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THE COUPLED EQUATION APPROACH TO THE NUMERICAL
SOLUTION OF THE BIHARMONIC EQUATION
BY FINITE DIFFERENCES. II*

JULIUS SMITHt

1. Introduction. The first part of this paper has appeared in this Journal,
5 (1968), pp. 323-339. There, a scheme for numerically solving the biharmonic
equation is divided into inner and outer iterations. Part I (§ 1-§ 3) gives the details
for the outer iteration scheme.

In § 4 we prove a general theorem for inner iterations (Theorem 10), and then
give details for two possible inner iteration schemes, while in § 5 a Chebyshev
scheme for the outer iteration is discussed.

The bibliography is given in Part 1.

4. The overall iteration scheme.

DErINITION 13. If L is a nonsingular square matrix, then S, and N,,p = 1,
2,---,are said to describe a linear iteration for L if | — N oL = S,. The iterates for
the equation LU = K are given by

U,=5,U,— + N,K.

LEMMA 15. If S, and N, describe a linear iteration for L, then the p-th iterate,
U,, is given by
U,=T,Uy + C,K,
where I — C,L = T,, and T, = S,S,_; -+ S{. Thus, T, and C, describe a linear
iteration for L.

Proof. By induction on p.
DEFINITION 14. The outer iteration is given by

4.1) LVs1 + 2ch™2MU,, = ch™ %4,
4.2) LUpiy =c WV, + B,
(43) Tost = @Upas + (1 — )T,
where

A=h4F+D2, B =D,
(see Lemma 4).
DerINITION 15. Let S, and N, describe a linear iteration for the discrete
Laplace matrix L (see § 1) and let T, and C, be the resulting p-step iteration of
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COUPLED EQUATION APPROACH 105

Lemma 15. We assume | T,|| < 1, and hence C p is nonsingular. The overall itera-
tion (i) is given by

4.4 Vas1r =TV, + ch™2C,[-2MT,, + A],
(4.5) Un+r = T,U, + C,[c™'h?V,,., + B],
(4.6) Un+1=0Up,; +(1 — w)U,,,

while the overall iteration (ii) is given by

4.7 Vi+1 = T,V,, + ch™*C,[-2MU,, + 4],
(4.8) Un+1 = T,U, + C,lc”'h*V,, ., + B],
4.9) Upni1 =0Up + 1-0)T,,.

We have replaced the solution of a Laplace difference equation by a p-step
approximation to this solution. Notice that (ii) requires less storage if U,, is not
retained in the interior, while averaging need be performed near boundary points

only.

LEMMA 16. The iterates U, of (i) satisfy
(410) Um+1=P1Um+P2Um—1+K’
where

Pi = (1 = o) - 20CM + T, + C,T,C; !,
P, = C,T,C, '[(w — )] — wT,],
K = o[C;4 + C,B — C,T,B] = oC2[4 + LB),
while the iterates, U, of (ii) satisfy
(4.11) Un+1=01Un + Q,U,_, +Q3Un-; + K,

where
01=T,+ CTLC,' + (1 — o) — 20C3M,

2 = (@ = DT, + (@ - )C,T,C; ' -~ C,T,C, 'T,,
Qs = (1 — w)C,T,C; 'T,.

Moreover,
(4.12) I-P —P,= cuCﬁ[L2 + 2M].
(4.13) I-Q,-Q0,-0;= cuCﬁ[L2 + 2M].

Equation (4.10) may be written in the matrix form

14 [Uzﬂ] _ [Pl Pz:,[_U,,, ] N [con, 0 :,[A + LB]
U, 1 0]4lL0,_, 0 wC? o I,

while (4.11) may be written in the form

Um+1 Ql Q2 Q3 Um CUCIZJ O 0 A + LB
@15 | U [=[1 0 0|0, |+]| 0 wcz o 0
Um_ 1 0 1 0 Um -2 0 0 CUCIZ, 0
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We observe that (4.12) and (4.13) ensure that when U,, is convergent to U, we
have [L? + 2M]U = A + LB. U is thus a solution of (1.12).

Proof. Equation (4.10) follows by using (4.4) to eliminate ¥}, in (4.5), then
using (4.5) for m — 1 to eliminate V,, in the resulting equation. Equation (4.6) is
used to eliminate U,,,, and U,,. Equation (4.11) follows in the same way from

(4.7), (4.8) and (4.9).
I 0

Lemma 17. If
where A, A,, I and 0 are square matrices of the same order, then
(4.16) p(H) < 27 [ As]l + (141> + 41421021 < 144 + 142012

Proof. If an eigenvector of H is properly partitioned, we arriveat 4, U + A,V
= AU, U = AV, where V 2 0. If we eliminate U from the preceding equations, and
form the (complex) scalar product with V in the resulting equation, then, (assuming
(V,V)=1) 22 — a;4 — a, = 0, where a; = (4,V, V) and «, = (4,V, V). Since
loty| £ ||A,]| and || £ || A4,]l, the result follows from the quadratic formula.

THEOREM 10. If
P, P
" [ ) 2]
I 0

is the iteration matrix of (4.14), then
(4.17)  p(H) <y,
where
=11+ + e, + 1+ )T, + TN + )~ I T,I1'2,
T=1,= p(L™*M), T, = LTpL_l’
3T+ 20T, + 2ATIT + 1T,
and v = (1 + 1)~ 1. Moreover,
(4.18) 7, =1—04h + ¢l + Oh'?)] + O(h*) as h—0.
Proof. p(H) = p(H'), where
o I:Al Az]
I 0
and 4, =C,'P,C,, A, =C,'P,C,. If we notice that C,'T,C, =T, and
C,= (I — T,)L™',then
Ay = (1 - o) = 20L™*ML™! + 20T,L"'ML™! + 20L™'ML™'T,
= 20T(L"'ML™ YT, + oT, + T,
A, = Tf(w — DI — oT}).

©p



COUPLED EQUATION APPROACH 107

Thus, we have
[4:] £ (1 — )] — 2wL~*ML™|
+ 20|LTMLTYITH + (Tl + I T 1T + ol Tl + 1T,
421l S 1Tl — @) + oT,|.

On the other hand L™!'ML™" is symmetric and L™2M = L™ '[L™'ML"']L so
IL"*ML™Y| = p(L™2M) = t while

10 = o) = 20L™'ML™"|| = p((1 — w)] — 20L™2M) < 1(1 + 7)1,
Hence, we obtain with the aid of Lemma 17,
p(H) = (1 + 0711 + 2| T + 21Tyl + 21T, IIT,I)
+ (1 =9 T, + T,
+ (1T 1 + 7' + (1 + 1)~ 1T, |)12,

since w = (1 + 7)1 If we observe that 7(1 + 7)~! < 1, it is easy to verify (4.17).
Equation (4.18) follows from a direct examination of ¥p»combined with Theorem 4,
and the relation w = (1 + 1)~ ..

An analysis of (4.15) similar to that we have made for (4.14) may be made
with the aid of Vieta’s formula for the roots of a cubic polynomial. We omit a
detailed discussion.

DEerFINITION 16. If r > 0, then

k = (logr)(log p)~ 1,

where p = p(H) and H is given in Theorem 1, is said to be the number of outer
iterations required to reduce the initial error by a relative amount r.

For a discussion of the motivation for this definition, see Varga [10, p. 61].

DEFINITION 17. If p is the number of steps used in the matrix H of Theorem 10
(H depends on p, see Lemma 16) and k is given in Definition 16, them m = 2pk is
said to be the total number of iterations required to reduce the initial error by a
relative amount r.

DEerFINITION 18. Let k' = (log r)(log v,) " '. Evidently, k' > k (see Theorem 10).

COROLLARY 2. Let S, = S be the Jacobi matrix for L, (and hence T, = SP,
see [10]), let B = p(S), let 0,:0 < o, < oy, and let p, = (log f)~*(2 log a,h). Then

4.19) ey, = hoy, + O(h?)
and hence,
(4.20) Voo = 1 — (0, — a)h + O(K*73).

It follows that, as h — 0,

(4.21)  2pok’ = 2(log Blogy,,)” (2 log a,h)(log r)
= 16h7>u" (o4 — @) ~'(~log ah)(~logr)[1 + O(h'?)],

where p = n*(a™? + b™?).
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Proof. For integer p, we find since T, is symmetric and commutes with L, that
IT,I = T, = p(T,) = BP. 1t follows that

(4.22) e, = S5BP + 287 + (B7)\2.

For arbitrary real p we define e, as in (4.22). y, may be defined for all real p in a
similar manner. Now % = («,h)? so that

e,, = hoy, + 5h*a} + 2h*w,

and (4.19) follows. Applying (4.19) to (4.18), (4.20) follows. It is well known, that
B=1—4""uh* + O(h*) and hence as h— 0, —logp = 4~ 'uh* + O(h*). On
the other hand —logy,, = (o, — &) + O(h*’?). A short calculation yields (4.21).

DEFINITION 19. Let S; = [I — aj—4(—L)],j=1,2,---, p, where the aj ' are
the roots of the polynomial

Qp(x) = Cllc + d — 2x)(d — )~ ')/C,[yo].

In this formula C,(y) = cos(pcos™! y) is the Chebyshev polynomial of degree p,
and y, = (d + ¢)(d — ¢)~*. c is the smallest eigenvalue of — L, and d is its largest
eigenvalue.

For a discussion of this method for solving equations with a positive definite
matrix the reader is referred to Forsythe and Wasow [2], where the method is
called ““Richardson’s Method”. It is sometimes called the “Extrapolated Jacobi
Method.”

COROLLARY 3. Let S, and y, be as in Definition 19, let A = y, — (y§ — 1)'/2,
suppose that ay,: 0 < o, < 0, and let

po = (log )" 1(2log 27 2hay,).

Then, we may find é,, and J,, such that

4.23) ey, = &,, = hay, + O(h?)
and .
(4.24) Vp S Tpo =1 —(0h — ap)h + o(h*?).

It follows that, as h — 0,
2pok = 2po(log r)(log 7,,)
4.25) = 2(log Alog 7,,) " '(2log 2~ ?hay) (log r)
= 252~ 12~ 2(g, — )" Y(—log 27 2hey)(—log r)[1 + O(h'?)].

Proof. Let p, = p(T,). For integer p, it follows again since T, is symmetric
and commutes with L that | T,|| = | T, = p,. In this case we have

e, = 5p, + 2p + py/%.
Using the definition of T, we find
T, = [ ~ tp (= L]0 — tpa(~L)] -+ [T = oto(—L)] = @y~ L).
From Forsythe and Wasow [2, p. 228] we see that ||T,| < 24”. Thus

e, < 1047 + 82?7 + 2112272,
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We let €, be the right-hand side of this expression. , is defined by replacing e,
by é, in (4.18). Evidently, e, < &, and y, < 7,. Since

2270 = (hoy,)?,

we obtain (4.23). Equation (4.24) follows from the definition of ¥,  and (4.23).
A calculation similar to that of [2, p. 230] yields

¢ = 4(sin? 27 'a” 'nh + sin? 27 'b " 1nh),
d=4[sin*(1 — a W27 'n + sin*(1 — b~ h)27 'x].

This furnishes the result
Vo =1+ 47 1uh? + O(h*),
and hence |
A=yo— (5 — D2 =1-27"2u12h + O(h?).

This, together with (4.24), yields (4.25).

Since the numbers 2pok’ and 2pyk represent, roughly the overall number of
iterations required for reducing the initial error by a relative amount r, we would
like to minimize these quantities with respect to &, which is still at our disposal.
Thus, we must study the minimization of the function (—log Ca)(a), — o)~ ",
C > 0,in theinterval 0 < o < g, where C = hinthe firstinstanceand C = 27 1/?h
in the second.

LEMMA 18. Let C >0, A >0, and CA < 1. Then, the function ¢(o)
= —(4 — o)"!log Ca has a unique minimum in the interval 0 < oo < A which is
attained at the value o = ay. Here ag = eC ™~ 'x, and x, is the unique solution of the
transcendental equation

—xlogx = e 'CA.

Moreover, P(ag) = ag L. e is the base of natural logarithms.

Proof. By calculus.

LEMMA 19. Let f(x) = —xlogx, 0 < x < e ' and let g(y),0 < y < e !, be
the function inverse to f(x) in this interval. Then

gy) ~ y(—logy)™! as y-O0.

Proof. Since —g(y)logg(y) = y, we need only show that log g(y) ~ logy
as y — 0. Moreover, the same formula shows that y~'g(y) » 0 as y — 0, since
g(y) evidently approaches zero. But we also know that g'(y) = —[log g(y) + 1]7*
= g(»)[g(y) — y]~!; thus if we apply L’H6pital’s rule to the ratio log g(y)[log y]~ 1
we obtain yg'(y)[g(y)] ! = —ylg(y) — y]~!. Thisratio tends to 1 since y~ 'g(y) — 0.

COROLLARY 2. If o, is chosen to be o, as in Lemma 18 with A = ¢, and C = h,
thenas h — 0,

(4.26) 2pok ~ 16h3u~ 16~ [—log (e 'ah)](—log ).
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Proof. —(log ayh)(a), — o) ™! = P(ay) = g !, for ay = ay. But
ap = eC ™ gle 1CA)
~ (eC™Y(e 'CA)[—log (e tCA)]!
= o[ —log (e 'hay)] "
~ o[—log (e toh)]~ L.
COROLLARY 3. Ifay is chosen to be ay as in Lemma 18 with A = o, and
C=27"12p,
then
4.27) 2pok ~ 232~ 12p= 26" [ —log (e~ 127 V2ho)](—log r).

If S, = S is chosen to be the successive over-relaxation matrix for L, we see
that T, = S”. Thus, if we desire to estimate e, in Theorem 10, for large values of p
we have available the estimate (see Varga [10, p. 65 and p. 114])

1Tl ~vp?~" as p— oo,
and since T, = LT,L~ ! we also have
[T, ~vpi?~! as p— .

Here 1 is the spectral radius of S, the S-O-R matrix for L. In order to carry through
the program of Corollary 2 for this iteration we are faced with two problems.
First, the estimates we have are valid only for large p, whereas the estimate (4.22)
holds for all p. In the second place, although the behavior of 1 is well known as
h — 0 we must also determine the growth of v and v’ as h — 0 in order to obtain a
result comparable to (4.19). Further work is needed to complete the study of this
method.

5. The Chebyshev scheme for the outer iteration.
LemMA 20. If in the outer iteration of Definition 14 we replace @ by w41,

then the iterates V,, satisfy
(5.1) Vur1 =V + 0,(G — KV,,), m=12-.-,

where

(5.2) K=1+2L"'ML™!, G=ch 3L '4A - 2L 'ML™'B).
Moreover, V as defined in Lemma 1 of § 1 satisfies

(5.3) KV =G.

Proof. In (4.1) replace m by m + 1 and solve for V. ,. Where U,,, ; appears,
use (4.3). In the result, use (4.2) to eliminate U,,, . Finally, use (4.1) to eliminate
MU,,. Equation (5.3) follows immediately from (1.10) and (1.11).

We solve for V here since K is a symmetric positive definite matrix.

LemmA 21. If E,, =V, — V, then E, ., = (I — 0,K)E,, and hence E, .,
= P, (K)E,, where

P,(x) = ﬁ (1 — wx).
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Proof. A direct calculation together with (5.3).
LeMMA 22. The eigenvalues, kg, of K satisfy

1<Kk, <1 +2t,=1+2(ho,)" L.

Proof. p(L™*ML™') = p(L™?M) = 1, = (ha,) ! (see § 1, Theorem 4).
DerINITION 20. The average rate of convergence for m iterations of (5.1) is
defined by
R[P,(K)] = —m~ ' log || P(K)|

(see Varga [10]).
THEOREM 11. Let a = 1 and b = 1 + 21, and suppose that the w; ', j = 1,
2, ---, m, areroots of the polynomial

Py(x) = Cyl(a + b — 2x)(b — @)~ ')/Cp(yo).

In this formula C,(y) = cos (m cos~1y) is the Chebyshev polynomial of degree m,
and yo = (b + a)(b — a)~". Then,

(5.4) IPAKI < 2[yo + (v5 — DV217™

Hence

(5.5) R(P,(K)) = —m~'log2 + log(yo + (¥§ — D)'?).
Moreover,

(5.6) log (yo + (y3 — 1)Y?) ~ 2ho)'? as h—0.

Proof. Relations (5.4) and (5.5) follow as in Forsythe and Wasow [2, pp. 228,
229]. Relation (5.6) follows from the same source and the fact that ab~! ~ }ha,
~ +ho as h - 0.

Relation (5.5) indicates that for sufficiently large m, a bound for the rate of
convergence for the outer iteration with Chebyshev scheme is ~ (2hs)'/?, while
that for the scheme of § 1 is given by —log (1 — oh) ~ ah. A so-called second order
iteration (see Forsythe and Wasow [2]) may be used to obtain the full power of the
Chebyshev rate of convergence. This method, however, necessitates additional
storage.

Finally, we conjecture on the basis of the results of this section that for a
Chebyshev scheme for the outer iteration we should obtain an estimate for the
total number of iterations of the form

m = 2pk 2 —ah~3?log bh(—logr),

when Richardson’s method is used for the inner iteration.

Note added in proof. The author would like to thank J. F. Kuttler and V. G.
Sigillito for pointing out an error in the proof of Theorem 8 (Part I). Although the
result is probably true, a correct proof has not yet been found. Corollary 1 which
depends on Theorem 8 has been used in calculations to estimate ¢. The result is
empirically close to an optimal value in applying this method to a biharmonic
problem.



