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THE FAST SOLUTION OF POISSON’S AND THE BIHARMONIC
EQUATIONS ON IRREGULAR REGIONS*

ANITA MAYOt

Abstract. We present fast methods for solving Laplace’s and the biharmonic equations on irregular
regions with smooth boundaries. The methods used for solving both equations make use of fast Poisson
solvers on a rectangular region in which the irregular region is embedded. They also both use an integral
equation formulation of the problem where the integral equations are Fredholm integral equations of the
second kind. The main idea is to use the integral equation formulation to define a discontinuous extension
of the solution to the rest of the rectangular region. Fast solvers are then used to compute the extended
solution. Aside from solving the equations we have also been able to compute derivatives of the solutions
with little loss of accuracy when the data was sufficiently smooth.

Key words. fast solver, Laplace’s equation, biharmonic equation, integral equation

Introduction. We present fast methods for solving Laplace’s and the biharmonic
equations on irregular two-dimensional regions with sufficiently smooth boundaries.
Although we have used second order accurate solvers in our experiments so far, we
believe that the methods can easily be made fourth order at small additional cost. We
can also compute derivatives of the solution of all points of the region to the same
order of accuracy if the boundary curve is sufficiently smooth. In fact, derivatives can
be computed without first finding the solution. This is especially important in applica-
tions since in general what are really needed are the derivatives of the solution, and
merely differencing the solution loses accuracy.

The techniques employed in both solvers are very similar and use many of the
same ideas. Each uses a fast Poisson solver on a regular region in which the irregular
region is embedded. Fast Poisson solvers are methods for solving the linear systems
of equations that arise from discretizing Poisson’s equation on regions that are rec-
tangular with respect to some coordinates. (See [1], [2].) These methods are efficient
and require relatively low storage. For example, by using a Buneman solver one can
solve a problem on a square with n equally spaced points in each direction using only
5n?log, n operations and n’+ 3n storage locations.

Both solvers also use integral equation formulations of the problem. In the current
implementation the integral equations are Fredholm equations of the second kind.
The essential idea is to use an integral equation formulation to define an extension of
the solution to the rest of the regular region. The extension is discontinuous, but the
discontinuities in the normal and tangential directions can be expressed in:terms of
the solution of the integral equation. Using these discontinuities and the shape of the
boundary curve, we can find all the discontinuities in the coordinate directions and
use them to compute an approximation to the discrete Laplacian at mesh points near
the irregular boundary. Fast solvers can then be used to compute the extended solution.

Our method overcomes two of the common difficulties with integral equations.
The first difficulty is that it is expensive to compute the solution at many points of a
region by evaluating an integral. The second and more important one is that it is
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difficult to compute the solution at mesh points near the boundary because the kernel
of the integral which must be evaluated becomes unbounded there. Our methods
overcome these problems since we only compute the solution by evaluating an integral
at the edge of the grid away from the irregular boundary. This is in contrast to our
earlier work where it was necessary to evaluate integrals inside the region of interest.
(See [3].) Furthermore, we can obtain the solution to full accuracy at mesh points near
the irregular boundary without interpolating.

We note that fast Poisson solvers have previously been employed for solving
Poisson’s equation on irregular regions through the use of capacitance matrix methods.
See [4], [S]. Our method, however, is better suited to exterior regions. Although by
using a clever trick due to Hockney [1] it is possible to use capacitance matrix methods
to solve exterior problems, both the operation count and storage requirement for the
fast solver are significantly increased. Moreover, the author does not know of any
implementation of a capacitance matrix method for solving the biharmonic equation
on an irregular region or for computing derivatives directly.

In the case of Laplace’s equation we use the standard integral equation formulation
in terms of a dipole density. To solve the first biharmonic problem (u and u, prescribed
on the boundary), we use the integral equation formulation of Sherman and Lauricella
[6]. We use this formulation for several reasons. First, it is very well conditioned. Also,
the kernel is quite inexpensive to evaluate and no computations are needed to form
the right-hand side of the equation. We note that while many numerical procedures
for solving the biharmonic equation reduce the problem to a succession of Poisson
problems (see for example [7]), the Sherman and Lauricella formulation reduces it to
the problem of finding two independent harmonic functions and their conjugates. In
fact, it reduces directly to the problem of evaluating the real and imaginary parts of
two Cauchy integrals. We also note that in the cases of both Poisson’s and the
biharmonic equations it is relatively inexpensive to solve the integral equation. This
is primarily because we use a Nystrom method with the trapezoid rule as the quadrature
formula when we discretize the integral equation, and because the trapezoid rule is
so accurate on periodic regions. Since the accuracy of the solution of the integral
equation is the same as the accuracy of the quadrature formula, we can use very few
mesh points on the boundary curve. Of course we cannot solve the integral equation
so accurately or so inexpensively when there is mixed data or when the boundary
curve has corners or regions of high curvature. However, the method can still be used
to find the solution of the differential equation inside the region of interest once the
integral equation has been solved.

The organization of this paper is as follows. In the first section we present the
method we use for solving Laplace’s equation and in the following section we give the
details of the computational method and its operation counts. In § 3 we give the method
we use to compute the derivatives and the conjugate of a harmonic function. In § 4
we present the method for solving the biharmonic problem, and in the last section we
give the results of numerical experiments.

1. Solution of Laplace’s equation. Suppose we want to solve Au=0 on an
irregular region D with boundary 8D = (x(s), y(s)) on which Dirichlet boundary data
u = g(s) is prescribed. We show later how to solve a problem where Neumann boundary
data are given. We assume that both 4D and g(s) have two continuous derivatives so
that the solution u has four.

We embed D in some regular region R, such as a square with a uniform mesh of
width A in the x and y directions. Since we want to use a fast solver on R, our objective
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is to compute an approximation to the discrete Laplacian at all points of the grid. In
order to do this, we use another harmonic function § defined outside D such that the
discrete Laplacian of the combined function can easily be computed. (We note that a
fast Poisson solver is merely an algorithm for inverting the discrete Laplacian, i.e. the
operator which at every point sums the value of a function at its four neighbors and
subtracts 4 times the value at that point. Therefore if we provide the discrete Laplacian
at every mesh point and apply the fast solver, then we will get back the original function
values regardless of whether or not they are the values of a continuously differentiable
function.)

1.1. Integral equation formulation. We first note that inside the region D, u can
be represented as the integral of a double layer or dipole density function w times a
kernel which is the normal derivative of the Green’s function for the Laplacian in the
plane:

dlogr(s,t)

(1.1) u() =2L1r j w(s) ds, where r’(s, t) = (x(s) = x0)*+(y(5) = y0)*,

oD ans
t = (Xo, Yo)-
By noting the singularity of the kernel at the boundary, it can be shown that the
function p is the solution of the following integral equation on the boundary:

IJ alogr(s,t)
oD

(1.2) w(t)+— o w(s) ds=2g(t), tedD.

u
See for example [8, p. 299]. This is a well conditioned integral equation of the second
kind and can be solved very accurately numerically. We note, in particular, that although
the kernel in (1.1) becomes unbounded as the point ¢ not on the boundary approaches
a point s on the boundary, the kernel in (1.2) is bounded since s and ¢ are constrained
to lie on dD. (When s =t on 8D, we have d log r/dn, = 1k (s) where «(s) is the curvature
of aD.)

Outsidﬁ D we define 4 using the same formula:

=L J dlogr(s,t) o 4o
27 aD 6ns

The function i is harmonic, but it is a discontianus extension of u.

Let {x; y;} denote the mesh points of R and let U be defined on R to be the
combined function

ij

_ {u(xi, )’j), (% )’;) e D,
a(x,y), (%, y)€D.

Since u and # are harmonic, the 5-point discrete Laplacian of U, AU;=
1/h2[U,~+1,~ + Ui+ Uy + U,-1—4Uj], will be 0 up to terms of second order at
those mesh points of R which have their 4 neighbors on the same side of the irregular
boundary. Let B denote the set of other points, that is the set of irregular mesh points.
At points of B even though the analytic Laplacian of u and of @ is 0, the discrete
Laplacian, A,U, will be nonzero. If we could find values for A,U at those points and
the values of i on aR, then we could apply a fast Poisson solver on R and we would
be done. Fortunately, we can compute an approximation to the discrete Laplacian
without solving explicitly for u or i anywhere. This is because we only need to evaluate
the jump discontinuities between u and # and the jump discontinuities in their
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derivatives at the irregular boundary 8D in order to compute such an approximation,
and because we can compute these jumps in terms of the density u.

1.2. Evaluation of discontinuities. We now show how to compute these discon-
tinuities.

For example, it is known that the discontinuity between u and # at a point on
the boundary is equal to the value of the density at that point. Therefore, the
discontinuity between their tangential derivatives is equal to the derivative of the
density.

. du
U=ty =

It is also known that there is no discontinuity between their normal derivatives.
U, =,

Using these two facts and the direction of the curve, we may compute the discontinuities
between u, and i, and between u, and #,:

. w(8)x'(s) - __K(5)y'(s)
T e R R AT O LR T Y Ch

By differentiating the above equations and using higher derivatives of the boundary
curve, it is also possible to derive formulas for discontinuities in higher order derivatives
of u.

It is also possible to see how to compute these discontinuities by using the fact
that the function U is the real part of a Cauchy integral with the same density function
u. A Cauchy integral is any integral of the form:

b
ch_zd{

where C is a closed curve and z is any point not on C. The density function b({) need
not be the boundary values of an analytic function; all that is necessary is that b(¢)
be Holder continuous.

Let

(1.3) f(z)=——J i(—ng.

1
2mi oD {_ zZ
The kernel in (1.1) is the real part of the kernel in (1.3):

eLds“/ds=_1_y’(S)[x(s)—x(t)]—x’(S)[y(S)—y(t)] gs= L dlogr(s o 4
2mi (—z 2w (x(s)—x(8)*+(y(s)—y(1)? 2@ onm,

where {(s) = x(s)+iy(s), z=x(t) +iy(t).

R

b

Therefore we have u(z)=Re f(z) for ze D, and #é(z)=Re f(z) for z¢ D. In
order to find the jump between u and & we use the known discontinuities of Cauchy
integrals across the boundary curve and the fact that Cauchy integrals are analytic
functions. See [9].
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For example, on 4D,

1
w(z)+— J- A-Q da¢ if z approaches the boundary from inside D,
mi Jop{—2

2f(2)=

1
—u(z)+— J r() d¢ if z approaches the boundary from outside D.
miJipl—2z

Therefore there is a discontinuity of magnitude u(z) in f as we cross dD. Since
w(z) is a real function, it follows that u(z)—i(z) = u(z) if zeaD.
To compute discontinuities in derivatives we note that:

Al w0, [ 4s0, [ KO,

dz J,p{—z pdz{—z p{—2z

The second equality follows by integration by parts. Therefore the derivative of
a Cauchy integral is another Cauchy integral with density function equal to the
derivative of the original density function. It follows that f'(z) has a discontinuity of
magnitude w'(z) across dD. Now we use the fact that f(z) is analytic and u,(z)=
Re f'(z2).

Therefore

du/ds_ _p'(s)x'(s)
dz/ds x'(s)*+y'(s)*

u,(z)— i, (z) =Re u'(z) =Re

and

- p'(s)y'(s)
u,(z)—d,(z)=—Imu'(2)=——7"""-
A FE Y0y ()
Similarly Re f"(z) = u,,(z) and so u,, — i =Re u"(z), and u,,—i,, =—Re n'(z).
These discontinuities can be used to compute an approximation to the discrete
Laplacian at mesh points near the boundary of D.

1.3. Evaluation of the discrete Laplacian. Now we show how to compute an
approximation to the discrete Laplacian of U at points of B. In the derivation we
require our solution to have four continuous derivatives.

Suppose, for example, p is in D, but its neighbor to the right, pg, is not. Let p*
be the point on the line between p and pe which intersects D, let h, be the distance
between p and p*, and let ho=h—h,;.

Writing the Taylor series expansion for u about p evaluated at p*, we have

u(p*) = u(p)+ hyue(p) +3hiux(p)+ O(h%), so
(1.4)  u(p)=u(p*) = hiuy(p)—3hiu.(p)+ O(h?)
= u(p*) + hott(p*) + ho(ux(p) — ux(p*)) — htx(p) — 3hiun (p) + O(h?)
(since —h;=h,—h).
Now we write the Taylor series expansion for & about pg evaluated at p¥,
4(p*) = i(pg) — hoil,(pe) +3h3 0 (pe) + O(RY).

We note that the x derivatives of & exist at the boundary point p*. This follows because
both the boundary curve 9D and the boundary data g(s) were assumed to be sufficiently
smooth. See [10].
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»

m O

FiG. 1

Therefore we can write
haii, (pe) = hotix(p*) + b3l (pe) + O(R’), so
4(pg) = U(p*) + haii, (p*) +3h3i.. (pe) + O(H3).
Subtracting (1.4) from (1.5), we find:
i#(pe) — u(p) = (F(p*) — u(p*)) + ho(iix(p*) — u(p*)) +2h3 0. (Pe)
— ho(u(p) — ux(p*)) + 3R (p) + hu (p) + O(h3).
Noting that u,(p)— u,(p*) =—hyu.(p) + O(h*), we have
—ha(,(p) = us(P*) = B hattee(p) + O(K?).

Substituting this, then adding and subtracting 1h2u..(p) and regrouping terms on
the right-hand side of (1.6), we find:

wn i#(pe) — u(p) = (i(p*)— u(p*)) + hy(iie(p*) — u (p*)) +3(hy + hy)*ue(p)
' +3h2 (le (P ) — Uee(P)) + hut(p) + O(B3).

(1.5)

(1.6)

But 3h3u. (p) =3h3ue(p*) + O(h%) and 3h3i,.(p) =3h3i.(p*)+ O(K’). It fol-
lows that
4(pe) —u(p) = (G(p*) — u(p*)) + byt (p*) — ue(p*)) +3h3 (e (P*) — U (p¥))
(1.8) +hu,(p) +3h*u,.(p)+ O(h)
= {known quantities} + hu, ( p) +3h*u,.(p) + O(h%),
where the known quantities can be computed in terms of the density function and the

distances of the irregular mesh points from the boundary.
Now let py, be the mesh point to the left of p. If pyw is in D, then

U(pW) - U(P) = —hux(p) + hzuxx(p) + O(h3):
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if not then
U(pw)— U(p) = {known quantities} — hu,( p) + h*u,,(p) + O(h>).
In any case,
U(pw)+ U(pg)—2U(p) = {known quantities} + h’u,,(p) + O(h>).

Let py be the point above p, and let ps be the point below p. By the same
arguments as above we have:

U(pn)+ U( ps)—2U(p) = {known quantities} + hzuyy(p) +O(h?).

It follows that kA, U ( p) = {known quantities} + O(h’) since u,,( p) + u,,(p) =0.

The same is true if p is a point outside D since #@ is harmonic. (It is important to
notice that we do not assume that either of the harmonic functions u or & can be
extended beyond aD. If, however, they could both be extended one mesh width, then
the formulas we would obtain for the discrete Laplacian clearly agree with those we
have obtained.)

We note that we can also retain fourth order Taylor series terms in our derivation.
For example (1.8) can be replaced by

4(pe) —u(p) = (4(p*) — u(p*)) + ho(d(p*) — u(p*)) +2h3 (e (p*) — un(P*))
(1.8") +8h3 (lxax(P*) = Uex (P¥)) + Bt (p) +3h U (P) + 31U (P)
+0(h%).
By so doing we instead obtain a fourth order accurate approximation to h’A,U(p)
at points of B.
This guarantees the accuracy of the solution we obtain after applying a fast solver.
Let u* be the solution of the integral equation obtained by some numerical
procedure, and for mesh points (x;, y;) € B define the mesh function my; to be the value
of the discrete Laplacian we get by our procedure using u and its derivatives. Using
the function u*, we can also compute an approx1mat10n v to u at points of IR at

the edge of the rectangle
We define v;; to the solution of the following equations:

0, x;, )€ R—B,
An, ={ (x5 ¥))
ijs (xi’ )’1) € B)
;= v;l;, (x,', y]) €dR.
If u* and v™* are suﬂicwntly accurate, then v; will be a second order accurate

approximation to U.
THEOREM. Suppose

d'p*(s) _d'n(s)

=O0(h*”" =is4,
i s’ =0(h*™), 0=i

and

o} —i(x, y;) = O(h?), (x;, y;) €dR.
Then

v;— U(x, }’j) =O0(h?), (x;, }’j) €R.
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Proof. Since u and i are harmonic, we have
Ayv;— An( U)ij = O(hz), (x;, )’j) €eR-B.

By the above derivation and our assumptions on wu*, it follows that terms which
are computed using u* are second order accurate. Using this and the fact that u and
U are harmonic, we have

Ahvij —8ij= O(hz), (x;, )’j) €B.
Now we use the fact that if R is a rectangle with sides a and b,and A, W;; = f;;, then

max |W;| =4(a”+ b?) max [A, W]+ max |W].

If we let W;;= U(x; y;) — v; the result follows.

Therefore, if we know the solution of the integral equation accurately enough,
we can compute a second order accurate solution. Fortunately, however, the integral
equation can be solved to almost machine accuracy with the trapezoid rule as the
quadrature formula if the boundary data is smooth enough, and by using splines we
can obtain accurate values for the derivatives of the density function.

The only place we need compute an integral is at the edge of the grid where we
need boundary values for the fast solver.

At this point it is important to note that in practice we have found that it is not
necessary to compute a fourth order accurate approximation to A,Uj; at points of B
in order to obtain a second order accurate solution. In fact, we have found that there
was no noticeable difference in the solution if we only retained the terms involving
the first derivative of the density when we computed g. Part of the reason for this is
of course that points of B are sparse in R. Let (G,); =|m;—(A,U),| and

||Gh||=( R[h2|(Gh)ii|]1/2-

ij)e

If we assume that h®A,U is third order accurate on B, then, since there are only
O(1/h) points in B it follows that |G| = O(h*'?).

2. Method of computation. There are seven steps.

1) First we embed the irregular region D in a rectangle R. In general we choose
the rectangle so no point of the irregular region is closer than three mesh widths from
the boundary of the rectangle. Although we can in theory even allow part of the
boundary of D to coincide with the boundary of R, this will mean that some other
points of the boundary of R will be very close to the boundary of D. At such points
it will be more expensive to comput # accurately since the kernal of the integral that
must be evaluated will be large.

2) Then we find the irregular mesh points and their distances to the boundary in
the x and y directions. The method we have developed to find the irregular mesh
points requires O(n) operations where n=1/h.

3) Next we solve the integral equation. When we have smooth data (as we have
had in our experiments), we do this by using a Nystrom method. That is, we first
replace the integral by a sum at a set of points on the boundary. This gives rise to a
dense linear system of equations:

(2.1) p(t)+L wK (i, u(y)=2g(1), i=1,---,n

The points used as nodes for solving the integral equation are completely independent
of the mesh points used for the fast solver. In our experiments we chose the points
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equally spaced with respect to the parameter used on the boundary, and we used the
trapezoid rule as the quadrature formula. We did this because the trapezoid rule is so
accurate for computing integrals on periodic regions. We can see why this is so by
examining the Euler-Maclaurin summation formula. This fact guarantees the accuracy
of the solution of (2.1). Anselone [11, p. 297] has proved a result that shows that if
n is sufficiently large, then the accuracy of the solution of a Fredholm integral equation
of the second kind with a unique solution is the same as the accuracy of the quadrature
formula. Therefore we can use surprisingly few mesh points on the boundary curve.
This is very important when we solve the integral equation for the biharmonic equation
since the system of equations is larger there.

We note that in cases where the boundary data is not smooth enough, and near
portions of the curve with high curvature, using the trapezoid rule with a Nystrom
method will not be sufficiently accurate. In such cases a Galerkin method with a basis
that contains appropriate singular functions will probably be necessary.

In our experiments so far we have solved the system of equations by using Gaussian
elimination. Large systems, however, should probably be solved with iterative methods.

4) Next we interpolate the values of the density with a spline. If we use quintic
splines, we have sixth order accurate values for the dipole density at intermediate
points. Therefore, if h is the mesh width on the square, and k is the mesh width on
aD, we only need choose k®= O(h*) or k = O(h'/?). It follows that if m is the number
of mesh points on the boundary curve, then the number of operations needed to solve
the integral equation, that is m>/3+m?/2, is O(n*'?). However, if we are solving
many problems on the same region, then the number of operations needed for each
additional calculation is only the number needed for backsolving, which is only O(n).
At this point however only programs using cubic splines have been implemented.

5) Next we compute the discrete Laplacian at the irregular mesh points. So far
we have only used the approximations such as (1.8) which are derived by using Taylor
series. If the nature of a singularity, say near a corner, is known, then it may be possible
to use this information to get a more accurate approximation to the Laplacian.

6) After this we compute the values U at the edge of the grid. They are easy to
obtain since we know the outside function % as an integral:

. d 3
WPLJ alogr(s) o 4o
27 3D ans

Since the points at which we evaluate the integral are not near the irregular
boundary and since the region of integration is periodic, we again use the trapezoid
rule. Each integral requires O(n) operations, so the total number necessary for this
operation is O(n?).

7) Finally we apply the fast solver. This requires O(n”log, n) operations.

In order to solve the inhomogeneous problem

Au=g inD, u=h onaD,

we first solve Aw =g in the rectangle R with arbitrary Dirichlet boundary data (e.g.
w = 0) prescribed on dR. This is done with a high order Poisson solver. Our experiments
have shown fourth order accuracy to be sufficient. Then a high order interpolation
formula is used to obtain values of w on dD. Next the homogeneous problem Av=g
in D, v=h—w on 4D is solved. Finally we set u=w—uv.

3. Extensions.
3.1. Computation of derivatives. One important property of these methods is
that we can easily compute the derivatives of a harmonic function without computing
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the function itself. For example, we can compute u, if we know the density accurately
enough. This is because u, is the real part of a Cauchy integral with density wu:

u,(z)=Ref'(2) =Reﬁ -[ % ds
_ L[ _ws) [ologr(sn)
“2a LDx(s>2+y(s)2[ o, L)

In the same way as before, this formula defines another harmonic function u,
outside D. The discrete Laplacian of the combined function:

{ux(xia yj)a (xi’ y]) € D,
lzx(xia yj)’ (xia y/)ﬁD

al
- ogars(s, Ul y’(s)] ds, zeD.

U,=

is the same as the discrete Laplacian we would obtain if we were computing U, except
that where we would use the real part of the mth derivative of u before, now we use
the real part of the (m + 1)st derivative.

Of course we need to know p more accurately to get the same accuracy in the
solution, and the boundary terms are slightly more expensive to calculate. We compute
derivatives in this way because the density function is known so accurately and therefore
we still have very accurate values after differentiating it. In cases where this is not so
we believe that it is usually preferable to perform the extra work to solve the integral
equation more accurately instead of differencing the solution.

3.2. Computation of conjugate functions. We can also compute the conjugate
function at small additional cost. That is because by using the Cauchy Riemann
equations, we can express the discontinuities in the conjugate function v in terms of
the discontinuities in u. For example we note that

.. K(9)Y'(s)
Uy — U = (uy uy)_x/(s)2+yr(s)2'

We can also use the fact that the conjugate function v is the imaginary part of
the same Cauchy integral that determines u to compute the discontinuities in the
derivatives of the conjugate function:

1 1
(3.1) v(z)=Imf(z)=Im——j Mds-—f
N Gl aD

2@ J,pl—2z 2w

dlogr(s,t)

o5 n(s) ds.

In order to find the boundary values, we compute the third integral in (3.1). In
this way we can compute the real and imaginary parts of any Cauchy integral. This
fact is used when we solve the biharmonic equation. We note that the ability to find
the conjugate of a harmonic function allows us to solve Neumann problems. This
follows because the integral of Neumann data for u is equal to the Dirichlet boundary
data of the conjugate function v. That is, | u, ds =—[ v,ds =—v(s). So, when we want
to solve a Neumann problem we first integrate the data and use it as Dirichlet data
for the conjugate function.

3.3. Other extensions. Also, although no experiments have been performed so
far, we believe that we can obtain 4th order accurate solutions. If we use a higher
order accurate approximation to the Laplacian, there will of course be more points
with nonzero Laplacian, and the discrete Laplacian at a given point can depend on
values of the dipole density at points which are farther away than before.
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In addition, since we can use any integral equation formulation in terms of Cauchy
integrals, we can also solve exterior, interface, and modified Dirichlet problems. Work
has already been completed on solving interface problems.

We also note that even though the solution to three-dimensional problems cannot
be expressed in terms of Cauchy integrals, these techniques are nevertheless applicable.
This is because the solution of the Dirichlet problem can still be expressed as the
integral of a double layer density function where the density is again the solution of
a Fredholm integral equation of the second kind,

1 a1 1 91
=—  t)—~—dS, wh 1) +— , ) ——dS=2g.
u yys Ly(s t)an ; dS, where u(s,t) Zy. Lp,(s )an . 28

As in the two-dimensional case, it is possible to compute discontinuities between the
interior and exterior potential functions. For example, using the values of u(s, t), we
can find the discontinuities in the two tangential derivatives. We also know that there
is no discontinuity in the normal direction. In the same way as before, we can use
these discontinuities to find the discontinuities in the first derivatives in the coordinate
directions. By differentiating again and using the properties of the boundary surface,
we can obtain discontinuities in higher order derivatives. Once we know the discon-
tinuities, we can use them to approximate the three-dimensional discrete Laplacian.

Finally we note that it is also possible to use the method presented to find the
solution of a differential equation when the solution can be expressed as the sum of
single and double layer density functions. For example, one can use Green’s third
identity to solve Laplace’s equation.

4. The biharmonic equation. The method we use for solving the biharmonic
problem is essentially the same as the method we use for solving Poisson’s equation.
The reason we can take advantage of this method is that by using the correct integral
equation formulation, the problem reduces to finding two harmonic functions and their
conjugates. It in fact reduces directly to finding the real and imaginary parts of two
Cauchy integrals.

This way of reducing the problem is due to Soviet mathematicians who used it to
solve problems in elasticity. It relies heavily on complex variable theory, and con-
sequently is only applicable to two dimensional problems. The idea behind it is the
following.

Any two dimensional biharmonic function W(z) can be expressed as

W(z) =Re{Z¢(z)+x(2)}

where ¢ and y are analytic functions. See [9]. The functions ¢(z) and ¢(z) =x'(z)
are known as the Goursat functions. For a given biharmonic function W the Goursat
functions are not uniquely determined. However, all the physically meaningful quan-
tities can be expressed in terms of certain of their derivatives which are uniquely
determined. For example, the stress functions satisfy the equations:

o, to,=4Re{¢'(2)}, o, — 0o, +2ir, =2[Z¢"(2) + ¢¥'(2)]
and the displacements satisfy the equation:
ke(2) = 2¢'(2) — ¥(2) =2 (u, + i)

where k and u are elastic constants. What we compute are the Goursat functions; we
do not actually find W(z). In order to compute them we use the fact that they can
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be expressed as Cauchy integrals:

¢M=LI3QM M@?Ljﬂiﬂﬁm
a 2mi Jop

2@ J,pt—2z t—z

As before we can compute ¢(z) and ¢(z) if we know the density function w
accurately enough. The integral formulation defining w depends on the boundary
conditions which are given. In the first biharmonic problem, W, and W, (or,
equivalently W and W,) are given. We use the following equation due to Sherman
and Lauricella [6]:

w(s)

(s—a)’

w(t)+%Jw(s) dﬂ—%Iw(s) e2i6d0+%Rej ds=f(1),

where

f(t)= W, +iw,,

_ yu)—yUU
0(s, t) =arctan (x(s) —x(n))’
1 1 t—a

t—a (f—a)*> (i—a)?
and a is any point inside the region D. See [9, pp. 255-257].

It is a system of two Fredholm integral equations of the second kind. It is also
valid without the last integral if the right-hand side satisfies certain compatibility
conditions. (Re | f(t) dt =0.) However, it is retained to keep the problem well condi-
tioned. With it the integral equation can be solved for any right-hand side. We note
that the kernel in the first term, that is d6, is the same as the kernel used for solving
Poisson’s equation. The second kernel is bounded, and when integrated along the
boundary gives 0. Since the point a can be chosen away from the boundary, the third
integrand is also bounded and easy to compute.

We now consider the expense of generating the discrete matrix equation. If we
have p points on the boundary, we get a 2p X 2p linear system of equations to solve.
Each element of the matrix requires 45 multiplications or divisions to generate. (No
trigonometric functions need be evaluated.) Therefore the total number of operations
necessary to generate the matrix is 17p®. The number is this small because of the
symmetry in the kernels and because the kernel of the third integral can be computed
just once for a given value of s and the coefficient can be computed once for a given
value of ¢ As in the case of Poisson’s equation, the Fredholm integral equations are
of the second kind and well conditioned. Consequently the trapezoid rule is highly
accurate and we can keep p relatively small.

Once we have the density w, we evaluate the relevant Cauchy integrals and their
derivatives depending on whether we want displacements or stresses.

We note that other biharmonic problems can be formulated in terms of Cauchy
integrals and can therefore be solved by these methods. For example it is possible to
solve exterior problems and the problem of an elastic plane with an infinite series of
regularly spaced identical holes.

S. Results of numerical experiments. In this section we report on results of
numerical experiments which were carried out on the CDC 7600 computer at the
Lawrence Berkeley Laboratory.
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In Table 1 we give results of experiments where we prescribed Dirichlet boundary
data and where we computed the harmonic function u, its conjugate harmonic function
v, and u,. The irregular regions.were either circles of radius .35 or ellipses with semiaxes
.18 and .35. In all cases the region was embedded in a unit square and a Buneman
solver was used as the fast solver. The running time noted includes the time needed
to set up the problem, to generate the data and to find the irregular mesh points. Here
n is the number of mesh points in each direction on the square and p is the number
of nodes on the boundary curve.

TABLE 1
Max error Max error Max error CPU time
n p u Region in u inv in u, in sec.
16 12 x2—y? circle .51-1072 321072 .98 -1072 .022
16 x—y? ellipse 58-1072  .38-102  .76-1072 024
24 e* cos y circle 721072 71-1072 971072 .031
30 e* cos y circle .63-1072 .53-1072 .87-1072 .038
2 24 X2y circle 64-10*  93-10*  .44-1073 079
24 e* cos y ellipse 47-1073 45-1074 71-1073 .079
50 -y ellipse 91-100*  .68-107*  .84-107* 223
64 30 2=y ellipse 73-10°  72-100°  .96-107 095
30 e*cos y ellipse .84-107° 44-1074 .87-107* .095
50 e cosTy  ellipse 81-100%  39-107>  .84-1073 434

In all cases the solution of the integral equation was interpolated with a cubic
spline. Better results could of course have been obtained by using higher order splines.

Our main purpose throughout has been to study the effectiveness of our method
of using the fast Poisson solver to compute the potential functions once we have solved
the integral equation. Since we knew that the fast Poisson solver is second order
accurate, we often therefore worked with u = x>—y?, for which there is no discretization
error. We note, however, that even though u has no discretization error in this case,
ii does. This explains why we could not achieve greater accuracy in computing this
function.

It appears that we obtained second order accuracy in computing our test functions
and their conjugates by taking p equal to ; the number of interior irregular mesh
points. Adding extra points on the boundary curve did not seem to change the accuracy
in the examples given. However, if we had used regions which have portions with high
curvature, then we could not have solved the integral equations as accurately as we
did, and therefore could not have obtained as high accuracy in the interior. For example,
we did some experiments on extremely eccentric ellipses. For certain boundary data,
in particular u = x, the exact solution of the integral equation is known. We note that
we could not achieve more than 1 digit of accuracy on such problems by using the
trapezoid rule with 10 mesh points as the quadrature formula. By using more accurate
quadrature formulas, and in particular by integrating the kernel exactly, we were able
to do better.

We also note that we achieved slightly less accuracy in computing derivatives than
in computing the harmonic function itself. This is of course due to the fact that values
of the derivative of the density are less accurate than values of the density.

In Table 2 we give results of experiments on the biharmonic equation. We
computed ¢, ¢’, and . We note that we could get roughly the same degree of accuracy
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TABLE 2

Max error Max error Max error CPU time

n p w Region in @ iny in ¢’ in sec.
16 12 +y+x cire  .58-10° .82-10"* .54-102  .033
12 Bxlytx ellipse ~ .27-102 .78-102 .61-102  .035
40 2+y*+x circle 15-107* 95-107®*  .82-1073 .084
32 24 B+xlytx ellipse  .78-10° .87-10° .42-102 275
40 B+x2y+x circle .63-107*  .71-107* .95-1073 .378
64 50 x2+y2+x circle .28-107° 741074 .92-107* .628
50 Btxy+x ellipe  .38-10*  44-10* .93-10~*  .628
60 x}+x*y+e*cosy- ellipse 79-107% 12-107% 23-1073 .823

in computing the Goursat functions as we could in computing the harmonic functions
we tested when we used the same n and p. In future experiments we plan to use higher
order methods, and therefore to be able to compute higher order derivatives of the
Goursat functions.

Finally we remark on some experiments which we have begun on regions with
corners. If the solution to the problem does not have a singularity, then we can still
achieve essentially the same accuracy in the solution as we can in solving the integral
equation. If, however, there is a discontinuity in, say, a first derivative of the solution,
then first of all our method of solving the integral equation is not adequate. Second,
the 5-point discrete Laplacian is not accurate enough. We have begun experimenting
with other methods of solving the integral equation. In particular we have been trying
Galerkin methods with a basis that contains the appropriate singular functions. Once
we know the coefficient of the leading term of the singularity, we use it to get a more
accurate approximation to the discrete Laplacian. Preliminary results are encouraging.
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