, m=1,...,2N.

Since there are at most four nonzero elements in each column of the matrix
By, the matrix-vector multiplications involving the matr.B’g;F in (4.46) and
(4.48) requireD (V) arithmetic operations for each. It follows from the
form of Z in (2.31) that FFT routines can be used to perform multiplications
by the matrixZ™ in (4.46) and (4.48) with cosP (NN log, N) for eachm.
Thus the cost of Step 2 8(N?log, N).

Step 3 This step involves computing four vectors using the formulas (4.36),
(4.39), and (4.42). The matrix-vector multiplications involving the matrix
By andBQf requireO(N) arithmetic operations, since there are at most four
nonzero elements in each row and colummgf As in Step 2, FFTs can be
used to perform multiplications hiT. Consequently, the cost of Step 3 is

O(Nlogy N).

Step4Fork =1,...,2N, we need to solve one dimensional OSC problem
__[y,21 z z — z

(4.49) [ui]" (§m) + Aeui(§m) + Vi (Em) = FE (§m), —1,....2N,

—[WE) (&m) + Mevi(Em) = Gi(ém), m=1,..

whereu; (0), [uf]'(0), ui (1), [uf])'(1) are specified (see (4.33), (4.37)) and
{\e}2Y, are given in (2.21)—(2.22). Since eagh > 0, it follows from
Theorem 2.1 that (4.49) is uniquely solvabledgt v; € M), with specified
values ofuj (0), [uf]'(0), uf (1), [uf])'(1).

We now show how to solve the one dimensional OSC problem (4.49) for
eachk =1,...,2N. We introducg4N + 4)-vectors

20 2%z 2 2,% 2,0 2,7 2% 1T
Wk_[ukmukl’vk()’vkl’“ uk2N+17uk2N’vk2N+1’Uk2N]
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and

flj - [ukO’uk17Fk (61) FI?(SQ)’Gz(gl)7GZ(§2)77

Fi(§an-1), k(sz)7Gi(§2N—1)7GZ(&N),Ui’gNH’ngN]T

Y

where{u 12N and{v;V} 2N in wy are the coefficients af? andv}

in (4.32) with the four known coefficients 'y, ujY, uj’y, anduiyy., ;.
Then (4.49) can be written in the matrix- vector form

(4.50) Bywi = 7,

where theBy, is the almost block diagonal matrix of the form

r1000 ]
0100
X X X X X X X X
X X X X X X X X
X X X X X X X X
X X X X X X X X
X X X X X X X X
X X X X X X X X
(4.51) X X X X X X X X
X X X X X X X X
X X X X X XXX
X X X X X XXX
X X X X X XXX
X X X X X XXX
1000
L 0100

Since (4.50) is the matrix-vector representation of the uniquely solvable
problem (4.49), it follows thaBy, is nonsingular. Moreover, the linear system
(4.50) can be solved directly using COLROW [12,13] with cGKtN).
Consequently, the total cost of Step 416N ?).

Step 5 We need to compute the coefficientu;;}; Y ," and
{320 of @, (2, y) andwy(z, y) of (4.6) and (4.8). To this end, we
substltuteuz( ) of (4.32) into (4.25) to obtain

2N+1 2N+1
@ Y [zumm ] S [zu ] @)
7=0 Li=1

Numerische Mathematik Electronic Edition
page 287 of Numer. Math. (1998) 80: 267—303



288 Z.-M. Lou et al.

Since{v;}:2; " is a basis forM, (4.52) implies that

(4.53) Zu”qﬁl Zu 2zi( j=2,...,2N — 1.

Similarly, by substituting;(y) of (4.32) into (4.26), we obtain

2N+1 2N+1
> [Zrn] 0= T |Soirae|we

which implies that
(4.54) va@ Zv j=0,...,2N + 1.

Thus, for fixeds, finding {u; ;}2, and {v; ;}?%, corresponds to finding
Fourier coefficients with respect to the bangs}le from the Fourier co-
efficients{u; ’w} , and{v;; =12N with respect to the basig:; }2Y,. Intro-
ducing the2N vectors

T
j [ul,]7"'7u2Nj] ; .

(4.55) W [ i) u’w] j=2,...,2N —1,
u; Ljo 0 P2N g1 >

and .
A\ V] jyenny¥ ,

(4.56) - [ W QNJ] j=0,...,2N +1,
J 1J"' 2N7] ’

and comparing (4.53), (4.54) with (2.24), and (4.55), (4.56) with (2.26), we
obtain from (2.27)

w=2Zui?, j=2,... 2N -1,

4.57
(4.57) Vj:ZVj’w, j=0,...,2N +1.

Since FFT routines can be used in (4.57) to perform multiplications by the
matrix Z, the cost of Step 5 i© (N2 log, N). Therefore the total cost of the
single series OSC Fourier method¥$N? log, N).

4.3. A special case

In this section, we consider a special case of the OSC scheme (4.10), which
will be used in Sect. 5. We assume that in (4.10%) =0, € G, uj, =

0, and all the coefficients i, of (4.9) are zero except that one of the
coefficientsvg ; or van41,5, j = 2,...,2N — 1, is equal to one. Also,

we assume that we only need to know the coefficients; and uay ;,
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j =2,...,2N — 1, in uy(x,y) of (4.6). We show how to modify the
single series OSC Fourier method so that the total cost of finding the desired
coefficients ofiy, is reduced t@)(N?).

Assumevy j, = 1, wherek = 2l or2/ + 1 with/ =1,..., N — 1. Then
(4.24) and (4.9) yield

F(Snagm) = _(b()(fn)wk(fm)a _

G(gm gm) = g(gn)l/}k(gm) + ¢0(€n) l,g/(fm)a e m = 17 o 72N.
Sinceyy = v andig 1 = s (cf. (2.17)), it is easy to see that only
the 8 values ofF'(&,, &), and thes values ofG(&,, &,,) corresponding to
n=1,2,andm = 2{—1,2[,21+1,2l+2, are nonzero. Therefore, Step 1 of
the single series OSC Fourier method requ®é$) arithmetic operations.
Further, in (4.45), there are only four nonzero vec®fg, namely,

Fgée = [F(fhfm))F(fQ’gm)’O’ o 70]T7
m =2l —1,20,20 + 1,20 + 2.

Similarly, in (4.47), there are only four nonzero vectG$’,

Gfﬁe = [G(§17€m)7 G(é%fm)a 0... ) 0]T7
m=20—1,20,2 + 1,20 + 2.

Thus (4.46) and (4.48) imply that only four nonzero vectﬁgﬁ’ 1, 2z ,

F3',, F3,, and four nonzero vecto&;’ |, G3’, G5, G5, need

to be computed in Step 2. This can be done without the use of FFTs and
consequently Step 2 requires oy V') arithmetic operations. Sinag, =

0, it follows from (4. 19) (4. 212 (4. 35) (4.36), (4.38)—(4.39) and (4.40)—
(4.42) thatuy” = uf¥ = uiy = w3y, = 0, and hence Step 3 need

not be performed. As in the general case, Step 4 reqGi(@&®) arithmetic
operations. Inthe general case, Step 5is performed using FFTs. In the special
case, the coefficientsy ; anduan ;, j = 2,...,2N — 1, are computed
directly without using FFT routines. It is easy to see from (4.55) and (4.57)
that in order to obtaimy ;, 7 = 2,...,2N — 1, we need to multiply each

uj’w,j =2,...,2N — 1, by the N* row of Z. Similarly, to obtainuay ;,
j=2,...,2N — 1, we need to multiply eachj’w,j =2,...,2N —1,by

the 2N*" row of Z. This requiresD(NN?) arithmetic operations. Since the
case Ofvani1, = 1, wherek =2l or2/ + 1withl =1,...,N — 1, can

be treated in a similar way, the total cost of the modified single series OSC
Fourier method for the special casei$N?).
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5. Biharmonic problem IlI
5.1. OSC scheme: existence, uniqueness, convergence

We are now ready to solve the biharmonic Dirichlet problem (1.1), which
we call Biharmonic Problem III (BPIII). We solve the corresponding OSC
problem by employing the capacitance matrix method with the OSC BPII
as the auxiliary problem. A similar approach involving a finite difference
approximation of BPIIl was used by Buzbee and Dorr [7]. As before, intro-
ducingv = Au, we obtain from (1.1) the coupled problem:

—Au = —wv in £,
uw=g¢g; 0nof2,
(5.1) o
o =go 0NQOY2,
and
(5.2) — Av=—fin .

Note that in contrast to (4.2)—(4.3), no boundary conditions are imposed on

V.
The OSC solutions, vy, € M;, ® M, of (5.1)—(5.2) are defined as

follows. Sinceuy, v, € My ® My, they can be written in the form

IN+12N+1
i=0 =0
IN 12N 41

op(z,y) = Y. D viidi(@)v;(y),

i=0 ;=0

(5.3)

where the base$s; } 72" and {y;}3Y; ! for M), are defined in (2.16)
and (2.17). As before, we determine in advance certain coefficients of (5.3)
corresponding to the two boundary conditions in (5.1) using piecewise Her-

mite cubic interpolation. The coefficientgg, u; on+1,7 =1,...,2N, and
uo,j, UaN+1,5,J = 0,...,2N + 1, which correspond to the boundary con-
dition v = g; on 042, and the coefficients; 1, u;on, ¢ = 1,...,2N,

which correspond to the boundary conditidn/0n = g, on the horizon-

tal sides ofos2 are determined in exactly the same way as in Sect. 4.1.
In particular, the COGﬁiCientﬂNp, UN,1y UN2Ns UN,2N+1, U2N,0, U2N,1,

ugN 2N, anduay 2y are determined by this process. The boundary con-
dition du/dn = g2 on the vertical sides of{? are approximated in the
following way to determine the coefficienisy ;, uan ;,j = 2,...,2N —1.

On the left hand side a¥f2, we require that

[(uh)m + 92](07tn) = 0, [(Uh)x + gg}y(O,tn) = 0, n = 1, ey N —1.
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Substitutinguy, (x, y) of (5.3) into these equations, we obtain explicitly the
coefficientsuy ;, 7 =2,...,2N — 1.

un2n = —hg2(0,tn), un2nt1 = —h*(g2)y(0,t,), n=1,...,N —1.
On the right hand side @2, we require that

[(un)z — 92](1,tn) =0, [(un)z — g2ly(1,tn) =0, n=1,...,N —1,
from which, we obtain the coefficientsy ;, 7 = 2,...,2N — 1.

ugN2n = hg2(1,t,), UaN2n+1 = hz(gz)y(l,tn), n=1,...,N—1.

Thus we determiné6N coefficientsu; o, wi 1, ui2n, ian+1,% = 1,...,
2N, uovj,ugN_‘_Lj,j = O, ey 2N +1, anduNJ-, UQNJ‘,j = 2, ey 2N —1.
If we split uy, (z,y) of (5.3) in the form

(54) Uh(l',y) :ﬁh(flf,y> +€Lh(x7y)7
where
2N—1 2N-1
(5.5) up(z,y) = > > uidi(2)(y),
i=1,i£N j=2
and

2N 2N
an(z,y) = > wiodi(x)ho(y) + Y ui1¢i(z)ir(y)
i=1 =1

2N 2N
) uiondi(@)an (y) + > uian+1¢i(@)Yan11(y)
—1

(5.6) N N1
+ Z oo (x)h;(y) + Z UaN+1,5P2n+1 ()5 (y)
2]1\7:—01 J2:]\(f)—1
+ Z un jON (2);(y) + Z uaN, jP2an ()1 (y),
=2 j=2

then all coefficients ofiy, (z,y) are known. Thus the total number of un-
known coefficients iniy,(z,y) of (5.5) andvy,(z,y) of (5.3) is8N? + 8.
However, if we collocate the first equation of (5.1) and equation (5.2) at
all ¢ € G, we obtain only8 N2 equations. Notice that for BPII, we did not
have such a problem. For BPIII, we need to imp8salditional equations

or determines additional coefficients independently. Since we use the sub-
stitutionv = Aw, one obvious choice is to impose four corner conditions
Oonwy:

(5.7) vp(a,b) = Au(a,b), a,b=0,1.
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Substitutinguy, of (5.3) into (5.7), and using = ¢g; on 9{2 to determine
Au(a,b), we obtain

vo,0 = Ag1(0,0), van+1,0 = Agi1(1,0),

5.8
(5-8) vo2N+1 = Ag1(0,1), vanyy1 2841 = Agi(1,1).

In order to find another four equations, we first note thatfer Aw,
we have
vy = (Au)y = Auy,.
Hence, we impose four corner conditions(@R),:
(5.9) (vn)y(a,b) = Auy(a,b), a,b=0,1.

Substitutinguy, (z, y) of (5.3) into (5.9), using: = g; on the vertical sides
of 02 to determineu,,,(a, b) and using—u, = g» on the bottom side of
012 andu, = g, on the top side of){? to determine,,,(a, b), we obtain

vo,1 = h{(91)yyy — (92)22](0,0),

van+1,1 = h[(91)yyy — (92)22](1,0),

519 w02 = hl(g1 )y + (92)20](0, 1)
V2N+1,2N = h[(gl)yy (92)9636}(1’ 1)

In (5.9), we selected corner conditions fey,), rather than(v,), because

the valuesvg 1, vo2n, van+1,1, andvan 112y are known explicitly in the
OSC scheme for the BPII. A finite difference approach could be used to
approximate the partial derivatives on the right hand sides of (5.8) and (5.10).
However, since at this poing, (z, y) of (5.4) is known ord{?, itis possible,

in place of (5.7), to impose the following four corner conditionsugn

(5.11) vp(a,b) = Aup(a,b), a,b=0,1.

Substitutinguy, (x, y) of (5.3) into (5.11) and using (2.16) and (2.17), we
obtain

v0,0 = 20,00 (0) + (u1,0 + u0,2)v7 (0) + (un,0 + 10,1)50(0)
+(un+1,0 + uo,3)s1(0),

and similar formulas forwan 1,0, vo2n+1, @ndvan412nv+1. All of the
right hand sides in these formulas are known, because the invo)veare
coefficients of the knowm, (z, y) of (5.6). Similarly, sincguy,),, is known
on the horizontal sides @ff2, in place of (5.9), we can impose the following
four corner conditions:

(512) (Uh)y(a: b) = A(uh)y(aa b)a a, b= 07 L.
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Substitutinguy (x, y) of (5.3) into (5.12) and using (2.16) and (2.17), we
obtain

vo,1 = 10,105 (0) + 1,107 (0) + un,15(0) + un1,157(0)
+huo,0vg (0) + uo,150 (0) + uo 201" (0) + ue 357 (0)],

and similar formulas fowany 1,1, vo2n, @anduvay i1 2n. Again, all of the
right hand sides in these formulas are known. The nice thing about this
approximation is that, in contrast to (5.8) and (5.10), no partial derivatives
of g1 andg, or their approximations are needed.

We rewritevy, (z, y) of (5.3) as

(5.13) vp(z,y) = Oa(2,y) + On(,y),
where
N 2N+1 IN—1
(5.14) vp(z,y) = Z Z v jPi(2)Yi(y) + Z 0,90 ()Y (y)
i—1 j=0 —2
N1 ’
+ ) van1dan+1(2);(y),
=
and

(5.15)  op(z,y) = > vo,j¢o(2);(y)

§=0,1,2N,2N+1

+ Z VaN+1,;02n+1(2);(y),

§=0,1,2N,2N+1

where the coefficients o, (x, y) are obtained using (5.7) and (5.9) or (5.11)
and (5.12). Thus the total number of unknown coefficients;ifi, y) of
(5.5) andoy, (, ) of (5.14) isSN2. Finally, the OSC scheme for (5.1)—(5.2)
has the form

—Aup(§) +0p(§) = Aup(§) —op(8), £ € G,
(5.16) — Ay () = A (€) — £(6), £€6,

where the right hand sides are known. Equations (5.16)jieconstraints
which are matched by the same number of unknown coefficiemtg(in v)
andoy(z,y).

Next, we give the existence and uniqueness resuitfanduy, of (5.16).
First, we prove two lemmas.

Lemma5.1. For w € M}’ @ M’ andz € My, @ My,
(—Aw, z), = (w, —Az),.
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Proof. Sincew € MY ® MY, we have
(517) w(avy) = ww(a7y) =0, a=0,1, Yy € [07 1]7

and
(5.18) w(x,b) = wy(xz,b) =0, xe€[0,1], b=0,1.

The proofis then identical to that of Lemma 3.1 except that (5.17) and (5.18)
are used instead of (3.9) and (3.10).0

Lemmab5.2. If z € M;, ® M,, satisfies

(5.19) z(a,b) = zy(a,b) =0, a,b=0,1,
then
(5.20) <zma Zyy>g = (z, Zmyy>g-

Proof. Applying Lemma 2.1 with respect tpto the left-hand side of (5.20),
we have

2N

h
(2aa; 2yy)o = 5 Z<Zyy(§m ) 2z (€ns 7))
n=1
h 2N 1
(521) =—5§:/<awmw@mmdy
+- Z 2y202) (& ) U20 — 5 ZC%P Z 208 225,
n=1 m=1

where

(5.22) 299 = 2 (60, y), 22D = 2iwyyy(Ens ) Y € (b, tm).

To rewrite the second term on the right-hand side in (5.21), we use Lemma
2.1 with respect ta to obtain, fory = 0, 1,

2N

h
5 Z(Zyzm)(fmy) = (202 (1Y) 2y (5 )
n=1
1
(5.23) = [ Come)(e,) do + (o) (@SS
N
—Cn* Yy 25000,
n=1
where

(5.24) zy 30) = Zyza(T,Y), 27(1%@’/1) = Zyzaa(T,Y), X € (tn-1,tn).
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Using again Lemma 2.1 with respecttpwe rewrite the first term on the
right-hand side in (5.23) to obtain, fgr= 0, 1,

hQN

~ [[Gm ) de =5 D (e 609) ~ Gre) )

n=1
N

(5.25) +CRP Y B0

n=1

wherez%l) and zf,’g,o) are given in (5.24). Substituting (5.25) into (5.23)

and using (5.19), we have

h 2N h 2N
(5.26) 9 Z(zyzxax)(gm y) = 9 Z(zymzz)(gnay)v y=0,L
n=1 n=1

Applying Lemma 2.1 with respect wpto the right-hand side of (5.20), we
also obtain
B 2N

<Z7 Z;cxyy)@ = 5 Z<Zxxyy(£na ')7 Z(§n7 )>

n=1

h 2N 1 h 2N _
(527) = _5 Z / (Zx:pyzy)(gna y) dy + 5 Z(zxacyz)(fn> y) Z;O
n=1"0 n=1

h 2N N
R DI E
n=1

m=1

Wheresz;i) andz,(%) are defined in (5.22). Comparing the right-hand sides

of (5.21) and (5.27), and using (5.26), we obtain (5.20)O
We then have the following theorem.

Theorem 5.1. There exist unique functiong,(z, y) of the form (5.5) and
up(x,y) of the form (5.14) satisfying (5.16).

Proof. Clearly,a;, € MY @ M, 5, € M;, ® M, and
(5.28) n(a.b) = (on)y(a,b) =0, a,b=0,1.

Since the number of unknown coefficientsiig)x, y) andv, (z, y) is equal
to the number of equations in (5.16), it suffices to show that if

(5.29) — Ay (6) +,(6) =0, £€6,
(530) _Aq_}h(g) = 07 5 S g?

thenw;, = v, = 0. Taking the inner produgt, -), with o5, on both sides of
(5.29), we obtain

(5.31) (—Aup, Up)g + (T, Up)e = 0.
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Similarly, by taking the inner product, -) ; with @, on both sides of (5.30),
we obtain

(5.32) <—A@h,ﬁh>g = 0.

Using (5.31), (5.32), and Lemma 5.1, we havg, v ), = 0, which implies
(5.33) () =0, €£€6.

Thus it follows from (5.29) that\i,, (€) = 0, ¢ € G. Sincei, € M) @MY,
(2.10) and (2.9) imply that;, = 0.

To show thatr, = 0, we use (5.30), (5.28), Lemma 5.2 , and (5.33) to
obtain

0 = (|40 13 = ll(@h)zall3 + 2((Th)zz, (Tn)yy)s + I (n)yyll3
= 1(@h)azll3 + 2(0h, (Th)azyy)s + 1(@)yylls = 1(O)aallZ + 1 (@h)yyll3-

Hence

(Uh)z2(§) = (Un)yy(§) =0, §€G,

which along with (5.33) implies that, = 0 on horizontal and vertical lines
passing through € G. This andv,(a,b) = 0,a,b = 0, 1, imply in turn that
o, = 0 on 042. Therefore, using in addition (5.33) and (2.9), we conclude
thato, = 0. O

We now prove the following theorem.

Theorem 5.2. Letu € H3%(12), k = 1,2, be the solution of the bihar-
monic problem (1.1). Let;, € M}, ® My, of (5.4)—(5.6) v, € M), @ My,
of (5.13)—(5.15) be solutions of (5.16), whe#gx, y) of (5.6) is obtained
by approximating the boundary conditions= g; anddu/dn = g using
piecewise Hermite cubic interpolation ang(z,y) of (5.15) is obtained
using (5.7) and (5.9) or (5.11) and (5.12). Then

(5.34)  |Ju—upllgr) < CR  lullgs—rig), k=1,2.

Proof. It follows from the way in which the coefficients iy, are selected
thatw = uj, — u,, € MY @ M. Moreoverz = v, — v,, € Mj @ M,,
regardless of how the coefficientgipare selected. Therefore, the derivation
of (5.34) is identical to that of (3.16) with = 1, 2, except that Lemma 5.1
is used instead of Lemma 3.1. O
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5.2. Capacitance matrix method for OSC biharmonic problem IlI

In order to solve (5.16) efficiently, we employ the capacitance matrix method
to obtain a linear system of smaller dimension which can be solved by Gauss
elimination. Our auxiliary problem is the OSC BPII (4.10) which can be
solved very efficiently using the single series OSC Fourier method. We first
rewrite the scheme (5.16) by splitting (z, y) of (5.6) in the form

where

2N 2N
y) = uiodi(z)ho(y) + > uirdi(z)h1(y)
=1 =1

2N 2N
+ > uian¢i(x)an (y) + Y tian110i(€)han1(y)

N1 N1
+ ) uoido(@)di(y) + D uant1jdan11(2)(y),
j=0 j=0
and
2N—-1 2N—1
(5.36) iy, (z,y) Z un N (@) (y) + Y uandan (@)05(y).
7j=2

We substitute (5.35) into (5.16) and move the known tekfij! to the left
hand side. The equivalent form of (5.16) becomes

(5.37) ~ Ak (€) +0(©) = 4] (€) —0u(©) = FI(©). £ € G,
— A0 (€) = A(€) — £ = GO, €€,

whereué) = up, + uh andv,(l ) = = up,. By (5.5), (5.36), and (5.14),

ON 2N—1
(5.38) ulP (z,y) = SN wijoi(@)v;(y),
=1 j=2
2N 2N+1 IN—1
(5.39) v (@) =Y Y wigdi(@)i(y) + Y vos0()ii(y)
i=1 j=0 Jj=2
IN—1
+ D vansidan+1(@);(y)-
=2

Note that the coefficientsy ; andusy j, j = 2,...,2N — 1,in (5.38) are
known.
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Now we rewrite the scheme (4.10) by splitting(z, y) of (4.9) in the
form

(5.40) Oz, y) = O (2,y) + 0y (2,y),

where
2N—1 2N—-1

(5.41) 0, (,y) = > vo¢0()i(y) + > vant1jdan1(2)¥(y),
=2 j=

and

Ty (z,y) = > vo,j%o(); (y)

j=0,1,2N,2N+1
+ > VaN+1,jP2n+1(2)Y;(y).

j=0,1,2N,2N+1

We substitute (5.40) into (4.10) and move the terndg and Ad}, to the left
hand sides to obtain

(5.42) A0k () + 02 (€) = Aun () — 2}1(6) = FI (). £ € .
—Au(6) = AT(E) - f(€) = GD(6), ¢eg,

whereu!” = @, andv'® = v, + 5l. By (4.6), (4.8), and (5.41),
D) 2N 2N—-1
(5.43) wy (@y) =Y > uiidi(x)vi(y),
i—1 j=2
@) 2N 2N+1 2N—-1
(5.44)v,” (m,y) =Y > vijdi(@);(y) + > vojdo(@)v;(y)
i=1 j=0 =2
2N—1
+ Y vang1iden1(2)Yi(y).
j=2
Note thatvy ; andvay 415, J = 2,...,2N — 1, in (5.44) are known. Now

we see tha’uf’) (z,y) of (5.38) anduf) (z,y) in (5.43) are given in terms

of the same basis functions. Similarl;{f) (x,y) of (5.39) andv,(f) (z,9)
of (5.44) are given in terms of the same basis functions. Moreover, the left
hand sides of (5.37) and (5.42) have the same form.

Substituting (5.38) and (5.39) into (5.37) and (5.43) and (5.44) into

(5.42), we obtain the linear systems

(5.45) Aw® = £O),

Numerische Mathematik Electronic Edition
page 298 of Numer. Math. (1998) 80: 267—303



Orthogonal spline collocation methods for biharmonic problems 299

and
(5.46) Bw® = £
respectively, where

. Al . A1
547 a=[A]. s[4,

are(8N? +4N —4) x (8N? 4+ 4N — 4) matrices A is an8N?2 x (8N? +
4N —4) submatrix corresponding to the left hand sides of (5.37) and (5.42),
and whered, and B, are (4N — 4) x (8N? + 4N — 4) submatrices. All
elements in each row ofl, and B, are0 except one which equals In
Ay, the ones correspond to the known coefficiemts; and uay j, j =
2,...,2N —1, of uf’) (x,y) in (5.38), and the ones iB; correspond to the
known coefficientsyy ; andvon15, j = 2,...,2N — 1, of v}(?)(a:,y) in
(5.44). The vectorss® andw(?) are(8N2+4N —4)-vectors corresponding
to the8N? + 4N — 4 coefficients (includingtN — 4 known coefficients)
of uﬁf’), v,(f’), anduf) andv,(f). These coefficients are ordered in the same
way inw(®) andw(?). The right hand sidé(®) of (5.45) is an(8N? + 4N —
4)-vector containingt’® (¢,,, &), G®(&n, 6m), n,m = 1,...,2N, and
4N — 4 known coefficientsiy ; andusy j, 7 = 2,...,2N — 1, as the last
components. Also the right hand sifl¢) of (5.46) is an(SN? + 4N —
4)-vector containing?"® (&, &), G (&, 6m), n,m = 1,...,2N, and
4N — 4 known coefficientsy ; andvan 1 5, = 2,...,2N — 1, as the last
componentsF®) (¢, &), GO (&, Em), and FP) (&, 6,), G (€, Em),
n,m=1,...,2N, are ordered in the same wayfift) andf(?.

Note that matricegl andB in (5.47) differ only in the last N — 4 rows,
and the system (5.46), which is a matrix-vector representation of the OSC
approximation of BPII, can be solved using the single series OSC Fourier
method described in Sect. 4.2. We employ the capacitance matrix method
to solve the system (5.45). We rewrite &V + 4N — 4)-vectorf®) of
(5.45) in the form
(5.48) £ = [by, by”,
whereb; containsF'®) (¢, &,,) andG®) (&, &), n,m = 1,...,2N, and
b, contains the values afN — 4 known coefficients.y ; andugy ;, j =
2,...,2N — 1, ofu!¥ (2, y) in (5.38). The algorithm is then defined in four

phases.
Phase 1Form the(4N — 4) x (4N — 4) capacitance matrix

(5.49) D = AgBl[ 0 }
Iyn—4

where0 is an8 N2 x (4N — 4) zero matrix andy_ 4 is the identity matrix
of orderd N — 4.
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Phase 2 Solve the system
_ |

whereb; is the first subvector of®) in (5.48) andD is a (4N — 4)-vector
of zeros.
Phase 3Solve the system

(5.50) Da = by — Ay,

whereb, is the second subvector 8f) in (5.48).
Phase 4 Solve the system

Bw® — m
(0%

for the desired solutiow®) of (5.45).
We discuss the algorithm in more detail after first proving the following
result.

Theorem 5.3. The capacitance matrik given by (5.49) is nonsingular.

Proof. We show thatx = 0 is the only solution tda = 0. It follows from
(5.49) and (5.47) thaba = 0 is equivalent to

(5.51) Aow® =0, Aw® =0, a=Bw®,

where the components &%) can be identified with the coefficients of

uf’) (z,y) andvff’) (z,y) in (5.38) and (5.39). The first equation of (5.51),

the structure ofd, and (5.36) imply thatill = 0 in uf’) = @y, + 4y Thus
the second equation of (5.51), which is equivalent to (5.37) With(¢) =
GB(&) =0,€ € G, gives

—Aup(§) +on(§) =0,  —Am(§) =0, £€G.

Theorem 5.1 implies;, = &, = 0 and hencev(®) = 0. Thereforeax = 0
by the third equation in (5.51). O
In the algorithm, we form the capacitance matthof (5.49) explicitly.
To this end, in Phase 1 of the capacitance matrix algorithm, we need to solve,

fori =1,...,4N — 4, a system of the form
(5:52) B8 =g |,

where0 is an8 N2-vector of zeros and; is thei’* column of the identity
matrix I, _4. Solving each system (5.52) is equivalent to solving the OSC
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BPIl (4.10) with the right hand sid¢(¢) = 0, ¢ € G, a, = 0, and all

the coefficients i, (z,y) of (4.9) zero except one ab ;, van 41,5, j =
2,...,2N — 1, which is equal to one. By (5.49), observe also that, for each
i=1,...,4N — 4, the multiplication of4, by an(8N2 + 4N — 4)-vector

B; simply corresponds to taking from the vecy@y the coefficientsuy ;
anduaynj, j = 2,...,2N — 1, which are the coefficients afj,(x,y) in
(4.6). Thus each column adP is computed using the modification of the
single series OSC Fourier method for solving the special case of OSC BPII
described in Sect. 4.3. Computation of a colummimequires the solution

of problems (4.49) fok = 1,...,2N. For eachk we factor the matrix of

the form (4.51) only once and then use this factorization in the computation
of each column ofD. Thus, we perforn2 NV factorizations, the cost of each
factorization being)(N), [12]. According to [12] the cost of the solution
phase of COLROW for an almost block diagonal matrix (4.51) of $i¥e-4

with 4 x 8 blocks is44N. Thus the cost of Step 4 of the modified single
series OSC Fourier method88N?2 foreachi = 1, ..., 4N —4. The costs of
Step 1 and 2 ar@(1) andO(N), respectively. There is no need to perform
Step 3, while the cost of Step 588v2. Therefore the total cost of forming
the capacitance matriR is 384N?3 + O(N?).

Phase 2 of the capacitance matrix algorithm involves the OSC solution of
aBPII. This can be done with caS{ N2 log, N) using the single series OSC
Fourier method described in Sect. 4.2. In Phase 3, as we have just observed,
the multiplication ofA, by 3 amounts to retrieving part of the solution from
(3. To solve the linear system (5.50) with the dedé® — 1) x 4(N — 1)
coefficient matrixD, we use Gauss elimination. Hence the cost of Phase 3
is 64N3/3 + O(N?). In the final phase, Phase 4, we solve another BPII,
which require$)(N? log, N) arithmetic operations. Hence the total cost of
the OSC capacitance method for solving the biharmonic Dirichlet problem
(1.1) is then(384 + 64/3) N3 + O(N?log, N).

Sun [27] presented a Schur complement algorithm for solving the bi-
harmonic Dirichlet problem using OSC. The total cost of his algorithm is
O(N31log, N). In Phase 3 of his algorithm, Gauss elimination is used to
solve a linear syste3 = b, whereD isal6(N — 1) x 16(N — 1) ma-
trix. Therefore the cost of this phasef@6N?3 /3 + O(N?). In comparison,
Phase 3 of our algorithm requirégN3/3 + O(N?) operations which is
approximately64 times less expensive. Forming the matfixin Sun’s al-
gorithm require256 N3 log, N + O(N?) operations, where the coefficient
of N3 is not given. FormingD in our algorithm take$84N?3 + O(N?)
operations.
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