On Membranes and Plates

G. Szego

Proceedings of the National Academy of Sciences of the United States of America,
Volume 36, Issue 3 (Mar. 15, 1950), 210-216.

Stable URL:
http://links jstor.org/sici?sici=0027-8424%2819500315%2936%3A3%3C210%3A0OMAP%3E2.0.CO%3B2-8

Your use of the JSTOR archive indicates your acceptance of JSTOR’s Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR’s Terms and Conditions of Use provides, in part, that unless you
have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and
you may use content in the JSTOR archive only for your personal, non-commercial use.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or
printed page of such transmission.

Proceedings of the National Academy of Sciences of the United States of America is published by National
Academy of Sciences. Please contact the publisher for further permissions regarding the use of this work. Publisher
contact information may be obtained at http://www.jstor.org/journals/nas.html.

Proceedings of the National Academy of Sciences of the United States of America
©1950 National Academy of Sciences

JSTOR and the JSTOR logo are trademarks of JSTOR, and are Registered in the U.S. Patent and Trademark Office.
For more information on JSTOR contact jstor-info@umich.edu.

©2003 JSTOR

http://www.jstor.org/
Wed May 14 19:53:00 2003



210 MATHEMATICS: G. SZEGO Proc. N. A. S.

! Weyl, H., “Almost Periodic Invariant Vector Sets in a Metric Vector Space,” Am.
J. Math., 71, 178-205 (1949).

? Neumann, J. v., “Almost Periodic Functions in a Group 1,” Trans. A.M.S., 36, 445-
492 (1934).

3 Bochner, S., and Neumann, J. v., “Almost Periodic Functions in a Group I1,” Ibid.,
37, 21-50 (1935).

4+ Maak, W., “Moduln fastperiodischer Funktionen,” 4bk. Math. Sem. Hamburg Univ.
16, 56-71 (1949).

5 Maak, W., ‘‘Abstrakte fastperiodische Funktionen,” Ibid., 11, 367-380 (1936).

ON MEMBRANES AND PLATES
By G. Szec0O

DEPARTMENT OF M ATHEMATICS, STANFORD UNIVERSITY
Communicated by J. L. Walsh, January 20, 1950

I. Introduction.—1. We deal with three closely related problems of the
Calculus of Variations having some connection with the theory of elastic
deformations.

Let D be an arbitrary domain in the plane bounded by a simple curve
C. We denote the area-element of D by do. The admissible functions «
are defined in D and satisfy certain boundary conditions on C. We de-
fine the positive numbers Ay, Ay, A3 as follows:

. oS | grad u |* do

M2 = mi ~  ut do # = 0 onC, (@)
oSS (V) de du
4 = _— = — =
A2 min. TS wtde U o 0 on C, (0)
. JoJS (Vu)?de du
2 = = — =
As . oS | grad ulz deo’ " on 0 on C. ©

Obviously, A2 2 AAs.

In (a) we allow only continuous functions which have piecewise con-
tinuous first derivatives. In (b) and (¢) we allow only functions with con-
tinuous first derivatives. For the sake of simplicity we assume that C is
an analytic curve.

2. Problems (a) and (b) are classical; the quantities A; and \; are the
fundamental frequencies of a membrane with fixed boundary and of a
clamped plate, respectively. Problem (¢) occurs in the study of the buck-
ling of plates.! All the three problems have a considerable literature for
which we refer to the book of Weinstein.

As to (@) Lord Rayleigh has formulated the following conjecture which
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was first proved by G. Faber:> For all membranes of given area the circular
one has the gravest fundamental tone (lowest fundamental frequency).

Our purpose is to prove an analogous theorem for the problems (b) and
(¢), i.e., for the quantities A, and A;. This can be done under a certain hy-
pothesis concerning the functions « for which the minima in () and (¢) are
attained. The hypothesis is the following: The functions uw minimizing
problems (b) and (c) are different from zero throughout the domain D, that is,
the fundamental vibrations do not produce any nodal lines.

3. We note the Euler-Lagrange differential equations associated with
the minimum problems formulated above:

Vi + Mu = 0, (@)
V2Vl — Ngu = 0, ("
V2V 2y 4 N2V = 0. (¢

It is of interest to point out the minima in question for the special case of
acircle. Denoting the radius of the circle by a we have

M= j/a, N = k/a, A =j'/a
where 7, %, j' denote the smallest positive roét of the Bessel functions
To@), S ) = W@, ),
respectively. We have
j = 2.405, k=319, j = 3.832. 3)

Thus the principal result can be expressed as follows: Let D be an arbi-
trary domain and let a be the radius of the circle of the same area as D. Then,
under the hypothesis formulated above, we have the bounds

M 2= j/a, N = k/a, s = j'/a. 4)

The first inequality is the content of the theorem of Rayleigh-Faber, the
second and the third are proved in the present paper (under the hypothesis
mentioned above). In all the three cases the proof is based on the process
of symmetrization as it was in the proof of Faber. However we shall
modify Faber’s argument at a point which will be essential in dealing with
the more difficult second and third problem.

II. Problem (a): Membrane with Fixed Boundary.—1. We denote by
% the minimizing function of I (e¢) which is krnown to be different from zero
in the interior of D. Hence, we can assume that 0 £ # < 1. We denote
the level curve u = p by C,, 0 £ p £ 1, so that Cy, = C and C; coincides
with the point(s) at which the maximum # = 1isattained. The set C,con-
sists of a finite number of separated curves; for the sake of simplicity we
assume that C,is a single Jordan curve.
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Let us denote by 4 (p) the area of the domain inside of C,. Thus 4(0) =
A is the area of the given domain D, 4(1) = 0. We define the quantity
R by the equation 4(p) = wR? so that R is a decreasing function of p; the
maximum Ry of R is the radius of the circle which has the same area as the
given domain D.

2. We symmetrize the level curves C, by replacing C, by a circle of
radius R about a fixed point, say the origin. The domain D is replaced then
by a circular disk D of radius R,. We define on D a function % by the
condition that # = f(p) on the circle of radius R; the function f will be de-
termined in such a way that the integral in the numerator of I (e¢) does not
change in the transition from D to D and from % to %. That is, if de is
the area-element of D,

./};f[gradul2da=_/éf|grad12|2ﬁ;. €))
On the other hand, we shall prove that
JoS wde £ S5 Si* do. 2

Also the boundary condition # = 0 will be satisfied. This yields the asser-
tion immediately.

We observe that this argument differs from that of Faber. He defines
the “‘symmetrized’’ function 7% by the condition % = p and shows that this
process diminishes the integral in the numerator and leaves the integral
in the denominator unchanged.

3. In what follows we use the notation

dp
dn
where dp > 0 and d# is the piece of the normal of the level curve C, between
the level curves C,and C, 14, The area of the ring-shaped domain between
these curves is A(p) — A(p + dp) = —A’(p) dp. On the other hand, if ds
is the arc-element of C,, we find for the element do of this area do = ds-dn
= ds-dp/G so that

~4'(p) = | A'G) | = So-,G1ds. o)
By Schwarz’s inequality
SoooGds foo Gl ds 2 (- ,d9) = (L) (5)

where L(p) is the length of C,. Using the isoperimetric inequality (L(p))%=
47A(p) we obtain the following important inequality for the first integral
occurring in (5) which we denote also by P(p), p > 0;

_ 474 (p)
Pp) = Ju=,Gds 2 ’A'(p)"

G=|gradu| = 3

(6)

Obviously
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! d
fflgradulzdo=ff62da=ff G2 ds- £ =
D D 0 Ju=0o G
1

[ P(p)dp. (7)
4. Now we define the function % = f(p) as follows:

P . A' 1/2
flo) = f @) (ﬁg)—b dt, p>0. (8)

This integral exists since P(p) [see (7)] and A’(p) are integrable. Also it
tends to zero with p so that # satisfies the boundary condition. We have
A'(p) dp = 27R dR, hence

oo (PEN e (PPN 2 gy AR

| grad @ |* = (m) = (') (m) = O iy =
reyye Ardle) _ Plp)
SO Gty = Tao T

The area between the circles of radii R and R + dR is 2rR dR = IA' (p)l dp
so that we find

©)

S S |grada [2de = fi* P(p)dp (10)

which proves indeed (1).
On the other hand we conclude from (8), by (6),

flo) = So*dt = p. (11)

Hence

Sror | A') | do= SoH (F()2 ] AT (o) dp (12)

which proves (2).

This establishes the assertion.

III. Problem (b): Clamped Plate—1. We denote the minimizing
function again by # and assume that 0 = # < 1 holds throughout the domain
D. Let0<p<1. Weconsider the open set # < p which consists in gen-
eral of several simply or multiply connected components K,, K,/, . . . .
One of them, say K, has the curve C (¥ = 0) as part of its boundary. On
the rest of the boundary of # < p we have # = p. We denote by A(p) the
area of the complementary set characterized by the condition # = p.
The function 4 (p) is continuous and monotonically decreasing; 4(0) is the
area of the given domain D and 4A(1) = 0.

2. We write again | grad » [ = G. There is no need for any change in
the argument of II 3; in particular II (4) and inequality (5) hold.
Here L(p) is the total length of the set of curves # = p. Now we apply
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the isoperimetric inequality (L(p))? = 4wA(p). Obviously more than
this is true: L(p) can be replaced by the total length L,(p) of the curves
which together with C bound K,. Also A(p) can be replaced by the area
Ai(p) bounded by the curves just mentioned. We have L(p) = Li(p),
A(p) = Ai(p).

Thus II (6) holds without any change.

3. Now we introduce the notation, p > 0,

f p(wu)?‘g - 00 (1)
so that

ff <v2u>2do=[f=p<v2u>2§dp=f 0l)dp. (2)

To be sure, Q(p) has no meaning for p = 0 but the integral (2) is finite.
By Schwarz’s inequality:

ds ds ds\?
2,\2 > s 9, 2
ﬁ=p(vu)G.[=pG=<£=pqu> ®

ds

Q@eN" 4 [ 2 [= Vi )

The integral of the function on the left-hand side of (4) existsin0= p =< 1
since Q(p) and 4’(p) are integrable. Integrating we obtain

/| 1 d‘
/p(Q(t))/“{A’(t)[/thgfpf vl dp =
0 0 u =1 G
ff Viude = — / a—uds =—/ éz-td5=
pbn w=p OR

o= u P % =0, U=

- 4 A (p)
ﬁ:pc & = P) = TS (5)

The integration indicated by the condition # = p has to be extended over
a set of curves # = p and the normal is directed in each case into the in-
terior of the domain 0 < u < p.

4. We define now the function f(p) in the following way. Let

_ IA/(P) I ? 1/
) = G A

or

IIA

A'(t) | dt, p >0, (61)

and

o) = So* glp)dp,  f(0) = 0. (62)
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The integral in (6,) exists since (0 < py < p)
Sod —A'()dp So* (Q®))* (—A' () di
= A(p)) So* Q)" (—A’ ()7 dt — A(p) So* (QE)* (—A'()”* at
+ S32 A)( Q) (—=A4(0))”* dp.
In view of (5) we have g(p) =1, f'(p) = 1 so that we obtain the important
inequality
fo) Z2p, O0=p=1 (7

5. We determine R = R(p) as in I, A(0) = wR¢* being the area of D.
We consider the function # = #%#(R) = f(p) defined on the circle D of radius
R,. This function satisfies the boundary conditions

(Mg = r = f(0) =0,

oi _ 27R ®
<5;L>R = Ro =R1-l—'>mRu (R) thx’lof (p) lA ( ) [ O
in view of (6y).
We have now
L d (oda\ _ 4r d (AG) .\ _ (QG)”
v~ ke (R R) = 4 (1057 0) " T4 ©
and we find
/:f (V22)? do = fRo (V%)% 2xR dR = /‘lrg%)——‘ | 47(0)] dp.
D 0 0
(10)

Comparing this with (2) we see that this process did not change the in-
tegral in the numerator of I (b).

On the other hand, the integral in the denominator will be for the circu-
lar domain D:

JoH (F)2 | A') | dp = St o2 | A'(p) | dp. (11)

This completes the proof.

IV. Problem (c): Buckling of @ Plate—1. Dealing with problem (c), the
previous argument needs only- slight modifications. We define f(p) in the
same way as in III so that the integral in the numerator of I (¢) does not
change.

As to the integral in the denominator we have by 11 (7):

JoS | gradu |2de = S5' P(p) dp )
On the other hand [cf. IT (9)] ' ,
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44 (p)
A'(p)*
and the area between the circles R and R + dR is , A’ (p) | dp so that

T A
fflgradul?da—/(f’@))ﬁA((;’), 3)

| 4°(p) |
474 (p)

| grad % |2 = (f'(p))2 ©)

But

flo) = P(p) (4)

v
—

so that

S leaapanz [0 |4§A((;’>l = [P0 -
/;f|gradu|2da. 5)

1 A. Weinstein, “Btude des spectres des équations aux dérivées partielles de la théorie
des plaques élastiques,” Mém. Sci. Math., vol. 88, 1937, 62 pp.

2 Lord Rayleigh, The Theory of Sound, 2nd ed., vol. 1, 1894, p. 345; Faber, G.,
“Beweis, dass unter allen homogenen Membranen von gleicher Fliche und gleicher
Spannung die kreisformige den tiefsten Grundton gibt,” Sitzber. Bayer. Akad., 1923,
169-172; independently, a proof was given by Krahn, E., ‘“Uber eine von Rayleigh
formulierte Minimaleigenschaft des Kreises,”” Math. Ann., 94, 97-100 (1924).

This establishes the assertion.

SPHERE-GEOMETRICAL UNITARY FIELD THEORY
By TSURUSABURO TAKASU

ToHOKU UNIVERSITY, SENDAI, JAPAN

Communicated by Oswald Veblen, November 17, 1949

A conformal relativity theory has long been longed for. Now I have
arrived at the following results:

1. The Kaluza-Klein space®? is equivalent to the Einstein space
Vi(R? = 1/, gYR) (special) dual-conformal (i.e., N.E.-Laguerre connection)
geometrically so that the points in V, correspond to the generalized hyper-
spheres whose developments in the N.E. tangential spaces are hyperspheres
of equal radii.

2. The Einstein-Mayer space? is equivalent to the Einstein space 7,
(special) Laguerre conmnection geometrically so that the points in V,



