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Abstract. The solution to the biharmonic equation in a simply connected region Ω in the plane is
computed in terms of the Goursat functions. The boundary conditions are conformally transplanted
to the disk with a numerical conformal map. A linear system is obtained for the Taylor coefficients
of the Goursat functions. The coefficient matrix of the linear system can be put in the form I + K,
where K is the discretization of a compact operator. K can be thought of as the composition of a
block Hankel matrix with a diagonal matrix. The compactness leads to clustering of eigenvalues, and
the Hankel structure yields a matrix-vector multiplication cost of O(N log N). Thus, if the conjugate
gradient method is applied to the system, then superlinear convergence will be obtained. Numerical
results are given to illustrate the spectrum clustering and superlinear convergence.
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1. Introduction. Boundary value problems for the biharmonic equation in two
dimensions arise in the computation of the Airy stress function for plane stress prob-
lems [KK], [Mik], [Musk], and in steady Stokes flow of highly viscous fluids [MT,
Chap. 22], [Poz]. Integral equations methods are a popular choice for the numerical
solution of these equations [GGMa], [MG], [K, and references therein], [Poz]. The
application of conformal mapping to this problem, though classical, is less well known
[KK], [Musk]. Unlike the Laplace equation, the biharmonic equation is not preserved
under conformal transplantation. However, a biharmonic function and its boundary
values can be represented in terms of the analytic Goursat functions, and this repre-
sentation can be transplanted with a conformal map to a computational region, such
as a disk, an ellipse, or an annulus, where the boundary value problem can be solved
more easily.

In this paper, we consider simply connected regions with analytic boundaries and
use the unit disk as our computational region. In our examples, the conformal map f
from the unit disk to the region is either known explictly or approximated numerically.
The boundary conditions for the biharmonic function are then transplanted by f to
the disk, and a linear system for the Taylor coefficients of the Goursat functions
in the disk is obtained and solved efficiently by conjugate-gradient-like methods. If
the boundary of the target region is smooth enough (analytic in our examples), the
continuous problem can be posed as a compact operator acting on some appropriate
Banach space. This will lead to a clustering of the spectrum, and hence to superlinear
convergence.
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We expect to be able to generalize this work to cases where the conformal map f
is a Faber series map from an ellipse, or a cross-shaped or spoke-like region as in [DE]
and [DEP]. If the target region has elongated sections, the conformal map from the
disk may be severely ill-conditioned, and an ellipse or cross-shaped region may provide
a better computational region. In [GGMa] the Sherman–Lauricella equation is solved
for spoke-like regions which provide difficult regions for plane stress and plane strain
problems. We anticipate that our Faber series methods may have advantages for such
highly distorted regions. In cases for which the target region is not too distorted, so
that the map from the disk is not too severely ill-conditioned, our method may also
have some advantages. For instance, if several boundary value problems have to be
solved for the same region, so that the conformal map only has to be computed once,
our method, which is based on the fast Fourier transform (FFT), will give accurate
answers in O(N log N) for moderate-sized N . The methods in [GGMa] use the fast
multipole method, which costs only O(N), but with a large constant, so that large
N are required in practice for it to be faster than the FFT. Below, we will use the
FFT-based numerical conformal mapping method given in [Weg]. Introductions to
numerical conformal mapping can be found in [Ga] and [He].

The outline of the paper is as follows. In section 2, we discuss the solution of
boundary value problems for the biharmonic equation in terms of Goursat functions
and the conformal map from the disk to the plane region. In section 3, we discuss the
special structure of the exact linear system. We will see that the coefficient matrix of
the (infinite) linear system is of the form I +HD, where I is the identity matrix, D is
a diagonal matrix, and H is a block Hankel matrix. (A Hankel matrix is constant on
the antidiagonals.) It will be seen that HD actually can be represented as a compact
operator with a one-dimensional null space. This system can be symmetrized and
solved (up to the null vector) using the conjugate gradient method. In section 4, we
formulate the discrete problem. We will show how the conjugate gradient method
is applied to the discrete system and how the matrix-vector multiplication can be
carried out in O(N log N). In section 5, we give several numerical examples which
illustrate the spectrum clustering, the superlinear convergence, and the discretization
error.

2. The biharmonic equation. Here we will follow the presentation in [KK]
and [Musk]. We wish to find the Airy stress function u for a simply connected region
Ω with a smooth boundary Γ in the ζ-plane. Then u satisfies the biharmonic equation

∆2u = 0

for ζ = η + iµ ∈ Ω. The two fundamental boundary value problems in elasticity seek
to find u, given the external stresses or external displacements on the boundary Γ.
Both of these problems amount to specifying

uη = G1 and uµ = G2

on Γ. The function u can be represented as

u(ζ) = Re(ζφ(ζ) + χ(ζ)),

where φ(ζ) and χ(ζ) are analytic functions in Ω known as the Goursat functions.
Letting G = G1 + iG2, the boundary conditions for the first fundamental problem
become

(1) φ(ζ) + ζφ′(ζ) + ψ(ζ) = G(ζ), ζ ∈ Γ,
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where ψ(ζ) = χ′(ζ). The second fundamental problem leads to similar conditions. For
simplicity, in this paper, we will only concentrate on the first boundary conditions (1).

We remark that φ(ζ) and ψ(ζ) are not unique. In fact, if φ(ζ) and ψ(ζ) represent
any solution of the problem, then so does φ(ζ)+Ciζ +γ and ψ(ζ)+γ′, where C ∈ R,
γ ∈ C, and γ′ ∈ C. Thus, the constants C and γ must be specified for uniqueness
of φ. These constants are determined below.

The problem at this point is to find φ and ψ analytic in Ω and satifying (1). One
approach is to represent φ and ψ as Cauchy-type integrals of a density function on Γ.
This leads to the Sherman–Lauricella equation, a Fredholm integral equation for the
density function which can be solved efficiently by the fast multipole method [GGMa].
In this paper, we propose to solve it by using numerical conformal mapping coupled
with the conjugate gradient method.

Let ζ = f(z) be the conformal map from the unit disk to Ω, fixing f(0) = 0 ∈
Ω. Then with d(z) := f(z)/f ′(z), φ(z) := φ(f(z)), ψ(z) := ψ(f(z)), and G(z) :=
G(f(z)), equation (1) transplants to the disk as

(2) φ(z) + d(z)φ′(z) + ψ(z) = G(z), |z| = 1.

Let

φ(z) =
∞∑

k=1

akzk and ψ(z) =
∞∑

k=0

bkzk.

Notice that the sum for φ begins at k = 1. This fixes the constant γ mentioned above
for uniqueness by requiring φ(0) = a0 = 0. After transplanting to the disk, the other
constant is determined by setting Im(a1/f ′(0)) = 0.

The problem is to find the ak’s and the bk’s. For |z| = 1, define the Fourier series

d(z) := f(z)/f ′(z) =
∞∑

k=−∞
hkzk, G(z) =

∞∑
k=−∞

Akzk.

Substituting into (2) gives a linear system of equations for the ak’s and bk’s,

(3) aj +
∞∑

k=1

kakhk+j−1 = Aj , j = 1, 2, 3, . . . ,

(4) bj +
∞∑

k=1

kakhk−j−1 = A−j , j = 0, 1, 2, . . . .

If (3) is solved for the ak’s, then the bk’s can be easily computed from (4). Thus, in
this paper, we will concentrate on an efficient method for solving (3).

There is also a moment condition to be satisfied by the data. After transplantation
to the disk, this condition can be stated as Re[

∫
|z|=1 G(z)f ′(z)dz] = 0. This moment

condition will assure the existence of a solution. Our assumption is that all data
studied in this paper satisfy this equation.

Before proceeding, it should be noted that if our boundary data corresponds to
G = 0, then the only possible (nonzero) choice for φ is φ(z) = Cif(z), for some
nonzero C ∈ R. This implies that the null space corresponding to the infinite system
in (3) is one-dimensional, and the eigenvector spanning this space is given by ak =
ick, k = 1, 2, 3, . . . , where f(z) =

∑∞
k=1 ckzk.
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3. Compact operators. Taking real and imaginary parts of equation (3) gives
us

(5) αj +
∞∑

k=1

k(ηk+j−1αk + γk+j−1βk) = Bj , j = 1, 2, 3, . . . ,

(6) βj +
∞∑

k=1

k(γk+j−1αk − ηk+j−1βk) = Cj , j = 1, 2, 3, . . . ,

where we have used the notation ak = αk+iβk, hk = ηk+iγk, and Ak = Bk+iCk. For
visualization purposes, we combine equations (5) and (6) into a doubly infinite matrix
equation in which the two sums are combined into a block Hankel matrix composed
with a diagonal matrix. In fact, (5) and (6) can be written as

(7) (I∞ + Hr,∞D∞)α + Hi,∞D∞β = B,

(8) (I∞ − Hr,∞D∞)β + Hi,∞D∞α = C,

so that

(9)
((

I∞ 0
0 I∞

)
+

(
Hr,∞ Hi,∞
Hi,∞ −Hr,∞

) (
D∞ 0
0 D∞

)) (
α
β

)
=

(
B
C

)
,

where α = (α1, α2, . . .)T , β = (β1, β2, . . .)T , B = (B1, B2, . . .)T , C = (C1, C2, . . .)T ,
I∞ is the infinite identity matrix, D∞ = diag(1, 2, . . .), Hr,∞ is an infinite Hankel
matrix generated by the ηk, and Hi,∞ is an infinite Hankel matrix generated by
the γk.

Now suppose (α, β) represents a solution to (5), (6). Define

x =
(

D
1/2
∞ α

D
1/2
∞ β

)
, r =

(
D

1/2
∞ B

D
1/2
∞ C

)
.

Then (9) can be written as

(10) (I∞ + M∞) x = r,

where M∞ is given by

M∞ =
(

Mr,∞ Mi,∞
Mi,∞ −Mr,∞

)
=

(
D

1/2
∞ Hr,∞D

1/2
∞ D

1/2
∞ Hi,∞D

1/2
∞

D
1/2
∞ Hi,∞D

1/2
∞ −D

1/2
∞ Hr,∞D

1/2
∞

)
.

Note that M∞ is symmetric. We would now like to justify the formal manipulations
above and show that M∞ is a compact operator. This will require the following two
preliminary lemmas.

LEMMA 1. Let f be a conformal map from the unit disk to the region Ω with
boundary Γ. Let Γ be analytic and

f(eiθ)/f ′(eiθ) =
∞∑

k=−∞
hkeikθ.

Then there exists a C > 0 and an R < 1 such that

|hk| ≤ CR|k|.
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Proof. Since Γ is analytic, f extends as a bounded, analytic function with f ′(z) 6=
0 for |z| ≤ 1/R for some R < 1. Let

f(z) =
∞∑

k=1

ckzk and 1/f ′(z) =
∞∑

j=0

djz
k.

Then there is a c such that |ck|, |dk| ≤ cRk. Further, we have that

f(eiθ)/f ′(eiθ) =
∞∑

k=1

∞∑
j=0

ckdje
i(k−j)θ

=
∞∑

l=1

∞∑
j=0

cl+jdje
ilθ +

∞∑
l=0

∞∑
j=l+1

cj−ldje
−ilθ

=
∞∑

l=1

∞∑
j=0

cl+jdje
ilθ +

∞∑
l=0

∞∑
j=1

cjdl+je
−ilθ.

And so,

|hl| =

∣∣∣∣∣∣
∞∑

j=0

cl+jdj

∣∣∣∣∣∣ ≤
∞∑

j=0

|cl+j ||dj | ≤ cRl
∞∑

j=0

R2j =
cRl

1 − R2 = CRl, l ≥ 1.

Similarly,

|h−l| =

∣∣∣∣∣∣
∞∑

j=1

cjdl+j

∣∣∣∣∣∣ ≤ CRl, l ≥ 0.

Next we show that the entries of Mr,∞ and Mi,∞ also decay exponentially fast.
LEMMA 2. Under the assumptions of Lemma 1, the (j, k)th entries of Mr,∞ and

Mi,∞ decay like cr|j+k| for some c > 0 and r < 1.
Proof. We will prove the case for Mr,∞. The case for Mi,∞ follows similarly.

Let mk,j denote the (k, j)th entry of Mr,∞. Then we must have mk,j =
√

kjηk+j−1.
Therefore

(11) |mk,j | =
√

kj|hk+j−1| ≤ C
√

kjR|k+j|.

Let r = (1 + R)/2 < 1. Since

lim
x→∞

1√
x

( r

R

)x

= ∞,

there exists an l0 ≥ 0 such that
√

lRl ≤ rl ∀l ≥ l0.

Let

c = max
0≤l≤l0

{
√

l

(
R

r

)l
}

;
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we then see that
√

lRl ≤ crl ∀l ≥ 0.

The lemma now follows directly from (11).
Lemma 2 gives us the following theorem and corollary.
THEOREM 1. Mr,∞ : l1 → l1 and Mi,∞ : l1 → l1 are compact operators, where

for y ∈ l1,

Mr,∞y =
∞∑

k=1

√
kjηk+j−1yk, j = 1, 2, . . . ,

Mi,∞y =
∞∑

k=1

√
kjγk+j−1yk, j = 1, 2, . . . .

Proof. We will prove the theorem for Mr,∞. As above, Mi,∞ follows similarly.
Define the finite rank operators {Mr,n} = {D

1/2
n Hr,nD

1/2
n } by

Mr,ny =
n∑

k=1

√
kjηk+j−1yk, j = 1, 2, . . . , n,

for all y = (y1, y2, . . .) ∈ l1. The goal is to show that Mr,∞ can be approximated
uniformly by these finite rank operators. (Then, e.g., a version of Theorem 4.4c [Con,
p. 41] for Banach spaces shows that Mr,∞ is itself compact.) If A = (akj) is an
infinite matrix, then the induced l1 operator norm is given by

||A||l1 = sup
j

∞∑
k=1

|akj |;

see, e.g., [Con, p. 171, prob. 8]. From the geometric decay of Lemma 2 we may write

∞∑
k=1

|mk,j | ≤ Crj
∞∑

k=1

rk ≤ C1r
j , j ≥ 1.

Consequently,

||Mr,∞ − Mr,n||l1 = sup

{ ∞∑
k=1

|mk,n+1|,
∞∑

k=1

|mk,n+2|, . . .
}

≤ C1 sup{rn+1, rn+2, . . .}

= C1r
n+1 → 0.

Thus, Mr,∞ is compact as desired.
COROLLARY 1. M∞ is compact on l1 × l1, where for x = (x1, x2) ∈ l1 × l1 ,

(12) M∞

(
x1

x2

)
=


∞∑

k=1

√
kjηk+j−1x

1
k +

∞∑
k=1

√
kjγk+j−1x

2
k

∞∑
k=1

√
kjγk+j−1x

1
k −

∞∑
k=1

√
kjηk+j−1x

2
k

 .
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The norm on l1 × l1 is given by

||x||l1×l1 = ||x1||l1 + ||x2||l1 .

Proof. From the notation of the problem, it is easily verified that

||M∞ − Mn||l1×l1 ≤ ||Mr,∞ − Mr,n||l1 + ||Mi,∞ − Mi,n||l1 .

The result follows from Theorem 1.
Next, we discuss the discretization of (10). Since M∞ is compact and the matrix-

vector multiplications can be performed rapidly, we will solve the discrete (normal)
equations using the conjugate gradient method on the subspace orthogonal to the
one-dimensional null space.

4. Discretization. The natural choice for discretization is to truncate the sums
given in (12) to n. This will lead to finite linear systems. However, in practice one does
not have the exact Fourier coefficients. If the conformal map f is known explicitly, we
approximate the hk’s by evaluating d(z) := f(z)/f ′(z) at the N = 2n Fourier points,
z = eijπ/n, j = 0, 1, . . . , N − 1, and taking the N -point FFT. In this case, the discrete
h1, . . . , hn decay at a similar rate to the exact hk (see [He, eq. 13.2-8, p. 20]). How-
ever, since the discrete Fourier coefficients are N -periodic, hk = hk−N , the remaining
coefficients hn+1 = h−n+1, . . . , hN−1 = h−1 do not decay geometrically. We just set
hk = 0, k > n, to insure geometric decay. When f is not known exactly, we use a
numerical approximation at the N Fourier points given by Wegmann’s method, as dis-
cussed in section 5, and again set hk = 0 for k = n+1, . . . , N −1. To avoid introducing
more notation, we now let hk, Ak, etc., denote the discrete Fourier coefficients.

The notation is similar to the infinite-dimensional case

Dn = diag(1, 2, . . . , n),

α = (Re a1, . . . ,Re an)T , β = (Im a1, . . . , Im an)T ,

B = (Re A1, . . . ,Re An)T , C = (Im A1, . . . , Im An)T ,

x =
(

D
1/2
n α

D
1/2
n β

)
, r =

(
D

1/2
n B

D
1/2
n C

)
,

and

Hn =
(

Hr,n Hi,n

Hi,n −Hr,n

)
.

Then, analogously to the infinite system, we have

Mn =
(

Mr,n Mi,n

Mi,n −Mr,n

)
=

(
D

1/2
n Hr,nD

1/2
n D

1/2
n Hi,nD

1/2
n

D
1/2
n Hi,nD

1/2
n − D

1/2
n Hr,nD

1/2
n

)
,

so that our problem is to solve

(13) (In + Mn)x = r.

Recall that x is subject to a uniqueness condition. Since f ′(0) > 0, the condition
Im(a1/f ′(0)) = 0 implies xn+1 = 0. Clearly, the (k, j)th entry of Mr,n and Mi,n are,
respectively,

√
kjRe(hk+j) and

√
kjIm(hk+j).
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We have computed the eigenvalues of Mn for the examples in section 5 using
MATLAB. Note that if µ is an eigenvalue of Mn, then −µ is also an eigenvalue. We
also find that −1 is an eigenvalue of Mn. The rest of the eigenvalues decay rapidly
to 0. The decay is due to the compactness of M∞ shown in Corollary 1 of section 3.
By [An], the spectrum of Mn is near to the spectrum of M∞ for large n. We solve
the normal equations by conjugate gradient, since (In +Mn)2 is positive semidefinite.
In our examples, so far, we have noticed that In + Mn is also positive semidefinite,
but we have no proof of this, in general. In these examples, we have used conjugate
gradient directly on (13) with some computational savings. (13) could also no doubt
be solved efficiently with MINRES. In addition, we have solved (a truncated version)
of the nonsymmetric system (9) with GMRES with very good results. We hope to
address these issues further in future work.

Recall that our infinite system (10) has a one-dimensional null space. The null
space is generated by the null vector,

v = (−Im c1,−
√

2Im c2, . . . ,−
√

kIm ck, . . . ,Re c1,
√

2Re c2, . . . ,
√

kRe ck, . . .)T .

In the discrete case, we find that for large n,

v = (−Im c1,−
√

2Im c2, . . . ,−
√

nIm cn,Re c1,
√

2Re c2, . . . ,
√

nRe cn)T

satisfies (In + Mn)v = 0 to within discretization error using our discrete approxima-
tions to the ck’s. It follows that our solution can be decomposed as

y = x + δv.

It is clear from the conjugate gradient algorithm that if the initial guess x(0) is in v⊥

then subsequent iterates x(q) will be in v⊥. We take x(0) = 0. Conjugate gradient
will then find x ∈ v⊥ and, imposing the uniqueness condition, yn+1 = 0 will give us
δ. By the results above, (In +Mn)2 restricted to v⊥ is positive definite for sufficiently
large n, since the second smallest eigenvalue of I∞ + M∞ is bounded away from 0.
Therefore, conjugate gradient can be applied to the normal equations and the method
will converge superlinearly.

In addition, we note that the matrix-vector multiplication involving the matrix
Mn can be done efficiently using FFTs. In fact, for any n-vector y, since Dn is

diagonal, D
1/2
n y can be computed in n operations. Moreover, the matrix-vector mul-

tiplication Hy, where H is the Hankel matrix Hr,n or Hi,n, can be computed in
O(N log N) by using FFTs. The idea is to compute Ts = (HJ)(Jy) where J is the
reversion matrix with 1’s on the anti-diagonal, and T is a Toeplitz matrix (constant
along diagonals). Next we imbed T into a matrix C as follows:

C =
(

T X
X T

)
,

where X is chosen to make C circulant. Now C can be decomposed as C = F ∗ΛF ,
where F is the N -point Fourier matrix and Λ is a diagonal matrix containing the
eigenvalues of C. For more details on fast methods for Hankel and Toeplitz matrices
see, e.g., [CN].

5. Numerical examples. In examples (i), (ii), and (iii), we choose φ(ζ) = ζ3

and χ(ζ) = 0. Then u(η, µ) = η4 − µ4. Note that, for the conformal map f(z) from
the disk, φ(z) = (f(z))3 and the boundary values at the mesh points are given by
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G(z) = 4(Ref(z))3 − i4(Imf(z))3. The discretization error in the tables is given by
the sup norm

max
0≤j≤N−1

|φ(ei2πj/N ) − φn(ei2πj/N )|,

where φn is our nth-degree approximation to φ. For analytic curves, this error behaves
similarly to the discretization error for the conformal map, which is O(RN ), with R as
given in Lemma 1; see [De] for a discussion of the accuracy of the conformal mapping
methods.

We use the FFT method in [Weg] to find the approximate conformal map f.
Wegmann approximates f by solving a discrete interpolation problem on the unit disk:
find Pn+1(z), a polynomial of degree n+1, such that Pn+1(ei2πj/N ) ∈ Γ, j = 0, . . . , N−
1, with the normalization that the Pn+1(0) is fixed and the coefficients of z and zn+1

are real. He computes this polynomial by applying a Newton method to find a discrete
approximation to the boundary correspondence. The linear systems may be solved
by the conjugate gradient method in O(N log N) per step. Quadratic convergence of
the Newton iterations and convergence of the polynomial to the conformal map as
N increases for sufficiently smooth Γ is proven. Numerical experiments indicate that
this method is among the most robust and reliable of the Fourier series methods on
the disk [De].

For examples where the exact f is known, d = f/f ′ may be computed with either
the exact or the approximate f. This seems to make little difference in the calculations
if the approximate f is sufficiently accurate. The timings for finding the approximate
f using [Weg] are usually only slightly greater than the timings given in the tables
for solving the boundary value problem for a given N.

In the tables below, iter is the number of iterations required by conjugate gradient
for the residuals to be ≤ 10−14. The computations were done in double precision on
the WSU IBM ES9121 Model 440 mainframe computer, and some rough timings are
given. (Figures 1 and 2 and some of our examples were also done in MATLAB, with
similar results.) Stopping the iterations after the level of discretization error has
been achieved could further reduce the timings, though not dramatically for these
examples of very fast superlinear convergence. Note that as the minor-to-major axis
ratio α of a region decreases toward 0 (that is, as R in Lemma 1 increases to 1), the
convergence rate of the conjugate gradient method decreases. In our examples below,
R may be taken as the distance from the origin to the nearest singularity of f , and
the connection with the minor-to-major aspect ratio is known [De]. In a future paper
we will show how the convergence rate of the conjugate gradient method depends on
the smoothness of the boundary Γ.

Other cases were also tried successfully, such as the simple examples in [KK]. If
the biharmonic function has too simple a Goursat representation, the iterations may
converge artificially fast. For instance, if u(η, µ) = η2 + ηµ + µ2, then φ(z) = f(z)
and convergence is achieved in one iteration if N is large enough. On the other hand,
note that the 5-to-1 ellipse in [GGMa, Table 3] is a difficult region for the conformal
map from the disk and would require large N . See example (iii) below.

Example (i), inverted ellipse. Γ : γ(σ) = ρ(σ)eiσ, where ρ(σ) =√
1 − (1 − α2) sin2 σ for 0 ≤ σ ≤ 2π and 0 < α ≤ 1. This map is derived by in-

verting the familiar Joukowski map to the exterior of an ellipse. We have

f(z) =
2αz

1 + α − (1 − α)z2 .
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TABLE 1
Inverted ellipse with exact map and conjugate gradient.

α N Discr. error iter CPU sec

.8 32 .5 · 10−5 4 .2

.8 64 .5 · 10−12 3 .2

.8 128 .5 · 10−14 3 .2

.4 64 .1 · 10−3 6 .2

.4 128 .6 · 10−9 4 .2

.4 256 .1 · 10−13 4 .3

.2 128 .2 · 10−3 6 .3

.2 256 .2 · 10−8 4 .3

.2 512 .3 · 10−13 4 .4

FIG. 1. Eigenvalue distribution for (In+Mn)2 for the arctanh region (example (ii)) with α = .49
and N = 256.

See Table 1 for results. Notice how iter is roughly independent of N , but increases as
α ↓ 0 in our examples.

Example (ii), arctanh. Here the conformal map is given by f(z) = log((1+rz)/(1−
rz)), 0 < r < 1, which maps the disk to increasingly elongated, cigar-shaped regions
as r ↑ 1. This map is perhaps the simplest example of a conformal map exhibiting
the exponential crowding [De]. Figure 1 shows roughly seven outlying eigenvalues of
(In +Mn)2 for α = .49. Thus conjugate gradient for the normal equations takes about
seven iterations to converge, as one would expect; see Table 2 and Fig. 2. Also note
the semilog plot in Figure 2 that shows the superlinear convergence behavior of the
residuals (using MATLAB).
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TABLE 2
Arctanh regions with exact map and conjugate gradient.

α(r) N Discr. error iter CPU sec

.84 (.5) 32 .4 · 10−4 6 .2

.84 (.5) 64 .4 · 10−9 4 .2

.84 (.5) 128 .8 · 10−14 4 .2

.49 (.9) 128 .6 · 10−3 8 .4

.49 (.9) 256 .4 · 10−6 6 .3

.49 (.9) 512 .4 · 10−12 6 .5

.29 (.99) 512 .4 · 10−1 14 .9

.29 (.99) 1024 .2 · 10−2 13 1.5

.29 (.99) 2048 .6 · 10−5 12 2.8

.29 (.99) 4096 .1 · 10−9 12 6.0

FIG. 2. Convergence of residuals for seven iterations of the conjugate gradient method for the
normal equations for the arctanh region (example (ii)) with α = .49 and N = 256.

Example (iii), ellipse. Here Γ : γ(σ) = ρ(σ)eiσ, where ρ(σ) =
α/

√
1 − (1 − α2) cos2 σ for 0 ≤ σ ≤ 2π and 0 < α ≤ 1. The exact map can be

given in terms of an elliptic integral. This case also exhibits exponential crowding
[De]. We approximate the f with [Weg]. See Table 3.

Acknowledgment. The authors thank Rudolf Wegmann for providing a copy
of his Fortran code based on [Weg].
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TABLE 3
Ellipses with approximate map and conjugate gradient.

α N Discr. error iter CPU sec

.8 32 .7 · 10−3 6 .2

.8 64 .5 · 10−6 4 .2

.8 128 .4 · 10−12 3 .2

.8 256 .2 · 10−13 3 .3

.6 128 .6 · 10−3 8 .3

.6 256 .3 · 10−6 6 .4

.6 512 .2 · 10−12 3 .4

.4 2048 .2 · 10−4 10 2.6

.4 4096 .7 · 10−10 8 4.6
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