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1. Introduction

Much attention has been devoted to biharmonic problems because of their
occurrence in applications, for example, in flow and elasticity problems.
Several applications involve the biharmonic Dirichlet problem:

∆2u = f in Ω,

u = g1 on∂Ω,(1.1)
∂u

∂n
= g2 on∂Ω,

where here and throughout the paper,∆ denotes the Laplacian,Ω = (0, 1)×
(0, 1), ∂Ω is the boundary ofΩ, and∂/∂n is the outer normal derivative
on ∂Ω. In linear elasticity,u represents the Airy stress function or, as in
the theory of thin plates, the vertical displacement due to an external force.
In fluid mechanics, (1.1) defines the streamfunction of an incompressible
two-dimensional creeping flow.
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Various methods have been developed for solving (1.1) numerically. Fi-
nite difference methods can be grouped essentially into two approaches. The
first consists of the direct discretization of the biharmonic equation using
a thirteen-point stencil [20,28]. Some algorithms for solving the resulting
linear system have been proposed by Bjørstad [5], Buzbee and Dorr [7], and
Golub [19], for example. On anN ×N partition, the complexity of Golub’s
algorithm isO(N3 log2N) with the use of fast Fourier transforms (FFTs)
routines, while the complexity of Buzbee and Dorr’s algorithm and that of
Bjørstad areO(N3) andO(N2), respectively. The second approach is based
on the so-called splitting principle [28], in which the biharmonic equation
is separated into a coupled pair of Poisson equations that are discretized us-
ing the standard five-point finite difference approximation. Several iterative
methods based on this approach have been presented in [15,16,22,25,26].

Some finite difference methods are very efficient, for example, that of
Bjørstad [5] which is of optimal complexityO(N2). However, since all of
these methods are based on the standard finite difference discretization, the
global error is of second order. Higher order accuracy can be achieved using
finite element methods. There are many finite element approaches which
use iterative methods, such as those in [6,9,10,18,23]. Moreover, Hermite
bicubic orthogonal spline collocation (OSC) methods for the biharmonic
Dirichlet problem (1.1) have been considered by Cooper and Prenter [11]
who proposed an alternating direction implicit OSC method, and by Sun
[27] who presented a Schur complement OSC algorithm, the cost of which
isO(N3 log2N). These methods produce fourth order approximations al-
though no rigorous proof of this result is provided in [11] or [27].

The purpose of this paper is to present existence, uniqueness and con-
vergence results for OSC methods for the solution of three biharmonic
problems, based on the splitting principle. In Sect. 3, we consider the first
problem, which comprises the biharmonic equation inΩ with u = g1 and
∆u = g2 on ∂Ω. This problem becomes one of solving two nonhomoge-
neous Dirichlet problems for Poisson’s equation. The resulting linear sys-
tems can be solved effectively with costO(N2 log2N) using the matrix
decomposition algorithm of [3]. In this case, optimal orderHk-norm er-
ror estimates,k = 0, 1, 2, are derived. In the second problem, considered
in Sect. 4, the boundary condition∆u = g2 on the horizontal sides of
∂Ω is replaced by the condition∂u/∂n = g3. OptimalH1- andH2-norm
error estimates are derived and a single series OSC Fourier method is for-
mulated for the solution of the algebraic problem. This algorithm has cost
O(N2 log2N). Sect. 5 is devoted to the biharmonic Dirichlet problem (1.1)
and again optimalH1- andH2-norm error estimates are derived. The OSC
linear system is solved by a direct method which is based on the capacitance
matrix technique with the second biharmonic problem as the auxiliary prob-
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lem. The total cost of this capacitance matrix algorithm isO(N3). We begin
by introducing some basic concepts, terminology and some well known
results for OSC approximation.

2. Preliminaries

LetN be a positive integer and let{tn}Nn=0 be a uniform partition of[0, 1]
such thattn = nh, n = 0, . . . , N , whereh = 1/N is the stepsize. LetMh

be the space of piecewise Hermite cubics on[0, 1] defined by

Mh = {w ∈ C1[0, 1] : w|[tn,tn+1] ∈ P3, n = 0, . . . , N − 1},
whereP3 denotes the set of polynomials of degree≤ 3, and let

M0
h = {w ∈ Mh : w(0) = w(1) = 0},

M00
h = {w ∈ M0

h : w′(0) = w′(1) = 0}.
Let {ξn}2N

n=1 be the Gauss points in(0, 1) given by

ξ2m+1 = tm + h
3 − √

3
6

,

ξ2m+2 = tm + h
3 +

√
3

6
,

m = 0, . . . , N − 1,

and let
G = {(x, y) : x, y ∈ {ξn}2N

n=1}(2.1)

be the collection of the Gauss points inΩ.
It follows from Lemma 2.3 in [14] that eachv ∈ M0

h is uniquely defined
by its values at the Gauss points{ξn}2N

n=1. Therefore, in the following,M0
h

is regarded as a Hilbert space with the inner product〈·, ·〉 defined by

〈w, z〉 =
h

2

2N∑
n=1

(wz)(ξn).(2.2)

Throughout the paper,C denotes a generic positive constant. The fol-
lowing inequality is (2.6) of [24]:

〈w,w〉 ≥ C

∫ 1

0
w2(t) dt, w ∈ M0

h.(2.3)

The following result is Lemma 3.1 in [14]:

Lemma 2.1. For w, z ∈ Mh,

−〈w′′, z〉 =
∫ 1

0
(w′z′)(t) dt− w′z|10 + Ch5

N∑
n=1

w(3)
n z(3)

n ,

wherew(3)
n ≡ w(3)(t), z(3)

n ≡ z(3)(t), t ∈ (tn−1, tn).
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Using (2.3) and Lemma 2.1 we prove the following result.

Theorem 2.1. If λ ≥ 0, then for any numbers{fn}2N
n=1 and{gn}2N

n=1, there
exist uniquew ∈ M00

h and uniquez ∈ Mh such that

−w′′(ξn) + λw(ξn) + z(ξn) = fn, n = 1, . . . , 2N,(2.4)

−z′′(ξn) + λz(ξn) = gn, n = 1, . . . , 2N.(2.5)

Proof. Since in (2.4)–(2.5), the number of unknowns is equal to the number
of equations, we assume thatfn = gn = 0, n = 1 . . . , 2N , and show that
w = z = 0. Taking the inner product〈·, ·〉 with z on both sides of (2.4) and
with w on both sides of (2.5), respectively, we obtain

〈−w′′, z〉 + λ〈w, z〉 + 〈z, z〉 = 0,
〈−z′′, w〉 + λ〈z, w〉 = 0.(2.6)

It follows easily from Lemma 2.1 that〈−w′′, z〉 = 〈w,−z′′〉 and hence (2.6)
gives〈z, z〉 = 0, which implies

z(ξn) = 0, n = 1, . . . , 2N.(2.7)

From (2.5) and (2.7), we havez′′(ξn) = 0, n = 1, . . . , 2N . Since on each
subinterval[tm−1, tm], m = 1, . . . , N , z ∈ P3, it follows from the four
conditionsz(ξn) = z′′(ξn) = 0, n = 2m− 1, 2m, thatz = 0 on [tm−1, tm]
and hencez = 0.

From (2.4) and (2.7), we have

〈−w′′, w〉 + λ〈w,w〉 = 0.

Sinceλ〈w,w〉 ≥ 0 and since, by Lemma 2.1,〈−w′′, w〉 ≥ ∫ 1
0 (w′)2(t) dt,

it follows that w′ = 0 on [0, 1]. Together withw(0) = 0 this implies
w = 0. 2

For l = 0, 1, 2, . . ., H l(Ω) is the standard Sobolev space (H0(Ω) =
L2(Ω)) equipped with the norm

‖v‖Hl(Ω) =


 ∑

0≤i+j≤l

∥∥∥∥∥ ∂
i+jv

∂xi∂yj

∥∥∥∥∥
2

L2(Ω)




1/2

,

where‖v‖2
L2(Ω) =

∫
Ω v

2(x, y) dx dy. Forw andz defined onG of (2.1), let
〈w, z〉G and‖w‖G be defined by

〈w, z〉G =
h2

4

2N∑
n=1

2N∑
m=1

(wz)(ξn, ξm), ||w||G = 〈w,w〉1/2G .(2.8)

Sincew ∈ M0
h⊗M0

h is uniquely determined by its values onG, M0
h⊗M0

h

can be regarded as a Hilbert space with〈·, ·〉G as an inner product.
The following results follow easily from inequalities established in [24].
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Lemma 2.2. For w ∈ M0
h ⊗ M0

h,

C−1‖w‖L2(Ω) ≤ ‖w‖G ≤ C‖w‖L2(Ω),(2.9)

and
‖w‖G ≤ C‖∆w‖G.(2.10)

For sufficiently smoothv defined onΩ, let vH ∈ Mh ⊗ Mh be its
piecewise Hermite interpolant defined by

∂i+j(vH − v)
∂xi∂yj

(tn, tm) = 0, n,m = 0, . . . , N, i, j = 0, 1.

It is well known thatv has a unique interpolantvH. Moreover, we have the
following lemmas.

Lemma 2.3. [8] If v ∈ H4(Ω), then

‖v − vH‖Hk(Ω) ≤ Ch4−k‖v‖H4(Ω), k = 0, 1, 2.(2.11)

Lemma 2.4. If v ∈ H4(Ω), then

‖v − vH‖G ≤ Ch4‖v‖H4(Ω).(2.12)

Moreover, ifv ∈ H l(Ω), l = 4, 5, then

‖∆(v − vH)‖G ≤ Chl−2‖v‖Hl(Ω).(2.13)

Proof. Inequalities (2.12) and (2.13) forl = 5 were proved in Lemma 4.2
of [2]. Inequality (2.13) forl = 4 can be derived in a similar way. 2

The following additional results were proved in [1].

Lemma 2.5. For w ∈ M0
h ⊗ M0

h,

‖w‖L2(Ω) ≤ C


h‖w‖H2(Ω) +

h2

4

N∑
n=1

N∑
m=1

∣∣∣∣∣∣
1∑
i=0

1∑
j=0

∆w(ξ2n−i, ξ2m−j)

∣∣∣∣∣∣

.

(2.14)
If v ∈ H6(Ω), then

h2

4

N∑
n=1

N∑
m=1

∣∣∣∣∣∣
1∑
i=0

1∑
j=0

∆(v − vH)(ξ2n−i, ξ2m−j)

∣∣∣∣∣∣ ≤ Ch4‖v‖H6(Ω).(2.15)

To present some useful bases forMh, we first introduce (see, for exam-
ple, [17]) the functionsvn, sn ∈ Mh, n = 0, . . . , N , known as the “value
function” and the “scaled slope function”, respectively, associated with the
point tn. These functions are defined by

vn(tm) = δn,m, v
′
n(tm) = 0,

sn(tm) = 0, s′
n(tm) = h−1δn,m,

n,m = 0, . . . , N,
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whereδn,m is the Kronecker delta. By ordering thevn andsn, we obtain
two bases,{φn}2N+1

n=0 and{ψn}2N+1
n=0 for Mh, such that

{φ0, φ1, . . . , φ2N , φ2N+1} = {v0, v1, . . . , vN−2, vN−1, s0, s1, . . . ,

sN−2, sN−1, sN , vN},(2.16)

and

{ψ0, ψ1, . . . , ψ2N , ψ2N+1} = {v0, s0, v1, s1 . . . ,
vN−1, sN−1, sN , vN}.(2.17)

Note that, by removing the first and the last basis functions from (2.16) and
(2.17), we obtain two bases forM0

h:

{φ1, . . . , φ2N} = {v1, . . . , vN−2, vN−1, s0, s1, . . . ,

sN−2, sN−1, sN}(2.18)

and

{ψ1, . . . , ψ2N} = {s0, v1, s1 . . . , vN−1, sN−1, sN}.
In [3], formulas were derived forλn > 0 andzn ∈ M0

h,n = 1, . . . , 2N,
such that

− z′′
n(ξm) = λnzn(ξm), m = 1, . . . , 2N,(2.19)

and
〈zn, zm〉 = δn,m, n,m = 1, . . . , 2N,(2.20)

where〈·, ·〉 is defined by (2.2). According to Theorem 2.1 in [3],

λn = λ−
n , n = 1, . . . , N − 1, λN+n = λ+

n , n = 0, . . . , N,(2.21)

where

λ±
n =

12
h2

(
8 + ηn ± µn

7 − ηn

)
, µn =

√
43 + 40ηn − 2η2

n,

ηn = cos
nπ

N
.

(2.22)

It follows easily from (2.20) that{zn}2N
n=1 is a basis forM0

h.
In addition to the bases{φn}2N

n=1 and{zn}2N
n=1, we introduce the basis

{θn}2N
n=1 for M0

h defined by

θn(ξm) = δn,m, n,m = 1, . . . , 2N.(2.23)

Then anyw ∈ M0
h can be represented in the forms

w =
2N∑
n=1

wznzn =
2N∑
n=1

wφnφn =
2N∑
n=1

wθnθn,(2.24)
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wherewzn, wφn, andwθn are the Fourier coefficients ofw with respect to the
corresponding basis functions. It follows from (2.24), (2.20), and (2.23) that

wzn = 〈w, zn〉, wθn = w(ξn), n = 1, . . . , 2N.(2.25)

Moreover, if

wz = [wz1, . . . , w
z
2N ]T, wφ = [wφ1 , . . . , w

φ
2N ]T, wθ = [wθ1, . . . , w

θ
2N ]T,

(2.26)
then it was shown in [4] that

wφ = Zwz,(2.27)

wz =
h

2
ZTBT

φBφw
φ,(2.28)

and

wz =
h

2
ZTBT

φwθ,(2.29)

where
Bφ = (bmn)2Nm,n=1, bmn = φn(ξm),(2.30)

and

Z = 6
√

3

[
SΛ−

α 0 SΛ+
α 0

C̃Λ−
β CΛ+

β

]
,(2.31)

S =
(

sin
mnπ

N

)N−1

m,n=1
, C =

(
cos

mnπ

N

)N
m,n=0

,

C̃ =
(

cos
mnπ

N

)N,N−1

m=0,n=1
.

The diagonal matricesΛ±
α , Λ±

β in Z are defined by

Λ±
α = diag(α±

1 , . . . , α
±
N−1),

Λ−
β = diag(β−

1 , . . . , β
−
N−1), Λ+

β = diag(1, β+
1 , . . . , β

+
N−1, 1/

√
3),

where

α±
n = (5 + 4ηn∓)ν±

n , β±
n = 18 sin

(
nπ

N

)
ν±
n ,

ν±
n = [27(1 + ηn)(8 + ηn ∓ µn)2 + (1 − ηn)(11 + 7ηn ∓ 4µn)2]−1/2,

andµn andηn are as in (2.22).
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3. Biharmonic problem I

3.1. OSC scheme

In this section, we consider Biharmonic Problem I (BPI):

∆2u = f in Ω,
u = g1 on∂Ω,

∆u = g2 on∂Ω.
(3.1)

Introducingv = ∆u, we obtain the equivalent decoupled problem

−∆u = −v in Ω,
u = g1 on∂Ω,

(3.2)

−∆v = −f in Ω,
v = g2 on∂Ω.

(3.3)

Thus we can solve (3.1) by sequentially solving two nonhomogeneous
Dirichlet problems for Poisson’s equation, (3.3) and then (3.2).

The piecewise Hermite bicubic OSC method for solving (3.2)–(3.3) con-
sists in findinguh, vh ∈ Mh ⊗ Mh such that

−∆uh(ξ) = −vh(ξ), ξ ∈ G,
−∆vh(ξ) = −f(ξ), ξ ∈ G,(3.4)

where the boundary coefficients inuh and vh are determined by piece-
wise Hermite cubic interpolation as in [2]. Specifically, using{φi}2N+1

i=0
and{ψj}2N+1

j=0 of (2.16) and (2.17) as the bases forMh, we writeuh(x, y)
andvh(x, y) in the form

uh(x, y) = ūh(x, y)+ ũh(x, y), vh(x, y) = v̄h(x, y)+ ṽh(x, y),(3.5)

where

ūh(x, y) =
2N∑
i=1

2N∑
j=1

ui,jφi(x)ψj(y),

ũh(x, y) =
2N∑
i=1

ui,0φi(x)ψ0(y) +
2N∑
i=1

ui,2N+1φi(x)ψ2N+1(y)

+
2N+1∑
j=0

u0,jφ0(x)ψj(y) +
2N+1∑
j=0

u2N+1,jφ2N+1(x)ψj(y),
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Orthogonal spline collocation methods for biharmonic problems 275

with v̄h(x, y) andṽh(x, y) defined similarly. Using the boundary conditions
in (3.2) and (3.3), the coefficients iñuh(x, y) andṽh(x, y) are selected so
that

uh(x, y) = uH(x, y), vh(x, y) = vH(x, y), (x, y) ∈ ∂Ω.(3.6)

Substituting (3.5) into (3.4), we obtain

−∆ūh(ξ) + v̄h(ξ) = ∆ũh(ξ) − ṽh(ξ), ξ ∈ G,
−∆v̄h(ξ) = ∆ṽh(ξ) − f(ξ), ξ ∈ G,(3.7)

where ūh, v̄h ∈ M0
h ⊗ M0

h and the right hand sides are known. Hence
existence and uniqueness of the approximate solutionsuh andvh of (3.4)
follow from those forūh and v̄h in (3.7). Moreover,̄vh and thenūh of
(3.7), and hencevh and uh of (3.4), can be computed using the matrix
decomposition algorithm of [3].

3.2. Convergence analysis

3.2.1. Additional lemmas

We need the following lemmas.

Lemma 3.1. For w, z ∈ M0
h ⊗ M0

h, we have

〈−∆w, z〉G = 〈w,−∆z〉G.(3.8)

Proof. Sincew, z ∈ M0
h ⊗ M0

h, we have

w(a, y) = z(a, y) = 0, a = 0, 1, y ∈ [0, 1],(3.9)

and
w(x, b) = z(x, b) = 0, x ∈ [0, 1], b = 0, 1.(3.10)

In order to prove (3.8), it suffices to show that

〈−wxx, z〉G = 〈w,−zxx〉G , 〈−wyy, z〉G = 〈w,−zyy〉G .(3.11)

Using (2.8), (2.2), Lemma 2.1, and (3.9) forz, we have

〈−wxx, z〉G = −h
2

2N∑
m=1

〈wxx(·, ξm), z(·, ξm)〉

=
h

2

2N∑
m=1

[∫ 1

0
(wxzx) (x, ξm) dx− (wxz) (x, ξm)

∣∣∣x=1
x=0

+Ch5
N∑
n=1

w(3,0)
n,m z(3,0)

n,m

]

=
h

2

2N∑
m=1

[∫ 1

0
(wxzx) (x, ξm) dx+ Ch5

N∑
n=1

w(3,0)
n,m z(3,0)

n,m

]
,

(3.12)
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where

w(3,0)
n,m = wxxx(x, ξm), z(3,0)

n,m = zxxx(x, ξm), x ∈ (tn−1, tn).

Since the right-hand side of (3.12) is symmetric with respect tow andz,
the first equation of (3.11) follows easily. A similar argument using (3.10)
gives the second equation in (3.11).2

Lemma 3.2. For w ∈ M0
h ⊗ M0

h,

‖w‖H2(Ω) ≤ C‖∆w‖G.(3.13)

Proof. From (8.24) in [21] we have

‖w‖2
H2(Ω) ≤ C‖∆w‖2

L2(Ω), w ∈ H2(Ω), w = 0 on ∂Ω,

and from the Cauchy-Schwarz inequality we have

‖∆w‖2
L2(Ω) ≤ 2

(
‖wxx‖2

L2(Ω) + ‖wyy‖2
L2(Ω)

)
.

Thus, since

‖∆w‖2
G = ‖wxx‖2

G + 2 〈wxx, wyy〉G + ‖wyy‖2
G ,

it suffices to show that

‖wxx‖2
L2(Ω) ≤ C ‖wxx‖2

G , ‖wyy‖2
L2(Ω) ≤ C ‖wyy‖2

G , w ∈ M0
h ⊗ M0

h,

(3.14)
and

〈wxx, wyy〉G ≥ 0, w ∈ M0
h ⊗ M0

h.(3.15)

Using (2.8), the exactness of 2-point Gauss quadrature for polynomials
of degree≤ 3, the fact thatwxx(x, ·) ∈ M0

h, x ∈ (tn−1, tn), and (2.3), we
have

‖wxx‖2
G =

h

2

2N∑
m=1

h

2

2N∑
n=1

w2
xx(ξn, ξm) =

h

2

2N∑
m=1

∫ 1

0
w2
xx(x, ξm)dx

=
∫ 1

0

h

2

2N∑
m=1

w2
xx(x, ξm)dx ≥ C

∫
Ω
w2
xx(x, y) dx dy.

Thus interchanging the roles ofx andy, we obtain (3.14).
It follows from Lemma 2.1, applied with respect tox andy directions,

that the operators−wxx, −wyy from M0
h ⊗ M0

h into M0
h ⊗ M0

h are self-
adjoint and nonnegative definite with respect to〈·, ·〉G. Moreover, it is easy
to verify that they commute. Therefore, the operator(wxx)yy is nonnegative
definite which implies (3.15). 2
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3.2.2.Hk-error estimates

We now prove the following convergence result for the OSC scheme (3.5)–
(3.7).

Theorem 3.1. Letu ∈ H8−k(Ω), k = 0, 1, 2, be the solution of BPI (3.1).
Letuh, vh ∈ Mh ⊗ Mh of (3.5) satisfy (3.6) and (3.7). Then

‖u− uh‖Hk(Ω) ≤ Ch4−k‖u‖H8−k(Ω), k = 0, 1, 2.(3.16)

Proof. Let uH andvH be the piecewise Hermite bicubic interpolants ofu
andv = ∆u, respectively, and let

w = uh − uH, z = vh − vH.(3.17)

Then it follows from (3.17), the first equation of (3.4), andv = ∆u that

−∆w(ξ) + z(ξ) = −∆(uh − uH)(ξ) + (vh − vH)(ξ)(3.18)

= ∆uH(ξ) − vH(ξ)
= −∆(u− uH)(ξ) + (v − vH)(ξ), ξ ∈ G.

Similarly from (3.17), the second equation of (3.4), andf = ∆v, we have

−∆z(ξ) = −f(ξ) +∆vH(ξ) = −∆(v − vH)(ξ), ξ ∈ G.(3.19)

Equations (3.17) and (3.6) imply thatw, z ∈ M0
h ⊗ M0

h. Therefore, taking
the inner product〈·, ·〉G with −∆w on both sides of (3.18), we obtain

‖∆w‖2
G + 〈z,−∆w〉G = 〈−∆(u− uH) + v − vH,−∆w〉G.(3.20)

Taking the inner product〈·, ·〉G with w on both sides of (3.19), we have

〈−∆z,w〉G = 〈−∆(v − vH), w〉G.(3.21)

Hence from (3.20), (3.21), and Lemma 3.1, we obtain

‖∆w‖2
G = 〈−∆(u− uH) + v − vH,−∆w〉G + 〈∆(v − vH), w〉G.

Using the Cauchy-Schwarz inequality and (2.10), we have

‖∆w‖G ≤ C(‖∆(u− uH)‖G + ‖v − vH‖G + ‖∆(v − vH)‖G).

Thus from this inequality, (3.13), (2.12), and (2.13), we obtain

‖w‖H2(Ω) ≤ Ch4−k‖u‖H8−k(Ω), k = 1, 2.(3.22)

For k = 1, 2, (3.16) follows now from the triangle inequality, (2.11) with
k = 1, 2, (3.17), and (3.22).
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To prove (3.16) fork = 0, we use (2.14), (3.18), the triangle inequality,
and the Cauchy-Schwarz inequality to obtain

‖w‖L2(Ω) ≤ C

(
h‖w‖H2(Ω)

+
h2

4

N∑
n=1

N∑
m=1

∣∣∣∣∣∣
1∑
i=0

1∑
j=0

∆(u− uH)(ξ2n−i, ξ2m−j)

∣∣∣∣∣∣
+‖v − vH‖G + ‖z‖G

)
.(3.23)

Using (2.9), (2.14), (3.13), and (3.19), we also have

‖z‖G ≤ C

(
h‖∆(v − vH)‖G

+
h2

4

N∑
n=1

N∑
m=1

∣∣∣∣∣∣
1∑
i=0

1∑
j=0

∆(v − vH)(ξ2n−i, ξ2m−j)

∣∣∣∣∣∣

 .(3.24)

Finally (3.16) fork = 0, follows from the triangle inequality, (2.11) with
k = 0, (3.17), (3.23), (3.24), (3.22) withk = 1, (2.12), (2.13) withl = 5,
and (2.15). 2

4. Biharmonic problem II

4.1. OSC scheme: existence, uniqueness, convergence

Consider Biharmonic Problem II (BPII):

∆2u = f in Ω,
u = g1 on∂Ω,

∂u

∂n
= g2 on∂Ω1,

∆u = g3 on∂Ω2,

(4.1)

where∂Ω1 is the union of the horizontal sides of∂Ω and∂Ω2 is the union
of the vertical sides of∂Ω. By introducingv = ∆u, we obtain the coupled
problem

−∆u = −v in Ω,
u = g1 on∂Ω,

∂u

∂n
= g2 on∂Ω1,

(4.2)
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and
−∆v = −f in Ω,

v = g3 on∂Ω2.
(4.3)

We seek OSC solutionsuh, vh ∈ Mh ⊗ Mh of (4.2)–(4.3) defined in the
following way. Sinceuh, vh ∈ Mh ⊗ Mh, they are of the form

uh(x, y) =
2N+1∑
i=0

2N+1∑
j=0

ui,jφi(x)ψj(y),

vh(x, y) =
2N+1∑
i=0

2N+1∑
j=0

vi,jφi(x)ψj(y),

(4.4)

where the bases{φi}2N+1
i=0 and{ψj}2N+1

j=0 for Mh are defined in (2.16) and
(2.17).

The nonhomogeneous boundary conditions foru andv in (4.2) and (4.3)
are approximated using piecewise Hermite cubic interpolation. The coeffi-
cientsui,0, ui,2N+1, i = 1, . . . , 2N , andu0,j , u2N+1,j , j = 0, . . . , 2N + 1,
in (4.4) which correspond to the boundary conditionu = g1 on ∂Ω are
determined in exactly the same way as those in Sect. 3.1. Now we describe
the approximation of the boundary condition∂u/∂n = g2 on∂Ω1 to deter-
mine the coefficientsui,1, ui,2N , i = 1, . . . , 2N , and the approximation of
the boundary conditionv = g3 on ∂Ω2 to determine the coefficientsv0,j ,
v2N+1,j , j = 0, . . . , 2N + 1. On the bottom side of∂Ω, we require that

[(uh)y + g2](tn, 0) = 0, n = 1, . . . , N − 1,
[(uh)y + g2]x(tn, 0) = 0, n = 0, . . . , N.

Substitutinguh(x, y) of (4.4) into these equations, we obtain formulas for
the coefficientsui,1, i = 1, . . . , 2N :

un,1 = −hg2(tn, 0), n = 1, . . . , N − 1,
uN+n,1 = −h2(g2)x(tn, 0), n = 0, . . . , N.

On the top side of∂Ω, we require

[(uh)y − g2](tn, 1) = 0, n = 1, . . . , N − 1,
[(uh)y − g2]x(tn, 1) = 0, n = 0, . . . , N,

from which, we obtain formulas for the coefficientsui,2N , i = 1, . . . , 2N :

un,2N = hg2(tn, 1), n = 1, . . . , N − 1,
uN+n,2N = h2(g2)x(tn, 1), n = 0, . . . , N.

On vertical sides of∂Ω, we require that

(vh − g3)(a, tn) = 0, (vh − g3)y(a, tn) = 0, a = 0, 1, n = 0, . . . , N.

Numerische Mathematik Electronic Edition
page 279 of Numer. Math. (1998) 80: 267–303



280 Z.-M. Lou et al.

By substitutingvh(x, y) of (4.4) into these equations, we obtain formulas
for the coefficientsv0,j , j = 0, . . . , 2N + 1:

v0,2n = g3(0, tn), v0,2n+1 = h(g3)y(0, tn), n = 0, . . . , N − 1,
v0,2N = h(g3)y(0, tN ), v0,2N+1 = g3(0, tN ),

and the coefficientsv2N+1,j , j = 0, . . . , 2N + 1:

v2N+1,2n=g3(1, tn), v2N+1,2n+1 = h(g3)y(1, tn), n = 0, . . . , N − 1,
v2N+1,2N = h(g3)y(1, tN ), v2N+1,2N+1 = g3(1, tN ).

Thus, we determine16N + 8 coefficientsui,0, ui,1, ui,2N , ui,2N+1, i =
1, . . . , 2N , u0,j , u2N+1,j , j = 0, . . . , 2N +1, andv0,j , v2N+1,j , j = 0, . . . ,
2N + 1.

If we rewriteuh(x, y) andvh(x, y) of (4.4) in the form

uh(x, y) = ūh(x, y) + ũh(x, y),
vh(x, y) = v̄h(x, y) + ṽh(x, y),

(4.5)

where

ūh(x, y) =
2N∑
i=1

2N−1∑
j=2

ui,jφi(x)ψj(y),(4.6)

ũh(x, y) =
2N∑
i=1

ui,0φi(x)ψ0(y) +
2N∑
i=1

ui,1φi(x)ψ1(y)

+
2N∑
i=1

ui,2Nφi(x)ψ2N (y) +
2N∑
i=1

ui,2N+1φi(x)ψ2N+1(y)

+
2N+1∑
j=0

u0,jφ0(x)ψj(y) +
2N+1∑
j=0

u2N+1,jφ2N+1(x)ψj(y),

(4.7)

and

v̄h(x, y) =
2N∑
i=1

2N+1∑
j=0

vi,jφi(x)ψj(y),(4.8)

ṽh(x, y) =
2N+1∑
j=0

v0,jφ0(x)ψj(y) +
2N+1∑
j=0

v2N+1,jφ2N+1(x)ψj(y),(4.9)

then all of the coefficients iñuh(x, y) andṽh(x, y) are known. Thus we need
to determinēuh(x, y) and v̄h(x, y) of (4.6) and (4.8), which contain8N2

unknown coefficients. These coefficients are obtained by requiring that

−∆ūh(ξ) + v̄h(ξ) = ∆ũh(ξ) − ṽh(ξ), ξ ∈ G,
−∆v̄h(ξ) = ∆ṽh(ξ) − f(ξ), ξ ∈ G,(4.10)
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where the right hand sides are known. Equations (4.10) impose8N2 con-
straints, which is the same as the number of unknown coefficients inūh(x, y)
andv̄h(x, y).

Now we prove the existence and uniqueness forūh andv̄h of (4.10). To
do so, we require the following lemma.

Lemma 4.1. If w ∈ M0
h ⊗ M00

h andz ∈ M0
h ⊗ Mh, then

〈−∆w, z〉G = 〈w,−∆z〉G.

Proof. Sincew ∈ M0
h ⊗ M00

h andz ∈ M0
h ⊗ Mh, we have

w(a, y) = z(a, y) = 0, a = 0, 1, y ∈ [0, 1],(4.11)

and
w(x, b) = wy(x, b) = 0, x ∈ [0, 1], b = 0, 1.(4.12)

The proof is then identical to that of Lemma 3.1 except that (4.11) and (4.12)
are used instead of (3.9) and (3.10).2

Using Lemma 4.1, we prove the following theorem.

Theorem 4.1. There exist unique functions̄uh(x, y) of the form (4.6) and
v̄h(x, y) of the form (4.8) satisfying (4.10).

Proof. Clearly,ūh ∈ M0
h ⊗ M00

h andv̄h ∈ M0
h ⊗ Mh. Since the number

of unknown coefficients in̄uh(x, y) andv̄h(x, y) is equal to the number of
equations in (4.10), it suffices to show that if

−∆ūh(ξ) + v̄h(ξ) = 0, ξ ∈ G,(4.13)

−∆v̄h(ξ) = 0, ξ ∈ G,(4.14)

thenūh = v̄h = 0. Taking the inner product〈·, ·〉G with v̄h on both sides of
(4.13), we obtain

〈−∆ūh, v̄h〉G + 〈v̄h, v̄h〉G = 0.(4.15)

Similarly, taking the inner product〈·, ·〉G with ūh on both sides of (4.14),
we obtain

〈−∆v̄h, ūh〉G = 0.(4.16)

From (4.15), (4.16), and Lemma 4.1, we have〈v̄h, v̄h〉G = 0, which implies

v̄h(ξ) = 0, ξ ∈ G.(4.17)

Thus by (4.13),∆ūh(ξ) = 0, ξ ∈ G. Sinceūh ∈ M0
h ⊗ M0

h, (2.10) and
(2.9) imply thatūh = 0.

From (4.17) and the fact thatv̄h ∈ M0
h⊗Mh, we see that̄vh(x, ξm) = 0,

x ∈ [0, 1], m = 1, . . . , 2N. Then (v̄h)xx(ξ) = 0, ξ ∈ G, and hence
(4.14) implies that(v̄h)yy(ξ) = 0, ξ ∈ G. For fixedn, n = 1, . . . , 2N ,
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let w(y) = v̄h(ξn, y), y ∈ [0, 1]. Since on each subinterval[tm−1, tm],
m = 1, . . . , N , w is cubic andw = w′′ = 0 at two Gauss points in
[tm−1, tm], it follows thatw = 0 on [tm−1, tm], m = 1, . . . , N , and hence
v̄h(ξn, y) = 0, y ∈ [0, 1]. Therefore,v̄h = 0 on all vertical lines ofΩ
passing throughξ ∈ G. In particular,v̄h = 0 at the Gauss points on the
horizontal sides of∂Ω. Sincev̄h = 0 at the corner points ofΩ, it follows
that v̄h = 0 on the horizontal sides of∂Ω. Thusv̄h = 0 on∂Ω, and hence
(4.17) and (2.9) imply that̄vh = 0. 2

The following result gives error bounds for the OSC scheme (4.10).

Theorem 4.2. Let u ∈ H8−k(Ω), k = 1, 2, be the solution of BPII (4.1).
Letuh, vh ∈ Mh ⊗ Mh of (4.5)–(4.9) be solutions of (4.10), whereũh, ṽh
are obtained by approximating the boundary conditions in (4.2) and (4.3)
using piecewise Hermite cubic interpolation. Then

‖u− uh‖Hk(Ω) ≤ Ch4−k‖u‖H8−k(Ω), k = 1, 2.(4.18)

Proof. It follows from the way the coefficients iñuh andṽh are selected that
w = uh − uH ∈ M0

h ⊗ M00
h andz = vh − vH ∈ M0

h ⊗ Mh. Therefore,
the derivation of (4.18) is identical to that of (3.16) withk = 1, 2, except
that Lemma 4.1 is used instead of Lemma 3.1.2

4.2. Single series OSC Fourier method

In this section, we present the single series OSC Fourier method for solving
(4.10). First we rewrite (4.10) in a different form by moving some known
coefficients ofũh(x, y) from the right hand side to the left hand side; the
rationale for this will become clear later. To this end, we writeũh(x, y) of
(4.7) as

ũh(x, y) = ũI
h(x, y) + ũII

h (x, y),(4.19)

where

ũI
h(x, y) =

2N∑
i=1

ui,0φi(x)ψ0(y) +
2N∑
i=1

ui,1φi(x)ψ1(y)

+
2N∑
i=1

ui,2Nφi(x)ψ2N (y) +
2N∑
i=1

ui,2N+1φi(x)ψ2N+1(y),
(4.20)

and

ũII
h (x, y) =

2N+1∑
j=0

u0,jφ0(x)ψj(y) +
2N+1∑
j=0

u2N+1,jφ2N+1(x)ψj(y).(4.21)
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With ūh(x, y) as in (4.6) and

ûh(x, y) = ūh(x, y) + ũI
h(x, y) =

2N∑
i=1

2N+1∑
j=0

ui,jφi(x)ψj(y),(4.22)

where the coefficientsui,0, ui,1, ui,2N , ui,2N+1, i = 1, . . . , 2N, are known,
(4.10) can be rewritten in the form

−∆ûh(ξ) + v̄h(ξ) = F (ξ), ξ ∈ G,
−∆v̄h(ξ) = G(ξ), ξ ∈ G,(4.23)

where

F (ξ) = ∆ũII
h (ξ) − ṽh(ξ), G(ξ) = ∆ṽh(ξ) − f(ξ), ξ ∈ G,(4.24)

and v̄h(x, y) and ṽh(x, y) are given by (4.8) and (4.9), respectively. Note
thatF andG are known. Moreover,̂uh, v̄h ∈ M0

h ⊗ Mh, which was the
purpose of the reformulation (4.23) of (4.10).

Since{φi}2N
i=1 of (2.18) and{zi}2N

i=1 of (2.19)–(2.20) are bases forM0
h,

and{ψj}2N+1
j=0 of (2.17) is a basis forMh, from (4.22) and (4.8), we may

write

ûh(x, y) =
2N∑
i=1

2N+1∑
j=0

ui,jφi(x)ψj(y) =
2N∑
i=1

zi(x)uzi (y),(4.25)

and

v̄h(x, y) =
2N∑
i=1

2N+1∑
j=0

vi,jφi(x)ψj(y) =
2N∑
i=1

zi(x)vzi (y),(4.26)

whereuzi , v
z
i ∈ Mh. Substituting (4.25) and (4.26) into the first equation of

(4.23) withξ = (ξn, ξm) ∈ G and using (2.19), we obtain

2N∑
i=1

zi(ξn){λiuzi (ξm) − [uzi ]
′′(ξm) + vzi (ξm)} = F (ξn, ξm),(4.27)

n,m = 1, . . . , 2N,

where{λi}2N
i=1 are given in (2.21)–(2.22). For fixedξm, we take the inner

product〈·, ·〉 of both sides of (4.27) withzk, k = 1, . . . , 2N , and use (2.20)
to obtain

−[uzk]
′′(ξm) + λku

z
k(ξm) + vzk(ξm) = F zk (ξm),(4.28)

k,m = 1, . . . , 2N,

where
F zk (ξm) = 〈F (·, ξm), zk〉.(4.29)
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Similarly, from the second equation of (4.23), we obtain

− [vzk]
′′(ξm) + λkv

z
k(ξm) = Gzk(ξm), k,m = 1, . . . , 2N,(4.30)

where
Gzk(ξm) = 〈G(·, ξm), zk〉.(4.31)

Since the coefficientsui,0, ui,1, ui,2N , ui,2N+1, i = 1, . . . , 2N , of ûh are
known, we also expectuzk to contain some known coefficients. In fact, if we
expressuzk, vzk ∈ Mh, k = 1, . . . , 2N, in the form

uzk(y) =
2N+1∑
j=0

uz,ψk,j ψj(y), vzk(y) =
2N+1∑
j=0

vz,ψk,j ψj(y),(4.32)

then, for eachk = 1, . . . , 2N , the coefficientsuz,ψk,0 , u
z,ψ
k,1 , u

z,ψ
k,2N , u

z,ψ
k,2N+1

are known. For example, from (4.32), and properties of the basis functions
{ψj}2N+1

j=0 , we have

uzk(0) =
2N+1∑
j=0

uz,ψk,j ψj(0) = uz,ψk,0 , k = 1, . . . , 2N.(4.33)

On the other hand, from (4.25) and (4.33), we obtain

ûh(x, 0) =
2N∑
i=1

ui,0φi(x) =
2N∑
i=1

uz,ψi,0 zi(x).(4.34)

Let
u0 = [u1,0, . . . , u2N,0]T, uz,ψ0 = [uz,ψ1,0 , . . . , u

z,ψ
2N,0]

T,(4.35)

where the vectoru0 is known. On comparing (4.34) with (2.24) and (4.35)
with (2.26), it follows from (2.28) that the vectoruz,ψ0 can be computed
using the relation

uz,ψ0 =
h

2
ZTBT

φBφu0,(4.36)

whereB andZ are given in (2.30) and (2.31), respectively. Again, from
(4.32), we have

[uzk]
′(0) =

2N+1∑
j=0

uz,ψk,j ψ
′
j(0) = uz,ψk,1h

−1, k = 1, . . . , 2N.(4.37)

On the other hand, from (4.25) and (4.37), we obtain

(ûh)y(x, 0) = h−1
2N∑
i=1

ui,1φi(x) = h−1
2N∑
i=1

uz,ψi,1 zi(x).

Numerische Mathematik Electronic Edition
page 284 of Numer. Math. (1998) 80: 267–303



Orthogonal spline collocation methods for biharmonic problems 285

Let
u1 = [u1,1, . . . , u2N,1]T, uz,ψ1 = [uz,ψ1,1 , . . . , u

z,ψ
2N,1]

T,(4.38)

whereu1 is known. Then the vectoruz,ψ1 can be computed using the relation

uz,ψ1 =
h

2
ZTBT

φBφu1.(4.39)

Similarly, let

u2N = [u1,2N , . . . , u2N,2N ]T, uz,ψ2N = [uz,ψ1,2N , . . . , u
z,ψ
2N,2N ]T,(4.40)

and
u2N+1 = [u1,2N+1, . . . , u2N,2N+1]T,

uz,ψ2N+1 = [uz,ψ1,2N+1, . . . , u
z,ψ
2N,2N+1]

T,
(4.41)

whereu2N andu2N+1 are known. Then we have

uz,ψ2N =
h

2
ZTBT

φBφu2N , uz,ψ2N+1 =
h

2
ZTBT

φBφu2N+1.(4.42)

We are ready to describe the following method.

Single series OSC Fourier method for solving (4.10)

1. DetermineF (ξn, ξm),G(ξn, ξm), n,m = 1, . . . , 2N , using (4.24).
2. FindF zk (ξm),Gzk(ξm), k,m = 1, . . . , 2N, of (4.29) and (4.31).
3. Computeuz,ψ0 , uz,ψ1 , uz,ψ2N , anduz,ψ2N+1 using (4.36), (4.39), and (4.42).

4. Fork = 1, . . . , 2N, find the coefficients{uz,ψk,j }2N−1
j=2 and{vz,ψk,j }2N+1

j=0 in
uzk andvzk of (4.32), so that (4.28) and (4.30) are satisfied. (Notice that for
eachk = 1, . . . , 2N , the four coefficientsuz,ψk,0 , u

z,ψ
k,1 , u

z,ψ
k,2N , u

z,ψ
k,2N+1

are known from Step 3.)
5. Compute the coefficients{ui,j}2N,2N−1

i=1,j=2 and{vi,j}2N,2N+1
i=1,j=0 of ūh(x, y),

v̄h(x, y) of (4.6), (4.8) using{uz,ψk,j }2N,2N−1
k=1,j=2 and {vz,ψk,j }2N,2N+1

k=1,j=0 ob-
tained in Step 4.

We now describe in more detail the implementation of the single series
OSC Fourier method.
Step 1. Assuming that the values off(ξ), ξ ∈ G, have been determined, we
can directly computeF (ξn, ξm) andG(ξn, ξm), n,m = 1, . . . , 2N , from
(4.24), sincẽuII

h (x, y) of (4.21), and̃vh(x, y) of (4.9) are known. Hence the
cost of Step 1 isO(N).
Step 2. We useF (ξn, ξm) andG(ξn, ξm), n,m = 1, . . . , 2N , obtained in
Step 1 to computeF zk (ξm) andGzk(ξm), k,m = 1, . . . , 2N , defined by
(4.29) and (4.31). For fixedm,m = 1, . . . , 2N , letw ∈ M0

h be such that

w(ξn) = F (ξn, ξm), n = 1, . . . , 2N.(4.43)
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Then (4.29) gives

F zn(ξm) = 〈F (·, ξm), zn〉 = 〈w, zn〉, n = 1, . . . , 2N.(4.44)

If
Fz,θm = [F z1 (ξm), . . . , F z2N (ξm)]T,
Fθ,θm = [F (ξ1, ξm), . . . , F (ξ2N , ξm)]T,

m = 1, . . . , 2N,(4.45)

then on comparing (4.43), (4.44) with (2.25) and (4.45) with (2.26), it follows
from (2.29) that

Fz,θm =
h

2
ZTBT

φFθ,θm , m = 1, . . . , 2N.(4.46)

Similarly, if

Gz,θ
m = [Gz1(ξm), . . . , Gz2N (ξm)]T,

Gθ,θ
m = [G(ξ1, ξm), . . . , G(ξ2N , ξm)]T,

m = 1, . . . , 2N,(4.47)

then

Gz,θ
m =

h

2
ZTBT

φGθ,θ
m , m = 1, . . . , 2N.(4.48)

Since there are at most four nonzero elements in each column of the matrix
Bφ, the matrix-vector multiplications involving the matrixBT

φ in (4.46) and
(4.48) requireO(N) arithmetic operations for eachm. It follows from the
form ofZ in (2.31) that FFT routines can be used to perform multiplications
by the matrixZT in (4.46) and (4.48) with costO(N log2N) for eachm.
Thus the cost of Step 2 isO(N2 log2N).
Step 3. This step involves computing four vectors using the formulas (4.36),
(4.39), and (4.42). The matrix-vector multiplications involving the matrix
Bφ andBT

φ requireO(N) arithmetic operations, since there are at most four
nonzero elements in each row and column ofBφ. As in Step 2, FFTs can be
used to perform multiplications byZT. Consequently, the cost of Step 3 is
O(N log2N).
Step 4. Fork = 1, . . . , 2N , we need to solve one dimensional OSC problem

−[uzk]
′′(ξm) + λku

z
k(ξm) + vzk(ξm) = F zk (ξm),

−[vzk]
′′(ξm) + λkv

z
k(ξm) = Gzk(ξm), m = 1, . . . , 2N,(4.49)

whereuzk(0), [uzk]
′(0), uzk(1), [uzk]

′(1) are specified (see (4.33), (4.37)) and
{λk}2N

k=1 are given in (2.21)–(2.22). Since eachλk > 0, it follows from
Theorem 2.1 that (4.49) is uniquely solvable foruzk, v

z
k ∈ Mh with specified

values ofuzk(0), [uzk]
′(0), uzk(1), [uzk]

′(1).
We now show how to solve the one dimensional OSC problem (4.49) for

eachk = 1, . . . , 2N . We introduce(4N + 4)-vectors

wz
k = [uz,ψk,0 , u

z,ψ
k,1 , v

z,ψ
k,0 , v

z,ψ
k,1 , . . . , u

z,ψ
k,2N+1, u

z,ψ
k,2N , v

z,ψ
k,2N+1, v

z,ψ
k,2N ]T
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and

f zk = [uz,ψk,0 , u
z,ψ
k,1 , F

z
k (ξ1), F zk (ξ2), Gzk(ξ1), G

z
k(ξ2), . . . ,

F zk (ξ2N−1), F zk (ξ2N ), Gzk(ξ2N−1), Gzk(ξ2N ), uz,ψk,2N+1, u
z,ψ
k,2N ]T,

where{uz,ψk,j }2N+1
j=0 and{vz,ψk,j }2N+1

j=0 in wz
k are the coefficients ofuzk andvzk

in (4.32) with the four known coefficientsuz,ψk,0 , uz,ψk,1 , uz,ψk,2N , anduz,ψk,2N+1.
Then (4.49) can be written in the matrix-vector form

Bkwz
k = f zk ,(4.50)

where theBk is the almost block diagonal matrix of the form




1 0 0 0
0 1 0 0
× × × × × × × ×
× × × × × × × ×
× × × × × × × ×
× × × × × × × ×

× × × × × × × ×
× × × × × × × ×
× × × × × × × ×
× × × × × × × ×

· · · · · · · · · · · ·
× × × × × × × ×
× × × × × × × ×
× × × × × × × ×
× × × × × × × ×

1 0 0 0
0 1 0 0




.(4.51)

Since (4.50) is the matrix-vector representation of the uniquely solvable
problem (4.49), it follows thatBk is nonsingular. Moreover, the linear system
(4.50) can be solved directly using COLROW [12,13] with costO(N).
Consequently, the total cost of Step 4 isO(N2).
Step 5. We need to compute the coefficients{ui,j}2N,2N−1

i=1,j=2 and

{vi,j}2N,2N+1
i=1,j=0 of ūh(x, y) andv̄h(x, y) of (4.6) and (4.8). To this end, we

substituteuzk(y) of (4.32) into (4.25) to obtain

2N+1∑
j=0

[ 2N∑
i=1

ui,jφi(x)

]
ψj(y) =

2N+1∑
j=0

[ 2N∑
i=1

uz,ψi,j zi(x)

]
ψj(y).(4.52)
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Since{ψj}2N+1
j=0 is a basis forMh, (4.52) implies that

2N∑
i=1

ui,jφi(x) =
2N∑
i=1

uz,ψi,j zi(x), j = 2, . . . , 2N − 1.(4.53)

Similarly, by substitutingvzk(y) of (4.32) into (4.26), we obtain

2N+1∑
j=0

[ 2N∑
i=1

vi,jφi(x)

]
ψj(y) =

2N+1∑
j=0

[ 2N∑
i=1

vz,ψi,j zi(x)

]
ψj(y),

which implies that

2N∑
i=1

vi,jφi(x) =
2N∑
i=1

vz,ψi,j zi(x), j = 0, . . . , 2N + 1.(4.54)

Thus, for fixedj, finding {ui,j}2N
i=1 and{vi,j}2N

i=1 corresponds to finding
Fourier coefficients with respect to the basis{φi}2N

i=1 from the Fourier co-
efficients{uz,ψi,j }2N

i=1 and{vz,ψi,j }2N
i=1 with respect to the basis{zi}2N

i=1. Intro-
ducing the2N -vectors

uj = [u1,j , . . . , u2N,j ]T,

uz,ψj = [uz,ψ1,j , . . . , u
z,ψ
2N,j ]

T,
j = 2, . . . , 2N − 1,(4.55)

and
vj = [v1,j , . . . , v2N,j ]T,

vz,ψj = [vz,ψ1,j , . . . , v
z,ψ
2N,j ]

T,
j = 0, . . . , 2N + 1,(4.56)

and comparing (4.53), (4.54) with (2.24), and (4.55), (4.56) with (2.26), we
obtain from (2.27)

uj = Zuz,ψj , j = 2, . . . , 2N − 1,

vj = Zvz,ψj , j = 0, . . . , 2N + 1.
(4.57)

Since FFT routines can be used in (4.57) to perform multiplications by the
matrixZ, the cost of Step 5 isO(N2 log2N). Therefore the total cost of the
single series OSC Fourier method isO(N2 log2N).

4.3. A special case

In this section, we consider a special case of the OSC scheme (4.10), which
will be used in Sect. 5. We assume that in (4.10),f(ξ) = 0, ξ ∈ G, ũh =
0, and all the coefficients iñvh of (4.9) are zero except that one of the
coefficientsv0,j or v2N+1,j , j = 2, . . . , 2N − 1, is equal to one. Also,
we assume that we only need to know the coefficientsuN,j and u2N,j ,
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j = 2, . . . , 2N − 1, in ūh(x, y) of (4.6). We show how to modify the
single series OSC Fourier method so that the total cost of finding the desired
coefficients of̄uh is reduced toO(N2).

Assumev0,k = 1, wherek = 2l or 2l + 1 with l = 1, . . . , N − 1. Then
(4.24) and (4.9) yield

F (ξn, ξm) = −φ0(ξn)ψk(ξm),
G(ξn, ξm) = φ′′

0(ξn)ψk(ξm) + φ0(ξn)ψ′′
k(ξm), n,m = 1, . . . , 2N.

Sinceψ2l = vl andψ2l+1 = sl (cf. (2.17)), it is easy to see that only
the8 values ofF (ξn, ξm), and the8 values ofG(ξn, ξm) corresponding to
n = 1, 2, andm = 2l−1, 2l, 2l+1, 2l+2, are nonzero. Therefore, Step 1 of
the single series OSC Fourier method requiresO(1) arithmetic operations.
Further, in (4.45), there are only four nonzero vectorsFθ,θm , namely,

Fθ,θm = [F (ξ1, ξm), F (ξ2, ξm), 0, . . . , 0]T,
m = 2l − 1, 2l, 2l + 1, 2l + 2.

Similarly, in (4.47), there are only four nonzero vectorsGθ,θ
m ,

Gθ,θ
m = [G(ξ1, ξm), G(ξ2, ξm), 0 . . . , 0]T,

m = 2l − 1, 2l, 2l + 1, 2l + 2.

Thus (4.46) and (4.48) imply that only four nonzero vectorsFz,θ2l−1, Fz,θ2l ,

Fz,θ2l+1, Fz,θ2l+2, and four nonzero vectorsGz,θ
2l−1, Gz,θ

2l , Gz,θ
2l+1, Gz,θ

2l+2 need
to be computed in Step 2. This can be done without the use of FFTs and
consequently Step 2 requires onlyO(N) arithmetic operations. Sincẽuh =
0, it follows from (4.19), (4.20), (4.35)–(4.36), (4.38)–(4.39) and (4.40)–
(4.42) thatuz,ψ0 = uz,ψ1 = uz,ψ2N = uz,ψ2N+1 = 0, and hence Step 3 need
not be performed. As in the general case, Step 4 requiresO(N2) arithmetic
operations. In the general case, Step 5 is performed using FFTs. In the special
case, the coefficientsuN,j andu2N,j , j = 2, . . . , 2N − 1, are computed
directly without using FFT routines. It is easy to see from (4.55) and (4.57)
that in order to obtainuN,j , j = 2, . . . , 2N − 1, we need to multiply each
uz,ψj , j = 2, . . . , 2N − 1, by theN th row ofZ. Similarly, to obtainu2N,j ,

j = 2, . . . , 2N − 1, we need to multiply eachuz,ψj , j = 2, . . . , 2N − 1, by
the2N th row of Z. This requiresO(N2) arithmetic operations. Since the
case ofv2N+1,k = 1, wherek = 2l or 2l + 1 with l = 1, . . . , N − 1, can
be treated in a similar way, the total cost of the modified single series OSC
Fourier method for the special case isO(N2).
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5. Biharmonic problem III

5.1. OSC scheme: existence, uniqueness, convergence

We are now ready to solve the biharmonic Dirichlet problem (1.1), which
we call Biharmonic Problem III (BPIII). We solve the corresponding OSC
problem by employing the capacitance matrix method with the OSC BPII
as the auxiliary problem. A similar approach involving a finite difference
approximation of BPIII was used by Buzbee and Dorr [7]. As before, intro-
ducingv = ∆u, we obtain from (1.1) the coupled problem:

−∆u = −v in Ω,
u = g1 on∂Ω,

∂u

∂n
= g2 on∂Ω,

(5.1)

and
−∆v = −f in Ω.(5.2)

Note that in contrast to (4.2)–(4.3), no boundary conditions are imposed on
v.

The OSC solutionsuh, vh ∈ Mh ⊗ Mh of (5.1)–(5.2) are defined as
follows. Sinceuh, vh ∈ Mh ⊗ Mh, they can be written in the form

uh(x, y) =
2N+1∑
i=0

2N+1∑
j=0

ui,jφi(x)ψj(y),

vh(x, y) =
2N+1∑
i=0

2N+1∑
j=0

vi,jφi(x)ψj(y),

(5.3)

where the bases{φi}2N+1
i=0 and {ψj}2N+1

j=0 for Mh are defined in (2.16)
and (2.17). As before, we determine in advance certain coefficients of (5.3)
corresponding to the two boundary conditions in (5.1) using piecewise Her-
mite cubic interpolation. The coefficientsui,0, ui,2N+1, i = 1, . . . , 2N , and
u0,j , u2N+1,j , j = 0, . . . , 2N + 1, which correspond to the boundary con-
dition u = g1 on ∂Ω, and the coefficientsui,1, ui,2N , i = 1, . . . , 2N ,
which correspond to the boundary condition∂u/∂n = g2 on the horizon-
tal sides of∂Ω are determined in exactly the same way as in Sect. 4.1.
In particular, the coefficientsuN,0, uN,1, uN,2N , uN,2N+1, u2N,0, u2N,1,
u2N,2N , andu2N,2N+1 are determined by this process. The boundary con-
dition ∂u/∂n = g2 on the vertical sides of∂Ω are approximated in the
following way to determine the coefficientsuN,j ,u2N,j , j = 2, . . . , 2N−1.
On the left hand side of∂Ω, we require that

[(uh)x + g2](0, tn) = 0, [(uh)x + g2]y(0, tn) = 0, n = 1, . . . , N − 1.
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Substitutinguh(x, y) of (5.3) into these equations, we obtain explicitly the
coefficientsuN,j , j = 2, . . . , 2N − 1:

uN,2n = −hg2(0, tn), uN,2n+1 = −h2(g2)y(0, tn), n = 1, . . . , N − 1.

On the right hand side of∂Ω, we require that

[(uh)x − g2](1, tn) = 0, [(uh)x − g2]y(1, tn) = 0, n = 1, . . . , N − 1,

from which, we obtain the coefficientsu2N,j , j = 2, . . . , 2N − 1:

u2N,2n = hg2(1, tn), u2N,2n+1 = h2(g2)y(1, tn), n = 1, . . . , N − 1.

Thus we determine16N coefficientsui,0, ui,1, ui,2N , ui,2N+1, i = 1, . . . ,
2N, u0,j , u2N+1,j , j = 0, . . . , 2N +1, anduN,j , u2N,j , j = 2, . . . , 2N −1.

If we split uh(x, y) of (5.3) in the form

uh(x, y) = ūh(x, y) + ũh(x, y),(5.4)

where

ūh(x, y) =
2N−1∑
i=1,i6=N

2N−1∑
j=2

ui,jφi(x)ψj(y),(5.5)

and

ũh(x, y) =
2N∑
i=1

ui,0φi(x)ψ0(y) +
2N∑
i=1

ui,1φi(x)ψ1(y)

+
2N∑
i=1

ui,2Nφi(x)ψ2N (y) +
2N∑
i=1

ui,2N+1φi(x)ψ2N+1(y)

+
2N+1∑
j=0

u0,jφ0(x)ψj(y) +
2N+1∑
j=0

u2N+1,jφ2N+1(x)ψj(y)

+
2N−1∑
j=2

uN,jφN (x)ψj(y) +
2N−1∑
j=2

u2N,jφ2N (x)ψj(y),

(5.6)

then all coefficients of̃uh(x, y) are known. Thus the total number of un-
known coefficients in̄uh(x, y) of (5.5) andvh(x, y) of (5.3) is8N2 + 8.
However, if we collocate the first equation of (5.1) and equation (5.2) at
all ξ ∈ G, we obtain only8N2 equations. Notice that for BPII, we did not
have such a problem. For BPIII, we need to impose8 additional equations
or determine8 additional coefficients independently. Since we use the sub-
stitutionv = ∆u, one obvious choice is to impose four corner conditions
onvh:

vh(a, b) = ∆u(a, b), a, b = 0, 1.(5.7)
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Substitutingvh of (5.3) into (5.7), and usingu = g1 on ∂Ω to determine
∆u(a, b), we obtain

v0,0 = ∆g1(0, 0), v2N+1,0 = ∆g1(1, 0),
v0,2N+1 = ∆g1(0, 1), v2N+1,2N+1 = ∆g1(1, 1).(5.8)

In order to find another four equations, we first note that forv = ∆u,
we have

vy = (∆u)y = ∆uy.

Hence, we impose four corner conditions on(vh)y:

(vh)y(a, b) = ∆uy(a, b), a, b = 0, 1.(5.9)

Substitutingvh(x, y) of (5.3) into (5.9), usingu = g1 on the vertical sides
of ∂Ω to determineuyyy(a, b) and using−uy = g2 on the bottom side of
∂Ω anduy = g2 on the top side of∂Ω to determineuyxx(a, b), we obtain

v0,1 = h[(g1)yyy − (g2)xx](0, 0),
v2N+1,1 = h[(g1)yyy − (g2)xx](1, 0),
v0,2N = h[(g1)yyy + (g2)xx](0, 1),

v2N+1,2N = h[(g1)yyy + (g2)xx](1, 1).

(5.10)

In (5.9), we selected corner conditions for(vh)y rather than(vh)x because
the valuesv0,1, v0,2N , v2N+1,1, andv2N+1,2N are known explicitly in the
OSC scheme for the BPII. A finite difference approach could be used to
approximate the partial derivatives on the right hand sides of (5.8) and (5.10).
However, since at this pointuh(x, y) of (5.4) is known on∂Ω, it is possible,
in place of (5.7), to impose the following four corner conditions onvh:

vh(a, b) = ∆uh(a, b), a, b = 0, 1.(5.11)

Substitutinguh(x, y) of (5.3) into (5.11) and using (2.16) and (2.17), we
obtain

v0,0 = 2u0,0v
′′
0(0) + (u1,0 + u0,2)v′′

1(0) + (uN,0 + u0,1)s′′
0(0)

+(uN+1,0 + u0,3)s′′
1(0),

and similar formulas forv2N+1,0, v0,2N+1, and v2N+1,2N+1. All of the
right hand sides in these formulas are known, because the involvedui,j are
coefficients of the knowñuh(x, y) of (5.6). Similarly, since(uh)y is known
on the horizontal sides of∂Ω, in place of (5.9), we can impose the following
four corner conditions:

(vh)y(a, b) = ∆(uh)y(a, b), a, b = 0, 1.(5.12)
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Substitutinguh(x, y) of (5.3) into (5.12) and using (2.16) and (2.17), we
obtain

v0,1 = u0,1v
′′
0(0) + u1,1v

′′
1(0) + uN,1s

′′
0(0) + uN+1,1s

′′
1(0)

+h[u0,0v
′′′
0 (0) + u0,1s

′′′
0 (0) + u0,2v

′′′
1 (0) + u0,3s

′′′
1 (0)],

and similar formulas forv2N+1,1, v0,2N , andv2N+1,2N . Again, all of the
right hand sides in these formulas are known. The nice thing about this
approximation is that, in contrast to (5.8) and (5.10), no partial derivatives
of g1 andg2 or their approximations are needed.

We rewritevh(x, y) of (5.3) as

vh(x, y) = v̄h(x, y) + ṽh(x, y),(5.13)

where

v̄h(x, y) =
2N∑
i=1

2N+1∑
j=0

vi,jφi(x)ψj(y) +
2N−1∑
j=2

v0,jφ0(x)ψj(y)(5.14)

+
2N−1∑
j=2

v2N+1,jφ2N+1(x)ψj(y),

and

ṽh(x, y) =
∑

j=0,1,2N,2N+1

v0,jφ0(x)ψj(y)(5.15)

+
∑

j=0,1,2N,2N+1

v2N+1,jφ2N+1(x)ψj(y),

where the coefficients of̃vh(x, y) are obtained using (5.7) and (5.9) or (5.11)
and (5.12). Thus the total number of unknown coefficients inūh(x, y) of
(5.5) and̄vh(x, y) of (5.14) is8N2. Finally, the OSC scheme for (5.1)–(5.2)
has the form

−∆ūh(ξ) + v̄h(ξ) = ∆ũh(ξ) − ṽh(ξ), ξ ∈ G,
−∆v̄h(ξ) = ∆ṽh(ξ) − f(ξ), ξ ∈ G,(5.16)

where the right hand sides are known. Equations (5.16) give8N2 constraints
which are matched by the same number of unknown coefficients inūh(x, y)
andv̄h(x, y).

Next, we give the existence and uniqueness result forūh andv̄h of (5.16).
First, we prove two lemmas.

Lemma 5.1. For w ∈ M00
h ⊗ M00

h andz ∈ Mh ⊗ Mh,

〈−∆w, z〉G = 〈w,−∆z〉G.
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Proof. Sincew ∈ M00
h ⊗ M00

h , we have

w(a, y) = wx(a, y) = 0, a = 0, 1, y ∈ [0, 1],(5.17)

and
w(x, b) = wy(x, b) = 0, x ∈ [0, 1], b = 0, 1.(5.18)

The proof is then identical to that of Lemma 3.1 except that (5.17) and (5.18)
are used instead of (3.9) and (3.10).2

Lemma 5.2. If z ∈ Mh ⊗ Mh satisfies

z(a, b) = zy(a, b) = 0, a, b = 0, 1,(5.19)

then
〈zxx, zyy〉G = 〈z, zxxyy〉G.(5.20)

Proof. Applying Lemma 2.1 with respect toy to the left-hand side of (5.20),
we have

〈zxx, zyy〉G =
h

2

2N∑
n=1

〈zyy(ξn, ·), zxx(ξn, ·)〉

= −h
2

2N∑
n=1

∫ 1

0
(zyzxxy)(ξn, y) dy(5.21)

+
h

2

2N∑
n=1

(zyzxx)(ξn, y)|y=1
y=0 − h

2

2N∑
n=1

Ch5
N∑
m=1

z(0,3)
n,m z(2,3)

n,m ,

where

z(0,3)
n,m = zyyy(ξn, y), z(2,3)

n,m = zxxyyy(ξn, y), y ∈ (tm−1, tm).(5.22)

To rewrite the second term on the right-hand side in (5.21), we use Lemma
2.1 with respect tox to obtain, fory = 0, 1,

h

2

2N∑
n=1

(zyzxx)(ξn, y) = 〈zxx(·, y), zy(·, y)〉

= −
∫ 1

0
(zxzyx)(x, y) dx+ (zxzy)(x, y)|x=1

x=0(5.23)

−Ch5
N∑
n=1

z(3,0)
n,y z(3,1)

n,y ,

where

z(3,0)
n,y = zxxx(x, y), z(3,1)

n,y = zyxxx(x, y), x ∈ (tn−1, tn).(5.24)
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Using again Lemma 2.1 with respect tox, we rewrite the first term on the
right-hand side in (5.23) to obtain, fory = 0, 1,

−
∫ 1

0
(zxzyx)(x, y) dx =

h

2

2N∑
n=1

(zyxxz)(ξn, y) − (zyxz)(x, y)|x=1
x=0

+Ch5
N∑
n=1

z(3,1)
n,y z(3,0)

n,y ,(5.25)

wherez(3,1)
n,y andz(3,0)

n,y are given in (5.24). Substituting (5.25) into (5.23)
and using (5.19), we have

h

2

2N∑
n=1

(zyzxx)(ξn, y) =
h

2

2N∑
n=1

(zyxxz)(ξn, y), y = 0, 1.(5.26)

Applying Lemma 2.1 with respect toy to the right-hand side of (5.20), we
also obtain

〈z, zxxyy〉G =
h

2

2N∑
n=1

〈zxxyy(ξn, ·), z(ξn, ·)〉

= −h
2

2N∑
n=1

∫ 1

0
(zxxyzy)(ξn, y) dy +

h

2

2N∑
n=1

(zxxyz)(ξn, y)|y=1
y=0(5.27)

−h
2

2N∑
n=1

Ch5
N∑
m=1

z(2,3)
n,m z(0,3)

n,m ,

wherez(2,3)
n,m andz(0,3)

n,m are defined in (5.22). Comparing the right-hand sides
of (5.21) and (5.27), and using (5.26), we obtain (5.20).2

We then have the following theorem.

Theorem 5.1. There exist unique functions̄uh(x, y) of the form (5.5) and
v̄h(x, y) of the form (5.14) satisfying (5.16).

Proof. Clearly,ūh ∈ M00
h ⊗ M00

h , v̄h ∈ Mh ⊗ Mh, and

v̄h(a, b) = (v̄h)y(a, b) = 0, a, b = 0, 1.(5.28)

Since the number of unknown coefficients inūh(x, y) andv̄h(x, y) is equal
to the number of equations in (5.16), it suffices to show that if

−∆ūh(ξ) + v̄h(ξ) = 0, ξ ∈ G,(5.29)

−∆v̄h(ξ) = 0, ξ ∈ G,(5.30)

thenūh = v̄h = 0. Taking the inner product〈·, ·〉G with v̄h on both sides of
(5.29), we obtain

〈−∆ūh, v̄h〉G + 〈v̄h, v̄h〉G = 0.(5.31)
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Similarly, by taking the inner product〈·, ·〉G with ūh on both sides of (5.30),
we obtain

〈−∆v̄h, ūh〉G = 0.(5.32)

Using (5.31), (5.32), and Lemma 5.1, we have〈v̄h, v̄h〉G = 0,which implies

v̄h(ξ) = 0, ξ ∈ G.(5.33)

Thus it follows from (5.29) that∆ūh(ξ) = 0, ξ ∈ G. Sinceūh ∈ M0
h⊗M0

h,
(2.10) and (2.9) imply that̄uh = 0.

To show that̄vh = 0, we use (5.30), (5.28), Lemma 5.2 , and (5.33) to
obtain

0 = ‖∆v̄h‖2
G = ‖(v̄h)xx‖2

G + 2〈(v̄h)xx, (v̄h)yy〉G + ‖(v̄h)yy‖2
G

= ‖(v̄h)xx‖2
G + 2〈v̄h, (v̄h)xxyy〉G + ‖(v̄h)yy‖2

G = ‖(v̄h)xx‖2
G + ‖(v̄h)yy‖2

G.

Hence

(v̄h)xx(ξ) = (v̄h)yy(ξ) = 0, ξ ∈ G,

which along with (5.33) implies that̄vh = 0 on horizontal and vertical lines
passing throughξ ∈ G. This and̄vh(a, b) = 0, a, b = 0, 1, imply in turn that
v̄h = 0 on ∂Ω. Therefore, using in addition (5.33) and (2.9), we conclude
that v̄h = 0. 2

We now prove the following theorem.

Theorem 5.2. Let u ∈ H8−k(Ω), k = 1, 2, be the solution of the bihar-
monic problem (1.1). Letuh ∈ Mh ⊗ Mh of (5.4)–(5.6),vh ∈ Mh ⊗ Mh

of (5.13)–(5.15) be solutions of (5.16), whereũh(x, y) of (5.6) is obtained
by approximating the boundary conditionsu = g1 and∂u/∂n = g2 using
piecewise Hermite cubic interpolation and̃vh(x, y) of (5.15) is obtained
using (5.7) and (5.9) or (5.11) and (5.12). Then

‖u− uh‖Hk(Ω) ≤ Ch4−k‖u‖H8−k(Ω), k = 1, 2.(5.34)

Proof. It follows from the way in which the coefficients iñuh are selected
thatw = uh − uH ∈ M00

h ⊗ M00
h . Moreoverz = vh − vH ∈ Mh ⊗ Mh

regardless of how the coefficients inṽh are selected. Therefore, the derivation
of (5.34) is identical to that of (3.16) withk = 1, 2, except that Lemma 5.1
is used instead of Lemma 3.1. 2

Numerische Mathematik Electronic Edition
page 296 of Numer. Math. (1998) 80: 267–303



Orthogonal spline collocation methods for biharmonic problems 297

5.2. Capacitance matrix method for OSC biharmonic problem III

In order to solve (5.16) efficiently, we employ the capacitance matrix method
to obtain a linear system of smaller dimension which can be solved by Gauss
elimination. Our auxiliary problem is the OSC BPII (4.10) which can be
solved very efficiently using the single series OSC Fourier method. We first
rewrite the scheme (5.16) by splitting̃uh(x, y) of (5.6) in the form

ũh(x, y) = ũI
h(x, y) + ũII

h (x, y),(5.35)

where

ũIh(x, y) =
2N∑
i=1

ui,0φi(x)ψ0(y) +
2N∑
i=1

ui,1φi(x)ψ1(y)

+
2N∑
i=1

ui,2Nφi(x)ψ2N (y) +
2N∑
i=1

ui,2N+1φi(x)ψ2N+1(y)

+
2N+1∑
j=0

u0,jφ0(x)ψj(y) +
2N+1∑
j=0

u2N+1,jφ2N+1(x)ψj(y),

and

ũII
h (x, y) =

2N−1∑
j=2

uN,jφN (x)ψj(y) +
2N−1∑
j=2

u2N,jφ2N (x)ψj(y).(5.36)

We substitute (5.35) into (5.16) and move the known term∆ũII
h to the left

hand side. The equivalent form of (5.16) becomes

−∆u(3)
h (ξ) + v

(3)
h (ξ) = ∆ũIh(ξ) − ṽh(ξ) ≡ F (3)(ξ), ξ ∈ G,

−∆v(3)
h (ξ) = ∆ṽh(ξ) − f(ξ) ≡ G(3)(ξ), ξ ∈ G,(5.37)

whereu(3)
h = ūh + ũII

h andv(3)
h = v̄h. By (5.5), (5.36), and (5.14),

u
(3)
h (x, y) =

2N∑
i=1

2N−1∑
j=2

ui,jφi(x)ψj(y),(5.38)

v
(3)
h (x, y) =

2N∑
i=1

2N+1∑
j=0

vi,jφi(x)ψj(y) +
2N−1∑
j=2

v0,jφ0(x)ψj(y)(5.39)

+
2N−1∑
j=2

v2N+1,jφ2N+1(x)ψj(y).

Note that the coefficientsuN,j andu2N,j , j = 2, . . . , 2N − 1, in (5.38) are
known.
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Now we rewrite the scheme (4.10) by splittingṽh(x, y) of (4.9) in the
form

ṽh(x, y) = ṽI
h(x, y) + ṽII

h (x, y),(5.40)

where

ṽI
h(x, y) =

2N−1∑
j=2

v0,jφ0(x)ψj(y) +
2N−1∑
j=2

v2N+1,jφ2N+1(x)ψj(y),(5.41)

and

ṽII
h (x, y) =

∑
j=0,1,2N,2N+1

v0,jφ0(x)ψj(y)

+
∑

j=0,1,2N,2N+1

v2N+1,jφ2N+1(x)ψj(y).

We substitute (5.40) into (4.10) and move the terms−ṽIh and∆ṽI
h to the left

hand sides to obtain

−∆u(2)
h (ξ) + v

(2)
h (ξ) = ∆ũh(ξ) − ṽII

h (ξ) ≡ F (2)(ξ), ξ ∈ G,
−∆v(2)

h (ξ) = ∆ṽII
h (ξ) − f(ξ) ≡ G(2)(ξ), ξ ∈ G,(5.42)

whereu(2)
h = ūh andv(2)

h = v̄h + ṽIh. By (4.6), (4.8), and (5.41),

u
(2)
h (x, y) =

2N∑
i=1

2N−1∑
j=2

ui,jφi(x)ψj(y),(5.43)

v
(2)
h (x, y) =

2N∑
i=1

2N+1∑
j=0

vi,jφi(x)ψj(y) +
2N−1∑
j=2

v0,jφ0(x)ψj(y)(5.44)

+
2N−1∑
j=2

v2N+1,jφ2N+1(x)ψj(y).

Note thatv0,j andv2N+1,j , j = 2, . . . , 2N − 1, in (5.44) are known. Now

we see thatu(3)
h (x, y) of (5.38) andu(2)

h (x, y) in (5.43) are given in terms

of the same basis functions. Similarly,v(3)
h (x, y) of (5.39) andv(2)

h (x, y)
of (5.44) are given in terms of the same basis functions. Moreover, the left
hand sides of (5.37) and (5.42) have the same form.

Substituting (5.38) and (5.39) into (5.37) and (5.43) and (5.44) into
(5.42), we obtain the linear systems

Aw(3) = f (3),(5.45)
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and
Bw(2) = f (2),(5.46)

respectively, where

A =
[
A1
A2

]
, B =

[
A1
B2

]
,(5.47)

are(8N2 + 4N − 4) × (8N2 + 4N − 4) matrices,A1 is an8N2 × (8N2 +
4N−4) submatrix corresponding to the left hand sides of (5.37) and (5.42),
and whereA2 andB2 are(4N − 4) × (8N2 + 4N − 4) submatrices. All
elements in each row ofA2 andB2 are0 except one which equals1. In
A2, the ones correspond to the known coefficientsuN,j andu2N,j , j =
2, . . . , 2N − 1, of u(3)

h (x, y) in (5.38), and the ones inB2 correspond to the

known coefficientsv0,j andv2N+1,j , j = 2, . . . , 2N − 1, of v(2)
h (x, y) in

(5.44). The vectorsw(3) andw(2) are(8N2+4N−4)-vectors corresponding
to the8N2 + 4N − 4 coefficients (including4N − 4 known coefficients)
of u(3)

h , v(3)
h , andu(2)

h andv(2)
h . These coefficients are ordered in the same

way inw(3) andw(2). The right hand sidef (3) of (5.45) is an(8N2 +4N −
4)-vector containingF (3)(ξn, ξm), G(3)(ξn, ξm), n,m = 1, . . . , 2N , and
4N − 4 known coefficientsuN,j andu2N,j , j = 2, . . . , 2N − 1, as the last
components. Also the right hand sidef (2) of (5.46) is an(8N2 + 4N −
4)-vector containingF (2)(ξn, ξm), G(2)(ξn, ξm), n,m = 1, . . . , 2N, and
4N − 4 known coefficientsv0,j andv2N+1,j , j = 2, . . . , 2N − 1, as the last
components.F (3)(ξn, ξm), G(3)(ξn, ξm), andF (2)(ξn, ξm), G(2)(ξn, ξm),
n,m = 1, . . . , 2N , are ordered in the same way inf (3) andf (2).

Note that matricesA andB in (5.47) differ only in the last4N −4 rows,
and the system (5.46), which is a matrix-vector representation of the OSC
approximation of BPII, can be solved using the single series OSC Fourier
method described in Sect. 4.2. We employ the capacitance matrix method
to solve the system (5.45). We rewrite the(8N2 + 4N − 4)-vectorf (3) of
(5.45) in the form

f (3) = [b1, b2]T,(5.48)

whereb1 containsF (3)(ξn, ξm) andG(3)(ξn, ξm), n,m = 1, . . . , 2N , and
b2 contains the values of4N − 4 known coefficientsuN,j andu2N,j , j =
2, . . . , 2N − 1, of u(3)

h (x, y) in (5.38). The algorithm is then defined in four
phases.
Phase 1. Form the(4N − 4) × (4N − 4) capacitance matrix

D = A2B
−1
[

0
I4N−4

]
,(5.49)

where0 is an8N2 × (4N − 4) zero matrix andI4N−4 is the identity matrix
of order4N − 4.
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Phase 2. Solve the system

Bβ =
[
b1
0

]
,

whereb1 is the first subvector off (3) in (5.48) and0 is a(4N − 4)-vector
of zeros.
Phase 3. Solve the system

Dα = b2 − A2β,(5.50)

whereb2 is the second subvector off (3) in (5.48).
Phase 4. Solve the system

Bw(3) =
[
b1
α

]

for the desired solutionw(3) of (5.45).
We discuss the algorithm in more detail after first proving the following

result.

Theorem 5.3. The capacitance matrixD given by (5.49) is nonsingular.

Proof. We show thatα = 0 is the only solution toDα = 0. It follows from
(5.49) and (5.47) thatDα = 0 is equivalent to

A2w(3) = 0, A1w(3) = 0, α = B2w(3),(5.51)

where the components ofw(3) can be identified with the coefficients of
u

(3)
h (x, y) andv(3)

h (x, y) in (5.38) and (5.39). The first equation of (5.51),

the structure ofA2, and (5.36) imply that̃uII
h = 0 in u(3)

h = ūh + ũII
h . Thus

the second equation of (5.51), which is equivalent to (5.37) withF (3)(ξ) =
G(3)(ξ) = 0, ξ ∈ G, gives

−∆ūh(ξ) + v̄h(ξ) = 0, −∆v̄h(ξ) = 0, ξ ∈ G.
Theorem 5.1 implies̄uh = v̄h = 0 and hencew(3) = 0. Thereforeα = 0
by the third equation in (5.51). 2

In the algorithm, we form the capacitance matrixD of (5.49) explicitly.
To this end, in Phase 1 of the capacitance matrix algorithm, we need to solve,
for i = 1, . . . , 4N − 4, a system of the form

Bβi =
[
0
ei

]
,(5.52)

where0 is an8N2-vector of zeros andei is theith column of the identity
matrixI4N−4. Solving each system (5.52) is equivalent to solving the OSC
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BPII (4.10) with the right hand sidef(ξ) = 0, ξ ∈ G, ũh = 0, and all
the coefficients iñvh(x, y) of (4.9) zero except one ofv0,j , v2N+1,j , j =
2, . . . , 2N − 1, which is equal to one. By (5.49), observe also that, for each
i = 1, . . . , 4N − 4, the multiplication ofA2 by an(8N2 + 4N − 4)-vector
βi simply corresponds to taking from the vectorβi the coefficientsuN,j
andu2N,j , j = 2, . . . , 2N − 1, which are the coefficients of̄uh(x, y) in
(4.6). Thus each column ofD is computed using the modification of the
single series OSC Fourier method for solving the special case of OSC BPII
described in Sect. 4.3. Computation of a column inD requires the solution
of problems (4.49) fork = 1, . . . , 2N . For eachk we factor the matrix of
the form (4.51) only once and then use this factorization in the computation
of each column ofD. Thus, we perform2N factorizations, the cost of each
factorization beingO(N), [12]. According to [12] the cost of the solution
phase of COLROW for an almost block diagonal matrix (4.51) of size4N+4
with 4 × 8 blocks is44N . Thus the cost of Step 4 of the modified single
series OSC Fourier method is88N2 for eachi = 1, . . . , 4N−4. The costs of
Step 1 and 2 areO(1) andO(N), respectively. There is no need to perform
Step 3, while the cost of Step 5 is8N2. Therefore the total cost of forming
the capacitance matrixD is 384N3 +O(N2).

Phase 2 of the capacitance matrix algorithm involves the OSC solution of
a BPII. This can be done with costO(N2 log2N) using the single series OSC
Fourier method described in Sect. 4.2. In Phase 3, as we have just observed,
the multiplication ofA2 byβ amounts to retrieving part of the solution from
β. To solve the linear system (5.50) with the dense4(N − 1) × 4(N − 1)
coefficient matrixD, we use Gauss elimination. Hence the cost of Phase 3
is 64N3/3 + O(N2). In the final phase, Phase 4, we solve another BPII,
which requiresO(N2 log2N) arithmetic operations. Hence the total cost of
the OSC capacitance method for solving the biharmonic Dirichlet problem
(1.1) is then(384 + 64/3)N3 +O(N2 log2N).

Sun [27] presented a Schur complement algorithm for solving the bi-
harmonic Dirichlet problem using OSC. The total cost of his algorithm is
O(N3 log2N). In Phase 3 of his algorithm, Gauss elimination is used to
solve a linear systemDβ = b, whereD is a16(N − 1) × 16(N − 1) ma-
trix. Therefore the cost of this phase is4096N3/3+O(N2). In comparison,
Phase 3 of our algorithm requires64N3/3 + O(N2) operations which is
approximately64 times less expensive. Forming the matrixD in Sun’s al-
gorithm requires256N3 log2N +O(N3) operations, where the coefficient
of N3 is not given. FormingD in our algorithm takes384N3 + O(N2)
operations.
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