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A GENERAL COUPLED EQUATION APPROACH FOR SOLVING
THE BIHARMONIC BOUNDARY VALUE PROBLEM*

JOHNNIE WILLIAM McLAURINYt

Abstract. The biharmonic boundary value problem with Dirichlet boundary conditions is reduced
to a coupled system of Poisson equations, which depends upon an arbitrary, positive coupling constant c.
Since each of the Poisson equations is well-posed, the system may be solved by iteration. We show that
the iterates may be represented as a linear combination of the eigenfunctions of the * Dirichlet eigenvalue
problem” (a fourth order boundary value problem with the eigenvalue in the boundary condition).
Convergence of the iterative scheme occurs when 0 < ¢ < 2v;, where v, is the smallest eigenvalue.
By making use of an averaging scheme, convergence may be produced for any positive c. With the
proper choice of c, the rate of convergence may be increased. This coupled equation approach includes
the finite difference approach as a special case.

1. Introduction. In two recent papers, Julius Smith [13] has described the
coupled equation approach to the biharmonic equation by finite difference
methods. In this paper we discuss the coupled equation approach without restric-
tion to finite difference methods.

In the coupled equation approach, the biharmonic problem is reduced to a
system of coupled Poisson equations which depend upon an arbitrary coupling
constant ¢ # 0. This system of Poisson equations may be solved by iteration, since
neither of the Poisson equations is overprescribed on the boundary.

We shall describe an iteration scheme which converges for all sufficiently
small values of the coupling constant ¢ (0 < ¢ < 2v,). Here v, is the smallest
eigenvalue of the so-called Dirichlet eigenvalue problem (see §3). Assuming no
error in solving for the iterates, the error term may be written explicitly.

If ¢ is too large, we show that convergence can be produced by a certain
averaging procedure. In the finite difference approximations of Smith [13], the
coupling constant c is no longer arbitrary. Indeed ¢ = 2h~ !, where h is the step
size. For small values of h, averaging is necessary as shown by Smith.

We examine two kinds of averaging schemes, which may be used simul-
taneously. Given one of the averaging constants there is an optimal choice for the
other. Such an optimal choice of the averaging constants for the finite difference
approach has been obtained by Ehrlich [5].

Finally we compare our results with those of Ehrlich and Smith for the
special case of solution by finite difference methods.

2. Equivalent formulations of the biharmonic problem. Let G denote a bounded
domain in the plane with boundary I'. We shall denote by A the Laplace operator,
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BIHARMONIC BOUNDARY VALUE PROBLEM 15

The biharmonic problem for the domain G consists of determining a function u
which satisfies the partial differential equation

AAu(p) = Y(p),  PEG,

22) up) = ), pel,
W) — ), per
n

We assume that y, f, g are given, sufficiently smooth functions and that the
boundary I is sufficiently smooth to insure the existence of a solution to (2.2).
By 0/0n we denote the derivative in the direction of the exterior normal.

We should like to reduce the problem of solving the biharmonic equation
to the perhaps easier one of solving Poisson equations. The obvious formulation
of (2.2) as a coupled system of Poisson equations is as follows:

Au(p) = w(p),  peG,

(2.3a) up) = f(p), perl,
i
%(p) = g(p), perl,
(2.3b) Aw(p) = ¥(p), peG.

The equation (2.3a) is overprescribed on I', while (2.3b) has no boundary
condition at all. Hence given an w defined in G, (2.3a) cannot in general be solved.
There are infinitely many solutions to (2.3b). While (2.3) is an equivalent formula-
tion of (2.2), it definitely does not lead to a well-defined iterative scheme for the
solution of (2.2).

Under the assumption that u is a classical solution of the biharmonic problems
(ie., ue C*G) N CY(G) and u has piecewise continuous second derivatives on I'),
another equivalent formulation of (2.2) is the coupled system

Aulp) = o), peG,
(2.4a)
up) = f(), perl,
A = s G,
o) () = (p) a pe
o(p) = Mu(p) — c[ ve) g(p)J, perl,

where ¢ is an arbitrary nonzero constant.

In the formulation (2.4), we have avoided the necessity of overprescribing
the function u on the boundary.

THEOREM 1. Let ue C*G) N CYG), and assume that u has piecewise con-
tinuous second derivatives on I

(@) If u is a solution of (2.2), then u is a solution of (2.4) for every constant c.

(b) If (u, w) is a solution of (2.4) for any ¢ # 0, then u is a solution of (2.2).
(Hence by (a), u is a solution of (2.4) for every c.)
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Proof.

(a) Let u be a solution of (2.2). Then c¢(0u/0n — g) = 0 almost everywhere on
I' for I sufficiently smooth.

Set w = Au in G. Then clearly (2.4) is satisfied and

Aw(p) = A*u(p) = Y(p), peq,
and
0
o) = ) = )~ o %4 — g6, per.
(b) Let (1, w) be a solution of (2.4). Then clearly

Aw(p) = A*u(p) = ¥(p) peG,

and :
up) = f(p), pel.

Since w = Au almost everywhere on I', we have 0u/0n = g almost everywhere
on I'. This completes the proof.

Note that (2.4) has a unique solution only if ¢ # 0.

Less stringent conditions may be imposed on u. These, as well as the existence
of u, depend upon the smoothness of the data and the domain G. (See for example
(4, p. 249].)

3. The Dirichlet eigenvalue problem. Here we consider the Dirichlet eigen-
value problem to which we shall frequently refer in later sections. In particular we
shall show that its eigenvalues are positive and have no finite accumulation point
and that the corresponding eigenfunctions are complete in the class of biharmonic
functions which vanish on the boundary and have continuous second derivatives
on the closure of the domain G.

The eigenvalue problem is to determine a scalar v and a function u # 0 such
that the boundary value problem (3.1) is satisfied.

A%u(p) = 0, peG,

3.1) up) =0, pel,
A _Ou(p)

Au(p)—van , pel.

Here 0/0n denotes the exterior normal derivative.

Henceforth we shall assume that the boundary I" of G is composed of a
finite number of differentiable Jordan curves. As usual we shall consider first the
boundary value problem of determining a function u which satisfies

A%u(p) = 0, peG,
. (3.2) up) = 0, perl,
Au(p) = g(p), peTl,

where g is a given continuous function on I'.
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Let K(p, q) denote the Green’s function for Laplace’s equation in the domain
G. The solution u of (3.2) may now be constructed from the Green’s function
K(p, g) (see, e.g., [2, p. 243]).

Clearly,

OK(p

(3.3) Wa) = — f s g
r

4

p

is a harmonic function in G which is continuous in G and which assumes the
boundary values h(q) = g(q) for ge I'. Now,

(34) up) = | [ K, q) dxay.

G
Obviously u is a solution of (3.2) and u is continuously differentiable in the closure
of G (see, e.g., [2]). The gradient of u is then well-defined on the closure of the

domain. We may now define an operator A as follows:

(3.‘5) Ag(p) = grad u(p) - n, perl.
Clearly A is defined on I' except possibly at a finite number of points. Setting
(3.6) f(p) = Ag(p), pel,

f is at least a piecewise continuous function on I'.
We now define the Hilbert space L,(I") with inner product

(81,82 = J; gl(Q)EZ_(‘BdS

and norm
1/2

‘ lgll = (g, 8)

With every continuous function g on I', we may associate a unique solution
u of problem (3.2) (see construction (3.4)). We define

Bg(p) = ulp), Peg,
where u(p) is the function defined by (3.3) and (3.4). Notice that
ABg(p) = Au(p) = h(p), peG.

Hence ABg(p) = g(p), peT.
Let V denote the class of solutions to the problem (3.2). An inner product

over V may be taken to be
w,0] = [ [ AugBo@ ax dy, uveV;
G
and the norm is then
uy = [u,u]'’?, ueVv.

LEMMA 1. Let g,, g, € D(4) = C(I'). Then
(Ag,, g,) = [Bg., Bg,].
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Proof. Clearly,

0Bg(q) ~———
on

(Ag,8,) = f -ABg,(q) ds.

r

From Green’s identity and the fact that Bg,(q) = 0 for geI' (i = 1, 2), we have

(g, 8,) = j j ABg,(¢)ABg,(g) dx dy

G

= [Bg,, Bg,],
which was to be proven.
LEMMA 2. A is symmetric.
Proof. Let g,, g, € D(A). Then from Lemma 1, we have

(Ag,,g,) = [Bg,, Bg,] = [Bg,, Bg,]
= (Ag;,2) = (g, Ag,).

LeEMMA 3. A is positive.

Proof. (Ag,g) = [Bg, Bg] = {Bg)* = 0.

LEMMA 4. A is bounded.

Proof. This follows easily from the inequalities (6.1) and (6.2), which we shall
state below and discuss further in § 6.

Let ue CXG). Ifu(q) = 0, g eI and grad u € L,(I'), then there exists a positive
constant « such that

du(g)|* 2 2
(3.7 fr n ds = a ‘U |Au(g)|* dx dy.
Hence,
(3.8) |Agll < aBg) for every ge D(A).

For every function v which is harmonic in G and v e L,(T"), there is a positive
constant f3, independent of v, such that

[] wiar axay = g2 f @) ds.

- G
Hence,

(39) «Bgy < Bligh for every ge D(A).
Then clearly from (3.8) and (3.9),

lAgl < apligll,

which was to be shown. This completes the proof.

Since the domain of A, D(4) = C(I'), is dense in L,(I') and A4 is bounded, 4
can be extended to the entire Hilbert space L,(I') by the theorem of Hahn-Banach.
Let us call this extension A4'.

Since A’ is symmetric, bounded and defined on the whole of L,(I'), we have

the following.
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LEmMA 5. A’ is self-adjoint.

Now we have only to show the following.

THEOREM 2. A’ is compact.

Proof. We shall show that the image under the mapping A’ of every uniformly
bounded sequence contains a Cauchy subsequence.

Let S = {g;};c; be any sequence of functions in L,(I') such that

lg:ll £ ¢ foreveryiel.

Since C(I') is dense in L,(I'), we may assume without loss of generality that
g€ C(I).

For each g;e S there is a harmonic function h; = ABg; e C*(G) N C(G) such
that h(p) = g{(p), peI'. From inequality (3.9),

[] intar? axay = <Bey? < p1ai* < 6.
G
But {h;} = {ABg;} is a uniformly bounded sequence of harmonic functions.
Hence a Cauchy sequence may be extracted, say {ABg; }. (See [4, p. 275].) Since
g, € D(A), we have

“A/gi,. - A’gimH = “Agi,, - Agi,,,“ < afBg;, — Bgim>>~

Hence, f; = A'g; is a Cauchy subsequence of the image { f;};., of S.

We now state the usual theorem concerning compact, self-adjoint operators.
A proof may be found in [1, p. 132].

THEOREM 3. Let A’ be a compact, self-adjoint operator. Then A’ has a finite or
infinite sequence of pairwise orthonormal eigenfunctions g,,g,, -+, which corre-
spond to the eigenvalues u,, 1y, - (1] = g2l = - -+ > 0). The sequence of eigen-
functions has the property that every function f of the form A'g = f, ge D(A’),
satisfies

f= i (fs &m)m>
(3.10) "‘;‘
IfII? = Z 1(f, gm)I?.

From the fact that A’ is a positive operator, we know that u; = pu, = --- > 0.

LEMMA 6. Let p,, bé an eigenvalue of A', and let g, be an eigenfunction cor-
responding to p,,. Then D,, = p,, '*Bg,, is an eigenfunction of the Dirichlet eigenvalue
problem, and v,, = p,, ' is the eigenvalue to which it corresponds.

Proof. Since Bg,, is a solution of (3.2), we have

A’D,(p) = py *A’Bg,(p) = 0, peG,
D,(p) = pt "> Bgn(p) = 0, perl.
Now,
AD,(p) = pi "*ABE,(p) = 1 /*gnlp)
';3/20Bgm(p) — ;1 92nlp) pel.

=u- 324 =
Hom gulp) = 1t n R wa
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Hence,

~19D,(p)
AD,(p) = wu, ' —=
m(p) lum an B

THEOREM 4. Let @ € V, that is let ¢ be a solution of (3.2) such that g is continuous
on I'. Then

pel.

S (A'g, gm)
p=y “BEp,

m=1 \/,u_m "
© ’ 2

m=1 .um

(3.11)

Prooj.' From a simple calculation we have

Qom 2 Gmm) = Qo 1150

N ’
(A'g,8m)
E (Ag— Y (A8, 8mEm 8 — X T
m=1 m=1 m
y Y (A8 g
m=1 m=1 m

The factor on the right is bounded while the factor on the left approaches zero
as N — oo from Theorem 3. Hence (3.11) follows. This completes the proof.

Hence every function in ¥ may be represented as a linear combination of the
orthonormal eigenfunctions D,, of the Dirichlet eigenvalue problem.

As has been pointed out by the editors, Theorem 4 (the main result of this
section) is contained in a more general development by Ercolano and Schechter [6].

4. An iterative scheme. In this section we present an iterative scheme for
the coupled system. This scheme converges for a proper choice of the coupling
constant ¢ and an essentially arbitrary starting function ®.

Let ' be given such that

Aw(p) = ¥(p), peG.

Then the sequences {u®} and {®™®} are defined by
: Au®(p) = o~ (p), peg,

(4.1a) @)

u(p) = f(p), pel,
Aw®(p) = ¥(p), peg,

(4.1b) i
0®(p) = Au® — C[—an—p - g(p)], pel,

’ k=1,2,- -

Our goal is to give conditions on ¢ for which (4.1) converges.

THEOREM 5. The iterative scheme (4.1) converges for arbitrary »'® such that
Aw'® = if and only if 0 < ¢ < 2v,, where v, is the smallest eigenvalue of the
Dirichlet eigenvalue problem.
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Proof. Let B, denote the biharmonic function B(p) = u®(p) — u(p), peG.
From (3.11) it is clear that B, may be represented by

(4.2) B,= Y o¥D,,.
m=1

Set Hy(p) = o™ (p) — w(p), pe G. Then H, is harmonic in G. For a sufficiently
smooth boundary T,

0B
(43) W p) = u(p) + AByp) — 2P per.
Since
Au=Au® — AB, = 0*V — H,_, = w,
we have
AB, = H,_, foreveryk.
Now,
Asz+1(p) =0, pPeq,
(4'4) Bk+ l(p) = 0, pe r5
0By(p)
ABy ., 1(p) = Hyp) = AB,(p) — ¢ 6’;1 ., pel.
Buton T,

Z ax " YAD, = ¥ ocf,’,‘)(l —i)ADm.
m=1

m=1 Vi

Using induction it follows immediately (taking a,, = «!") that

(4.5) kD = (1 = cv,, Yo,

and

4.6) By, = ix (1 — cv, Yea,,D,,.
Then

(@) CBeerd? = 311 = o .

Hence, B, ., — 0 as k - o if and only if |1 — ev,, '] < 1 for each m.
Since 0 < v; £ v, < ---, this is true only for

0 <c<2v,

which was to be proven. This completes the proof.
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Using continuous methods to solve the system (4.1), the choice of ¢ is, subject
to the conditions of Theorem 5, arbitrary. For certain finite difference approxima-
tions, c is fixed and inversely proportional to the step size. This we shall discuss in
§7.

Notice that although there is convergence for 0 < ¢ < 2v,, there is no
finite rate of convergence, since

1—cvY{>1 asm—- .
| m

This motivates the next section.

5. Averaging to produce a convergent scheme. In the last paragraph, we saw
that for certain values of the constant ¢ the iterative scheme is divergent. In this
section we shall describe an averaging scheme which produces convergence. As a
matter of fact, we shall describe two such schemes. When used together one may
be used to speed-up convergence of the other.

Let ¢ and 6 be two real constants, and let u® and »® be given such that
A*u® = Ao =y in Gand u'® = fonT. Fork =1,2,3, -

Aiu®(p) = 0~ V(p), peG,
(5.1a) u®(p) = f(p), perl,
u®(p) = eu® = V(p) + (1 — e)u®(p), peG,
AB®(p) = Y(p), pegq,

(k),
(5.1b) B¥(p) = Au(p) — c[ﬁ”an(” ) _ g(p)], perl,
o®(p) = d*~V(p) + (1 — @™ (p), peG.

When ¢ = 0, § # 0, we shall call the scheme (5.1) an iteration of the first kind.
Similarly for ¢ # 0, 5§ = 0, we have an iteration of the second kind. We shall show
that for properly chosen ¢ and J the scheme (5.1) converges. Furthermore, given a
o for which an iteration of the first kind converges, there isan ¢ # 0 which speeds-up
the convergence in a-sense to be defined.

LEMMA 7. Let u'® and o' be given such that

AU® = Aw® =y inG,

(5.2)
u® =f onTl.

Assume that the functions By == u'© — u and H, = ©'® — w may be represented by

e8]
0
B(): Z O(fn)Dm,
=1

(5.3) "
= Z ﬁfr?)ADm’
m=1
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where the D,,’s are the orthonormalized eigenfunctions of the Dirichlet eigenvalue
problem. Then

0
Bi=u® —u= Y o¥D,,

m

—

(5.4) .
H=0o®—w= > p¥AD,,
m=1
where
W) = o) + (1 — o)ps
(5.5)
B = 681 + (1 — O)(1 — cvp o,
Proof. Assume that (5.4) and (5.5) hold for k = r. Since
A"t = " in G,
we have
AB,., = Aa@"*" —u) = 0" — w = H,.
Hence,
(56) Er+1 = Z ﬂf:;)Dm'
m=1
Now,

B,y =¢B,+(1 -8B, = ¥ [ea) + (1= 8)B,)ID,.

m=1
It then follows that
ar ™ =g + (1 — g)BY.
On I" we have

T aBr+l &

+1 -1 +1
H,+1 = AB,+1 - C_an = Z [(xi; ) CVp afr"' )]ADma
m=1

since dD,,/on = v,, 'AD,, on T. Then
H,yy =0H,+ (1= 0H,., = ) [0By + (1 — )1 — cv, g™ VIAD,,
m=1 )
Hence,
Bott = 6% + (1 — (1 — cv, o ™.

Clearly (5.4) and (5.5) hold for r = 1 if B, and H, may be represented as in
(5.3). Hence it follows that (5.4) and (5.5) hold for all k. This completes the proof.

One should note that conditions (5‘.2) are not essential ; without them, how-
ever, the proofs would be similar but much more cumbersome.
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The following consequences of Lemma 7 may be noted.
COROLLARY 1. If ¢ = 0,5 # O, then
(5.7) okt = BB — 5 4+ (1 — 8)(1 — cv,, DIBY.
COROLLARY 2. If ¢ # 0,0 = 0, then
oY =+ (1 — (1 — cv, Neaty) + (1 = )Y,
BEED = (1 — vy .

In the remainder of this paragraph, we shall use the following notation:
(i) Alg dm)=¢+ 90+ (1 —¢e(l —om.
(i) z, = z,(¢,9,1), z, = z,(¢, 0, n) are zeros of the polynomial

p(d) = A% — Ale, 8, n)) + €6.

(111) R(S’ 5’ 11) = max {|21|> |ZZ|} .
(iv) =1 —cv, "
(v) If f = f(n), then we write

I = S ().

LEMMA 8. Let &- & # 0. Then the constants o and B may be represented by

(5.8)

(5.9) o — {Clmz'im + cyps, if A2 # 4ed,
cinAX + ke, AT, otherwise,
(5.10) w0 _ {dlmz’{m,-i- dy, 25, if A2 " 4,
di Ak + kd,,A%",  otherwise.

The constants ¢y, Cam» @ 1m»> @2 are determined from &’ and B, which are
given, and from o}’ and B}, which may be obtained from (5.5).

Proof. The proof follows from the fact that both «*) and B%* satisfy a difference
equation of the form

(5.11) Ao — A&, O)A—y + €045 =0,

for k = 2,3, ---. Hence for each k there are two linearly independent solutions
which are represented by

A, and Z&, if A2 # 4ed

or
A* and kA¥T' if A2 = 4ed.
The results (5.9) and (5.10) follow immediately. This completes the proof.

Before stating and proving our main theorems, we shall investigate the
behavior of the function

R(e, 6,n) = max {|z,], |z,}.

In Fig. 1, 0 is considered to be fixed, and curves R(g;, 6,7),0 = &, < ¢
< .- < g, < 1, are sketched. The curves are not sketched to scale but show the
relationship of one curve to the other for different &’s.



BIHARMONIC BOUNDARY VALUE PROBLEM 25

R(Bi ’ 6 ’ '7)

=Yy

O0=¢, <g <eg3=0<¢g<1

Fi1G. 1

The sketch results immediately from the elementary calculus. For a fixed ¢
we have the following for 0 < ¢, < 1.
LEMMA 9. R(g, 6, 1) = 1.
LemMa 10. R(g, 6, 0) = max (g, 9).
LEMMA 11.
@) If — \/_—\/_ 2/((1 — &)(1 — 8)) < n £ 1, then R(e, 6, 1) is monotonically
increasing and concave downward (i.e., 62R/6r/2 = 0).
(i) If 1< —(J/e+ /01 — &)(1 — 9)), then R(g, 1) is monotonically
decreasing and concave downward.
LEMMA 12. If —(/e + /3P /(1 — (1 — 8) < n < — (/e — /(1 — o)
(1 — 0)), then R(e, 6,n) = \/'
For the behavior of R(e, d, n) for different ¢, we have the following.
LemMMA 13.If 0 < 5 < 1, then

R(Sla 55 '7) < R(825 55 ’1)

for every &, ¢, suchthat 0 < ¢, <¢, < I.
LeMMA 14. Let —(\/e; — /(1 — e)(1 — ) < 5 < O.
(1) If 0<¢ <d<1, then R(g;,d,n) < R(g, 6,n) for every & such that
0<e<eg.
(i) If 0 < 0 < ¢, then R(g, ,1) < R(g,, 0, n) for every e such that 0 < ¢ < ¢.
LEMMA 15. If 1 £ —(\/&; + /8)?/(1 — &;)(1 — 8)), then R(e,, 6, n) < R(e, &, 1)
for every g such that 0 < ¢ < ¢,.
THEOREM 6. Let u'® and »'? be given such that they satisfy conditions (5.2) and

(5.3). Then the iteration scheme (5.1) converges if and only if

(5.12) R, (e, 0) = R(e, d,1,,) <1, m=1,2,---.
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Furthermore, the inequality (5.12) is satisfied if 0 < ¢,6 < 1, and

(1+30)+ 1 -,
5.13 <e<1, =1,2,---
(.13) —A+o+d=om " "
Proof. We shall denote by ¢ - ) the norm over the Hilbert space spanned by
the Dirichlet eigenfunctions. Since u'® and w'® satisfy conditions (5.2) and (5.3),

(514 WY = uy? = (BY? = Y, .

We define
= {m|A}(e, ) = 4&d}.
Notice that M has at most two elements. Then from Lemma 8§,
(515) <<Bk>>2 = Z |C1leIm + c2ngm|2 + Z IclmAlr(n + kamAicn_llz'
m=1 meM
mé¢M

Now R,(&, 6) = max {|z,,], |22al} -
(1) Let us assume that R, (¢,9) < 1. lf m¢ M,

0 1) (1) (0)
ain)ZZm - ain _ O™ — Oy Zym
Cim = ) Com = s
Zom — Z1m Zom — Zim
and if me M,
— (0 — D) (0)
Cim = %y Com = Uy~ — Oy Am'

Take g = min, g |25, — 21, # 0 and

C,, = max {lo’l, 18,1} = log,).

Then
’ 2 2
|c1m| é _Cms |c2m| é _Cm’ m¢M5
q q
and
|C1m| é Cm, ICZml é 2Cm’ m¢M
It now fo]lowé that
{BY? < Z 2RZF+ Y (1 4 2k)*CLR2?
meM
(5.16) 16 i
Z C2RZk + Z CiL+ Y (1 + 2kPCER32.
q m=1 m=N+1 meM
m¢M m¢M

By Lemma 8, Y'°_ |02 and Y ®_, |8 converge, hence Y _, C;, converges.
Hence from (5.16),

. 16 &
lim ((Bk>>2 = Z Cc2
k= 94" m=N+1
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for every N. It now follows that
lim ¢u® — u) = lim {B,y = 0.
k— k—

(ii) To prove the necessity, let us suppose that for some u, R,(¢, 6) = 1. To
fix ideas let u¢ M and |z,,| > |z,,|. Then from (5.15),

k|2
Z
<<Bk>>2 g |c1uzliu + CZuZléulZ ; |Zlu|2k |clu| - |c2u| —=£
1p
k|2

Z2

2 |C1u| - |Czu| —£

1p

This implies

lim ¢BY = cy,/*.

k—
But ¢, is, subject to the conditions of (5.2), essentially arbitrary. This is a contra-
diction to the assumption that the iteration scheme converges for any given u®

and »'® which satisfy conditions (5.2) and (5.3). This ends the proof of (5.12).
(iii) From Lemmas 9, 10 and 11, we have

(\/24_\/5)2
R,(¢,0) <1 for (1—3)(1—5)<17"'<1’
0¢,0<1.

If 1,, < — (/& + /O/(1 — &)(1 — 9)), then R,(¢, 6) < 1 if and only if
R,(&, 8) = 3{— A,(¢, 8) + /A, 0) — 4ed} < 1.
Notice that A4,,(e, ) < 0 in this region. Hence by a simple calculation,

1+0+0- 9,
-1 4+8+0-0n,

This completes the proof.

We are now faced with determining, if possible, an optimal ¢, say &y(d), for
each 6. The rate of convergence of the iterative scheme clearly depends upon
R,(¢, ) = R(s, 0, 1,,). In fact the convergence factor for the iterative scheme is p,
where :

ple, 8) = sup R, (&, 9).
Now if the Dirichlet eigenvalue problem for the domain G has infinitely many
eigenvalues, then p(e, ) = 1 for every ¢ This is evident from Fig. 1, where #,,

= 1 — cv,, . In this sense there is no optimal &.
Let us define ¢,(9) as follows:

(5.17) £o(8) = min {&,|p(e, 8) < ple, §) for 0 < &, &, < 1},

where
ple, 0) = sup R,(e, 9).

m3n, <0



28 JOHNNIE WILLIAM MCLAURIN

Such a choice of ¢y() is always possible if #; < 0. This, from Fig. 1, indicates a
speed-up of the rate of convergence for #,, < 0 and a slowing of the rate of con-
vergence for #,, > 0.

THEOREM 7. Let 6 be chosen such that 0 < 6 < 1. Then the optimal choice of
&, &o(0), is

25+ (1 -,
and
(5.19) p(eo(d), 8) = max {3, q(9)} .

Proof. Clearly from Fig. 1, for fixed ¢, 9, the function R(e, J, 1) decreases for
n < (\/E + \/3)2/((1 — ¢)(1 — 9)), remains constant (= ,/&d) for

Vet VoOr _ _ (e— o

I-gd-0="T="U=90 -0

A

and increases for
(Ve = /3
- ¥~ _<p<L0.
1-¢@1 -9
(i) Ify, = —49/(1 — 6)* then
R(e,0,0) =06 fore < 0.

There are at most two values of ¢ < J for which R(e, d,#%,) = 0. Oneisclearly e = 6
(i.e, A%(e, 8) £ 4ed). The other is obtained by assuming A2(e, 5) > 4ed. We choose
the second as optimal and Lemma 15 shows that this is the smallest ¢. That is,

R(So(é)a 5’ O) = R(80(5)9 5& r’l) = 6’
A3(e, §) > 4ed.

(ii) If n, < —43/(1 — J)% then form Lemmas 14 and 15, j(e, 8) > 5. Hence
the optimal choice is

(5.21) R(go(9), 6, 0) = Rleo(9), 0,1,) = £o(0) > 6.

Both (5.20) and (5.21) lead by a simple calculation to the equality of (5.18).
Clearly,

(5.20)

§ ifn, = —45/(1 — 5)?,
mm&a={ A
£o(0) otherwise.
This completes the proof.
Note that R(g, J, 1) = R(, &, 17). Hence given an g one may choose an optimal
0, 0y(€), in exactly the same manner. We are still free to choose ¢ in Theorem 7. Let
us choose an optimal 6. That is, setting &y, = £¢(yp1), Gop 18 that  for which

(522) ﬁ(aopts 5opt) = OTéiBI ﬁ(ﬁo(é), 5)
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THEOREM 8.

(523) Eopt = 5opn
_ —2‘*'2«/1—’11_\/——«/"1
(5.24) 50p, =1+ = s
rll \/Z + A/ Vl

or
—45opt
’71 - (1 _ 50]”)2'

The proof follows simply from Theorem 7 and (5.22).

From the above discussion of the averaging scheme, the question arises:
“Why average at all if a ¢ can be chosen such that 0 < ¢ < 2v,?” This we shall
attempt to answer below.

Let u'© and ' be given. Then let

B, =Y o¥D,, k=0,1,---,
m=1

denote the biharmonic function obtained from (5.1) with e = 6 =0 and ¢ = ;.
Now let . B

B,= Y &¥p,, k=0,1,---,
m=1

denote the biharmonic function obtained from (5.1) with

NEN

e=0= and ¢ =2¢.
Set
N N N
BY = % o¥D, and BY= Y a¥D,.
m=1 m=1

THEOREM 9. For every N such that

2
2VN - C1
- vl’

o) #0, vy >c, and vN<( -
1

there exist positive constants o, L and ¢, independent of k, such that for 0 < ¢ < 1,

KBy ‘
5.25 Lo*, k=0,1,2,---.
(623) 3

Furthermore,

Proof. From the hypotheses on vy,

2vy — ¢4\ 2
VN<(M v,
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Choose ¢ such that

Hence thereisa 0,0 < ¢ < 1, such that

(5.26) % =o(l —c;vi') < (1 — vy Y).

From (4.5) and (4.6), we have
N
Bl = 3 (1 - oy} D,
n=1

hence,
KBYY Z 11— coon ' o)

Since & > vy or 1 — ¢vy ! < 0 we have from (5.16), (5.22) and (5.24) that there
exists an L; > 0 such that

BYY < Lo .

Taking L= (L,d)/(c]o’]), we obtain (5.25). This completes the proof.

Hence for N sufficiently large, the truncated error term BY obtained by
averaging, converges faster than By as k — oo if the coefficient af’ of the Nth
eigenfunction is not zero. If { B, — BY) is “‘small,” then the rate of convergence of
B, is (for computational purposes) effectively that of B}, which has a finite rate of
convergence.

6. Lower bounds for v,. As we have seen in the preceding paragraphs, a
method for computing the smallest eigenvalue of the Dirichlet eigenvalue problem
must be obtained. If this is not feasible or possible, a lower bound would be
sufficient, as is clear from Theorems 6, 7 and 8.

We shall consider certain dual inequalities as defined by Fichera. For this and
more general dual problems, see Fichera [7] and Kuttler and Sigilitto [11].

LEMMA 16. Let v be an arbitrary real harmonic function in G such that v e L,(T).
Then there exists a positive constant o such that

(6.1) (Jf |v]? d& dn)l/z < a(frlvlzds)l/z.
G

The dual inequality to (6.1) is the inequality (6.2) in the lemma below.
LEMMA 17. Let o be the constant in Lemma 16. Then for every function u e C*(G)
N CY(G) such that u = 0 on T, we have

2 1/2 1/2
(6.2) (fr ds) < a(J;J |Au|? d& dn) )

@
on
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Now from the duality principle of Fichera [7],

a2y, = Augcf:o (J‘rv2 ds)/(JJ v? déE dn)
- | [fraca] /(]G] )

It is of course clear that if a function u, exists such that the infimum in (6.3) is
attained, then u, is biharmonic and u, is also a solution of (3.1). Moreover,
v = Au,.

Clearly if an a is obtained such that « satisfies (6.1), then o~ is a lower bound
for the first eigenvalue of the Dirichlet eigenvalue problem.

There have appeared in the literature several results which give lower bounds
for v,. See for example [3], [5], [9], [10] and [12].

7. The finite difference approach. In this section we show how the coupled
system (4.1) for the continuous problem may be approximated by a coupled system
of difference equations. In particular, if the domain G is rectangular and if we take
¢ = 2h™ !, where h is the step size, then the corresponding difference equations are
exactly those used by Greenspan and Schultz [8], and Smith [13]. We also show
that our choices of optimal ¢ and ¢ correspond to those of Smith [13] for an itera-
tion of the first or second kind and to those of Ehrlich [5] for a combined iteration
of the first and second kind.

Let us superimpose a square grid over the domain G with mesh size 4. Then
G, shall denote those grid points in G, and I',, shall denote those grid points on I'.
If (x, y) € G,, then we define the discrete Laplace operator, A, by
(7.1)

Aulx, y) = u(x + h,y) + ux — h,y) + u(xh,zy + h) + ux,y — h) — 4u(x,y).

Let us assume that G is a rectangle with length Mh and width Nh, where M
and N are positive integers. Let C be a set containing only the points at the corners
of G. Then the discrete analogue of problem (4.1) is

AU (p) = w*~(p), pe G,

u®(p) = £ (p), peTl,,

(7.2) A0®(p) = Y(p), peG,,
o®(p) = h=2[f(p,) + f(p2) — 4 (p) + 2u®(p7)]

+cg(p) + 2h™2 — ch™)(f(p) — u®(p7)), pel, —C,

where p;,p, eI, p” €G, and pp, = pp, = pp~ =h.

Notice that if c = 2h~!, we obtain exactly the difference equations in [8] and
[13].

Let @i denote the solution vector for (7.2), and let i denote the kth iteration
vector. Smith [13] has shown that

(7.3) 4 —a% = —2L7*M(@ — a%~ V),
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where L and M are matrices arising from the difference equations (7.2). Further-
more, —2h~2M is negative semidefinite; and the spectral radius is given by

(7.4) p(—2L"*M) = 2/ha,.

The constant g, is a solution of the minimum problem

(7'5) O’h = min h2 ZJJEG,.‘ (Af.u(p))z ,
“lppe)lfho h Zpel";.—C(bhu(p))z

where S,u(p) = —h~'u(p”),pp~ = hand p~ €G,.

In the continuous case with ¢ = 2h~" and 1 — 2(hv,)™"

< —1 we have

(7.6) u — “<k+1)>> ={Bs =1 — 2(h"1)_1|<<Bk>>-
Hence, we should have (setting v, = 0)
(7.7) 1—-2h e '~ —2h" g, ",
or
ho?
(7.8) 0,20 — Pr—t

Let us write T = (ho,)” ' and consider an iteration of the first or second kind.
Then

(19) Peo(0), 0) = £4(0) = 35(0) = A0, 54(0)).

This is clear from the proof of Theorem 7. Choose ¢ = 0. Then from Theorem 7
and (7.7) we have

n, _ 1=2hy, 7
no—2 —1—=2hv, " 1+7

Compare (7.10) with the results of Smith [13]. See also Ehrlich [5, Eq. (3.21)]. Also
from (7.10),

(7.11) 1 — 04(0) = 1/(1 + 7).

See [5, Eq. (3.20)].
In the case of a combined iteration of the first and second kind we have

(7.12) e =5 2=y 12—
| N NN/ T |

Compare [5, Eq. (3.15)]. Further we have

(7.13) p 2 2
' P S+ Sy 1+ 12T

which also corresponds to [5, Eq. (3.13)].

(7.10) 00(0) =
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