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THE COUPLED EQUATION APPROACH TO THE NUMERICAL
SOLUTION OF THE BIHARMONIC EQUATION
BY FINITE DIFFERENCES. I*

JULIUS SMITHf

Introduction. The boundary problem AAuw = f in a rectangle R, where u
and the normal derivative, du/dn, are known on the boundary of B, may be
reduced to the study of the system cAu = », Av = ¢f with the same bound-
ary conditions. A reduction to a system of difference equations by the usual
techniques (for details see Theorem 3) leads to a pair of discrete Poisson
equations in which, however, » is not known a priori on the boundary.
This difficulty has been overcome in various ways by several workers with
the aid of schemes involving an “inner” and ‘“outer iteration” (see, e.g.,
Esch [1], Pearson [6], Peebles [7]).

In §1, we discuss the outer iteration scheme (see Definition 4). This
scheme involves solution of two discrete Poisson equations at each step,
m. Boundary conditions are given at each stage, but the conditions on »
vary with m. If h is the mesh size, then the spectral radius of this outer
iteration scheme is shown to be given by 2(ha:)~1, where g, is the solution
of a certain discrete minimum problem which tends to a positive number

f (Aw)?® dx dy
¢g=mn{——m——
f(au/an)z dsJ

as h — 0. This shows that the iteration scheme is divergent. Convergence
may be attained, however, with the aid of an averaging step, “relaxation”
(see Definition 6). The spectral radius of the averaged outer iteration is
found to be $1 — ok as h — 0 (see Lemma 4).

In §2 the existence of ¢ is proved. A careful discussion of the question
on — o 1S given.

In §3, a brief discussion is given of the behavior of ¢ under symmetriza-
tion (see Pélya and Szegd [8]). This yields a practical estimate for the
size of o.

Since each step of the outer iteration involves the solution of Poisson
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324 JULIUS SMITH

difference equations, we are at liberty to solve these equations -(approxi-
mately) using various direct or iterative techniques. In Part II (to appear),
a particular iterative technique which has been used successfully in nu-
merical applications (see Peebles [7]) is studied, and estimates are ob-
tained for its rate of convergence. The general question of the relation
between so-called inner and outer iterations has been discussed in Ortega
and Rheinboldt [5].

It is to be observed that while an extension of these results to domains
with sides parallel to the axes is probably within reach of the present tech-
niques, the inclusion of boundaries whose sides are slanted at an arbitrary
angle leads to serious complications in setting up the difference equations.

1. The basic equations and the outer iteration scheme.

DeriniTiON 1. B = {(2,¥):0 < 2 < aand 0 < y < b}, where a = Jh,
b = Kh, h > 0,and J and K are positive integers; P = (z, y); B is the
boundary of R; R = R U B; C = (0,0) U (a,0) U (a, b) U (0, b);
C™(R) = functions m times continuously differentiable in R; C™(R)
= functions m times continuously differentiable in R; A = 8°/9z"
+ 9%/9y*;0/0n = derivative in direction of the exterior normal along B — C.

TuroreM 1. Letf € C'(R), g € C*(R). Then there exists a unique function
u € CY(R) N C*(R) such that

(1.1) AAu(P) = f(P), P c R,
(1.2) uw(P) = g(P), P ¢ B,
(13) m@ =L@, e =L, PeB
Hence if g1(P) = dg(P)/dn, we have

’ ou D\ O
(1.3") %(I) = q(P), PecB-—C.

Proof. See Friedrichs [3].

Derintrion 2. My, = {(@, y):x = jh, y = kh, where j and k are inte-
gers};Rh = R n]‘lh;Bh = B ﬂ]llh;l?h = R ﬂﬂih.IfP EBh—C,
then P- is its closest neighbor in R;, and P7 is the reflection of P~ in the
side of B containing P. R,* = R, U {PT:P ¢ B, — C}. If S is a set then
E(S8) is the collection of real-valued functions on S. U € E(R)y) if
U € E(Ry) and U(P) = 0for P € B,.If S € My, and U € E(S), then
whenever these expressions are defined,

UT(:UI y) = h_‘[lf((r, + h: '.I/) - U(’U, U)])
Ui(x; y) = h_l[U<x7 y) - U(CL' - h) y)]7
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Uﬂ<x7 .7!) = h—-l[U<x; Yy + h) - U(CE, y)]:
U:li(x, y) = h_l[U(.’I), y) - U(.’IJ, Yy — h)];
Ap U(x: y) = Uzi(xy y) + Uuﬂ<x; y)

TuroRrEM 2. Let F € E(R)), G € E(B,) and Gy € E(B, — C). Then
there exists a unique U € E(Ry") such that

(1.4) AnAy U(P) = F(P), P e Ry,
(1.5) U(P) = G(P), P € By,
(16) (20)7U(P™) — U(P~)] = Gy(P), P ¢ B, —C.

Moreover, if u is the function of Theorem 1 and F, G, Gy are the restrictions
of f, g and g1 to Ry, By and By, — C, respectively, then w — U = O(K**)
as h — 0 provided that w € C*(R).

Proof. See Z14mal [11]. Also see Stetter [9].

THEOREM 3. Let F' € E(R4), G € E(By) and Gy € E(B), — C). Then,
if ¢ 0, there exists a unique U € E(R,") and a unique V € E(R), — C)
such that

(1.7) cd, U(P) = V(P), PeR, -,
(1.7 AL V(P) = cF(P), P € R,
(18) U(P) = G(P), P € By,
(1.9) (20)7[U(PT) — U(P)] = Gi(P), P ¢ B, —C.

Moreover, U 1s the function of Theorem 2.

Derinrrion 3. If P and @ belong to Ry, P precedes @ if (i) P and Q
have the same ordinate and P lies to the left of @ or (ii) the ordinate of
P is below that of Q. If U € E(R,), E(R:) or E(Ry™), we associate with
ita (J — 1) X (K — 1)-dimensional vector (also called U) whose com-
ponents are the function values at the points P € R} ordered in accordance
with the above rule of precedence.

Lemma 1. Let U, V and F be as in Theorem 3. Then for the associated
vectors,

(1.10) cLU = BV + ¢D,,
(1.11) LV + 2¢h*MU = c¢h’F + ¢h™*D,,
(1.12) L’U+ 2MU =D, D = LD, + D, + I'F,

where Dy is a known vector arising from the values of @, and D, is a known
vector which is a linear function of h whose coefficients arise from values of
G and Gy .
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L]_ I — pa

0 M 0
I L, I. M,
L= , M = )
Y 0 "
i I LK__l_ L K-1 _]
where I, and My are (J — 1) X (J — 1) matrices given by
oV -
0
1 —41
Ly = ' _ , k=1,2---,K—1,
1
0 =
L 1 —4]
2 1
1 0 0 0
My= Mgy = , M= ,
0 1 0 0
2 1

k=23 -, K—2

Proof. To obtain (1.10) write down (1.7) at each P € R, in the order of
Definition 3; then use (1.8) to eliminate U(P) for P € B ; ﬁnally, rear-
range terms and multiply by A% To obtain (1.11) write down (1. 7') at each
P € R in the order of Definition 3; use (1.7) to eliminate V(P) at each
P € B, — C;then use (1.9) to eliminate U(P*) ateach P € B, — C;
having done this use (1.8) to eliminate U(P) at each P € B, ; finally, rear-
range terms and multiply by A*. Equation (1.12) follows from (1.10) and
(1.11).

DerinrTioN 4 (Basic iteration).

(a) Let Un € E(Rs) satisfy Un(P) = G(P),P € Bu.

(b) Extend U, to E(R.") by the formula (1.9).

(¢) Let Vpy € E(R, — C) be defined by requiring V,u(P)
= ¢A, Un(P), P € By — C; Ay Viun(P) = ¢F(P), P € Ry .

(d) Let Uny € E(Ry) be defined by Unu(P) = G(P), P € By;
eAy, Upr(P) = Vua(P), P € Ry
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Lemma 2. In vector notation we have, for the iterates of Definition 4,

(1.13) LV i1 + 2087°MU,, = ch’F + ch™°D,,
(1.14) cLUpis = B*Vms + ¢Dy,
(1.15) L’Unp + 2MU,, = D,

and hence,

(1.16) Unir = HU,, + LD, H = —2L7’M.

Proof. An argument similar to that in Lemma 1 establishes (1.13), (1.14)
and (1.15). It is well known (see, e.g., Forsythe and Wasow [2]) that —L
is positive definite.

DerFintTION 5 (The spectral radius). If A is a square matrix, p(4) is
the maximum modulus of the eigenvalues of 4.

THEOREM 4. If 7, = p(L7°M), then . = (how)™", where o — o as
h—0,0 <o < . Thus p(H) ~ 2(sh) " ash— 0.

Proof. The eigenvalues of L™2M satisfy Mu = AL*. Since M is non-
negative definite and — L is positive definite we see that (for the real inner

product (-, +)),
™= max{(MU’ u) . U 0}

(LU, LU) *
1) (LU, LU) B
= [mm {_(M(,], ) MU # O}] .
However,

(LU, LU) = h* Y. (&U(P))%,
PcRy

(MU, U) =k 2, (&U(P)),

PeBp

where the function U appearing on the right belongs to E(Ry), and
3,U(P) = h[UP) — U(P7)],P € B, — C;8,U(P) =0, P € C. Thus,
mn = (hox)™", where

_ e [B (AnU(P)) (P }
(118) o = rmn{hz(mj(m)2 2 U € E(Rw), 5.U # 0p.

In §2 we show that o1, — o, where o is the finite positive solution of the
corresponding continuous minimum problem:

. fL (Au)? dz dy

(1.19) a—mm—-———————:ueﬁz,g—z%o.
j;y(é)u/(')n)2 ds
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LevMa 3. Let A be a square mairiz with eigenvalues a; = u; + ivj,
ki, vireal, where a < u; £ b (0 < a <b),and | v;| £ d. Then, the matriz
H=1— wA forw = 2(a+ b)" satisfies p(H) < (b — a + 2d)(b + a)".

Proof. If \; are the eigenvalues of 4, then A\; = 1 — wa; and

NI =11 — e | + | o]
Smax{|l—wr|ia £z Zb + wd
S(b—=—a)b+a)"+2(a+b)"d

(See Forsythe and Wasow [2, p. 225].)

DzriniTion 6 (Modified iteration).

(a) Let Uy € E(R), Uy(P) = G(P), P € By be given. Then Uy € E(R,)
is given by the iteration of Definition 4. Uy = Uy, U; = wU; + (1 — ) U, .

(b) Uy, Uy, -+ ,Un,and Uy, Uy, -+, Up_yin E(Rs) (all equal to
G(P) for P € B,) have been calculated and extended to E(R,*) by (1.9),
define U,, = wU, + (1 — @)Uy .

(¢) Vpsa(P) = cAUL(P),P € By — C; AyVmia(P) = cF(P),P € Ry .

(d) Um+1(P) = G(P), P § Bh;CAhUm.H(P) = Vm+1(P),P € Rh .

Observe that the values U, need only be retained at points near the
boundary from step to step since they enter only in (¢). This means, how-
ever, that the sequence U,, must be analyzed for convergence to a solution
of (1.4).

LemMA 4. In vector notation the iteration of Definition 6 becomes

(120) LVpyy + 2¢h7*MU,, = ch’F + ch’D,,

(1.21) ¢LUpny1 = BV pyy + ¢Dy,
(1.22) Unip = @Upin + (1 — @)U,
(1.23) Upyn = AU, + oL7’D, H = oH + (1 — w)I,
where H = —2L7°M,
(1.24) Uny1 = HU,, + L7°D.
Moreover, for o = (1 + )7},
(1.25) o(H) En(l+m) ' ~1—0h as h—0.

Proof. Equations (1.20)-(1.24) follow in the same manner as Lemma 2.
Now H = I — wA, where A = I + 2L7°M is a matrix whose eigenvalues
a; satisfy 1 < a; £ 1 427, . Using Lemma 3 we find for w = (1 + 1'},,)—1,
that p(H) < (1 + 7)7". The asymptotic relation follows from Theorem 4.

Lemma 5. Let E,, = U,, — U, where U, is the vector representative of the
tterate of Definition 6 and U <s the solution to (1.12). Then

(126) Em+1 = (H)MHEO .
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Proof. Let E,, = U, — U.Since U = HU + LD, (1.24) shows that
Epy = HE,, = HH)"E, = HH)"E, = (H)"HE, .

Equation (1.26) shows that except perhaps for a distortion by the factor
H (which may be large since p(H) is large as k — 0), the iterates U, con-
verge as rapidly as the U, . Storage requirements for a computer would
seem to indicate a preference for calculating U,, without retention of U, .
Finally, it should be noted that by varying w from step to step a Chebyshev
scheme may be used to accelerate convergence of the present scheme.

2. Op = 0.
DrrintTION 7.

(u, v) = ff wv dz dy, {u, v)p = / uv ds,
R B

lul® = (u w), lulls® = (u, u)s.

DrriniTION 8. u € T if u is a finite sum of the form

(2.1) u = 2 Apgsina ‘prx sin b gry.

LemMmA 6. If u € T, then
(2.2) 47%abA,, = (u, sin ¢ 'prx sin b gry),
(23) lull* = 47'ab 22 A%,
(24) [ Au® = 47%ab 2, (a” ™" + b g'n")’A%,,
(25) ‘ K= claul, H~ < C |l aul,
(2.6) | u(z) I c IIAUH

2 2

(2.7) ‘ gxiﬁ + 2} a‘ig‘y + ’ T || =l
(2.8) [u] < C | Au],
(29) {u, Av) = (v, Au), veT.

The constants C > 0 are independent of the number of terms in the sum
representation of u.

Proof. Equations (2.2), (2.3), (24), (2.7) and (2.9) follow from direct
calculation with the Fourier expansion. Equations (2.5) and (2.8) follow
from Fourier expansion coupled with elementary estimates. Equation (2.6)
follows from the Fourier expansion and the calculation (using Schwarz’s
inequality and the unit bound for the sine function)

e[ ZR s i
B riworian]



330 JULIUS SMITH

DerinTION 9. Let H, = }72( R) be the completion of T with respect to
the norm || w ||z = || Au |

Lemma 7. u € Hads a function in C°(R) with w = 0 on B and strong first
and second derivatives in the Lo sense.

Proof. Equation (2.8) shows that convergence in the || - ||, sense implies
convergence in L, . Equation (2.6) shows uniform convergence and (2.5),
(2.7) imply convergence of the derivatives in the L, sense.

Lemma 8. If u € i, , then, with respect to Ly(R) convergence,

(210)  w = 2. 2 Ay sina 'przsin b gry

p=1 ¢=1
and
(211) Au = — o, > (7P’ + b7 1) A pe sin @ "pr sin b gy,
p=1 gq=1
where
47'abA ,, = (u, sin @ 'prx sin b gry).
Thus

P = 47 X

Il

"
g
Ms

| du? (@' + V)
Properties (2.2)-(2.9) continue to hold for .

Proof. Equation (2.10) follows since u € Ly(R). On the other hand,
Au € Lx(R) and so

0 0
. —1 . —1
Au = D Y Bpgsin @ 'prz sin b gmy,
p=1 ¢=1

47'abB,, = (Au, sin a ‘pre sin b gry). Letting uy — u, v, — v in H, , where
ur, v € T, we see that (2.9) holds for all w,v € H; . Thus,

47'abBy,e = (u, A(sin @ 'prx sin b 'qmy))
= —(a7p’n" + b7°¢n")(u, sin @ ‘prx sin b gwy)

and (2.11) follows. The remaining assertions follow by approximation to
functions in H, by funetions of 7.

Remark. It is not hard to show that H.(R) contains all functions with
strong second derivatives which vanish on B. However we do not need this
result.

Lemma 9. If u € H,, then u has a generalized normal derivative,
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ou/on € Ly(B); moreover,

2
(2.12) g%aécquméaﬂﬂm
where
[ u ”a2 = r'47'ab 2, > [a” '+ b7 2] A%
p=1 ¢=1
and

47abA pq = (u, sin ¢ 'prx sin b 'gry).

Proof. In the expansion (2.10) we consider a partial sum which we call 4.
Then

2 P

I, = j(; 9u (%,0)| de = 27 Z I:Z b ‘1""AM:| ’

ay p=1

°| o : - i
I, = f — (2,b) | dz = 27%a Z [Z (=1)%" q""qu:l ’

o | Oy p=1

b — 2 Q P 2
Asf %mw>dy=f%2[2d%mm]»

o | Ox ¢=1| p=1

b - 2 Q 2
I = f 9u (a, y) =27 Z [Z (=1)%a” p”rqu:I s

h | 0x =1

4L+ L+ 1L,
an ||s
I, < 9 b %2 SIS 1073 42 i —4/3
1= ab 7 q pa q
=1 ¢=1 g9=1

é 27r-2b1/3 Zl q—-4/3 ” i ”2/3 .
9=

Applying this argument to I, , I3, I, we find

au |

s = Crll @l = Cafl @

the second part followed by elementary estimates. Thus, we have (2.12) for
the partial sums. Since the sums % converge to the limit % in H, , We see
that the sums 9i/9n converge in L,(B). We denote this limit by ou/on.
Since the sequence converges in all three norms, (2.12) continues to hold in
the limit.

Lemma 10. Let {u®,k = 1,2, --- ,bea sequence in H, such that

[l = M
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for some constant M. Then there gm'sts a subsequence u®® such that
(i) " converges weakly in H, ;
(ii) u** converges strongly in Hys (the completion of T with respect to

- Nlsrs) s

(iii) du*?/on converges strongly with respect to || - ||s .

Proof Since H,isa separable Hilbert space, a subsequence (still called
u*) and u € H, may be found such that u»* — u weakly in H, . If
w= 2 A peSina 'prasinbgry and u* = > A sinag™ prz sin b gy,
it is easy to show that limy,. A5, = Apg . Let u* = up® 4+ vp¥, where

up® = Z ZA ¢ 8in @ 'prz sin b 'gmy.
»=1 ¢=1

| ur® — s’ ||sss will be small for fixed P and sufficiently large & and I since
A%, and A4}, are close. Moreover,

AW 33 (@ 0 | 4 — Al

Il oe" — ' [[5

p=P+1 ¢=P+1

é 44—1ab Z Z (a 2p2 + —2 2) (a—2p2 + b—-2 2)1/3
p=P+1 q=P+

: | A - A;q I

< [r'4ab 3 Z (a7 0TE) [ A5y — A%, []

p=P+1 q=P+
P 4 b
= [P(a” + 01 [ oe — 02’ 3

<2 Mz Pz(a—z b—2)]—1/3

By selecting P large enough | v" — v* ||5,3 is small. Thus u* is a strongly
convergent sequence in H5,3 , and hence du”/dn is strongly convergent with

respect to ||+ || .
Lemma 11. If H is a separable Hilbert space and u* — u weakly in H, then

ol < lim inf | u* |1
Proof. Let f1, fo, -+, fp, -+ be an orthonormal basis for H. Then
u= Tk, o= Sak, o =L, a=h)
Thus lims.. a,° = a, ; hence

}: ay = lim Z (a,5)* = liminf Y, (a,%)?

p=1 k->p p=1
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TaeoREM 5. There exists a number 0, 0 < ¢ < o, such that

A ou

(213) ¢ = mm{” oufan ] ¥ € ﬁz,% % 0}.

Proof. Let ¢ = inf{|| Au ||/|| 9uw/dn ||s*:u € H,, du/on # 0}. Taking
u = sin @ 'rz sin by we see that ¢ < . Select o, — o to be a minimiz-
ing sequence. If o, = || Au® ||*/|| 9u*/an || 5°, we may assume || ou*/on ||5* = 1
because du*/an £ 0 on B; hence, o = || Au” ||*. Since o1 — o, the condition
| u* || £ M is satisfied. Thus, according to Lemma 10 a subsequence (still
called »*) may be selected so that u* — u weakly in H, and ou*/on — du/on
strongly with respect to ||-||5 . Evidently, || du/dn |5 = 1, and so accord-
ing to Lemma 11,

o < || Mu|® S liminf || Au®|® = 0.
k>0 .
This completes the proof of (2.13). If & were equal to zero, then || Au ||* = 0
would imply by (2.12) that du/dn = 0 on B, and this is contrary to the

assumptions. _
Derinition 10. If U and V belong to E(R4), then

U, Vi = & 2 UPYV(P), | UIW = U, Uh.

If U and V belong to E(R,) or E(Bs), then
U, Vi = hpg UP)V(P), | Ul =1U, Ulsm.
h
DerintTioN 11, If U € E(R,), then 8,U € E(B,) is defined by
8,U(P) = K'[UP) — U(P)], P€ By, — C; 8,U(P) = 0, P € C.
Lemma 12. If U € E(R)), then U may be extended to be a function of T

by the formula
J—1 K—1

Uz, y; h) = D2, D Gpgsin a prx sin b gy,

P=1 g=1
where
47"aba,, = [U, sin a "pre sin b gryl, .
Moreover, if U and V are so extended, we find
[U, Vi =(U, V) and | U= UJ"
Proof. Apply the formula
[sin @ "prz sin b 'gry, sin a jre sin b kayl = 4 'abd, by ,

0<pji<dJ, 0<qgk<K.
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DEerIiNITION 12.
2
on = min{ﬂé"_q”—" U € B(RY), 8uU o}.

Il 62 U ||
Lemma 13. If U € E(Ry), then
J—1 K—1
(2.14) AU = —pz_; q; (A\p + 1q)apg sin @ "pre sin b 'gmy,
where
A, = 201 — cosa 'prh) = 4h7*sin’ (2a) 'prh,
pe = 2031 — cos b 'qwh) = 4h7*sin® (2b) qmh.
Moreover, |
(215) 18aT (I3 = [| Uz 1" + | Uy [15°
and
(2.16) 18U [lsn = Co|| Ullss = Co || AU |.

Proof. Equation (2.14) follows easily. Equation (2.15) may be proved
as follows:

| 8, U |50 = I + I, + Iy + I,
h 2 Uk, 0), I=h) Ui,b),

PEBy PEBy

I

Iy = h 2, US0,y), I.=h) Uia,y),

P¢cB3 PgBy
where, for example, By = B, N {(z,0):0 < 2 < a}.
We consider, for instance,

J—1 k-1

Uy(z,b) = D D apesin @ ‘prz [sin gr — sin b gm(b — k)™

p=1 ¢=1

J—1 ME—1
= I:Z (—1)%ph " sin b_lgprh:, sin ¢ "prz.

=1 |_g¢=1

Evidently, U,(z, b) = Uz, b), and

fo u[Uy(x, b) ds = 27a b [Z( 1)%peh " sin b7 qﬂ-h,]z_

=1 [_g=1
On the other hand,
J—-11rJ—1 K—1
By Uiz, )P =k I:Z > (—1)%ap k" sin b grh sin J~ ;mrr]
PEBa r=1 |_»p=1 ¢=1

J—1 "K—1 2
=27% 3 [Z (—1)%,, k" sin b_lqwh]

p=1 |_g=1
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since
J—1

h Z; sin J 'mar sin J _lpm' = 2"1a6m,, .

Equation (2.16) follows from the inequalities | A" sin ¢ 'prh | £ a 'pr, .
| B sin b'gwh | < b 'gr and a repetition of the arguments of Lemma 9.
Lemma 14. Let o be as in Theorem 5. Then,

limsupor =0 as h—0.

Proof. Choose a minimizing 4 as in Theorem 5. (¢ = | Au |,
[l du/on ||5° = 1.) Let

w=3

=1 ¢

Ms

. —1 . —1
A pgsin @ prx sin b gy,

1
-

and let
J—1 K—1

U, = Z Z A pq sin a"lpwx sin b”lq‘zry.

=1 g=1

Observe that
o || 8T I5n S | MU [* = || du|* = o,

since A, < a pr” and u, < b °¢’r". Using (2.16) we have for some C,
6.0 ll3n = || Use [l5* + || Uny [I5° = C | AU I

and because Uj — u strongly in H, it follows that Uy, — w; and Uy, — us
strongly in L,(B). However, since A" sin ¢ ‘prh — o 'pr and h~" sin b 'grh
— b 'gm, we know that Uy, — du/dz and Uy, — ou/dy weakly in Ly(B).
Thus u; = 0u/0zx and uy = 9u/9y; so as h — 0,

2

+

B

2 2

du
dy

ou
n

ou
or

B

B

TR )l

and

limsup o3 < o (lim || 8, Uy [|51) ™" = 0.

TuEOREM 6. Let o be asin Theorem 5 and oy, be as in Definition 12. Then
limo, =0 as h— 0.

Proof. Suppose lim inf o, = 09 < cash— 0. Let 0; = o4, > 00 as 7 — =,
let Us = Uy, € B(By,),let A = Ay let [|-[|: = [- [, and Iet || [la; = [ s
Then, g; = ” AZU, ”,‘2 and ” 5,,Ui ”?3,, = 1.

Thus, || A;U; || < M, and since 27" < 6 'sing < 1for0 £ 6 < 27'm,
we see that

1607 || AU I < || AU: |18 £ || AU |
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According to Lemma 5 there is, consequently, a subsequence (still called
U;) such that U; — uy weakly in H, and strongly in Hm We may set
Ji—1 K;—1

Ui= 2, Eamsma Ypmx sin b gy

._1 q-—
and

L] 0

=, Z Opg Si0 @ "pr sin b7 qmy.

p=1 ¢=1

"The weak convergence implies that b, — ape as ¢ — «. It follows, since
) —2 2 2 ) —2 2 2 .
Ao > @ P, pg —b g ast— o and

Ji—1 K;—1
AU = — Z Z()\ + 1g')ab, sin @ prx sin b gy,
p=1 ¢=1

that A;U; — Auyweakly in Ly(R). According to Lemma 11, we find as i — «

that
oo = lim || AU |2 = lim || AU |2 2= || Auo %

From Lemma 13 we conclude that
| Ualls + | Ui l|5" = || 8.Us |5 < C || Usllss

so Us and UW converge strongly in Ly(B) as ¢— . But as 1— o,
Qog = Gpg, hi'sina ‘prh;— a 'pr, and h;'sinb grh; — b 'gr, so
U, — 0uo/dx, and U, — 0up/0y weakly in Ly(B). It follows that
Uix — duo/dx and Uy, — dug/dy strongly in L.(B). This yields, finally,

dus ’

ox

Yo
9y

and so ¢ < || Aup || £ o0, in contradiction to the initial assumption.

duy
on

2
+

B

= lim || 0, Ui ”?3.' = l

B B

3. Symmetrization and bounds for o.
TaEOREM 7. Let D be a bounded domain whose boundary is a piecewise
analytic, simple closed curve. Then there exists a number ¢ = (D),

0 < o < o, such that
ff (Au)® dx dy
D

N (du/on)’ ds

(3.1) ¢(D) = min Tu € HZ(D) — # 0.

Proof. The definition of H, for a general domain may be found in Morrey
[4]. A proof of this theorem parallel to that of Theorem 2.1 may be made
since the necessary tools and inequalities may be proved without the use
of Fourier series (see [4]). We omit the details.
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TurOREM 8. Let | D | be the area of D. Then, if D satisfies the conditions
of Theorem 7, we have

(3.2) o(D) Z o(Bg,),

where Bz, = {(z,y) : &' + ¥ < R} and 7R’ = | D |. It must be assumed
that u, the minimazing function of (3.1), has no nodal lines.

Proof. A modification of the arguments in Morrey [4] may be used to
establish the regularity of u up to the boundary. The argument of Pélya
and Szeg6 [8, p. 236] for the clamped plate may then be modified by choos-
ing

o) = | 4'()] [A<p)1“‘{<4w>“* [ e [A'(t)}*”dt+c}, >0,

This leads to a @ such that
(g—Z> = lim | A"(p) |7 (p)2rR = lim | A" (p) | g(p)2xR
Rg p>0 p>0

= m? { (2rR)[4rA (p)]™ fo ! QA" dt + [A(p)]_127rRC}

= 2CR,%
Thus

-\ 2
f ("_“) ds = 8C°Ry"
9BR, an

so C may be chosen to obtain

2
f (‘39) ds = SxC*Ry~.
ap \on

This leaves f (du/dm)? ds invariant. It follows from the argument in [8
aD

that f f (Au)® dx dy is also invariant so that
D

fj; (Au)? dx dy
j;n (du/on)* ds

fL (Aw)® dz dy
) j; o (0a/on)* ds

o(D) =

2 G'(Bno)-




338 JULIUS SMITH

THEOREM 9.
(3.3) o(B,) = 2r .

Proof. By the usual perturbation argument involving v -+ tv, where v
satisfiesv» = 0 on 9B, , we may show that the Lagrange multiplier rule holds
in the form ¢(B,) = min{\ : AAy = 0 in B,, Au = \(du/dp) on 4B,
du/dp % 0, u = 0 on 9B,}. p is the running radial coordinate from 0 to .

It is well known, however, that a solution of the biharmonic equation in
B, must have the form w = Hy + r *p°H, , where H, and H, are harmonic
in B, . An application of the boundary conditions leads to Hy + H; = 0 on
the circle of radius r and Hy + H; = 0in B, , so that w = (1 — szz)H,
where H is harmonic. Now Au = —4r"H — (4r °p)dH/dp, whereas
du/dp = (1 — r 0" )oaH /dp — 2r *pH. At the boundary, Au = A(du/dp)
leads to 9H/dp = (2N — #)H. H must have the form H = 27'a,
+ > (pr™")"(an cos nb + b, sin n6). This leads to r 'na, = (27N =7 Da,,
and r'nb, = (27N — 7 )b, . We may therefore conclude that the eigen-
values A = \, have the form \, = 2r"l(n + 1),sothat ¢ = N\ = 21,

CoroLLARY 1. For a rectangle R,

2742 242
T (b +a ) > > —171/2
m = O'(R) = 2[7r(ab) ] .
Proof. The lower bound is immediate from Theorems 8 and 9; the upper
bound follows by using 4 = sin o 'z sin b 'ry in the definition of ¢ as a
minimum.
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gested and sketched the use of trigonometric series in §2. In fact, the use
of trigonometric series made possible a brief self-contained presentation of
the existence of ¢, while providing the key estimate of Theorem 2.2.
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